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A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC
EQUATION AND AN A POSTERIORI ERROR ESTIMATOR FOR

AN INTERIOR PENALTY DISCONTINUOUS GALERKIN
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Abstract. We consider an a posteriori error estimator for the Interior Penalty Discontinuous
Galerkin (IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson
(HHJ) mixed formulation. The error estimator is derived from a two-energies principle for the HHJ
formulation and amounts to the construction of an equilibrated moment tensor which is done by local
interpolation. The reliability estimate is a direct consequence of the two-energies principle and does
not involve generic constants except for possible data oscillations. The efficiency of the estimator
follows by showing that it can be bounded from above by a residual-type estimator known to be
efficient. A documentation of numerical results illustrates the performance of the estimator.
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1. Introduction. The biharmonic equation is more often solved by nonconform-
ing or mixed methods than by conforming elements in order to avoid the computation-
ally expensive implementation of H2 conforming elements such as the Argyris plate
elements of the TUBA family [4] or the generalizations of the Hsieh–Clough–Tocher
elements from [20]. As far as mixed methods are concerned, the fourth order equation
is written as a system of two second order equations, e.g.,

D2u = p,

∇ ·∇ · p = f,
(1.1)

where D2u is the matrix of second partial derivatives of u and p stands for the mo-

ment tensor. The formulation (1.1) leads to the mixed method of Hellan–Herrmann–
Johnson [30, 31, 33]. Another splitting is given by

∆u = w,
∆w = f,

(1.2)

and leads to the mixed method of Ciarlet–Raviart [17]. Among nonconforming ap-
proaches, Discontinuous Galerkin (DG) methods have been studied recently in [14,
15, 26, 27, 28] (for other fourth order problems see [21, 42]). The relationship between
DG methods and mixed methods turns out to be useful for the biharmonic problem
as it is for second order elliptic boundary value problems due to the unified analysis
in [6]. Fourth order problems have been treated similarly in [27].
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The Interior Penalty DG (IPDG) methods considered in [27, 28] rely on the Ciarlet–
Raviart mixed formulation (1.2). They are fully discontinuous in the sense that glob-
ally discontinuous, piecewise polynomials of degree k ≥ 2 are used for the approxi-
mation of the primal variable u. On the other hand, those in [14, 15, 26] are based
on the Hellan–Herrmann–Johnson splitting as given by (1.1). The IPDG schemes in
[14, 15, 26] feature C0 elements of Lagrangian type. Residual-type a posteriori error
estimators have been considered and analyzed in [14, 26], and [28].

We will consider a posteriori error bounds by the two-energies principle, also known
as the hypercircle method. It was originally developed by Prager and Synge [36, 38,
39] and more recently considered in connection with second order elliptic problems
in [1, 7, 8, 9, 10, 11, 12, 41]. The considerations of DG methods in this direction
[2, 3, 18, 22, 23, 24, 25] were also done for equations of second order.

In this paper, we focus on the biharmonic equation in the formulation of Hellan–
Herrmann–Johnson and the application of the hypercircle method to its IPDG ap-
proximation. The advantage of a posteriori error bounds based on the two-energies
principle compared to standard residual-type error estimators is that the reliability
estimate does not contain generic constants except for possible oscillation terms (see
the papers mentioned above and (5.8) below). As we shall see, the implementation
amounts to the construction of an equilibrated moment tensor which can be done by
means of a discrete three-field mixed formulation of the IPDG approximation. The
construction only requires local interpolations in a postprocessing. Nevertheless, the
analysis is more involved than the analogous one for equations of second order.

The paper is organized as follows: Section 2 lists some notation. In Section 3, we
introduce the two-energies principle for the Hellan–Herrmann–Johnson mixed formu-
lation (1.1). Section 4 is devoted to the IPDG approximation and associated discrete
two-field and three-field formulations. Section 5 describes how the error bounds ob-
tained from the two-energies principle can be built into a reliable a posteriori error
estimator. The construction of the equilibrated moment tensor is dealt with in Sec-
tion 6. In Section 7, we prove the efficiency of the estimator by showing that it can
be bounded from above by a residual-type estimator which is known to be efficient.
Finally, in Section 8 we provide a documentation of numerical results illustrating the
quasi-optimality of the IPDG approximation and the performance of the estimator.

2. Notation. We will use standard notation from Lebesgue and Sobolev space
theory [8, 13, 40]. In particular, for a bounded domain Ω ⊂ R2 and D ⊆ Ω̄ we
denote the L2-inner product and the associated L2-norm by (·, ·)0,D and ‖ · ‖0,D,
respectively. We further refer to Hk(Ω), k ∈ N, as the Sobolev spaces with inner
product (·, ·)k,Ω, norm ‖ · ‖k,Ω, and seminorm | · |k,Ω, and to Hk−1/2(Γ′),Γ′ ⊆ Γ = ∂Ω,
as the associated trace spaces. Hk

0 (Ω) stands for the closure of C∞0 (Ω) in theHk-norm.
Further, H−k(Ω) refers to the dual space of Hk

0 (Ω) with 〈·, ·〉k,Ω denoting the dual
product. Moreover, H(div,Ω) is the Hilbert space of vector fields q ∈ L2(Ω)2 such that

∇ ·q ∈ L2(Ω). Matrix-valued functions in L2(Ω)2×2 will be denoted by q = (qij)
2
i,j=1

and the inner-product is (p,q)0,Ω :=
∫

Ω
p : q dx, where p : q :=

∑2
i,j=1 pijqij .

Further, we introduce the Hilbert space

H(div2,Ω) := {q ∈ H(div,Ω)2 |∇ · q ∈ H(div,Ω)}.

Finally, given a function u ∈ H2(Ω), we refer to D2u := (∂2u/∂xi∂xj)
2
i,j=1 as the

matrix of second partial derivatives.
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Let Th(Ω) be a geometrically conforming, locally quasi-uniform simplicial triangula-
tion of the computational domain. For D ⊆ Ω, we denote by Eh(D) the set of edges
of Th(Ω) in D. We further denote by hK ,K ∈ Th(Ω), the diameter of K and by
hE , E ∈ Eh(Ω), the length of E. Moreover, for D ⊆ K we refer to Pm(D), m ∈ N, as
the set of polynomials of degree ≤ m on D. Due to the local quasi-uniformity of the
triangulation, there exist constants 0 < c ≤ C such that

c hE ≤ hK ≤ C hE , E ∈ Eh(∂K). (2.1)

For a function w ∈ L2(Ω) with w|K ∈ C(K),K ∈ Th(Ω), and an interior edge E =
K+∩K−, K± ∈ Th(Ω), we set w± := w|E∩K± and define the average and jump across
E as usual according to

{w}E :=

{
1
2 (w+ + w−) , E ∈ Eh(Ω)

w|E , E ∈ Eh(Γ)
, (2.2a)

[w]E :=

{
w+ − w− , E ∈ Eh(Ω)

w|E , E ∈ Eh(Γ)
. (2.2b)

The average and jump across E ∈ Eh(Ω̄) are defined analogously for vector fields
w ∈ L2(Ω)2 with w|K ∈ C(K)2,K ∈ Th(Ω), and tensors p ∈ L2(Ω)2×2 with p|K ∈
C(K)2×2,K ∈ Th(Ω). Moreover, we refer to nE , E ∈ Eh(Ω), E = K+ ∩ K−, as the
unit normal vector pointing from K+ to K− and to nE , E ∈ Eh(Γ), as the exterior
unit normal vector nΓ on E ∩ Γ. Products like

[w]EnE = w+n∂K+
+ w−n∂K−

and other products under consideration are independent of the choice of K+ and K−
and the resulting orientation of the edge.

3. A two-energies principle for the biharmonic equation. Given a bounded
polygonal domain Ω ⊂ R2 with boundary Γ := ∂Ω and a function f ∈ H−2(Ω), we
consider the biharmonic problem

∆2u = f in Ω, (3.1a)

u = nΓ ·∇u = 0 on Γ. (3.1b)

A primal variational formulation of (3.1) amounts to the computation of u ∈ H2
0 (Ω)

such that for all v ∈ H2
0 (Ω) it holds

(D2u,D2v)0,Ω = 〈f, v〉2,Ω. (3.2)

It is well-known that (3.2) represents the optimality condition for the following un-
constrained minimization problem: Find u ∈ H2

0 (Ω) such that

Jp(u) = inf
v∈H2

0 (Ω)
Jp(v),

where the primal energy functional Jp : H2
0 (Ω)→ R is given by

Jp(v) :=
1

2
(D2v,D2v)0,Ω − 〈f, v〉2,Ω. (3.3)
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In order to specify the associated dual problem, the divergence of a matrix-valued
function q = (qij)

2
i,j=1 with row vectors q(i) = (qi1, qi2)T , 1 ≤ i ≤ 2, is defined as

usual

∇ · q := (∇ · q(1),∇ · q(2))T . (3.4)

The dual or complementary energy Jd : L2(Ω)2×2 → R , given by

Jd(q) := −1

2
(q,q)0,Ω,

will be maximized subject to the constraint

(q, D2v)0,Ω = 〈f, v〉2,Ω for all v ∈ H2
0 (Ω). (3.5)

The relation (3.5) may be understood as

∇ ·∇ · q = f in H−2(Ω)

or in the distributional sense.

Theorem 3.1. Let Jp and Jd be defined as above. Then

min
v∈H2

0

Jp(v) = max
q∈L2(Ω)2×2

{
Jd(q) |∇ · ∇ · q = f

}
(3.6)

where the constraint on the right-hand side of (3.6) is understood as in (3.5).

Proof. By definition we have for v and q as in (3.6)

Jp(v)− Jd(q) =
1

2
(D2v,D2v)0,Ω − 〈f, v〉2,Ω +

1

2
(q,q)0,Ω

=
1

2
(D2v − q, D2v − q)0,Ω + (q, D2v)0,Ω − (f, v)0,Ω

=
1

2
‖D2v − q‖0,Ω ≥ 0,

since the relation (3.5) holds by assumption. It follows that inf Jp(v) ≥ sup Jd(q)

where the infimum and the supremum are understood in the spirit of (3.6). Since we
have equality for v := u and q := D2u, the proof is complete.

We are now in a position to state an abstract version of the two-energies principle for
the biharmonic equation; cf. [35, Theorem 3.1].

Theorem 3.2. (Two-energies principle for the biharmonic equation)
Let u ∈ H2

0 (Ω) be the solution of (3.2), and let p ∈ L2(Ω)2×2 satisfy the equilibrium

condition

∇ ·∇ · p = f in H−2(Ω). (3.7)

Then, for v ∈ H2
0 (Ω) it holds

‖D2v − p‖20,Ω = ‖D2(v − u)‖20,Ω + ‖D2u− p‖20,Ω. (3.8)
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Proof. We provide a short proof for completeness. If u ∈ H2
0 (Ω) is the solution of

(3.2), then (D2u,D2(v − u))0,Ω = 〈f, v − u)〉2,Ω. Next we conclude from (3.5) that

the equilibrium assumption (3.7) implies (p, D2(v − u))0,Ω = 〈f, v − u〉2,Ω. Hence,

(D2u− p, D2(u− v))0,Ω = 〈f − f, u− v〉2,Ω = 0.

An application of the binomial formula to ‖(D2v−D2u) + (D2u−p)‖20,Ω yields (3.8).

The relationship (3.8) is called the two-energies principle, because it can be stated in
terms of the primal energy Jp(v) and the complementary energy Jd(p) as

‖D2(v − u)‖20,Ω + ‖D2u− p‖20,Ω = 2
(
Jp(v)− Jd(p)

)
.

We conclude this section with a formulation of the two-energies principle that is better
manageable in finite element computations. In particular, it translates the equilibrium
condition (3.7) for f ∈ L2(Ω) from H−2 to an element-wise property. We consider
moment tensors p ∈ L2(Ω)2×2 that satisfy

p|K ∈ Pk(K)2×2, k ≥ 2, K ∈ Th(Ω), (3.9a)

[p]E nE = 0, E ∈ Eh(Ω), (3.9b)

nE · [∇ · p]E = 0, E ∈ Eh(Ω). (3.9c)

The propertiest (3.9) imply p ∈ H(div2,Ω) (but are not necessary). This is obvious

from (3.11) in the proof of the announced version of the two-energies principle.

Theorem 3.3. (Variant of the two-energies principle) Let u ∈ H2
0 (Ω) be the solution

of (3.2) for f ∈ L2(Ω). Moreover, for a geometrically conforming simplicial triangu-
lation Th(Ω) of Ω let p ∈ H(div2,Ω) satisfy (3.9a)–(3.9c) as well as the equilibrium

condition

∇ ·∇ · p = f in each K ∈ Th(Ω). (3.10)

Then, for v ∈ H2
0 (Ω) it holds

‖D2v − p‖20,Ω = ‖D2(v − u)‖20,Ω + ‖D2u− p‖20,Ω.

Proof. Using (3.2) and applying integration by parts, we obtain
∫

Ω

(D2u− p) : D2(u− v) dx =

∫

Ω

f (u− v) dx−
∑

K∈Th(Ω)

∫

K

p : D2(u− v) dx (3.11)

=
∑

K∈Th(Ω)

∫

K

(f −∇ ·∇ · p) (u− v) dx−
∑

K∈Th(Ω)

∫

∂K

p n∂K ·∇(u− v) ds

+
∑

K∈Th(Ω)

∫

∂K

n∂K ·∇ · p (u− v) ds,
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where n∂K is the outward unit normal on ∂K. The first term in the second line of
(3.11) vanishes due to (3.10), whereas the boundary integrals vanish due to (3.9b),(3.9c)
and u− v = n∂K ·∇(u− v) = 0 on ∂K ∩ Γ. Hence, it follows that

∫

Ω

(D2u− p) : D2(u− v) dx = 0.

The assertion is again an immediate consequence of this orthogonality relation.

4. An IPDG approximation of the biharmonic equation. We consider
the interior penalty discontinuous Galerkin (IPDG) approximation of the biharmonic
problem (3.2) with f ∈ L2(Ω) on a geometrically conforming, locally quasi-uniform
simplicial triangulation Th(Ω) of the computational domain. It involves element-wise
polynomial approximations of u. For k ≥ 2 we introduce the IPDG space

Vh := {vh ∈ L2(Ω) | vh|K ∈ Pk(K), K ∈ Th(Ω)} (4.1)

as well as the space of element-wise polynomial moment tensors

M
h

:= {q
h
∈ L2(Ω)2×2 | q

h
|K ∈ Pk(K)2×2, K ∈ Th(Ω)}. (4.2)

We define a bilinear form aIPh (·, ·) : Vh × Vh → R for the variational IPDG approxi-
mation

aIPh (uh, vh) :=
∑

K∈Th(Ω)

∫

K

D2uh : D2vh dx (4.3)

+
∑

E∈Eh(Ω̄)

∫

E

(
nE · {∇ ·D2uh}E [vh]E + [uh]E nE · {∇ ·D2vh}E

)
ds

−
∑

E∈Eh(Ω̄)

∫

E

(
[∇uh]E · {D2vh}E nE + [∇vh]E · {D2uh}E nE

)
ds

+
∑

E∈Eh(Ω̄)

∫

E

α1

hE
nE · [∇uh]E nE · [∇vh]E ds+

∑

E∈Eh(Ω̄)

∫

E

α2

h3
E

[uh]E [vh]E ds,

where αi > 0, i = 1, 2, are suitable penalty parameters. The IPDG approximation of
(3.2) reads: Find uh ∈ Vh such that

aIPh (uh, vh) = (f, vh)0,Ω, vh ∈ Vh. (4.4)

Remark 4.1. The Hellan–Herrmann–Johnson based symmetric IPDG approximation
(4.4) is the counterpart of the Ciarlet–Raviart based symmetric IPDG approximation
in [27, 28]. If we would choose the finite element space Ṽh = Vh ∩ C0(Ω), then it
reduces to the symmetric C0IPDG approximation considered in [14, 15], and [26]. In
the C0 case the last sum in (4.3) vanishes and is abandoned there.

For completeness, we note that aIPh (·, ·) is not well defined for functions in H2
0 (Ω).

This can be cured by means of a lifting operator

L : Vh +H2
0 (Ω)→M

h∫

Ω

L(v) : q
h
dx =

∑

E∈Eh(Ω̄)

∫

E

(
[v]E nE · {∇ · q

h
}E − [∇v]E · {q

h
}EnE

)
ds. (4.5)

6



The lifting operator L is stable in the sense that it satisfies (cf. [27])

‖L(v)‖20,Ω .
∑

E∈Eh(Ω̄)

(
h−1
E ‖nE · [∇v]E‖20,E + h−3

E ‖[v]E‖20,E
)
, v ∈ Vh +H2

0 (Ω).

Now we define ãIPh : (Vh +H2
0 (Ω))× (Vh +H2

0 (Ω))→ R as follows:

ãIPh (u, v) :=
∑

K∈Th(Ω)

∫

K

(
D2u : D2v + (L(u) : D2v +D2u : L(v))

)
dx (4.6)

+
∑

E∈Eh(Ω̄)

∫

E

α1

hE
nE · [∇u]E nE · [∇v]E ds+

∑

E∈Eh(Ω̄)

∫

E

α2

h3
E

[u]E [v]E ds.

It is easy to verify that ãIPh (uh, vh) = aIPh (uh, vh) holds for uh, vh ∈ Vh.
We introduce the mesh-dependent IPDG norm on Vh +H2

0 (Ω)

‖v‖22,h,Ω :=
∑

K∈Th(Ω)

‖D2v‖20,K (4.7)

+
∑

E∈Eh(Ω̄)

α1

hE
‖nE · [∇v]E‖20,E +

∑

E∈Eh(Ω̄)

α2

h3
E

‖[v]E‖20,E .

It is not difficult to show that for sufficiently large penalty parameters αi, i = 1, 2,
i.e., α1 = O((k + 1)2), α2 = O((k + 1)6), there exists a positive constant γ such that

ãIPh (v, v) ≥ γ ‖v‖22,h,Ω, v ∈ Vh +H2
0 (Ω). (4.8)

On the other hand, there exists a constant Γ > 1 such that for any αi > 0, 1 ≤ i ≤ 2,

ãIPh (v, w) ≤ Γ ‖v‖2,h,Ω‖w‖2,h,Ω, v, w ∈ Vh +H2
0 (Ω). (4.9)

In particular, it follows from (4.8) and (4.9) that the IPDG approximation (4.4) admits
a unique solution uh ∈ Vh for sufficiently large penalty parameters.

A mixed formulation in the spirit of [6] was given in [27] for the Ciarlet–Raviart
method. We provide now two mixed Hellan–Herrmann–Johnson type formulations of
(4.4) by specifying appropriate numerical flux functions on the edges E ∈ Eh(Ω̄)

û(1) :=

{
{∇uh}E , E ∈ Eh(Ω)

0, E ∈ Eh(Γ)
, (4.10a)

û(2) :=

{
{uh}E , E ∈ Eh(Ω)

0, E ∈ Eh(Γ)
, (4.10b)

p̂ := {D2uh}E −
α1

hE
nE [∇uh]TE , (4.10c)

ψ̂ := {∇ ·D2uh}+
α2

h3
E

[uh]E nE . (4.10d)

We keep the notion numerical fluxes from [6] although not all the variables in (4.10)
are fluxes in the strict sense.
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The mixed method with the two-field-formulation reads as follows: Find (uh,p
h
) ∈

Vh×M
h

and numerical fluxes such that (4.10a)–(4.10d) holds and simultaneously for
all (v,q) ∈ Vh ×M

h
and K ∈ Th(Ω)

∫

K

p
h

: q dx−
∫

K

uh ∇ ·∇ · q dx (4.11a)

−
∫

∂K

û(1) · q n∂K ds+

∫

∂K

û(2)nE ·∇ · q ds = 0,

∫

K

p
h

: D2v dx−
∫

∂K

p̂ n∂K ·∇v ds (4.11b)

+

∫

∂K

n∂K · ψ̂ v ds =

∫

K

f v dx.

All the equations are coupled since they contain equations on elements as well as on
edges.

Often another implementation is considered as more convenient. – First the solution
uh of the primal method is determined by solving linear equations with a positive
definite matrix. The numerical fluxes are determined immediately by their definition
(4.10). The moment tensor p

h
can be evaluated by solving the small linear system

(4.11a) for each K ∈ Th.

Lemma 4.2. Let the numerical flux functions û(1), û(2), p̂ and ψ̂ , be given by (4.10)

and suppose that the penalty parameters αi, 1 ≤ i ≤ 2, are sufficiently large.

(i) If uh ∈ Vh is the unique solution of (4.4), then there exists p
h
∈ M

h
such that

the pair (uh,p
h
) satisfies (4.11).

(ii) If (uh,p
h
) ∈ Vh×M

h
is a solution of (4.11), then uh is the solution of the IPDG

approximation (4.4).

Proof. Let uh ∈ Vh be the unique solution of (4.4). The associated numerical fluxes
are known from (4.10). We define p

h
∈M

h
by means of (4.11a). Next, let K ∈ Th(Ω)

and v ∈ Vh. We apply (4.11a) with q(x) = D2v(x), x ∈ K, and insert the expressions

(4.10a), (4.10b) for the numerical fluxes to obtain

∫

K

p
h

: D2v dx =

∫

K

uh ∇ ·∇ ·D2v dx (4.12)

+

∫

∂K

{∇uh}∂K ·D2v n∂K ds−
∫

∂K

{uh}∂K n∂K ·∇ ·D2v ds.

Using Green’s formula

∫

K

uh ∇ ·∇ ·D2
hv dx =

∫

K

D2
huh : D2

hv dx (4.13)

−
∫

∂K

∇uh ·D2v n∂K ds+

∫

∂K

uhn∂K ·∇ ·D2v ds,

for eliminating the first integral on the right-hand side of (4.12) we get
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∫

K

p
h

: D2v dx (4.14)

=

∫

K

D2
huh : D2

hv dx−
∫

∂K

∇uh ·D2v n∂K ds+

∫

∂K

uhn∂K ·∇ ·D2v ds

+

∫

∂K

{∇uh}∂K ·D2v n∂K ds−
∫

∂K

{uh}∂K n∂K ·∇ ·D2v ds.

We recall that {w}∂K − w|∂K = 1
2 [w]∂K . Summation over all triangles yields

∑

K∈Th(Ω)

∫

K

p
h

: D2v dx =
∑

K∈Th(Ω)

∫

K

D2
huh : D2

hv dx (4.15)

+
∑

E∈Eh(Ω)

∫

E

[∇uh]E · {D2v}EnE ds−
∑

E∈Eh(Ω)

∫

E

[uh]E nE · {∇ ·D2v}E ds.

Next, we use the variational equality (4.4) to eliminate the first integral on the
right.hand side of (4.15),

∑

K∈Th(Ω)

∫

K

p
h

: D2v dx (4.16)

=
∑

E∈Eh(Ω̄)

∫

E

(
{nE ·∇ ·D2uh}E [v]E + [uh]E nE · {∇ ·D2v}E

)
ds

−
∑

E∈Eh(Ω̄)

∫

E

(
[∇uh]E · {D2v nE}E + {D2uh nE}E · [∇v]E

)
ds

−
∑

E∈Eh(Ω̄)

∫

E

α1

hE
[nE ·∇uh]E [nE ·∇v]E ds−

∑

E∈Eh(Ω̄)

∫

E

α2

h3
E

[uh]E [v]E ds

+

∫

Ω

fv dx

+
∑

E∈Eh(Ω)

∫

E

[∇uh]E · {D2v}EnE ds−
∑

E∈Eh(Ω)

∫

E

[uh]E nE ·∇ · {D2v}E ds.

Note that four integrals in (4.16) cancel. Observing (4.10c),(4.10d) we obtain (4.11b).

Conversely, if (uh,p
h
) ∈ Vh ×M

h
solves (4.11a), (4.11b), we choose q := D2v in

(4.11a). Applying Green’s formula (4.13) again, we can eliminate p
h

from the system.

It follows that uh is a solution of the primal problem (4.4) which proves (ii).

Instead of the two-field formulation (4.11) we consider next a three-field formulation
by introducing the finite element space

W h := {φ
h
∈ L2(Ω)2 | φ

h
|K ∈ Pk−1(K)2,K ∈ Th(Ω)}. (4.17)

The three-field formulation reads as follows: Find (uh,p
h
,ψ

h
) ∈ Vh ×M

h
×W h

together with the numerical flux functions û(1), û(2), p̂ and ψ̂ in (4.10) such that for
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all (v,q,φ) ∈ Vh ×M
h
×W h and all K ∈ Th(Ω) it holds

∫

K

p
h

: q dx−
∫

K

uh ∇ ·∇ · q dx (4.18a)

−
∫

∂K

û(1) · q n∂K ds+

∫

∂K

û(2)n∂K ·∇ · q ds = 0,

∫

K

p
h

: ∇φ dx−
∫

∂K

p̂ n∂K · φ ds = −
∫

K

ψ
h
· φ dx, (4.18b)

∫

K

ψ
h
·∇v dx−

∫

∂K

n∂K · ψ̂ v ds = −
∫

K

fv dx. (4.18c)

Lemma 4.3. Under the assumptions of Lemma 4.2 it holds:

(i) If uh ∈ Vh is the unique solution of (4.4), then there exists a unique pair
(p

h
,ψ

h
) ∈M

h
×W h such that the triple (uh,p

h
,ψ

h
) satisfies (4.18).

(ii) If (uh,p
h
,ψ

h
) ∈ Vh ×M

h
×W h is a solution of (4.18), then the pair (uh,p

h
)

solves (4.11), and uh is the solution of the IPDG approximation (4.4).

Proof. If uh ∈ Vh is the unique solution of (4.4), we already know from Lemma 4.2(i)
that there exists p

h
∈ M

h
such that (4.11a) and (4.11b) are satisfied. Next, we

define ψ
h
∈ W h by means of (4.18b). Choosing φ = ∇v we may replace the first

two terms in (4.11b) by
∑
K

∫
K
ψ
h
·∇v dx. It follows that (4.18c) holds true which

proves (i).

Conversely, if (uh,p
h
,ψ

h
) ∈ Vh×M

h
×W h is a solution of (4.18a)–(4.18c), obviously

(4.11a) and (4.18a) coincide. Next, we set φ = ∇v in (4.18b) and evaluate the term
in the second line via (4.18c),

∑

K∈Th(Ω)

∫

K

p
h

: D2v dx−
∑

K∈Th(Ω)

∫

∂K

p̂ n∂K ·∇v ds

= −
∑

K∈Th(Ω)

∫

K

ψ
h
·∇v dx,

= −
∑

K∈Th(Ω)

∫

∂K

n∂K · ψ̂ v ds+
∑

K∈Th(Ω)

∫

K

fv dx.

Hence, we obtain (4.11b). Now Lemma 4.2, part (ii) shows that uh solves (4.4) which
proves (ii).

5. An a posteriori error estimator for the IPDG approximation of the
biharmonic equation. The construction of an equilibrated moment tensor in the
finite element framework will be affected by data oscillation, and the case k = 2
requires special care. This will be clear from Remark 6.5 below. Specifically, set

Meq

h
:= {q

h
∈ L2(Ω)2×2 | q

h
|K ∈ P`(K)2×2, K ∈ Th(Ω)}, (5.1)

where ` :=

{
k if k ≥ 3,

3 if k = 2.
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Given K ∈ Th(Ω), let fK be the L2-projection of f onto P`−2(K), and let fh ∈ L2(Ω)
be given by fh|K = fK ,K ∈ Th(Ω). A moment tensor peq

h
∈Meq

h
is called equilibrated

in this framework, if if satisfies (3.9b),(3.9c) which implies peq
h
∈ H(div2,Ω), and also

the equilibrium equation

∇ ·∇ · peq
h

= fh in each K ∈ Th(Ω). (5.2)

The two-energies principle (Theorem 3.3) can be applied to the IPDG approximation
(4.4) involving an equilibrated moment tensor peq

h
. It gives rise to an a posteriori

error bound in terms of element-related terms ηeqK,i, 1 ≤ i ≤ 2, and edge-related terms

ηeqE,i, 1 ≤ i ≤ 2, as given by

ηeqK,1 := ‖D2uh − peq
h
‖0,K , K ∈ Th(Ω), (5.3a)

ηeqK,2 := ‖D2uh −D2uconfh ‖0,K , K ∈ Th(Ω), (5.3b)

ηeqE,1 := h
−1/2
E ‖nE · [∇uh]E‖0,E , E ∈ Eh(Ω̄), (5.3c)

ηeqE,2 := h
−3/2
E ‖[uh]E‖0,E , E ∈ Eh(Ω̄), (5.3d)

where uconfh ∈ H2
0 (Ω) in (5.3b) will be constructed by postprocessing from the finite

element solution uh ∈ Vh.

The following auxiliary result deals with the data oscillation due to the approximation
of f by fh. Its application is not restricted to a posteriori error estimates.

Lemma 5.1. Let z ∈ H2
0 (Ω) be the weak solution of the biharmonic problem

∆2z = f − fh in Ω, (5.4a)

z = nΓ ·∇z = 0 on Γ = ∂Ω. (5.4b)

If the L2-projection of f − fh to P1(K) in each K ∈ Th vanishes, then

‖D2z‖20,Ω ≤ C
∑

K∈Th(Ω)

h4
K ‖f − fh‖20,K . (5.5)

Proof. For v ∈ H2
0 (Ω) and p1 ∈ P1(K),K ∈ Th(Ω), we have by assumption
∑

K∈Th(Ω)

(D2z,D2v)0,K =
∑

K∈Th(Ω)

(f − fh, v − p1)0,K .

Choosing v = z, it follows that
∑

K∈Th(Ω)

‖D2z‖20,K ≤
∑

K∈Th(Ω)

‖f − fh‖0,K ‖z − p1‖0,K .

We fix p1 ∈ P1(K) by the interpolation conditions
∫
K
p1dx =

∫
K
zdx and

∫
K
∇p1dx =∫

K
∇zdx. The Poincaré-Friedrichs inequalities (cf., e.g., [34])

‖z − p1‖0,K ≤ ChK
(
‖∇z‖0,K +

∣∣∣
∫

K

(z − p1) dx
∣∣∣
)
,

‖∇(z − p1)‖0,K ≤ ChK
(
‖D2z‖0,K +

∣∣∣
∫

K

∇(z − p1) dx
∣∣∣
R2

)
.
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yield the relation
∑

K∈Th(Ω)

‖D2z‖20,K ≤ C2
∑

K∈Th(Ω)

‖D2z‖0,Kh2
K‖f − fh‖0,K .

By applying the Cauchy inequality to the right-hand side and dividing by the square
root of the left-hand side we obtain the assertion.

The data oscillation will be denoted by

osc2h(f) :=
∑

K∈Th(Ω)

osc2K(f), osc2K(f) := h4
K ‖f − fh‖20,K . (5.6)

The error bound in the following theorem refers to the norm (4.7).

Theorem 5.2. Let u ∈ H2
0 (Ω) be the solution of the biharmonic problem (3.1a),

(3.1b), let uh ∈ Vh be the unique solution of the IPDG approximation (4.4), and let

peq
h
∈ Meq

h
∩ H(div2,Ω) be an equilibrated moment tensor. Moreover, let uconfh ∈

H2
0 (Ω), let ηeqK,i, η

eq
E,i, 1 ≤ i ≤ 2, be given by (5.3a)–(5.3d), and let osch(f) be the data

oscillation (5.6). We set

ηeqh :=
( ∑

K∈Th(Ω)

(ηeqK,1)2
)1/2

+ 2
( ∑

K∈Th(Ω)

(ηeqK,2)2
)1/2

(5.7)

+
( ∑

E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)
)1/2

.

Then there exists a constant C1 > 0, which only depends on the local geometry of the
triangulation, such that it holds

‖u− uh‖2,h,Ω ≤ ηeqh + C1 osch(f). (5.8)

Proof. Let ū ∈ H2
0 (Ω) be the weak solution of the biharmonic problem

∆2ū = fh in Ω,

ū = nΓ ·∇ū = 0 on Γ = ∂Ω.

By recalling (4.7) and applying the triangle inequality twice we obtain

‖u− uh‖2,h,Ω (5.9)

≤
( ∑

K∈Th(Ω)

‖D2u−D2uh‖20,K
)1/2

+
( ∑

E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)
)1/2

≤
( ∑

K∈Th(Ω)

‖D2u−D2ū‖20,K
)1/2

+
( ∑

K∈Th(Ω)

‖D2ū−D2uconfh ‖20,K
)1/2

+
( ∑

K∈Th(Ω)

‖D2uconfh −D2uh)‖20,K
)1/2

+
( ∑

E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)
)1/2

.

Since z := u − ū solves (5.4a),(5.4b), the first term in the third line of (5.9) can be
estimated from above by Lemma 5.1 and thus gives rise to the data oscillation term in
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(5.8). The two-energies principle (Theorem 3.3) with u = ū, v = uconfh and p = peq
h

yields

‖D2(ū− uconfh )‖0,Ω ≤
( ∑

K∈Th(Ω)

‖D2uconfh − peq
h
‖20,K

)1/2

≤ (5.10)

( ∑

K∈Th(Ω)

(
‖D2uh −D2uconfh ‖20,K

)1/2

+
( ∑

K∈Th(Ω)

‖peq
h
−D2uh‖20,K

)1/2

.

Using these estimates in (5.9) allows to conclude.

Remark 5.3. We note that the constant C1 in front of the data oscillation term
osch(f) is the only generic constant occurring in the reliability estimate (5.8).

In practice, a modified equilibrated error estimator avoids the computationally ex-
pensive evaluation of uconfh and attracts attention, although the reliability estimate
(5.11) below contains another generic constant.

Corollary 5.4. Assume that the assumptions of Theorem 5.2 are satisfied. Specif-
ically, let V confh be the generalized version of the classical Hsieh–Clough–Tocher C 1

conforming finite element space as constructed in [20], and let uconfh = Eh(uh) be the

extension of uh to V confh as defined in [28]. Then there exists a constant C2 > 0, de-
pending only on the local geometry of the triangulation and on the penalty parameters
αi, 1 ≤ i ≤ 2, such that it holds

‖u− uh‖2,h,Ω ≤ (5.11)
( ∑

K∈Th(Ω)

(ηeqK,1)2
)1/2

+ C2

( ∑

E∈Eh(Ω̄)

((ηeqE,1)2 + (ηeqE,2)2)
)1/2

+ C osch(f).

Proof. In [28] it has been shown that

∑

K∈Th(Ω)

(ηeqK,2)2 .
∑

E∈Eh(Ω̄)

((ηeqE,1)2 + (ηeqE,2)2). (5.12)

Using (5.12) in (5.8) yields (5.11).

6. Construction of an equilibrated moment tensor. We construct an equi-
librated moment tensor peq

h
∈Meq

h
∩H(div2,Ω) which allows to apply the two-energies

principle and Theorem 5.2. The construction will be done by an interpolation on each
element. Thus it is a local procedure. In particular, denoting by BDMm(K),m ∈ N,
the Brezzi-Douglas-Marini element of polynomial degreem (cf., e.g., [16]), we first con-
struct an auxiliary vector field ψeq

h
∈ H(div,Ω),ψeq

h
|K ∈ BDM`−1(K),K ∈ Th(Ω),

satisfying

∇ ·ψeq
h

= fh in L2(Ω), (6.1)

and then an equilibrated moment tensor peq
h
∈Meq

h
∩H(div2,Ω) satisfying

∇ · peq
h

= ψeq
h

in L2(Ω)2. (6.2)
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For the construction of the auxiliary vector field we recall the following result:

Lemma 6.1. Let m ≥ 1. Any vector field φ ∈ Pm(K) is uniquely defined by the
following degrees of freedom

∫

E

nE · φ q ds, q ∈ Pm(E), E ∈ Eh(∂K), (6.3a)

∫

K

φ ·∇q dx, q ∈ Pm−1(K), (6.3b)

∫

K

φ · curl(bKq) dx, q ∈ Pm−2(K). (6.3c)

where bK in (6.3c) is the element bubble function on K given by bK =
3∏
i=1

λKi and

λKi , 1 ≤ i ≤ 3, are the barycentric coordinates of K. Moreover, there exists a positive
constant C1(m) depending only on the polynomial degree m and the local geometry of
the triangulation Th(Ω) such that

∫

K

|φ|2 dx ≤ C1(k)
( ∑

E∈Eh(∂K)

hE

∫

E

|nE · φ|2 ds+ h2
K

∫

K

|∇ · φ|2 dx (6.4)

+ h2
K max

{∫

K

|φ · curl(bKq)|2 dx; q ∈ Pm−2(K), max
x∈K
|q(x)| ≤ 1

})
.

Proof. For the uniqueness result we refer to (3.41) in [16, p. 125] since BDMm(K) =
Pm(K). The estimate (6.4) can be derived by standard scaling arguments (cf. Lemma
3.1 and Remark 3.3 in [9]).

The auxiliary vector field ψeq
h

is constructed in each element K ∈ Th such that
ψeq
h
|K ∈ BDM`−1(K) satisfies the interpolation conditions

∫

E

nE ·ψeqh q ds =

∫

E

nE · ψ̂ q ds, q ∈ P`−1(E), E ∈ Eh(∂K), (6.5a)

∫

K

ψeq
h
·∇q dx =

∫

K

ψ
h
·∇q dx, q ∈ P`−2(K), (6.5b)

∫

K

ψeq
h
· curl(bKq) dx =

∫

K

∇ ·D2uh · curl(bKq) dx, q ∈ P`−3(K). (6.5c)

Lemma 6.2. The vector field ψeq
h

that is defined by (6.5) is contained in H(div,Ω)
and satisfies (6.1).

Proof. The solvability of (6.5a)–(6.5c) is guaranteed by Lemma 6.1 with m = ` − 1.
The continuity of the normal components follows from (6.5a) on adjacent triangles
and yields ψeq

h
∈ H(div,Ω).

Let K ∈ Th(Ω). Given a polynomial q ∈ P`−2 ⊂ Pk, we can use (4.18c) with v|K = q
and vh|K′ = 0, K 6= K ′ ∈ Th(Ω). Moreover we make use of Green’s formula, as well
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as of (6.5a) and (6.5b) to obtain

∫

K

∇ ·ψeq
h
q dx = −

∫

K

ψeq
h
·∇q dx+

∫

∂K

n∂K ·ψeqh q ds

= −
∫

K

ψ
h
·∇q dx+

∫

∂K

n∂K · ψ̂ q ds

=

∫

K

fq dx =

∫

K

fhq dx.

Since both ∇ ·ψeq
h

and fh live in P`−2(K), (6.1) follows from the preceding equation.
Now, the assertion follows from ψeq

h
∈ H(div,Ω).

The construction (6.5) by local interpolation and Lemma 6.2 take into account that
there is a compatibility condition due to Gauss’ theorem. The divergence of ψeq

h
in

K cannot be fixed independently of the normal components of ψeq
h

on ∂K, but the
latter are required in order to achieve the continuity of the normal components and
ψeq
h
∈ H(div,Ω).

The compatibility conditions are satisfied here due to the finite element equation
(4.18c) for the discontinuous Galerkin (IPDG) method. They enable us to proceed
on elements like e.g., in [9, 18, 22], and we need not operate on patches like in the
applications of the two-energies principle and H1-conforming elements as, e.g., in
[10, 12] or [8, Section III.9].

For the construction of the equilibrated moment tensor peq
h

we begin with the speci-

fication of the degrees of freedom for tensors p ∈ P`(K)2×2.

Lemma 6.3. We have dim P`(K)2×2 = 2(` + 1)(` + 2). Any p ∈ P`(K)2×2, p =

(pij)
2
i,j=1, with p(i) := (pi1, pi2)T , 1 ≤ i ≤ 2, is uniquely determined by the following

degrees of freedom (DOF)

∫

E

(p nE) · q ds, q ∈ P`(E)2, E ∈ Eh(∂K)., (6.6a)

∫

K

p : ∇q dx, q ∈ P`−1(K)2\P0(K)2, (6.6b)

∫

K

p(i) · curl(bKq) dx, q ∈ P`−2(K), 1 ≤ i ≤ 2. (6.6c)

The numbers of degrees of freedom (DOF) associated with (6.6a)–(6.6c) are as follows

DOF (6.6a) = 6(`+ 1),

DOF (6.6b) = `(`+ 1)− 2,

DOF (6.6c) = `(`− 1)

and sum up to 2(`+ 1)(`+ 2).

Proof. The interpolation conditions for p(1) and p(2) are separated. The vector field

15



p(i) (for 1 ≤ i ≤ 2) is determined by the degrees of freedom

∫

E

p(i) nE q ds, q ∈ P`(E), E ∈ Eh(∂K).,

∫

K

p(i) · ∇q dx, q ∈ P`−1(K)\P0(K),

∫

K

p(i) · curl(bKq) dx, q ∈ P`−2(K) .

By applying Lemma 6.1 with m = ` we conclude that there is a unique solution.

Lemma 6.4. Let q = (q(1),q(2)) ∈ P`(K)2×2. Then there exists a positive con-

stant C2(`) depending only on the polynomial degree ` and the local geometry of the
triangulation Th(Ω) such that

∫

K

|q|2 dx ≤ C2(k)
( ∑

E∈Eh(∂K)

hE

∫

E

(|nE · qnE |2 + |tE · qnE |2) ds (6.7)

+ h2
K

∫

K

|∇ · q|2 dx

+ h2
K

2∑

i=1

max
{∫

K

|q(i) · curl(bKq`−2)|2 dx; q`−2 ∈ P`−2,max
x∈K
|qk−2(x)| ≤ 1

})
.

Proof. As in the proof of Lemma 6.1, the estimate (6.7) follows by standard scaling
arguments.

Now, for the construction of the equilibrated moment tensor we set z
h

:= D2uh with

z
(1)
h := (

∂2uh
∂x2

1

,
∂2uh
∂x1∂x2

)T , z
(2)
h := (

∂2uh
∂x1∂x2

,
∂2uh
∂x2

2

)T .

We construct peq
h

= (ph,eqij )2
i,j=1, with p

(i)
h,eq = (ph,eqi1 , ph,eqi2 )T , 1 ≤ i ≤ 2, in each

element K by fixing the degrees of freedom (6.6a)–(6.6c) according to

∫

E

peq
h

nE · q ds =

∫

E

p̂ nE · q ds, q ∈ P`(E)2, E ∈ Eh(∂K), (6.8a)

∫

K

peq
h

: ∇q dx = −
∫

K

ψeq
h
· q dx+

∫

∂K

p̂ n∂K · q ds, q ∈ P`−1(K)2 (6.8b)

∫

K

p(i)
h,eq
· curl(bKq) dx =

∫

K

z
(i)
h · curl(bKq) dx, q ∈ P`−2(K), 1 ≤ i ≤ 2. (6.8c)

Remark 6.5. Obviously, the equations (6.8b) require the compatibility conditions

−
∫

K

ψeq
h
· p dx+

∫

∂K

p̂ n∂K · p ds = 0, p ∈ P0(K)2 (6.9)
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with constant polynomials p ∈ P0(K)2. Indeed, we had to care for ` ≥ 3 in (5.1) in
order to verify (6.9) now. From the finite element equation (4.18b) we conclude that

−
∫

K

ψ
h
· p dx+

∫

∂K

p̂ n∂K · p ds = 0, p ∈ P0(K)2.

Given p = (p1, p2) ∈ P0(K)2, there exists q ∈ P1(K) with p = ∇q, specifically
(p1, p2) = ∇(p1x1 + p2x2). Since ` ≥ 3, we conclude from (6.5b) that

∫

K

ψeq
h
· p dx =

∫

K

ψeq
h
· ∇q dx =

∫

K

ψ
h
· ∇q dx =

∫

K

ψ
h
· p dx.

Combining the last two equations we obtain (6.9)

The following theorem is the main result and shows that peq
h

is an equilibrated moment

tensor and thus fulfills all requirements of the two-energies principle.

Theorem 6.6. Let k ≥ 2. If the moment tensor peq
h

and the auxiliary vector field ψeq
h

are constructed by (6.8) and (6.5), respectively, then peq
h
∈ H(div2,Ω) is equilibrated,

i.e.,

∇ · ∇ · peq
h

= fh in L2(Ω).

Proof. It follows from (6.8a) that the normal components of peq
h

are continuous on

edges. Hence, peq
h
∈ H(div2,Ω) Let K ∈ Th(Ω). From Remark 6.5 we know that the

compatibility condition (6.9) is satisfied. We apply partial integration and insert the
rules (6.8a), (6.8b) for the construction of peq

h
to obtain

∫

K

∇ · peq
h
· q dx = −

∫

K

peq
h

: ∇q dx+

∫

∂K

peq
h

n∂K · q ds (6.10)

= −
(
−
∫

K

ψeq
h
· q dx+

∫

∂K

p̂ n∂K · q ds
)

+

∫

∂K

p̂ n∂K · q ds

=

∫

K

ψeq
h
· q dx , q ∈ P`−1(K)2.

Since both ∇ · peq
h

and ψeq
h

live in P`−1(K)2, it follows from (6.10) that

∇ · peq
h

= ψeq
h
. (6.11)

The left-hand side is contained in H(div,Ω) since it holds for the right-hand side due
to Lemma 6.2. Moreover it follows that peq

h
∈ H(div2,Ω) and

∇ ·∇ · peq
h

= ∇ ·ψeq
h

= fh

and the proof is complete.

Usually mixed methods for the treatment of the Hellan–Herrrmann–Johnson for-
mulation use finite elements for the moment tensors that are H(div2) nonconform-
ing. This is due to the fact that no simple conforming elements are known. The
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reader will have observed that the equilibrated moment tensors are constructed in
M

h
∩ H(div2,Ω). Thus we have implicitly an H(div2)-conforming finite element

space. We conclude from the efficiency considerations in the next section that this
finite element (sub)space is sufficiently large.

Remark 6.7. We note that the divergence of a tensor was defined row-wise in (3.4).
If we had chosen a column-wise definition, then we would have obtained the trans-
posed tensor peq,T

h
of the result (6.8). It follows that also peq,T

h
∈ H(div2,Ω) and

div div peq,T
h

= fh. Therefore we may use also the symmetrical part

peq,sym
h

=
1

2

(
peq
h

+ peq,T
h

)

for computing the term (5.3a) of the error bound, i.e.,

ηeq,sK,1 := ‖D2uh − peq,sym
h

‖0,K , K ∈ Th(Ω). (6.12)

Since the symmetrical part and the antisymmetrical part of a tensor are L2-orthogonal,
it follows that

ηeq,sK,1 ≤ ηeqK,1, K ∈ Th(Ω). (6.13)

Indeed, numerical results below show that the error bound can be reduced by about 30%
in this way.

7. Efficiency of the equilibrated error estimator. A residual-type a posteri-
ori error estimator has been derived and analyzed in [28] for the IPDG approximation
of the biharmonic problem. It is based on the Ciarlet–Raviart mixed formulation,
and its adaptation to the Hellan–Hermann–Johnson based IPDG approximation (4.4)
reads as follows:

(ηresh )2 =
∑

K∈Th(Ω)

(ηresK )2 +
∑

E∈Eh(Ω̄)

(
(ηresE,1)2 + (ηresE,2)2 + (ηresE,c)

2
)
, (7.1)

where the element residual ηresK and the edge residuals ηresE,1, η
res
E,2, η

res
E,c are given by

(ηresK )2 := h4
K ‖f −∆2uh‖20,K , (7.2)

(ηresE,1)2 := h3
E ‖nE · [∇∆uh‖20,E ,

(ηresE,2)2 := hE

(
‖nE · [D2uh]E nE‖20,E + ‖tE · [D2uh]E nE‖20,E

)
,

(ηresE,c)
2 := h−1

E ‖nE · [∇uh]E‖20,E + h−3
E ‖[uh]E‖20,E .

A slight generalization of the efficiency estimate from [28] shows

(ηresh )2 . ‖u− uh‖22,h,Ω + osc2h(f). (7.3)

The efficiency of the equilibrated a posteriori error estimator ηeqh follows from (7.3)
and the following result.

Lemma 7.1. Let ηeqK ,K ∈ Th(Ω), and osch(f) be given by (5.3a) and (5.6), and let
ηresh be the residual-type a posteriori error estimator (7.1). Then there holds

∑

K∈Th(Ω)

(ηeqK,1)2 . (ηresh )2 + osc2h(f). (7.4)

18



Proof. Let K ∈ Th(Ω) and E ∈ Eh(∂K). Due to (6.8a) and (4.10c) we have peq
h

=

p̂ = {D2uh}E − α1

hE
[nE ·∇uTh ]E . Hence,

nE · (peq
h
−D2uh)nE = nE ·

[
{D2uh}E − ·D2uh

]
nE −

α1

hE
[nE ·∇uh]E ,

tE · (peq
h
−D2uh)nE = tE ·

[
{D2uh}E −D2uh

]
nE .

It follows that

|nE · (peq
h
−D2uh)nE | ≤

1

2
|nE · [D2uh]E nE |+

α1

hE
|nE · [∇uh]E |, (7.5a)

|tE · (peq
h
−D2uh)nE | ≤

1

2
|tE · [D2uh]E nE |. (7.5b)

Moreover, in view of (6.11) and (6.8c) we have

∇ · (peq
h
−D2uh) = ψeq

h
−∇ ·D2uh, (7.6a)

∫

K

(p(i)
h,eq
− z

(i)
h ) · curl(bKq) dx = 0, q ∈ P`−2(K), 1 ≤ i ≤ 2. (7.6b)

Observing (7.5) and (7.6) we apply Lemma 6.4 to peq
h
− D2uh ∈ P 2×2

k , recall (7.2)

and obtain

‖peq
h
−D2uh‖20,K . h2

K ‖ψeqh −∇ ·D2uh‖20,K +
∑

E∈Eh(∂K)

α2
1

hE
‖nE · [∇uh]E‖20,E

+
∑

E∈Eh(∂K)

hE

(
‖nE · [D2uh]E nE‖20,E + ‖tE · [D2uh]E nE‖20,E

)

≤ h2
K ‖ψeqh −∇ ·D2uh‖20,K +

∑

E∈Eh(∂K)

(
(ηresE,c)

2 + (ηresE,2)2
)
. (7.7)

Now we turn to the estimation of ψeq
h
−∇ ·D2uh. We have for E ∈ Eh(∂K) in view

of (6.5a) and (4.10d) ψeq
h

= QE`−1ψ̂ = {D2uh}E + α2

h3
E
QE`−1([uh]E) and

nE · (ψeqh −∇ ·D2uh) = nE ·
(
{∇ ·D2uh}E −∇ ·D2uh

)
+
α2

h3
E

QE`−1([uh]E).

Noting that ∇ ·D2uh = ∇∆uh we obtain

|nE · (ψeqh −∇ ·D2uh)| ≤ 1

2
|nE · [∇∆uh]E |+

α2

h3
E

|QE`−1([uh]E)|. (7.8)

Moreover, taking (6.1) and (6.5c) into account, it holds

∇ · (ψeq
h
−∇ ·D2uh) = fh −∆2uh in K, (7.9a)

∫

K

(ψeq
h
−∇ ·D2uh) · curl(bKq) dx = 0, q ∈ P`−3(K). (7.9b)
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Due to (7.8) and (7.9a),(7.9b), an application of Lemma 6.1 to ψeq
h
−∇ · D2uh ∈

P`−1(K)2 yields

‖ψeq
h
−∇ ·D2uh‖20,K . h2

K ‖fh −∆2uh‖20,K + (7.10)

∑

E∈Eh(∂K)

hE ‖nE · [∇∆uh]E‖20,E +
∑

E∈Eh(∂K)

α2
2

h3
E

‖[uh]E‖20,E .

Using the local quasi-uniformity once more, we have hE ∼ hK for E ∈ Eh(∂K) and
estimate the bounds above in terms of the residual estimators (7.2)

h2
K‖ψeqh −∇ ·D2uh‖20,K . (ηresE,2)2 + h4

K‖f − fh‖20,K +
∑

E∈Eh(∂K)

(
(ηresE,2)2 + (ηresE,3)2

)
.

We insert this bound into (7.7), sum over all K ∈ Th(Ω), and the proof is complete.

Theorem 7.2. Let u ∈ H2
0 (Ω) be the solution of the biharmonic problem (3.1), and

let uh ∈ Vh be the IPDG approximation. Moreover, let ηeqK,i, η
eq
E,i, 1 ≤ i ≤ 2, and

osch(f) be given by (5.3a)–(5.3c) and (5.6). Then there exists a constant C > 0
depending on the polynomial degree k, the local geometry of the triangulation, and on
the penalty parameters αi, 1 ≤ i ≤ 2, such that

∑

K∈Th(Ω)

(
(ηeqK,1)2 + (ηeqK,2)2

)
+

∑

E∈Eh(Ω̄)

((ηeqE,1)2 + (ηeqE,2)2) (7.11)

≤ C
(
‖u− uh‖22,h,Ω + osc2h(f)

)
.

Proof. The assertion follows directly from (5.12), (7.3), and (7.4).

Since the residual a posteriori error estimator is known to be efficient [28], the error
bounds from the two-energies principle are also efficient.
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8. Numerical results. We provide a detailed documentation of the perfor-
mance of the adaptive IPDG method for an illustrative example taken from [29]
which has also been used in [14].

Example 8.1. We choose Ω as the L-shaped domain Ω := (−1,+1)2\([0, 1)×(−1, 0])
and choose f in (3.1a) such that

u(r, ϕ) =
(
r2 cos2 ϕ− 1

)2(
r2 sin2 ϕ− 1

)2

r1+z g(ϕ) (8.1)

is the exact solution of the biharmonic boundary-value problem (3.1), where

g(ϕ) :=(
1
z−1 sin 3(z−1)π

2 − 1
z+1 sin 3(z+1)π

2

)(
cos((z − 1)ϕ)− cos((z + 1)ϕ)

)
−(

1
z−1 sin((z − 1)ϕ)− 1

z+1 sin((z + 1)ϕ)
)(

cos 3(z−1)π
2 − cos 3(z−1)π

2

)
,

and z ≈ 0.54448 is a non-characteristic root of sin2( 3zπ
2 ) = z2 sin2( 3π

2 ).

The penalty parameters have been chosen as α1 := 12.5 (k+1)2 and α2 := 2.5 (k+1)6.
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Fig. 8.1. Error, estimator, effectivity index, and adaptively generated mesh (k = 2).
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Fig. 8.2. Error, estimator, effectivity index, and adaptively generated mesh (k = 3).

We make use of the notation

ηeqEh,α :=
( ∑

E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)
)1/2

, (8.2a)

ηeqh :=
( ∑

K∈Th(Ω)

(ηeqK,1)2
)1/2

+ ηeqEh,α , (8.2b)

ηeq,sh :=
( ∑

K∈Th(Ω)

(ηeq,sK,1 )2
)1/2

+ ηeqEh,α , (8.2c)

where ηeq,sK,1 has been defined in (6.12). Note that the re-definition of ηeqh in (8.2b)
differs from (5.7) in so far as we have omitted the second term of the right-hand side
in (5.7) because according to (5.12) it can be estimated from above by the third term.

For polynomial degree 2 ≤ k ≤ 5 and bulk parameters θ = 1.0 (uniform refinement),
θ = 0.7, and θ = 0.3 Figures 8.1–8.4 display

• the global discretization error u − uh in the mesh-dependent IPDG-norm
‖ · ‖2,h,Ω (top left) and the error estimator ηeqh (top right) as a function of the
total number of degrees of freedom (dofs) on a logarithmic scale,

• the associated effectivity index ηeqh /‖u− uh‖2,h,Ω (bottom left),
• the adaptively generated mesh (θ = 0.7) at refinement level 7 for k = 2, level

9 for k = 3, level 11 for k = 4, and level 13 for k = 5 (bottom right).

We observe a significant refinement in a vicinity of the reentrant corner where the
solution has a singularity and some refinement in regions near the upper and left
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Fig. 8.3. Error, estimator, effectivity index, and adaptively generated mesh (k = 4).

boundary segments of the computational domain where second derivatives of the so-
lution have local peaks. As expected, the refinement is less pronounced for higher
polynomial degree k. Moreover, for k = 2 the beneficial effect of adaptive refinement
sets in for a total number of DOFs (# DOFs) exceeding 104, whereas for 3 ≤ k ≤ 5
it occurs for # DOFs ≈ 103 and is much more pronounced than for k = 2. The
effectivity index is between 2.0 and 4.5 for all polynomial degrees 2 ≤ k ≤ 5.
We note that the computation of the equilibrated moment tensor is ill-conditioned.
The condition number deteriorates significantly with decreasing mesh size and in-
creasing polynomial degree k. For k = 4 and k = 5, Figures 8.3 and 8.4 only display
the results up to refinement levels before roundoff errors have an influence on the
numerical results.

Table 8.1 lists results of the computation for k = 3 and θ = 0.3 and addresses certain
components of the error estimator ηeqh . By using the symmetrical part ηeq,sh (cf.
(8.2c)) as suggested in Remark 6.7, the error bounds and therefore also the associated
effectivity indices ηeq,sh /‖u − uh‖2,h,Ω can be reduced by 15 to 20 %. The weighted
edge-related terms as given by ηeqEh,α contribute only about 12 − 15 % to the overall
error estimator.
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Fig. 8.4. Error, estimator, effectivity index, and adaptively generated mesh (k = 5).

Table 8.1
Results for k = 3 and θ = 0.3

level # dofs ‖u− uh‖2,h,Ω ηeqh ηeq,sh ηeqEh,α effectivity

0 240 6.78 · 100 2.50 · 101 2.04 · 101 3.06 · 100 3.69

2 640 4.23 · 100 1.16 · 101 9.85 · 100 1.77 · 100 2.74

4 940 2.13 · 100 7.75 · 100 6.41 · 100 1.19 · 100 3.64

6 1520 1.60 · 100 5.56 · 100 4.61 · 100 7.93 · 10−1 3.48

8 2380 1.06 · 100 3.71 · 100 3.06 · 100 4.77 · 10−1 3.51

10 4360 6.39 · 10−1 2.27 · 100 1.86 · 100 2.84 · 10−1 3.55

12 7340 3.49 · 10−1 1.17 · 100 9.67 · 10−1 1.47 · 10−1 3.35

14 12210 2.14 · 10−1 7.16 · 10−1 5.89 · 10−1 8.83 · 10−2 3.35

16 19380 1.35 · 10−1 4.34 · 10−1 3.57 · 10−1 5.43 · 10−2 3.20

18 31190 8.37 · 10−2 2.64 · 10−1 2.18 · 10−1 3.23 · 10−2 3.16

20 54040 5.31 · 10−2 1.62 · 10−1 1.33 · 10−1 1.96 · 10−2 3.04
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Jyväskylä, 2004.

[42] G.N. Wells, E. Kuhl, and K. Garikipati, A discontinuous Galerkin method for the Cahn-Hilliard
equation. J. Comp. Phys. 218, 860–877, 2006.

26


