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A C0 INTERIOR PENALTY DISCONTINUOUS GALERKIN

METHOD FOR FOURTH ORDER TOTAL VARIATION FLOW. I:

DERIVATION OF THE METHOD AND NUMERICAL RESULTS.

C. BHANDARI1, R.H.W. HOPPE2, AND R. KUMAR3

Abstract. We consider the numerical solution of a fourth order total varia-
tion flow problem representing surface relaxation below the roughening tem-

perature. Based on a regularization and scaling of the nonlinear fourth order

parabolic equation, we perform an implicit discretization in time and a C0 In-
terior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The

C0IPDG approximation can be derived from a mixed formulation involving

numerical flux functions where an appropriate choice of the flux functions al-
lows to eliminate the discrete dual variable. The fully discrete problem can be

interpreted as a parameter dependent nonlinear system with the discrete time

as a parameter. It is solved by a predictor corrector continuation strategy fea-
turing an adaptive choice of the time step sizes. A documentation of numerical

results is provided illustrating the performance of the C0IPDG method and
the predictor corrector continuation strategy.

The existence and uniqueness of a solution of the C0IPDG method will be

shown in the second part of this paper.

1. Introduction

Surface relaxation by surface diffusion is about the relaxation of a high symmetry
crystalline surface on which a particular profile has been imprinted such that the
typical length scale of the imposed profile is much larger than the lattice constant
(dimension of unit cells in the crystal lattice). Therefore, surface relaxation is an
important process in material sciences, in particular in the production of nanotech-
nology devices. The problem is to understand along which route the initial profile
relaxes to a completely flat surface. One distinguishes between relaxation above and
below the roughening temperature. Below the roughening temperature, the surface
free energy has a cusp singularity. Several authors have suggested to model the
dynamics by a total variation H−1 flow problem that can be formulated as a fourth
order total variation flow (TVF) problem (cf., e.g., [8, 15, 22, 23, 28, 29, 30, 31]).
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Given a bounded domain Ω̂ ⊂ R2 with boundary Γ̂ = ∂Ω̂, the total variation-H−1

(TV-H−1) minimization of the energy functional

E(w) = β

∫

Ω̂

|∇w| dx, β > 0,(1.1)

leads to the following fourth order total variation flow (TVF) problem

∂w

∂t̂
+ β∆∇ · ∇w

|∇w| = 0 in Q̂ := Ω̂× (0, T̂ ),(1.2a)

nΓ̂ · β
∇w

|∇w| = nΓ̂ ·∇∇
(
∇ · ∇w

|∇w|
)

= 0 on Σ̂ := Γ̂× (0, T̂ ),(1.2b)

w(·, 0) = w0 in Ω̂,(1.2c)

where β > 0 is related to the mobility, T̂ > 0 is the final time, nΓ̂ stands for the

exterior unit normal at Γ̂, and w0 ∈ L2(Ω̂) is some given initial data. The fourth

order equation (1.2a) has to be interpreted as follows: On H−1(Ω̂) we introduce an
inner product according to

(w, z)−1,Ω̂ := (∇(−∆−1w),∇(−∆−1z))0,Ω̂,

where ∆−1 stands for the inverse of the Laplacian. For E(w) = β
∫

Ω̂
|∇w| dx,w ∈

H−1(Ω̂), with D(E) = {w ∈ H−1(Ω̂) | E(w) <∞}, the subdifferential

∂H−1E(w) = {v ∈ H−1(Ω̂) | (v, z − w)−1,Ω ≤ E(z)− E(w) for all z ∈ H−1(Ω̂)}
is given by (cf., e.g., [19])

∂H−1E(w) = {∆∇ · ξ | ξ(x̂) ∈ ∂Φ(∇w(x̂))},
where Φ(|η|) and ∂Φ(|η|) are given by

Φ(η) = β|η|, ∂Φ(η) =

{
βη/|η| , if η 6= 0

{τ ∈ R2 | |τ | ≤ β} , if η = 0
.(1.3)

We thus obtain

−∂w
∂t̂
∈ ∂EH−1(w).

Initial-boundary value problems for fourth order TVF problems have been consid-
ered mainly from an analytical point of view (cf., e.g., [13, 14, 19, 20, 21].

Here, we consider the regularized TV-H−1 energy functional

Ereg(w) = β

∫

Ω̂

(δ2 + |∇w|2)1/2 dx, w ∈ H−1(Ω̂),

where δ > 0 is a regularization parameter. This leads to the regularized fourth
order TVF problem

∂w

∂t̂
+ β∆∇ · ((δ2 + |∇w|2)−1/2∇w) = 0 in Q̂,(1.4a)

nΓ̂ · β(δ2 + |∇w|2)−1/2∇w = 0 on Σ̂,(1.4b)

nΓ̂ · β∇
(
∇ · (δ2 + |∇w|2)−1/2∇w

)
= 0 on Σ̂,

w(·, 0) = w0 in Ω̂.(1.4c)
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We further consider a scaling in both the time variable and the spatial variables
according to

t = δt̂, xi = δx̂i, 1 ≤ i ≤ 2.(1.5)

Setting T := δT̂ ,Ω := δΩ̂,Γ := ∂Ω, Q := Ω × (0, T ),Σ := Γ × (0, T ), and u0(x) =
w0(δ−1x), as well as

ω(∇u) := 1 + |∇u|2,(1.6)

the scaled regularized fourth order TVF problem reads as follows

∂u

∂t
+ βδ2∆∇ · (ω(∇u)−1/2∇u) = 0 in Q,(1.7a)

nΓ · βδ2(ω(∇u)−1/2∇u) = nΓ · βδ2∇
(
∇ · (ω(∇u)−1/2∇u)

)
= 0 on Σ,(1.7b)

u(·, 0) = u0 in Ω.(1.7c)

The numerical solution of the regularized fourth order TVF problem with peri-
odic boundary conditions has been considered in [22] based on a mixed formulation
of the implicitly in time discretized problem. At each time-step, this amounts to the
solution of two second order elliptic PDEs by standard Lagrangian finite elements
with respect to a triangulation of the computational domain Ω. On the other hand,
Interior Penalty Discontinuous Galerkin (IPDG) methods for fourth order elliptic
boundary value problems, fourth order and higher order polyharmonic parabolic
initial-boundary value problems have been studied in [2, 3, 4, 5, 6, 7, 11, 12, 17, 18,
25, 26, 32, 36]. The advantage of the C0IPDG approach is that it directly applies
to the fourth order problem and thus only requires the numerical solution of one
equation by using the same Lagrangian finite elements as in the mixed method.

Remark 1.1. We note that another example for a TV-H−1 minimization problem
is the minimization of the energy functional

E(w, ĝ) =

∫

Ω̂

|∇w| dx+
λ

2
‖w − ĝ‖2

H−1(Ω̂)

which occurs in image recovery where w represents a true image, ĝ describes a
blurred and/or noisy image, and λ > 0 is a fidelity parameter ( cf. [24, 27, 34, 35]).
The associated fourth order total variation flow (TVF) problem is given by the
initial-boundary value problem

∂w

∂t̂
+ λ−1∆∇ · ∇w

|∇w| + w − ĝ = 0 in Q̂,(1.8a)

nΓ̂ ·
∇w

|∇w| = nΓ̂ ·∇
(
∇ · ∇w

|∇w|
)

= 0 on Σ̂,(1.8b)

w(·, 0) = w0 in Ω̂.(1.8c)

The paper is organized as follows: In section 2, we will perform a discretization in
time of the regularized and scaled fourth order TVF problem and consider a refor-
mulation in terms of the matrix of second order partial derivatives of the unknown.
Section 3 is devoted to the derivation of the C0IPDG approximation based on an
appropriate choice of numerical flux functions. In section 4, we will show that the
fully discrete system can be written as a parameter dependent nonlinear system
with the discrete time as a parameter. Since the choice of the time steps is crucial
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for the convergence of Newton’s method, we suggest a predictor corrector contin-
uation strategy with constant continuation as a predictor and Newton’s method
as a corrector featuring an adaptive choice of the time step sizes. This avoids a
breakdown of Newton’s method due to convergence failure because of too large time
steps. Finally, in section 5 we present numerical results illustrating the performance
of the C0IPDG method and the predictor corrector continuation strategy.

Throughout the paper we will use the following notations and basic results. For vec-
tors x = (x1, · · · , xn)T ,y = (y1, · · · , yn)T ∈ Rn and for matrices A = (aij)

n
i,j=1,B =

(bij)
n
i,j=1 ∈ Rn×n we denote by x · y and A : B the Euclidean inner product

x · y =
∑n
i=1 xiyi and the Frobenius inner product A : B =

∑n
i,j=1 aijbij . In

particular, |x| := (x · x)1/2 and |A| := (A : A)1/2 refer to the Euclidean norm and
the Frobenius norm, respectively.
We will further use standard notation from Lebesgue and Sobolev space theory (cf.,
e.g., [33]). In particular, for a bounded domain D ⊂ Rd, d ∈ N, we refer to L2(D)
as the Hilbert space of square integrable functions on D with inner product (·, ·)0,D

and norm ‖ · ‖0,D. Moreover, we denote by Hm(D),m ∈ N, the Sobolev space with
inner product (·, ·)m,D and norm ‖ · ‖m,D.

2. Implicit time-discretization

For the numerical solution of the regularized fourth order TVF problem (1.7) we
perform a discretization in time with respect to a partition of the time interval
[0, T ] into subintervals [tm−1, tm] of length τm := tm− tm−1. Denoting by um some
approximation of u at time tm, for 1 ≤ m ≤M we have to solve the problems

um − um−1 + τmβδ
2∆∇ · (ω(∇um)−1/2∇um) = 0 in Ω,(2.1a)

nΓ · βδ2(ω(∇um)−1/2∇um) = nΓ · βδ2∇
(
∇ · (ω(∇um)−1/2∇um)

)
= 0 on Γ.

(2.1b)

Introducing the objective functional

J(v) :=
1

2
‖v − um−1‖2−1,Ω + τmβδ

2

∫

Ω

(1 + |∇v|2)1/2 dx,(2.2)

it is easy to see that (2.1) is related to the necessary and sufficient optimality
condition for the minimization problem

J(um) = inf
v∈H−1(Ω)

J(v),(2.3)

which has a unique solution, since the objective functional J is strictly convex,
coercive, and lower semicontinuous.
The fourth order equation (2.1a) can be reformulated in terms of the 2× 2 matrix

D2um =




∂2um

∂x2
1

∂2um

∂x1∂x2

∂2um

∂x1∂x2

∂2um

∂x2
2


 .

of second partial derivatives of um. We note that the divergence of a matrix-valued
function q = (qij)

2
i,j=1 with row vectors q(i) = (qi1, qi2)T , 1 ≤ i ≤ 2, is defined by
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means of

∇ · q := (∇ · q(1),∇ · q(2))T .(2.4)

Theorem 2.1. The fourth order equation (2.1a) is equivalent to

um − um−1 + τmβδ
2∇ · ∇ · (ω(∇um)−3/2M(um)D2um) = 0,(2.5)

where M(v) stands for the matrix-valued function

M(v) :=




1 + ( ∂v∂x2
)2 − ∂v

∂x1

∂v
∂x2

− ∂v
∂x1

∂v
∂x2

1 + ( ∂v∂x2
)2


 .(2.6)

Proof. We reformulate the second term on the left-hand side of (2.1a) according to

∆∇ · (ω(∇um)−1/2∇um) = ∇ ·∇
(
∇ · (ω(∇um)−1/2∇um)

)
=(2.7)

∇ ·∇ ·∇(ω(∇um)−1/2∇um).

Obviously, we have

∇(ω(∇um)−1/2∇um) =




∂
∂x1

∂
∂x2



(
ω(∇um)−1/2




∂um

∂x1

∂um

∂x2



)
.(2.8)

In particular,

∂

∂x1

(
ω(∇um)−1/2




∂um

∂x1

∂um

∂x2



)

=(2.9)

− ω(∇um)−3/2(
∂um

∂x1

∂2um

∂x2
1

+
∂um

∂x2

∂2um

∂x1∂x2
)




∂um

∂x1

∂um

∂x2


 +

ω(∇um)−1/2




∂2um

∂x2
1

∂2um

∂x1∂x2


 =

ω(∇um)−3/2




(1 + (∂u
m

∂x2
)2 ∂2um

∂x2
1
− ∂um

∂x1

∂um

∂x2

∂2um

∂x1∂x2

(1 + (∂u
m

∂x1
)2 ∂2um

∂x1∂x2
− ∂um

∂x1

∂um

∂x2

∂2um

∂x2
1


 ,
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and

∂

∂x2

(
ω(∇um)−1/2




∂um

∂x1

∂um

∂x2



)

=(2.10)

− ω(∇um)−3/2(
∂um

∂x1

∂2um

∂x1∂x2
+
∂um

∂x2

∂2um

∂x2
2

)




∂um

∂x1

∂um

∂x2


 +

ω(∇um)−1/2




∂2um

∂x1∂x2

∂2um

∂x2
2


 =

ω(∇um)−3/2




(1 + (∂u
m

∂x2
)2 ∂2um

∂x1∂x2
− ∂um

∂x1

∂um

∂x2

∂2um

∂x2
1

(1 + (∂u
m

∂x1
)2 ∂2um

∂x2
2
− ∂um

∂x1

∂um

∂x2

∂2um

∂x1∂x2


 .

Using (2.9) and (2.10) in (2.8), it follows that

∇(ω(∇um)−1/2∇um) =(2.11)

ω(∇um)−3/2




1 + (∂u
m

∂x2
)2 −∂um

∂x1

∂um

∂x2

−∂um

∂x1

∂um

∂x2
1 + (∂u

m

∂x2
)2


D2um,

which can be written as

∇(ω(∇um)−1/2∇um) = ω(∇um)−3/2M(um)D2um.(2.12)

�

Remark 2.1. The matrix M(v) is symmetric positive definite with the eigenvalues

λmin(M(v)) = 1, λmax(M(v)) = 1 + |∇v|2.(2.13)

For notational convenience we set

A
1
(v) := ω(∇v)−3/2M(v).(2.14)

The weak formulation of (2.5) reads: Find

um ∈ V := {v ∈ H2(Ω) | nΓ · βδ2ω(∇v)−1/2∇v = 0 on Γ}
such that for all v ∈ V it holds

(um − um−1, v)0,Ω + τmβδ
2

∫

Ω

(
A

1
(um)D2um

)
: D2v dx = 0.(2.15)

Finally, we provide a mixed formulation of (2.5), because the derivation of the
C0IPDG method will be based on the discrete analogue of that mixed formulation.
Introducing the matrix-valued function

pm := ω(∇um)−1/4D2um,(2.16)
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and the matrix

A
2
(v) := ω(∇v)−5/4M(v).(2.17)

the mixed formulation of (2.1a),(2.1b) reads as follows

pm − ω(∇um)−1/4D2um = 0 in Ω,(2.18a)

um − um−1 + τmβδ
2∇ ·∇ ·A

2
(um)p(um) = 0 in Ω,(2.18b)

nΓ · βδ2ω(∇um)−1/2∇um = 0 on Γ,(2.18c)

nΓ · βδ2∇ ·A
2
(um)pm = 0 on Γ.(2.18d)

3. C0 Interior Penalty Discontinuous Galerkin approximation

Let Th be a geometrically conforming, uniform simplicial triangulation of Ω. We
denote by Eh(Ω) and Eh(Γ) the set of edges of Th in the interior of Ω and on the
boundary Γ, respectively, and set Eh := Eh(Ω) ∪ Eh(Γ). For K ∈ Th and E ∈ Eh
we denote by hK and hE the diameter of K and the length of E, and we set
h := max(hK | K ∈ Th). Due to the assumptions on Th there exist constants
0 < cR ≤ CR, 0 < cQ ≤ CQ, and 0 < cS ≤ CS such that for all K ∈ Th it holds

cRhK ≤ hE ≤ CRhK , E ∈ Eh(∂K),(3.1a)

cQh ≤ hK ≤ CQh,(3.1b)

cSh
2
K ≤ meas(K) ≤ CSh2

K .(3.1c)

For two quantities A and B we write A . B, if there exists a constant C > 0
independent of h such that A ≤ CB.
Denoting by Pk(T ), k ∈ N, the linear space of polynomials of degree ≤ k on T , for
k ∈ N we define

Vh := {vh ∈ C0(Ω̄) | vh|T ∈ Pk(T ), T ∈ Th}(3.2)

and note that Vh ⊂ H1(Ω), but Vh 6⊂ H2(Ω). Further, we introduce

M
h

:= {q
h
∈ L2(Ω)2×2 | q

h
|K ∈ Pk(K)2×2, K ∈ Th}(3.3)

as the space of element-wise polynomial moment tensors.
For interior edges E ∈ Eh(Ω) such that E = K+ ∩ K−,K± ∈ Th and boundary
edges on Γ we introduce the average and jump of ∇vh according to

{∇vh}E :=

{
1
2

(
∇vh|E∩K+ +∇vh|E∩K−

)
, E ∈ Eh(Ω)

∇vh|E , E ∈ Eh(Γ)
,(3.4a)

[∇vh]E :=

{
∇vh|E∩K+

−∇vh|E∩K− , E ∈ Eh(Ω)
∇vh|E , E ∈ Eh(Γ)

.(3.4b)

The average {∆vh}E and jump [∆vh]E are defined analogously. We further denote
by nE the unit normal vector on E pointing in the direction from K+ to K−.

In order to motivate the C0IPDG approximation we will follow the approach taken
in [1] for second order elliptic boundary value problems. For pm

h
∈M

h
and umh ∈ Vh
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we consider (2.18a),(2.18b) elementwise and (2.18c),(2.18d) edgewise, i.e.,

pm
h
− ω(∇umh )−1/4D2umh = 0 in K ∈ Th,(3.5a)

umh − um−1
h + τmβδ

2∇ ·∇ ·A
2
(umh )pm

h
= 0 in K ∈ Th,(3.5b)

nE · βδ2ω(∇umh )−1/4∇umh = 0 on E ∈ Eh(Γ),(3.5c)

nE · βδ2∇ ·A
2
(umh )pm

h
= 0 on E ∈ Eh(Γ),(3.5d)

with u0
h = Qhu

0, where Qh : L2(Ω) → Vh denotes the L2 projection onto Vh. We
multiply (3.5a) by q

h
∈M

h
and integrate over K:

∫

K

pm
h

: q
h
dx =

∫

K

(ω(∇umh )−1/4D2umh ) : q
h
dx.(3.6)

In view of (2.11) Green’s formula yields

∫

K

(ω(∇umh )−1/4D2umh ) : q
h
dx =

∫

K

D2umh : (ω(∇umh )−1/4q
h
) dx =(3.7)

= −
∫

K

∇umh ·∇ · (ω(∇umh )−1/4q
h
) dx+

∫

∂K

ω(∇umh )−1/4∇umh · q
h
n∂K ds.

On the other hand, we multiply (3.5b) by vh ∈ Vh and integrate over K:

∫

K

(umh − um−1
h )vh dx+ τmβδ

2

∫

K

∇ ·∇ ·A
2
(umh )pm

h
vh dx = 0.(3.8)

Applying Green’s formula twice, we obtain

∫

K

∇ ·∇ ·A
2
(umh )pm

h
vh dx = −

∫

K

∇ ·A
2
(umh )pm

h
·∇vh dx +(3.9)

∫

∂K

n∂K ·∇ ·A2
(umh )pm

h
vh ds =

∫

K

pm
h

: A
2
(umh )D2vh dx −

∫

∂K

A
2
(umh )pm

h
n∂k ·∇vh ds+

∫

∂K

n∂K ·∇ ·A2
(umh )pm

h
vh ds.

Summing over all K ∈ Th in (3.7) and (3.9), we obtain the weak formulation of
the mixed formulation (3.5a)-(3.5d): Find (umh ,p

m

h
) ∈ Vh ×M

h
such that for all
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(vh,q
h
) ∈ Vh ×M

h
it holds

∑

K∈Th

∫

K

pm
h

: q
h
dx+

∑

K∈Th

∫

K

∇umh ·∇ · (ω(∇umh )−1/4q
h
) dx −

(3.10a)

∑

K∈Th

∫

∂K

ω(∇umh )−1/4∇umh · q
h
n∂K ds = 0,

∑

K∈Th

∫

K

umh vh dx+ τmβδ
2
( ∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx −

(3.10b)

∑

K∈Th

∫

∂K

A
2
(umh )pm

h
n∂K ·∇vh ds+

∑

K∈Th

∫

∂K

n∂K ·∇ ·A2
(umh )pm

h
vh ds

)
=

∑

K∈Th

∫

K

um−1
h vh dx.

A general C0DG approximation of (2.1b),(2.1b) is based on the mixed formulation
(3.10a),(3.10b) and characterized by numerical flux functions ûm∂K , p̂m

∂K
, and ŝm∂K

that are single-valued on E ∈ Eh(Ω), i.e., ûm∂K |E+
= ûm∂K |E− , p̂m

∂K
|E+

= p̂m
∂K
|E− ,

and ŝm∂K |E+ = ŝm∂K |E− . We replace ω(∇umh )−1/4∇umh · q
h
n∂K in (3.10a) by ûm∂K ·

q
h
n∂K and A

2
(umh )pm

h
n∂K ·∇vh = A

2
(umh )D2(umh )n∂K ·ω(∇umh )−1/4∇vh as well

as n∂K ·∇ ·A2
(umh )pm

h
vh in (3.10b) by p̂m

∂K
· ω(∇umh )−1/4∇vh and n∂K · ŝm∂Kvh.

In view of (3.5d) we choose ŝm∂K |E = nE ·∇ · A2
(umh )pm

h
= 0, E ∈ Eh(Γ), Then,

no matter how we choose ŝm∂K |E on E ∈ Eh(Ω), due to [ŝm∂K ]E = 0, E ∈ Eh(Ω), and
vh ∈ C0(Ω̄) we have

∑

K∈Th

∫

∂K

n∂K · ŝm∂Kvh ds =
∑

E∈Eh(Ω)

nE · [ŝm∂K ]Evh ds = 0.(3.11)

Consequently, observing (3.11), in a general C0DG approximation, we are looking
for a pair (umh ,p

m

h
) ∈ Vh ×M

h
such that for all (vh,q

h
) ∈ Vh ×M

h
it holds

∑

K∈Th

∫

K

pm
h

: q
h
dx+

∑

K∈Th

∫

K

∇umh ·∇ · (ω(∇umh )−1/4q
h
) dx −(3.12a)

∑

K∈Th

∫

∂K

ûm∂K · q
h
n∂K ds = 0,

∑

K∈Th

∫

K

umh vh dx+ τmβδ
2
( ∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx −(3.12b)

∑

K∈Th

∫

∂K

p̂m
∂K
· (ω(∇umh )−1/4∇vh ds

)
=
∑

K∈Th

∫

K

um−1
h vh dx.
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In particular, for the C0IPDG approximation the numerical flux functions ûm∂K and
p̂m
∂K

are given by

ûm∂K |E :=

{
{ω(∇umh )−1/4∇umh }E , E ∈ Eh(Ω)

0 , E ∈ Eh(Γ)
,(3.13a)

p̂m
∂K
|E := {A

2
(umh )D2umh }EnE − αh−1

E [ω(∇umh )−1/4∇umh ]E , E ∈ Eh,(3.13b)

where α > 0 is a penalty parameter.

Theorem 3.1. The particular choice (3.13a),(3.13b) of the numerical flux func-
tions allows to eliminate the dual variable pm

h
from the system (3.12a),(3.12b). We

thus obtain the C0IPDG approximation: Find umh ∈ Vh such that for all vh ∈ Vh it
holds

(umh , vh)0,Ω + τmβδ
2aIPh (umh , vh;umh ) = (um−1

h , vh)0,Ω,(3.14)

where for zh ∈ Vh the mesh-dependent C0IPDG form aIPh (·, ·; zh) : Vh×Vh is given
by

aIPh (uh, vh; zh) :=
∑

K∈Th
(A

1
(zh)D2uh, D

2vh)0,K −(3.15)

∑

E∈Eh
(nE · {A2

(zh)D2uh}EnE ,nE · [ω(∇zh)−1/4∇vh]E)0,E −
∑

E∈Eh
(nE · {A2

(zh)D2vh}EnE ,nE · [ω(∇zh)−1/4∇uh]E)0,E +

α
∑

E∈Eh
h−1
E (nE · [ω(∇zh)−1/4∇uh]E ,nE · [ω(∇zh)−1/4∇vh]E)0,E .

Proof. If we choose q
h

= A
2
(umh )D2vh in (3.12a) and use (3.13a), we obtain

∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx +(3.16)

∑

K∈Th

∫

K

∇umh ·∇ · (ω(∇umh )−1/4A
2
(umh )D2vh) dx −

∑

E∈Eh(Ω)

∫

E

{ω(∇umh )−1/4∇umh }E · [A2
(umh )D2vh]EnE ds = 0.

For the second term on the left-hand side of (3.16), applying Green’s formula ele-
mentwise and observing (2.14),(2.17) yields

∑

K∈Th

∫

K

∇umh ·∇ · (ω(∇umh )−1/4A
2
(umh )D2vh) dx =(3.17)

−
∑

K∈Th

∫

K

D2umh : A
1
(umh )D2vh dx +

∑

K∈Th

∫

∂K

ω(∇umh )−1/4∇umh ·A2
(umh )D2vhn∂K ds.
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Now, taking advantage of

∑

K∈Th

∫

∂K

p · q n∂K ds =(3.18)

∑

E∈Eh

∫

E

[p]E · {q}EnE ds+
∑

E∈Eh(Ω)

∫

E

{p}E · [q]EnE ds

with p = ω(∇umh )−1/4∇umh and q = A
2
(umh )D2vh, we get

∑

K∈Th

∫

∂K

ω(∇umh )−1/4∇umh ·A2
(umh )D2vhn∂K ds =(3.19)

∑

E∈Eh

∫

E

[ω(∇umh )−1/4∇umh ]E · {A2
(umh )D2vh}EnE ds +

∑

E∈Eh(Ω)

∫

E

{ω(∇umh )−1/4∇umh }E · [A2
(umh )D2vh]EnE ds.

Using (3.17) and (3.19) in (3.16) it follows that

∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx =(3.20)

∑

K∈Th

∫

K

D2umh : A
1
(umh )D2vh dx −

∑

E∈Eh

∫

E

[ω(∇umh )−1/4∇umh ]E · {A2
(umh )D2vh}EnE ds.

On the other hand, inserting (3.13b) into (3.12b) and applying again (3.18), we
obtain

∑

K∈Th

∫

K

umh vh dx+ τmβδ
2
( ∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx −(3.21)

∑

K∈Th

∫

∂K

p̂m
∂K
·∇vh ds

)
=
∑

K∈Th

∫

K

umh vh dx +

τmβδ
2
( ∑

K∈Th

∫

K

pm
h

: A
2
(umh )D2vh dx −

∑

E∈Eh

∫

E

{A
2
(umh )D2umh }EnE · [ω(∇umh )−1/4∇vh]E ds

+ α
∑

E∈Eh
h−1
E

∫

E

[ω(∇umh )−1/4∇umh ]E · [ω(∇umh )−1/4∇vh]E ds
)

=

∑

K∈Th

∫

K

um−1
h vh dx.

The assertion follows from using (3.20) in (3.21). �
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Remark 3.1. We note that the C0IPDG approximation (3.14) can be derived from
the boundary value problem (2.1a),(2.1b) (cf., e.g., [7] for a fourth order boundary
value problem related to the biharmonic problem). However, we have chosen the
approach via the mixed formulation, since the C0DG approximation (3.10a),(3.10b)
is more general in so far as another choice of the numerical flux functions than
(3.13a),(3.13b) may lead to a different C0DG approach as, for instance, a C0 Local
Discontinuous Galerkin (C0LDG) method.

4. A predictor corrector continuation strategy for the numerical
solution of the C0IPDG approximation

The solution u(x, t), (x, t) ∈ Q, of the fourth order total variation flow problem
(1.2) is characterized by

• the formation of facets around local extrema of the initial data with steep
gradients at the interfaces,
• a finite extinction time text > 0, i.e., u(x, t) = 0, x ∈ Ω, for t ≥ text.

The same behavior can be expected from the solution of the C0IPDG approximation
(3.14). In particular, the appropriate choice of the time step is a crucial issue
when solving the nonlinear system resulting from (3.14). Therefore, it is more
advantageous to work with a variable time step τm = tm − tm−1, 1 ≤ m ≤ M,
instead of a uniform time step ∆t = T/M,M ∈ N and to choose τm such that
convergence of a Newton-type method is guaranteed. This can be achieved by
viewing (3.14) as a parameter dependent nonlinear system with the time as the
parameter and to apply a predictor corrector continuation strategy featuring an
adaptive choice of the time step sizes τm (cf., e.g., [10, 16]).

We assume Vh = span{ϕ1, · · · , ϕNh
}, Nh ∈ N, such that

umh =

Nh∑

j=1

umj ϕj .

Setting um := (um1 , · · · , umNh
)T , the algebraic formulation of (3.14) leads to the

nonlinear system

F(um, tm) = 0,(4.1)

where the components Fi, 1 ≤ i ≤ Nh, are given by

Fi(u
m, tm) =

Nh∑

j=1

umj (ϕj , ϕi)0,Ω +

τmβδ
2aDGh (

Nh∑

j=1

umj ϕj , ϕi;

Nh∑

j=1

umj ϕj)−
Nh∑

j=1

um−1
j (ϕj , ϕi)0,Ω.

Given um−1, the time step size τm−1,0 = τm−1, and setting k = 0, where k is a
counter for the predictor corrector steps, the predictor step for (4.1) consists of
constant continuation leading to the initial guess

u(m,k) = um−1, tm = tm−1 + τm−1,k.(4.2)
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Setting ν = 0 and u(m,k,ν1) = u(m,k), for ν ≤ νmax, where νmax > 0 is a pre-
specified maximal number, the Newton iteration

F′(u(m,k,ν), tm)∆u(m,k,ν) = − F(u(m,k,ν), tm),(4.3)

serves as a corrector whose convergence is monitored by the contraction factor

Λ(m,k,ν) =
‖∆u(m,k,ν)‖
‖∆u(m,k,ν)‖ ,(4.4)

where ∆u(m,k,ν) is the solution of the auxiliary Newton step

F′(u(m,k,ν), tm)∆u(m,k,ν) = − F(u(m,k,ν+1), tm).(4.5)

If the contraction factor satisfies

Λ(m,k,ν) <
1

2
,(4.6)

we set ν = ν+1. If ν > νmax, both the Newton iteration and the predictor corrector
continuation strategy are terminated indicating non-convergence. Otherwise, we
continue the Newton iteration (4.3). If (4.6) does not hold true, we set k = k + 1
and the time step is reduced according to

τm,k = max(

√
2− 1√

4Λ(m,ν) + 1− 1
τm,k−1, τmin),(4.7)

where τmin > 0 is some pre-specified minimal time step. If τm,k ≥ τmin, we go back
to the prediction step (4.2). Otherwise, the predictor corrector strategy is stopped
indicating non-convergence. The Newton iteration is terminated successfully, if for
some ν∗ > 0 the relative error of two subsequent Newton iterates satisfies

‖u(m,k,ν∗) − u(m,k,ν∗−1)‖
‖u(m,k,ν∗)‖ < ε(4.8)

for some pre-specified accuracy ε > 0. In this case, we set

um = u(m,k,ν∗
1 )(4.9)

and predict a new time step according to

τm = min
( (
√

2− 1) ‖∆u(m,k,0)‖
2Λ(m,k,0) ‖u(m,k,0) − um‖ , amp

)
τm,k,(4.10)

where amp > 0 is a pre-specified amplification factor for the time step sizes. We
set m = m + 1 and begin new predictor corrector iterations for the time interval
[tm, tm+1].
The choice of the contraction factor (4.6), the choice of the reduced time step (4.7),
and the choice of the enlarged time step (4.10) are motivated by the affine covariant
convergence theory of Newton’s method (cf., e.g., [10, 16]).

5. Numerical results

We have implemented the C0IPDG method of section 3 along with the predictor
corrector continuation strategy of section 5 for two examples. In both cases, we
have chosen Ω = (0, 1)2, β = 1.0 · 10−7, polynomial degree k = 2 and penalization
parameter α = 200.0 in the C0IPDG method, and νmax = 50, ε = 1.0 · 10−3, and
τmin = 1.0 · 10−8 for the predictor corrector continuation strategy.
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Example 1: The first example is the same as in [22], where the initial data u0 has
been chosen according to

u0(x1, x2) = x1(x1 − 1)x2(x2 − 1)− 1

36
.

The C0IPDG approximation umh has been computed for various regularization pa-
rameters δ and finite element mesh sizes h.
For δ = 2.5 · 10−4 and h = 1/10, Figure 1 displays the initial data u0

h at time
t = 0.0 (top left), and the computed solutions at times t = 4.6 · 10−6 (top right),
t = 2.6 ·10−3 (bottom left), and t = 1.2 ·10−3 (bottom right). We see that the solu-
tion develops facets around local extrema of the initial data with a narrow interface
featuring steep gradients in between. The extinction time, i.e., the time when the
initial profile gets completely flat, is text = 1.1 · 10−2.

Figure 1. Example 1: Computed solution for h = 1/10 and δ =
2.5·10−4 at initial time t = 0 sec (top left), at time t = 4.6·10−5 sec
(top right), at time t = 2.6 ·10−3 sec, and at time t = 1.2 ·10−2 sec
(bottom right).
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Figure 2. Example 1: Computed solution for h = 1/64 and δ =
7.5·10−3 at initial time t = 0 sec (top left), at time t = 6.9·10−7 sec
(top right), at time t = 9.5 ·10−5 sec, and at time t = 1.3 ·10−3 sec
(bottom right).

For δ = 7.5 · 10−3, and h = 1/64, Figure 2 shows the same behavior of the solution.
However, due to the significantly smaller mesh size h the interface between the
upper and lower facets is much better resolved. In this case, the extinction time
turned out to be text = 2.2 · 10−2.

The performance of the predictor corrector continuation strategy for h = 1/10 and
δ = 2.5 ·10−4 is shown in Figure 3 where the adaptive choice of the time steps τm is
shown as a function of the iterations. We see that the time step sizes are gradually
increasing in a step-like way where the individual steps correspond to the formation
of the interface between the upper and the lower facets.
Figure 4 shows the corresponding results for the predictor corrector continuation
strategy in case h = 1/64 and δ = 7.5 · 10−3. The convergence is expected to
become a tougher issue for smaller mesh width h which is reflected by Figure 4.
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Figure 3. Example 1: Performance of the predictor corrector con-
tinuation strategy for h = 1/10 and δ = 2.5 ·10−4. Adaptive choice
of time steps τm.

Figure 4. Example 1: Performance of the predictor corrector con-
tinuation strategy for h = 1/64 and δ = 7.5 ·10−3. Adaptive choice
of time steps τm.

As far as the convergence of the C0IPDG approximations umh to the solution
um,m ≥ 1, of (2.1) is concerned, we have computed an experimental convergence
rate, since the exact solutions um are not explicitly known. The experimental



C0IPDG METHOD FOR FOURTH ORDER TOTAL VARIATION FLOW 17

convergence rate is given by

err(tm) := log2

|||umh − um2h|||
|||umh/2 − umh |||

,(5.1)

where ||| · ||| stands for the norm

|||zmh ||| :=
(
‖zmh ‖20,Ω +

m∑

`=1

τ`‖z`h‖22,h/2,Ω
)1/2

.(5.2)

Figure 5. Example 1: Experimental convergence rate err(tm) for
h = 1/64.

Figure 5 displays the experimental convergence rate as a function of time for h =
1/64. Taking into account that the initial data is smooth, at the very beginning the
rate drops significantly due to the formation of facets with sharp interfaces between
the upper and the lower facet. Afterwards it stabilizes around 0.5.
Forthcoming work will be devoted to provide an a priori error estimate in the
||| · |||-norm.

Example 2: The initial profile u0 has been chosen according to

u0(x1, x2) =




x1( 1
2 − x1)(1− x1)x2( 1

2 − x2)(1− x2)− 1
32 , 0 ≤ x1 <

1
2 , 0 ≤ x2 <

1
2

x1(x1 − 1
2 )(1− x1)x2( 1

2 − x2)(1− x2)− 1
32 ,

1
2 ≤ x1 ≤ 1, 0 ≤ x2 <

1
2

x1( 1
2 − x1)(1− x1)x2(x2 − 1

2 )(1− x2)− 1
32 , 0 ≤ x1 <

1
2 ,

1
2 ≤ x2 ≤ 1

x1(x1 − 1
2 )(1− x1)x2(x2 − 1

2 )(1− x2)− 1
32 ,

1
2 ≤ x1 ≤ 1, 1

2 ≤ x2 ≤ 1

.

For δ = 4.5 · 10−3 and h = 1/128, Figure 6 shows the route along which the
initial profile becomes completely flat. We observe the development of four upper
facets around the four maxima of the initial data and lower facets around the
minima. Due to the small mesh size h, the formation of narrow interfaces with
steep gradients between the upper and lower facets happens quickly. The extinction
time is text = 1.2 · 10−2.
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Figure 6. Example 2: Computed solution for h = 1/128 and δ =
4.5·10−3 at initial time t = 0 sec (top left), at time t = 3.4·10−5 sec
(top right), at time t = 9.7 · 10−3 sec (bottom left), and at time
t = 7.1 · 10−2 sec (bottom right).

Figure 7 displays the adaptive choice of the time steps. We see a similar behavior
as in Example 1 for h = 1/64 and δ = 7.5 · 10−3.

6. Conclusion

We have derived a C0IPDG approximation of an implicitly in time discretized,
regularized and scaled fourth order TVF problem describing surface relaxation be-
low the roughening temperature. We have further developed a predictor corrector
continuation strategy for the numerical solution of the fully discretized problem
featuring an adaptive choice of the time steps. Numerical results have been pre-
sented that illustrate the performance of the approach.
The existence and uniqueness of a solution of the C0IPDG method will be shown
in part II of the paper.
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Figure 7. Example 2: Performance of the predictor corrector con-
tinuation strategy for h = 1/128 and δ = 4.5 · 10−3. Adaptive
choice of time steps τm.
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