Insights into Pediatric Sarcomas: Biology and Patient Care

Jason T. Yustein, MD, PhD

Texas Children's Cancer Center

Baylor College of Medicine

September 15, 2020

Overview

Background on Sarcomas
Genetics and Biology

- Modeling and Targeting Sarcomas
 - metastasis

Patient Case Presentation

Cancer is the number one cause of death by disease of America's children.

In terms of person years life lost (PYLL), the average age at diagnosis of breast cancer is 61, with a calculated 16 PYLL.

In contrast, the average age that a child is diagnosed with cancer is 10. This calculates to 67 PYLL

Pediatric Cancers are not adult cancers that reside in younger, smaller people...They are DIFFERENT Cancers!

Sarcomas: A broad group of malignancies. Dozens of subtypes have been identified. <u>Classified into 2 broad categories:</u>

- 1. Soft tissue sarcomas (STS)
- Tumors that have histologic resemblance to fat, muscle, nerve sheath, and blood vessels
- 2. Sarcomas of the bone.

Less than 1% of all new cancer diagnoses

Of 1.6-1.7 million new cases of cancer/year:

- 12,000 cases will have been STS
- 3000 cases, bone sarcomas

In pediatrics: Sarcomas make up 10-15% of all malignancies

Carcinomas versus Sarcomas

Carcinoma	Malignant tumor arising in epithelium		
	The most common form of cancer		
	Usually spread in lymphatic system		
Sarcoma	Malignant tumor arising in connective or muscle tissue		
	Usually spread by blood stream		
	Frequently metastasizes to lung		

Carcinomas

Baylor College of Medicine

Pediatric Cancer: Tumor Types

Medicine

Age-Adjusted and Age-Specific SEER Cancer Incidence Rates, 2010-2014 By International Classification of Childhood Cancer(ICCC)b Group and Subgroup and Age at Diagnosis Including myelodysplastic syndromes and Group III benign brain/CNS tumors All Races, Male

and Hematology Centers

<u>Osteosarcoma</u>

12-18 years old; 800 new cases/year in US; 400 are kids

Treatment:

High Dose Chemotherapy Resection of tumor

Ewing Sarcoma

10-20 year olds; 250 cases/year in the U.S.

t(11;22) EWS-FLI1: formation of novel chimeric transcription factor

Rhabdomyosarcoma

2-5 year olds; 65% before age 6 About 350-400 new cases/year in U.S.

Location:

Head and Neck (40%); GU (25%); Extremity (15%)

Genomic Catastrophes in Sarcomas: Chromothripsis

Genomic changes in sarcomas

Table 1 Translocations a	associated with sar	comas
Translocation	Genes	Type of fusion gene
Ewing's sarcoma		
t(11:22)(q24;q12)	EWSR1-FLI1	Transcription factor
t(21;22)(q22;q12)	EWSR1-ERG	Transcription factor
t(7;22)(p22;q12)	EWSR1-ETV1	Transcription factor
t(17:22)(q21;q12)	EWSR1-ETV4	Transcription factor
t(2;22)(q33;q12)	EWSR1-FEV	Transcription factor
Clear-cell sarcoma		
t(12;22)(q13;q12)	EWSR1-ATF1	Transcription factor
Desmoplastic small round-	cell tumour	
t(11;22)(p13:q12)	EWSR1-WT1	Transcription factor
Myxoid chondrosarcoma		
t(9;22)(q22-31;q11-12)	EWSR1-NR4A3	Transcription factor
Myxoid liposarcoma		
t(12:16)(q13;p11)	FUS-DDIT3	Transcription factor
t(12;22)(q13;q12)	EWSR1-DDIT3	Transcription factor
Alveolar rhabdomyosarcom	1a	
t(2:13)(q35:q14)	PAX3-FOXO1A	Transcription factor
t1:13)(p36:q14)	PAX7-FOXO1A	Transcription factor
Synovial sarcoma		
t(X;18)(p11:q11)	SYT-SSX	Transcription factor
Dermatofibrosarcoma prot	uberans	
t(17:22)(q22:q13)	COL1A1-PDGFB	Growth factor
Congenital fibrosarcoma		
t(12;15)(p13;q25)	ETV6-NTRK3	Transcription-factor receptor
Inflammatory myofibroblas	tic tumour	
2p23 rearrangements	TMP3-ALK; TMP4-A	LK Growth-factor receptor
Alveolar soft-part sarcoma		
t(X;17)(p11.2;q25)	ASPL-TFE3	Transcription factor

Mortality and Survival Rates for Pediatric Cancers

FIGURE 3. Trends in Pediatric Cancer Mortality Rates by Site, Ages Birth to 19 Years, 1975 to 2010.

Baylor College of Medicine

	70	70
All ICCC sites	63%	83%
eukemia	48%	84%
Acute lymphocytic leukemia	57%	90%
Acute myeloid leukemia	21%	64%
ymphomas and	72%	91%
reticuloendothelial neoplasms		
Hodgkin lymphoma	87%	97%
Non-Hodgkin lymphoma	47%	85%
Brain and CNS	59%	75%
Ependymoma	37%	81%
Astrocytoma	69%	85%
Medulloblastoma	47%	70%
Neuroblastoma and	54%	79%
ganglioneuroblastoma		
Retinoblastoma	92%	99%
Vilms tumor	75%	90%
lepatic tumors	25%	74%
Bone tumors	49%	73%
Osteosarcoma	45%	71%
Ewing sarcoma	42%	72%
Rhabdomyosarcoma	49%	64%
esticular germ cell tumors	74%	96%
Ovarian germ cell tumors	75%	94%
Thyroid carcinoma	99%	98%
Melanoma	83%	95%

TABLE 3. Pediatric Cancer 5-Year Observed Survival Rates for 2 Time Periods, Ages Birth to 19 Years

YEAR OF DIAGNOSIS

2003-2009,*

0/_

1975-1979,

0/_

SEER data

Why do we care about Metastatic Disease?

The Metastatic Cascade

Anderson, RL. et al., Nat Rev Clin Oncol. 2018 Dec 4.

Baylor College of

Medicine

A framework for the development of effective anti-metastatic agents.

Mol Oncol. 2013 Apr;7(2):283-96.

What allows cancer to Develop and Metastasize?

Alterations in tumor DNA (mutations; amplifications; deletions)
 Alterations in tumor cell RNA (mRNA, microRNA) expression
 Alterations in tumor cell Protein expression or function

□Alterations in non-cell autonomous: (Host ← Tumor)

- ✤ Non-Tumor cells: e.g., Immune cells, Stroma
- Surrounding conditions: Hypoxia, metabolic alterations.

□ How do we model and study these factors and mechanisms outside of the patient?

Texas Children's Cancer and Hematology Centers

Patient-Derived Xenograft (PDX) models

Serial blood/plasma & tumor samples

Tentler, Nature Reviews Clinical Oncology, 2012

Baylor College of

Medicine

- Excellent reflection of patient tumor biology
- Clinical relevance (better predictive value of clinical outcome) Te

Advantages of Genetically Engineered Mouse Models (GEMMs):

Enables a rare disease to become common
 Immunocompetent model system: Study genetics,
 biology and therapeutic interventions

and Hematology Centers

(Photo courtesy of Dr. Jennifer Volkmann, TMF Manager, BCM)

Baylor College of

Medicine

Tissue-specific alteration of p53 to induce Localized and Metastatic Sarcomas

and Hematology Centers

Metastatic Rhabdomyosarcoma

Lungs

Medicine

Studies Performed on Mice

- 1) Imaging
- 2) Sample for Pathology
- 3) Isolate: Tumor DNA, RNA and Protein
 -) Isolate Blood/Plasma: Biomarkers
- 5) Resources: Cell line models

Primary (high power)

Pipeline to *Identify* and *Functionally* Study Candidate Genes/Pathways in Sarcoma Development and Progression

<u>Wnt signaling pathway:</u> Metastatic Osteosarcoma

- Highly conserved pathway
- Involved in normal embryogenesis
- Alterations in pathway implicated in Tumorigenesis.
 - Regulation of genes:
 - •Cell proliferation
 - Migration
 - Invasion

and Hematology Centers

Tegavivint (BC2059): A novel Beta-Catenin Inhibitor

β-Catenin/TBL1 interaction in cancer cell

Modified slide from Iterion Therapeutics

and Hematology Centers

Tegavivint: Targeting metastatic OS

Metastatic PDX-based models: Targeting β-catenin to prevent metastatic OS

Ex vivo Pulmonary Metastasis Assay (PuMA)

Baylor College of

Medicine

Mendoza A et al. J Clin Invest. 2010; 120: 2979-88.

and Hematology Centers

Clinical Trial: Tegavivint for Advanced Pediatric Cancers

CHILDREN'S ONCOLOGY GROUP

The world's childhood cancer experts

Impact: Develop clinical trial for Tegavivint in advanced pediatric cancers

Schema: Functional genomic platform for target identification, drug discovery/efficacy, and biomarker establishment

and Hematology Centers

Patient Story

Case presentation:

History of Present Illness (HPI):

• J.R., <u>a 13 year old male presented to his</u> primary pediatrician in 5/00 with a few day history of right knee pain and swelling with mild effusion. States that swelling became more severe after playing softball in school. Intermittent pain persisted throughout the remained of the year. Pain worse with walking or running and would awaken him at night. Pain alleviated with NSAIDs.

Past Medical History: No illnesses, No Hospitalizations
Immunizations : UTD
Developmental History: Appropriate for Age
Social History: Lives with parents and two older siblings (sisters)—healthy
Family Hx: No h/o Cancer
Allergies: NKDA
Meds: NSAIDs

Review of Systems: As above, plus no fevers, night sweats or weight loss. **Exam:** Vital Signs: Afebrile. RR 18 BP: 127/69 wt 63.6kg ht: 175cm

HEENT: PERRLA, EOMI, No oral lesions Neck: No masses, enlarged lymph nodes Lungs: CTA b/I CV: RRR, no murmurs Abd: No masses or organomegaly Extr: Swelling below right knee, greater along medial aspects Neuro: CN II-XII intact, Deep Tendon Reflexes intact Skin: No rashes, lesions, bruising

Labs: WBC: 5.9 (nml) Hgb: 14.5g/dL (nml) Plts: 307,000/mm3 (nml) Electrolytes: Creatinine: 0.8, Normal

Baylor College of Medicine

Referred for further evaluation.

11/00: X-Ray of Right lower extremity concerning for tibial lesion

12/00: MRI revealed a right proximal tibia lesion.

- Mixed lytic (destructive)/blastic (new bone)
- Cortical breakthrough "Codman's triangle"
- Radial ossification: "sunburst"

Leg lesion:

What do we do now??

Malignant vs non-Malignant

Biopsy: 12/00: Positive for Osteosarcoma

Infectious?

Post-traumatic event/sequelae?

Osteosarcoma Work-Up:

Chest CT scan

Disseminates to: **1)Lung 2)Bone** 3)Lymph node

Bone Scan

Injection of 20mCu Of ⁹⁹Tm Osteolite
Measures new bone growth or breakdown

Anterior Posterior

J.R., both bone scan and Chest CT were **Negative** for evidence of metastatic disease.

Treatment Modalities:

Neoadjuvant chemotherapy

Surgery

Assessment of Response

MORE Chemo

Continuous follow-up evaluations

Means to Give Chemotherapy:

1) Port-A-Cath (PAC)

2) Double Lumen Hickman

Mechanism of Action

Baylor

College of

Medicine

Purpose of Chemotherapy: Cause destruction of (rapidly) dividing cells— Hopefully the cancer cells will be preferentially affected

Typical Side Effects:

- Nausea, Vomiting, Constipation, Diarrhea
- Rash
- Electrolyte changes—Na+, K+, etc..
- Decrease in Blood counts/Myelosuppression
 Makes patients very susceptible to infection, bleeding, fatigue
- HAIR LOSS
- Peripheral neuropathy (VCR)
- Hearing Loss (Cisplatin)
- Nephrotoxicity/Kidney damage
- Liver Damage
- Lung damage
- Cardiac Toxicity
- Infertility

Baylor College of

Medicine

Development of secondary malignancies (usually leukemias)

Goal: More Directed Therapy

Figure 2 | Pathways for targeted therapies in osteosarcoma. This figure schematically shows molecular targets and associated drugs identified for therapeutic intervention in osteosarcoma. Therapeutic targets include specific cell

Kansara et al., Nature Reviews.Cancer 2014

Limb Salvage: Osteoarticular Reconstruction

Baylor College of

Medicine

Cadaveric prosthesis

Non-expandable

Expandable

Van Ness Rotationplasty

Type of <u>autograft</u> wherein a portion of a <u>limb</u> is removed. The remaining limb below the involved portion is rotated and reattached.

Ankle joint becomes the knee joint. Limb rotated because the ankle flexes in the opposite direction compared to the knee. Benefit: functioning knee joint and can run and jump.

Van Ness Rotationplasty

Baylor College of Medicine

Heare et al, Current Opinion in Pediatrics 2009

Texas Children's Cancer and Hematology Centers

Assess Response:

Need pathologist to evaluate excised tumor for % necrosis (tumor death)

Desire:

Greater than 90% necrosis is evidence that tumor is responding to chemotherapy Continue on with current therapeutic regimen

Less than 90% concerning for inappropriate response and consider change in chemotherapy/treatment regimen

J.R. was noted to have >90% necrosis on his pathology

and Hematology Centers

Follow-Up Evaluations:

• Monitored every 6 months post-therapy for 2 additional years:

• J.R. remained in **REMISSSION** until 10/03 when chest CT Noted 3 right sided lung nodules.

 Surgery (open thoracotomy) for excision of nodules—12/2/03. Removal of 4 subpleural nodules (lymph nodes) and one large calcified nodule from right lower lobe:

Hospitalized x 1 week RLL 2 Nodules: + Metastatic Osteosarcoma 6/14/04. Underwent right lower lobectomy. +Right hilar lymph node with evidence of disease.

Importance: No evidence of disease elsewhere.

Presently No evidence of disease

Patient went onto obtain his PhD from BCM and now is a post-doc....

Summary:

Sarcomas—Heterogenous group of mesenchymal tumors; no driver point mutations, more chromosomal aberrations

Treatment: Standard of care consists of toxic chemotherapy targeting DNA synthesis/replication and very morbid surgery

Development and implementation of models

Gain insights into disease biology

Test novel therapeutic agents and regimens

Need for new therapies and translation to clinical trials

Thank you

Jason Yustein: Feigin Center, C1025.07 yustein@bcm.edu

