CBM003 ADD/CHANGE FORM

Undergraduate Council

New Course Course Change

Core Category: NONE Effective Fall 2010

or

Graduate/Professional Studies Council

New Course Course Change

Effective Fall

1. Department: Chemical and Biomolecular College: ENGR
2. Faculty Contact Person: Raymond Flumerfelt Telephone: 3-2658 Email: rfw@uh.edu
3. Course Information on New/Revised course:
 - Instructional Area / Course Number / Long Course Title: PETR / 5328 / Petro Fluid Props & Phase Equilib
 - Instructional Area / Course Number / Short Course Title (30 characters max.): PETR / 5328 / PETRO FLUID PROP & PHASE EQUILB
 - SCH: 3.00 Level: SR CIP Code: 1425010006 Lect Hrs: 3 Lab Hrs: 0
4. Justification for adding/changing course: To provide appropriate foundation for course
5. Was the proposed/revised course previously offered as a special topics course? Yes No
 If Yes, please complete:
 - Instructional Area / Course Number / Long Course Title:
 ___ / ___ / ___
 - Course ID: ___ Effective Date (currently active row): ___
6. Authorized Degree Program(s): BS Petroleum Engineering
 - Does this course affect major/minor requirements in the College/Department? Yes No
 - Does this course affect major/minor requirements in other Colleges/Departments? Yes No
 - Can the course be repeated for credit? Yes No (if yes, include in course description)
7. Grade Option: Letter (A, B, C ...)
 Instruction Type: lecture ONLY (Note: Lect/Lab info. must match item 3, above.)
8. If this form involves a change to an existing course, please obtain the following information from the course inventory:
 Instructional Area / Course Number / Long Course Title
 PETR / 5328 / Petroleum Fluid Properties & Phase Equilibrium
 - Course ID: 37407 Effective Date (currently active row): 20072
9. Proposed Catalog Description: (If there are no prerequisites, type in "none").
 Cr. 3. (3-0). Prerequisites: CHEE 3333 or equivalent and senior or graduate standing in Engineering
 Description (30 words max.): Volumetric behavior and equation of state representation of petroleum
 fluids; thermodynamic functions and conditions of phase equilibrium; phase behavior calculations for
 binary and multicomponent systems, experimental techniques for phase equilibrium measurements,
 equation of state tuning and advanced topics.
10. Dean’s Signature: Date: 16/03/2009
 Print/Type Name: David P. Shattuck