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Sergey Charnyi ∗ Timo Heister † Maxim A. Olshanskii ‡ Leo G. Rebholz§

Abstract

We study conservation properties of Galerkin methods for the incompressible Navier-
Stokes equations, without the divergence constraint strongly enforced. In typical dis-
cretizations such as the mixed finite element method, the conservation of mass is en-
forced only weakly, and this leads to discrete solutions which may not conserve energy,
momentum, angular momentum, helicity, or vorticity, even though the physics of the
Navier-Stokes equations dictate that they should. We aim in this work to construct
discrete formulations that conserve as many physical laws as possible without utilizing
a strong enforcement of the divergence constraint, and doing so leads us to a new formu-
lation that conserves each of energy, momentum, angular momentum, enstrophy in 2D,
helicity and vorticity (for reference, the usual convective formulation does not conserve
most of these quantities). Several numerical experiments are performed, which verify
the theory and test the new formulation.

1 Introduction

We consider formulations of the incompressible Navier-Stokes equations (NSE), which are
given in a domain Ω ⊂ Rd, d=2 or 3, and for t > 0 by

ut + (u · ∇)u +∇p− ν∆u = f , (1)

divu = 0, (2)

u(0) = u0, (3)

where u and p represent velocity and pressure, f is an external forcing, u0 is the initial
velocity, and ν is the kinematic viscosity. To solve this system, it must also be equipped
with boundary conditions. The NSE model the evolution of water, oil, and air flow (air
under 220 m.p.h.), and therefore the ability to solve them is important in a wide array of
engineering design problems. Finding analytical solutions is known to be extremely difficult,
and thus practitioners instead typically approximate solutions using numerical methods.

The purpose of this paper is to study conservation laws of solutions arising from dis-
cretizations of the NSE by Galerkin methods such as finite element methods, isogeometric
analysis, or spectral element methods. In typical discretizations, e.g., with Taylor-Hood fi-
nite elements, the conservation of mass is only weakly enforced, leading to discrete solutions
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uh which have divuh 6= 0. While convergence of the H1 error can often be proven, leading to
the bound ‖ divuh‖ ≤ Ch2, the divergence error can still be significant on practical meshes
(here h is a characteristic step of an underlying mesh; in practice, there is a minimum h that
can produce solutions in reasonable time). With the loss of mass conservation, it turns out
that many other important conservation laws are also lost, including energy, momentum,
angular momentum, and others, if steps are not taken in the development of the numerical
discretization to make sure these quantities are conserved. The fact that energy conserva-
tion is lost in Galerkin discretizations of the NSE is well-known, and a fix for this problem
by using the skew-symmetric or rotation forms of the nonlinearity has been known for many
years [32]. A finite element formulation for energy and helicity conservation was proposed
in [24], and in [21] it was discussed how an alternate (but equally valid) definition of helicity
could be conserved by skew-symmetric formulations. Similar phenomena happen with other
types of discretization methods, and some clever discretizations have been developed which
‘bring back’ conservation laws lost in standard discretizations, beginning decades ago by
Arakawa, Fix, and others, for NSE and related equations [1, 2, 3, 7, 9, 19, 23, 27, 30]. A
common theme for all ‘enhanced-physics’ based schemes is that the more physics is built
into the discretization, the more accurate and stable the discrete solutions are, especially
over longer time intervals.

In the present work, we aim to develop numerical schemes/formulations that preserve
even more conservation laws for the full NSE, beyond just energy. By noticing that the
key to discrete conservation properties is the formulation of the nonlinear term, we are able
to find a formulation of the NSE seemingly unconsidered in the literature, which conserves
all of energy, momentum, and angular momentum; we call it the Energy, Momentum,
and Angular Momentum (EMA) conserving formulation. We propose this formulation in
section 3, and formally show these conservation properties hold. We also show that the usual
convective, skew-symmetric and rotational formulations all fail to conserve momentum and
angular momentum. We also show that the EMA-conserving formulation also conserves
suitable definitions of vorticity, helicity, and 2D enstrophy. Of course, if a Galerkin solution
happens to be pointwise divergence-free, then all of the formulations are equivalent and each
of them would conserve all of these quantities in an appropriate sense. However, the use
of such special element choices that provide pointwise divergence-free solutions (e.g. [4, 8,
13, 14, 33]) is not widespread, as they require constraints on the mesh and approximating
polynomial degrees, and are not typically available in open source FE software for large
scale computing [5].

This paper is arranged as follows. Section 2 presents notation and mathematical pre-
liminaries that will allow for smoother analysis in later sections. Section 3 presents the
EMA-conserving formulation, and studies its conservation properties along with those of
the convective, skew-symmetric, conservative, and rotational formulations. Section 4 per-
forms several numerical experiments, which test the conservation properties and accuracy
of the various schemes.

2 Notation and preliminaries

Consider the domain Ω ⊂ Rd, d=2 or 3, and denote (·, ·) and ‖ · ‖ to be the L2(Ω) inner
product and norm on Ω.

Consider u, v, w ∈ H1(Ω), and note that we do not enforce that any of these quantities
are solenoidal except for the last two equations of this section. Define the trilinear form
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b : H1(Ω)×H1(Ω)×H1(Ω)→ R by

b(u,v,w) = (u · ∇v,w). (4)

We recall the following properties of b. The first two follow immediately from integration
by parts, provided u ∈ H1

0 (Ω):

b(u,v,w) = −b(u,w,v)− ((divu)v,w), (5)

b(u,w,w) = −1

2
((divu)w,w) , (6)

b(u,v,w) = ((∇v)u,w) = ((∇v)Tw,u). (7)

We denote the symmetric part of∇u by∇su := D(u) = ∇u+(∇u)T

2 , and the skew-symmetric

part by ∇nu := ∇u−(∇u)T

2 . For any u,v ∈ H1(Ω) one readily checks

(∇nu)v =
1

2
(curlu)× v. (8)

Note that we define curlu in 2d in the usual way, as the 3d curl of u extended by 0 in the
third component.

Straight-forward calculations provide the following vector identities for functions u,v ∈
H1(Ω):

(u · ∇)u = (curlu)× u +∇1

2
|u|2 =: (curlu)× u +∇q, (9)

(∇u)u = (∇su)u + (∇nu)u = D(u)u +
1

2
(curlu)× u, (10)

where q := |u|2
2 . Also note that identity (10) implies that

(D(u)u,u) = ((∇u)u,u) = b(u,u,u). (11)

From (8)–(10) we obtain the following representation of the inertia term from the momentum
equations:

(u · ∇)u = 2D(u)u−∇q. (12)

The identity (12) is key to the new formulation we propose in the next section, which leads
to improved discrete conservation properties.

2.1 A parameterized vorticity equation

Our study in section 3 of conservation laws for vorticity and helicity involves different
formulations of the vorticity equation. We derive now a parameterized vorticity equation,
which provides a family of formulations which are equivalent when the velocity and vorticity
are divergence-free.

From (8) with v = w, we find that (∇nu)w = 0, which implies (∇u)w = (∇u)Tw. The
vorticity stretching term (w · ∇)u can thus be written as

(w · ∇)u = (∇u)w = (∇u)Tw. (13)

Similarly, the gradient of the helical density ∇(u ·w) can be written as

∇(u ·w) = (∇u)Tw + (∇w)Tu = (w · ∇)u + (∇w)Tu.
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Hence, we can write the combination of the vorticity transport and stretching, as it appears
in the equation’s nonlinearity, for any real parameter β2 as

(u · ∇)w − (w · ∇)u

= (u · ∇)w − (∇u)w

= (u · ∇)w − β2(∇u)Tw − (1− β2)(∇u)w

= (u · ∇)w − β2

(
∇(u ·w)− (∇w)Tu

)
− (1− β2)(∇u)w. (14)

Again using that (∇u)w = (∇u)Tw, we can also write

(∇u)w = β1(∇u)w + (1− β1)(∇u)Tw,

for any real number β1. Denoting η := u · w, and using this together with (14) and that
divu = divw = 0 (we have not made any divergence-free assumptions up to now), we
obtain

(u · ∇)w − (w · ∇)u = (u · ∇)w + β2(∇Tw)u− (1− β2)
(
β1(∇u) + (1− β1)∇Tu

)
w

− β2∇η + β3(divu)w + β4(divw)u, (15)

for real parameters βi, i = 1, 2, 3, 4. The identities above lead us to the following vorticity
equation, where the particular form of the nonlinearity depends on the choice of parameters:

wt + (u · ∇)w + β2(∇Tw)u− (1− β2)
(
β1(∇u) + (1− β1)∇Tu

)
w (16)

−∇η + β3(divu)w + β4(divw)u− ν∆w = curl f ,

divw = 0. (17)

Note that the gradient term in (16) is not scaled with β2. Hence, for β2 6= 0 the variable
η has the physical meaning of the scaled helical density, while for β2 = 0 it is a Langrange
multiplier corresponding to the divergence free constraint and can be non-zero in the discrete
setting. We shall use discrete vorticity in the definition of certain conserved quantities. We
will choose parameters βi in such a way that the discrete vorticity solving the discrete
counterpart of (16)–(17) delivers some desired conservation properties.

3 Conservation properties under divu 6= 0 and the EMA for-
mulation for Navier-Stokes

We now consider subspaces X ⊂
[
H1

0(Ω)
]d

, Q ⊂ L2(Ω) of finite dimensions. To be more
specific, we further assume that X and Q are finite element velocity and pressure spaces
corresponding to an admissible triangulation of Ω. For simplicity we assume X and Q
satisfy inf-sup compatibility conditions [10]; non inf-sup stable pairs require stabilization
terms that will affect conservation properties, and should be studied separately and on a
case-by-case basis. We note our analysis can be easily extended to other Galerkin methods.

In most common discretizations of Navier-Stokes and related systems, the divergence-
free constraint divu = 0 is only weakly enforced. What holds instead of the pointwise
constraint is that a numerical solution u from X satisfies

(divu, q) = 0 ∀ q ∈ Q,

where Q is a finite dimensional pressure space, for example piecewise linears which are
globally continuous. Even though convergence theory of mixed finite element methods
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exists that guarantees ‖ divu‖ converges to 0 with optimal rate, in practical computations
the divergence error can be large due to the associated constants being larger than the
minimum practical meshwidth [6]. Enlarging the pressure space Q to ensure divX ⊂ Q is
usually not possible, since it would violate (apart of a few exceptional cases) the inf-sup
compatibility condition and make the method numerically unstable.

We now consider conservation properties of several common NSE formulations, along
with a new one based on the identity (12). To this end, we write the NSE momentum
equation in the generic form:

ut +N(u) +∇p− ν∆u = f , (18)

with the nonlinear terms defined for each formulation by

convective : Nconv(u) = u · ∇u
skew − symmetric : Nskew(u) = u · ∇u +

1

2
(divu)u

rotational : Nrot(u) = (curlu)× u

conservative : Ncons(u) = ∇ · (u⊗u) = u · ∇u + (divu)u.

The convective, skew-symmetric, and rotational forms above are commonly used in com-
putational fluid dynamics and numerical analysis of fluid equations, see, e.g., [11, 32], with
the convective form being, probably, the most frequent choice in computation practice.

We propose now a new formulation, which we will show conserves energy, momentum
and angular momentum, as well as helicity, vorticity, and 2D enstrophy, which we call the
energy momentum and angular momentum (EMA) conserving form. It is based on the
following choice:

EMA conserving : Nemac(u) = 2D(u)u + (divu)u.

We remark that if we did assume the divergence constraint divu = 0 holds pointwise, then
all above formulations are equivalent; for the EMA conserving scheme, this follows from
(12).

The Galerkin method corresponding to various forms of inertia term reads: Find {u, p} ∈
X×Q satisfying

(
∂u

∂t
+N(u),v

)
− (p,divv) + (q,divu) + ν(∇u,∇v) = (f ,v) (19)

for all v ∈ X, q ∈ Q.
For both the rotational and EMA-conserving formulations, the pressure p is modified

and includes a velocity contribution. To our knowledge, the EMA-conserving formulation
has yet to be considered in the literature, and our motivation for using it comes from
Proposition 3.1 below, which says that of these five formulations, only the EMA-conserving
formulation exactly conserves energy, momentum and angular momentum when the diver-
gence constraint is not strongly enforced. Furthermore, Proposition 3.2 in section 3.2 shows
that this new formulation also exactly conserves suitably defined helicity, vorticity and 2D
enstrophy.

5



3.1 Energy, momentum and angular momentum

We now prove a result regarding conservation laws for (19). Our interest first is the con-
servation of energy, momentum and angular momentum:

Kinetic energy E =
1

2
(u,u) :=

1

2

∫

Ω
|u|2dx;

Linear momentum M :=

∫

Ω
udx;

Angular momentum Mx :=

∫

Ω
u× xdx.

Most useful boundary conditions alter the balance of these quantities, as they should in
the presence of walls and interfaces. Moreover, the numerical treatment of boundaries, e.g.
by enforcing conditions strongly or in a weak form, also affect this balance. In this study,
we isolate the affect of the treatment of the nonlinearity on the quantities of interest from
the contribution of the boundary conditions. For this reason, we assume in section 3 that
the finite element solution u and p is supported in some subset Ω̂  Ω of the computational
domain Ω, i.e., there is a strip S = Ω \ Ω̂ along ∂Ω where u is zero. The same is assumed
for the source term f . We note this implies there is a strip of elements along the boundary
where u, p, and f vanish. The prototypical scenario is the evolution of an isolated vortex
in a self-induced flow.

Proposition 3.1. Assuming (divu, q) = 0 for all q ∈ Q, but divu 6= 0, the skew-symmetric,
rotational, and EMA-conserving formulations conserve kinetic energy (for ν = 0, f = 0),
and only the EMA-conserving and conservative formulations conserve momentum (for f
with zero linear momentum) and angular momentum (for f with zero angular momentum).
Hence, the EMA-conserving is the only one of the the formulations that conserves all three
quantities.

We divide the proof of this proposition into several subsections.

3.1.1 Kinetic energy

For energy conservation, testing (19) with v = u, q = p gives

1

2

d

dt
‖u‖2 + (NL(u),u) + ν‖∇u‖2 = (f ,u).

Thus, kinetic energy will be preserved for ν = 0, f = 0 if (NL(u),u) = 0. For the skew-
symmetric formulation, we use (6) to get

(NLskew(u),u) = b(u,u,u) +
1

2
((divu)u,u) = 0,

and for the rot formulation we use that the cross of two vectors is perpendicular to each of
them,

(NLrot(u),u) = ((curlu)× u,u) = 0.

For the EMA-conserving formulation, we use (11) and then (6) to obtain

(NLemac(u),u) = 2(D(u)u,u) + ((divu)u,u) = 2b(u,u,u) + ((divu)u,u) = 0.
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For the convective formulation, the nonlinear term does not vanish in general:

(NLconv(u),u) = b(u,u,u) = −1

2
((divu)u,u),

and thus kinetic energy will not be typically conserved by the convective formulation when-
ever divu 6= 0. Lastly, for the conservative formulation, we use the same identity as in the
convective case, and find that

(NLcons(u),u) = b(u,u,u) + ((divu)u,u) =
1

2
((divu)u,u),

and thus this formulation will not conserve kinetic energy in general.

3.1.2 Momentum

Next, we consider momentum conservation in the formulations. We cannot test (19) with
v = ei since this function is not in X. Thanks to the assumption that u 6= 0 only in
some strictly interior subdomain Ω̂, we can define the restriction χ(g) ∈ X of an arbitrary
function g by setting χ(g) = g in Ω̂ and χ(g) arbitrary defined on S = Ω \ Ω̂ to satisfy zero
boundary conditions. We test (19) with v = χ(ei) ∈ X and q = 0, which gives

d

dt
(u, ei) + (N(u), ei) = (f , ei),

because the solution is zero on S. Thus, momentum conservation is obtained if (f , ei) = 0
and (N(u), ei) = 0. Thus we consider the latter for the different formulations. In the
convective formulation, we use (5) and that ei is constant to find that

(Nconv(u), ei) = b(u,u, ei) = −b(u, ei,u)− ((divu)u, ei) = −((divu)u, ei),

and for the skew-symmetric form we get

(Nskew(u), ei) = b(u,u, ei) +
1

2
((divu)u, ei) = −1

2
((divu)u, ei).

For rotational form, we use the vector identity u · ∇u = (curlu)× u + 1
2∇|u|2 to obtain

(Nrot(u), ei) = ((curlu)× u, ei) = b(u,u, ei)−
1

2
(∇|u|2, ei)

= (u · ∇u, ei) = −((divu)u, ei).

For the EMA-conserving formulation, however, the nonlinear term does vanish. By expand-
ing the rate of deformation tensor and using (u · ∇u, ei) = −((∇ ·u)u, ei) and then (7), we
find that

(Nemac(u), ei) = 2(D(u)u, ei) + ((divu)u, ei)

= b(u,u, ei) + b(ei,u,u) + ((divu)u, ei)

= b(ei,u,u)

= 0

since ei is divergence-free.
The conservative form also conserves momentum, as using the same identity as in the

convective case, we obtain

(Ncons(u), ei) = b(u,u, ei) + ((divu)u, ei) = −((divu)u, ei) + ((divu)u, ei) = 0.
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3.1.3 Angular momentum

We consider next angular momentum conservation in the formulations; that is, whether or
not they conserve (Mx)i := (u,φi), φi := x × ei, i = 1, 2, 3. Note that divφi = 0 and
∆φi = 0. Setting v = χ(φi), q = 0 in (19) gives

(
∂u

∂t
,φi

)
+ (N(u),φi) + ν(∇u,∇φi) = (f ,φi).

Whether angular momentum is conserved comes down, once again, to whether it is preserved
by the nonlinear term, i.e. whether or not (N(u),φi) = 0. For the EMA-conserving
formulation, since divφi = 0 we have that

(Nemac(u),φi) = 2(D(u)u,φi) + ((divu)u,φi)

= b(u,u,φi) + b(φi,u,u) + ((divu)u,φi)

= b(u,u,φi) + ((divu)u,φi)

= −b(u,φi,u),

with the last step coming from (5). From here, expanding out the terms immediately
reveals that b(u,φi,u) = 0, and thus the EMA-conserving formulation does conserve angular
momentum.

Similarly for the conservative formulation,

(Ncons(u),φi) = b(u,u,φi) + ((divu)u,φi)

= −b(u,φi,u)

= 0.

For the convective formulation, similar identities reveal

(Nconv(u),φi) = b(u,u,φi) = −((divu)u,φi) 6= 0

in general, and for the skew-symmetric formulation we use these same identities to obtain

(Nskew(u),φi) = b(u,u,φi) +
1

2
((divu)u,φi) = −1

2
((divu)u,φi),

which will not be zero in general either. For the rotational formulation, we again use the
vector identity u · ∇u = (curlu)× u + 1

2∇|u|2, which provides since divφi = 0,

(Nrot(u),φi) = ((curlu)× u,φi) = (u · ∇u,φi) = −((divu)u,φi),

which is the same as for the convective formulation.

3.2 Vorticity, helicity and 2D enstrophy

Denote by u∗ the exact Navier-Stokes solution and w∗ = ∇× u∗. The following quantities
are conserved for ν = 0 and suitable assumptions on the right-hand side f and boundary
conditions:

Helicity H = (u∗,w∗) :=

∫

Ω
u∗ ·w∗dx;

2D Enstrophy H2D =
1

2
(w∗,w∗) :=

1

2

∫

Ω
w∗ ·w∗dx (for a 2D flow);

Total vorticity Wi = (w∗, ei) :=

∫

Ω
w∗i dx, i = 1, . . . , d.
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One verifies that none of the finite element methods discussed above conserve helicity,
enstrophy or vorticity, see [21]. It was further noted in [21] that a more suitable definition of
these quantities is based on the finite element solution to the vorticity equation rather than
the curl of finite element velocity. This discrete vorticity still depends on the computed
velocity u, but more implicitly, through the equation coefficients. Further, varying the
coefficients βi in (16) we find the form of the finite element vorticity equation such that
the recovered solution delivers conservation laws. We note that curlu does not necessarily
ensure conservation of helicity, enstropy or total vorticity even if the discrete solution u is
pointwise divergence free. Defining discrete counterparts of these conserved quantities with
the help of companion discrete vorticity equation is appropriate also in this case, see the
analysis of divergence-conforming B-splines for the unsteady Navier–Stokes equations in [7].

Consider the Navier-Stokes vorticity equation, which is found by taking the curl of the
NSE:

w∗t + (u∗ · ∇)w∗ − (w∗ · ∇)u∗ − ν∆w∗ = curl f . (20)

We consider now alternative discrete formulations that are equivalent to (20) when the
velocity and vorticity are divergence-free, but which differ in discretizations. A parametrized
vorticity equation is given in (16)-(17), which allows for such alternatives by the choice of
(β1, β2, β3, β4). In the following discrete formulations, the velocity field u ∈ X is the finite
element solution to (19) and not the true NSE velocity u∗. Note that homogenous Dirichlet
boundary conditions are not appropriate for w for general flow. However, since we assume
u vanishes in a neighborhood of ∂Ω, then we assume vorticity is also zero on and near the
boundary.

For our first formulation of interest, we set β1 = 1, β2 = 0, β3 = 0, β4 = 0. This leads
to the finite element formulation: find w ∈ X and Lagrange multiplier η ∈ Q solving

(
∂w

∂t
,v

)
+ b(u,w,v) − b(w,u,v) + ν(∇w,∇v) + (η,divv) − (q,divw) = (curl f ,v)

(21)

for v ∈ X and q ∈ Q. Alternatively, if we set β1 = 1, β2 = 0, β3 = 1, β4 = −1, we arrive
at the finite element formulation: find w ∈ X and Lagrange multiplier η ∈ Q solving

(
∂w

∂t
,v

)
+ b(u,w,v)− b(w,u,v) + ((divu)w,v)− ((divw)u,v)

+ ν(∇w,∇v) + (η,divv)− (q,divw) = (curl f ,v) (22)

for v ∈ X and q ∈ Q.
For 2D flows, we consider the reduction to two dimensions after choosing β1 = 1, β2 =

0, β3 = 1
2 , β4 = 0, which provides the discrete formulation: find w ∈ X satisfying for all

v ∈ X,

(wt, v) + ((u · ∇)w, v) + ν(∇w,∇v) +
1

2
((divu)w, v) = (curl f , v). (23)

Proposition 3.2. Assume u ∈ X solves (19) with the EMA-conserving form N(u) =
Nemac(u), and w1 ∈ X, w2 ∈ X, (0, 0, w)T ∈ X are finite element vorticity solutions to
(21), (22), (23), respectively. The EMA-conserving formulation also conserves helicity (for
f = 0, ν = 0), 2D enstrophy (for curl f = 0, ν = 0), and total vorticity in the sense of the
following preserved quantities: H = (u,w1), H2D = 1

2‖w‖2, and Wi = (w2, ei).

Remark 3.1. For the other NSE formulations, conserved invariants involving vorticity also
can be suitably defined.
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3.2.1 Vorticity

We start with the conservation of total vorticity and set v = χ(ei), q = 0 in (22). Integration
by parts immediately shows that (curl f , ei) = (f , curl ei) = 0, and since ei is constant, the
η term and the viscous term also drop, leaving

(
∂w2

∂t
, ei

)
+ b(u,w2, ei)− b(w2,u, ei) + ((divu)w2, ei)− ((divw2)u, ei) = 0. (24)

Since ei is constant (and thus divergence-free), we have that b(u,w2, ei) = − ((divu)w2, ei),
and b(w2,u, ei) = − ((divw2)u, ei), which reduces (24) immediately to

(
∂w2

∂t
, ei

)
= 0,

and thus the total vorticity Wi will be conserved for i=1,2,3.

3.2.2 2D Enstrophy

For enstrophy conservation, take v = w in (23) and set curl f = 0 and ν = 0, which provides
the equation

1

2

d

dt
‖w‖2 + b(u, w, w) +

1

2
((divu)w,w) = 0. (25)

Since b(u, w, w) = −1
2((divu)w,w), we have that H2D is conserved.

3.2.3 Helicity

For the conservation of H, set v = w1, q = 0 in (19) with N = Nemac, where w1 solves
(21). This vanishes the pressure term, and setting = 0 and ν = 0 yields

(
∂u

∂t
,w1

)
+ 2(D(u)u,w1) + ((divu)u,w1) = 0. (26)

Since (D(u)u,w1) = 1
2b(u,u,w1) + 1

2b(w1,u,u), we write (26) as

(
∂u

∂t
,w1

)
+ b(u,u,w1) + b(w1,u,u) + ((divu)u,w1) = 0. (27)

Next, take v = u, q = 0 in (21), and with f = 0 and ν = 0 this provides

(
∂w1

∂t
,v

)
+ b(u,w1,u)− b(w1,u,u) = 0. (28)

Adding (27) and (28) gives the equation

d

dt
(u,w1) + b(u,u,w1) + ((divu)u,w1) + b(u,w1,u) = 0. (29)

Using vector identity (5), we have that b(u,u,w1) = −b(u,w1,u) − ((divu)u,w1), which
from (29) implies that (u,w1) is conserved.

10



3.3 Discussion

We have now established that the EMA-conserving formulation does indeed conserve energy,
momentum, angular momentum, and suitable definitions of enstrophy (in 2D), helicity, and
vorticity. One may question if the EMA-conserving formulation is the only one or the
‘simplest’ one which conserves all quantities listed above. We do not have an ultimate
answer to these questions. Nevertheless, attempting to address it let us comment on the
way we deduce this formulation: Similar to the vorticity equation (16)-(17), we can write the
momentum equation with linear combinations of different forms of the inertia terms from
(4), (9), (10) and additional divergence terms. The EMA-conserving formulation is then
found to be the unique combination that conserves discrete kinetic energy, momentum,
and angular momentum. As already discussed, the conservation of the discrete helicity,
2D enstrophy and vorticity are further understood with the help of the companion finite
element vorticity equations. We stress that the vorticity equation is not a part of the finite
element method here. It is introduced to suitably define discrete conserved quantities.
Nevertherless, the finite element vorticity equation can be used for postprocessing the finite
element velocity in order to recover physically ‘correct’ vorticity, if desired.

4 Numerical Experiments

We now provide results of several numerical experiments that test and compare the different
NSE formulations. The specific formulations we test are (for the case of homogeneous
Dirichlet boundary conditions): Find (uh, ph) ∈ (Xh, Qh) such that for every (vh, qh) ∈
(Xh, Qh),
Convective formulation (CONV)

((uh)t,vh) + (uh · ∇uh,vh)− (ph,divvh) + ν(∇uh,∇vh) = (f ,vh),

(divuh, qh) = 0.

Skew-symmetric formulation (SKEW)

((uh)t,vh) + (uh · ∇uh,vh) +
1

2
((divuh)uh,vh)− (ph,divvh) + ν(∇uh,∇vh) = (f ,vh),

(divuh, qh) = 0.

Conservative formulation (CONS)

((uh)t,vh) + (uh · ∇uh,vh) + ((divuh)uh,vh)− (ph,divvh) + ν(∇uh,∇vh) = (f ,vh),

(divuh, qh) = 0.

Rotational formulation (ROT)

((uh)t,vh) + ((curluh)× uh,v)− (ph, divvh) + ν(∇uh,∇vh) = (f ,vh),

(divuh, qh) = 0.

Energy, momentum, and angular momentum conserving formulation (EMAC)

((uh)t,vh) + 2(D(uh)uh,vh) + ((divuh)uh,vh)− (ph, divvh) + ν(∇uh,∇vh) = (f ,vh),

(divuh, qh) = 0.
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For the temporal discretizations, our tests employ several temporal discretizations, in-
cluding Crank-Nicolson method for the Gresho problem described below (since here we test
for integral invariants), BDF2, and BDF3. The choice of Taylor-Hood velocity-pressure el-
ements is used throughout, which is (P2, P1) on triangular meshes, and (Q2, Q1) on quadri-
lateral meshes. No stabilization was used in any of the 2D simulations, however for the
(Q2, Q1) computations, grad-div stabilization [22] with a small parameter (γ = 0.1) was
used since it is an integral part of the preconditioner used for the linear solves. We recog-
nize that different element choices and different stabilizations can improve these schemes
to varying degrees; future studies certainly could include various stabilization and element
choices.

In all of our tests, we solve the full nonlinear problem, for each formulation, at each time
step in the simulations using a Newton method, and we converge the nonlinear iteration up
to 10−8. For the channel flow problems with an outflow, we weakly enforce the zero-traction
boundary condition (−ν∇u+ pI) ·n|Γout = 0. For the CONV and CONS formulations, this
becomes a ‘do-nothing’ condition. For the rest of the formulations, it requires a nonlinear
boundary integral at the outflow.

To illustrate the conservation properties of the various formulations, we choose several
test problems: For the first one, the quantities of interest are exactly conserved, while other
test cases represent more realistic scenarios of viscous fluid flows passing streamlined or
bluff bodies. In the latter case, viscous and boundary effects perturb all conservation laws.
We include these test cases in the attempt to give the first assessment of other properties
of the EMAC form such as numerical stability and accuracy.

4.1 Gresho Problem
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Figure 1: Shown above is the true velocity solution for the Gresho problem as a vector plot
(left) and speed contour plot (right).

We consider first the Gresho problem, which is often referred to as the ‘standing vortex
problem’ [31, 18, 11]. The problem is defined by starting with an initial condition u0 that
is an exact solution of the steady Euler equations. On Ω = (−.5, .5)2, with r =

√
x2 + y2,
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Figure 2: Shown above are plots of time versus energy, momentum, angular momentum,
and L2(Ω) velocity error, for the various formulations in the Gresho problem.

the velocity and pressure solutions are defined by

r ≤ 0.2 :





u =

(
−5y
5x

)

p = 12.5r2 + C1

, r > 0.4 :





u =

(
0
0

)

p = 0

,

0.2 ≤ r ≤ 0.4 :





u =

( 2y
r + 5y

2x
r − 5x

)

p = 12.5r2 − 20r + 4 log(r) + C2

,
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where

C2 = (−12.5)(0.4)2 + 20(0.4)2 − 4 log(0.4), C1 = C2 − 20(0.2) + 4 log(0.2).

The vorticity (w = u2x − u1y) can be calculated to be w = 10 when r ≤ 0.2, w = 2/r − 10
on 0.2 ≤ r ≤ 0.4, and w = 0 when r > 0.4. This is an interesting problem because it is an
exact solution of the steady Euler equations, i.e.

u · ∇u +∇p = 0.

Since we choose the initial condition to be this steady Euler solution, an accurate scheme
should preserve the solution in time. Moreover, it is also a good test for a numerical scheme’s
ability to conserve certain quantities such as energy, momentum and angular momentum,
since no viscosity or forcing is present, and the boundaries do not play a role (unless
significant error causes nonzero velocity to creep out to the boundary). A plot of the true
velocity solution is shown in Figure 1.

We compute solutions to the Gresho problem using the different formulations, together
with Crank-Nicolson time stepping (using Newton’s method to solve the nonlinear problem
at each time step), with f = 0, ν = 0, and no-penetration boundary conditions up to T=2.
We computed using (P2, P1) Taylor-Hood elements on a 32x32 uniform mesh and a time
step of ∆t = 0.01.

Plots of energy, momentum, angular momentum, and L2 velocity error versus time
are shown in Figure 2. The EMAC scheme gives the best results: it conserves energy and
momentum, is the only scheme to conserve angular momentum to t=2, and has significantly
better L2(Ω) error than all the other methods. The CONS scheme gives by far the worst
results. The energy of the CONS solution is blowing up, which causes the nonlinear solver
to fail at t=0.57. CONV gives the second best results, as its L2(Ω) error is better than
ROT, SKEW and CONS, although it fails to conserve energy. We note that all the results
for conserved quantities are consistent with the theory of the previous section, and in
particular the EMAC scheme is the only one to conserve each of energy, momentum and
angular momentum.

4.2 Channel flow around a cylinder

Our next experiment tests the algorithms above on the flow around a cylinder benchmark
problem, taken from [16, 29]. The domain for the problem is a 2.2×0.41 rectangular channel
with a circle (cylinder) of radius 0.05 centered at (0.2, 0.2), see Figure 3.

No slip boundary conditions are enforced on the walls and cylinder, and the time de-
pendent inflow profile is taken to be

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0,

and a zero-traction outflow condition is weakly enforced. The viscosity is set as ν = 10−3

and there is no external force, f = 0.
This problem is well studied, and it is known that as the flow rate increases, two vortices

start to develop by T=4 behind the cylinder. They then separate into the flow, and soon
after a vortex street forms which can be visible through t=8. Reference values for lift and
drag coefficients, and for pressure drop across the cylinder at t=8 are given in [16] as

crefd,max = 2.95092, crefl,max = 0.47795, ∆pref = −0.11160.
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Figure 3: Shown above is the channel flow around a cylinder domain (top), and a resolved
velocity field at t=6.

Method dim(Xh) ∆t cmax
d |error| cmax

l |error| ∆p(8) |error|
ROT 34,762 0.005 2.94442 6.48E-3 0.412069 6.59E-2 -0.11168 8.20E-5

CONV 34,762 0.005 2.94672 4.18E-3 0.470062 7.94E-3 -0.11176 1.62E-4

SKEW 34,762 0.005 2.94678 4.12E-3 0.467538 1.05E-2 -0.11177 1.70E-4

CONS 34,762 0.005 2.94667 4.25E-3 0.450239 2.77E-2 -0.11179 1.90E-4

EMAC 34,762 0.005 2.94819 2.71E-3 0.525675 4.77E-2 -0.11166 5.68E-5

ROT 61,694 0.005 2.94638 4.52E-3 0.484486 6.49E-3 -0.11139 2.10E-4

CONV 61,694 0.005 2.94893 1.97E-3 0.478282 2.82E-4 -0.11159 1.13E-5

SKEW 61,694 0.005 2.94892 1.98E-3 0.477249 7.51E-4 -0.11158 2.15E-5

CONS 61,694 0.005 2.94891 1.99E-3 0.477013 9.37E-4 -0.11149 1.10E-4

EMAC 61,694 0.005 2.94961 1.29E-3 0.490655 1.27E-2 -0.11119 4.06E-4

ROT 95,738 0.005 2.94919 1.71E-3 0.480021 2.02E-3 -0.11186 2.64E-4

CONV 95,738 0.005 2.94966 1.24E-3 0.478567 5.67E-4 -0.11155 5.00E-5

SKEW 95,738 0.005 2.94966 1.24E-3 0.478106 1.06E-4 -0.11154 6.04E-5

CONS 95,738 0.005 2.94966 1.24E-3 0.477831 1.19E-4 -0.11155 5.00E-5

EMAC 95,738 0.005 2.94986 1.04E-3 0.484425 6.43E-3 -0.11141 1.93E-4

Table 1: Max lift and drag coefficients, and pressure drop across the cylinder at t=8, for
the various formulations, using (P2, P1) elements.

We computed solutions using several meshes with Taylor-Hood elements, BDF3 time
stepping, and time step ∆t = 0.005 (we also used ∆t = 0.01 and obtained very similar
results). Results for maximum lift and drag, as well as for the t=8 pressure drop are shown
in Table 1. For each mesh, the best errors are made bold for each statistic. We observe
that in each case, the EMAC formulation provides the best prediction of the maximum drag
coefficient, CONV and SKEW forms provide the best maximum lift coefficient prediction,
and the EMAC, CONV and CONS provide the best predictions of pressure drop error.
Overall, the methods give rather similar predictions, and it is fair to say the methods are
comparable for this test problem with these discretizations.
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4.3 Channel flow past a flat plate at Re=100

Our next test is for channel flow past a flat plate with Re=100, following [25, 26]. The
domain of this test problem is a [−7, 20]× [−10, 10] rectangle channel with a 0.125× 1 flat
plate placed 7 units into the channel, and vertically centered. The inflow velocity is set
as uin = 〈1, 0〉, we use a zero-traction outflow, and there is no forcing, f = 0. No-slip
conditions are enforced on the walls and plate. A diagram of the test setup is shown in
Figure 4.

Figure 4: Setup for the flow past a normal flat plate.

We compute results using the CONV, CONS, SKEW, ROT, and EMAC formulations,
with BDF3 time stepping. The simulations all used BDF3 time stepping, a Delaunay mesh
with (P2, P1) elements (which provided 58,485 total degrees of freedom) for each simulation.
This is a fairly coarse mesh, and we use it to observe differences between the formulations
(since as h→ 0, the formulations will all converge to each other). The simulations all used
the same time step size of ∆t = 0.02, and were started from rest, ran until a periodic-in-
time state was reached, and then ran for an additional 16 periods. Periods were determined
using the drag coefficient

Cd(tm) =
2

ρLU2
max

∫

S

(
ρν
∂utS (tm)

∂n
ny − pmh nx

)
ds.

Here, S is the plate, n = 〈nx, ny〉 is the outward normal vector, utS (tm) is the tangential
velocity of umh , the density ρ = 1, the max velocity at the inlet Umax = 1, and L = 1 is the
length of the plate.

The statistics of interest are the average drag coefficient, and the recirculation point of
the time averaged velocity; all averages were taken over the last 16 periods. Results for these
statistics are shown in table 2, along with results from a very fine discretization we obtained
using the deal.II software [5] and (Q2, Q1) elements with the convective formulation and

16



BDF2, using ∆t=0.005 and 4,019,895 total degrees of freedom (for which we assume is a
convergent result, since it was very similar to results computed with ∆t = 0.01 and about
2 million total degrees of freedom). For further comparison, we also give results of Saha
from [25, 26], who used a MAC scheme with 426x162 cells (16x50 grid points on the plate
surface), and a typical time step size of 5E-4.

We note first that the ROT and CONS schemes did not run to completion: the ROT
simulation became unstable around T=25, and before T=26 the energy grows to 1E+100;
similarly, the CONS scheme gives energy blowup at about T=78. The EMAC solution’s
average drag most closely matches that of the very fine discretization, and is significantly
closer than that of the CONV and SKEW solutions. For the recirculation point, the CONV,
EMAC, and SKEW formulations give results with similar accuracy.

Formulation Re Average Cd Recirculation point

CONV 100 2.5434 1.1577

EMAC 100 2.6598 1.1648

SKEW 100 2.5903 1.1565

ROT 100 failed: energy blows up at T=25

CONS 100 failed: energy blows up at T=78

Very fine discretization 100 2.6454 1.1373

Saha [26] 100 2.43 1.11

Saha [25] 100 2.60 (not given)

Table 2: Shown above are the average drag coefficient and x-coordinate of the recirculation
point for simulations of flow past a flat plate with varying formulations, together with
reference values from a DNS and from [25, 26].

4.4 Channel flow past a forward-backward facing step

Our next experiment concerns flow past a forward-backward facing step. The domain is a
40 × 10 rectangle used to represent the channel, and a 1 × 1 ‘step’ placed at the bottom
of the channel, 5 units in. The boundary conditions are no-slip on all the walls and step,
zero-traction at the outflow, and a constant-in-time parabolic inflow with max inlet velocity
of 1. The initial condition is a parabolic profile across the channel, and there is no forcing,
f = 0. We set the viscosity ν = 1/600, and for this setup the correct behavior is for eddies
to form behind the step, then detach, move down the channel, and then for new eddies to
form, and the cycle repeats [12, 17]. The tests are run to an end time of t = 60.

We ran simulations using the five formulations and (P2, P1) elements on a coarse mesh
that provided 10,908 degrees of freedom, and a finer mesh that provided 19,671 degrees of
freedom. Crank-Nicolson time stepping was used with a time step size of ∆t = 0.01. The
CONS scheme failed to finish on both meshes; the energy (rather suddenly) blew up to
infinity near t=26 on the coarse mesh, and t=29 on the fine mesh. The other four schemes
all remained stable up to t=60, although with varying accuracies. Results are shown in
Figure 5 as streamlines over speed contours. The plots on the right side for EMAC, CONV
and SKEW all essentially match the solutions in the literature [17], but the ROT solution
is quite poor. On the coarser mesh, the CONV approximation is the best, EMAC is a little
worse at resolving the eddies behind the step, and the SKEW and ROT solutions are quite
poor.
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Figure 5: Shown above are plots of streamlines over speed contours for the T=60 velocity
solutions for flow past a forward-backward step for the different formulations, with the
coarser mesh solutions on the left side and the finer mesh solutions on the right. We note
there is no plot for CONS since this simulation failed (energy blowup before T=60).

4.5 3D Flow around a Square Cylinder

As a final test, we include some 3d flow computations of the new EMAC formulation in
order to validate that the scheme generates the correct periodic flow behavior for a flow
in a channel past a square cylinder at Re=100. The setup of the benchmark problem is
taken from [28] (unsteady test case 3D-2Q) and we will compare with results from [28]
and [20]. The Reynolds number of 100 is close to the critical one, where the transition
from equilibrium to unsteady periodic solution takes place for this problem. This makes
the test challenging for a NSE numerical solver, since the discretization method should
ensure the right balance between inertia and viscous diffusion to produce solutions which
are numerically stable and, at the same time, the development of unsteady behaviour is not
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max drag max lift Strouhal Dofs

EMAC results 4.890 0.0271 0.351 6.4 mill
[20] 4.484 0.0316 0.307 17 mill
[28] 4.32-4.67 0.015-0.05 0.27-0.35 Up to 6 mill

Table 3: Table of reference values of the flow around the 3d square cylinder.

suppressed [20].
The computation is done for the time interval T=[0,13] with step size 0.01 using BDF2

time discretization. The nonlinear problem of the EMAC scheme in each time step is
discretized using the deal.II finite element library ([5]) with (Q2, Q1) finite elements on
a fixed mesh, which is displayed in Figure 6. The mesh has been refined manually to
about 240k cells resulting in 6.4 million dofs. The linear systems are solved in parallel
using FGMRES and the grad-div based block preconditioner based on [15] using a grad-div
parameter of γ = 0.1.

Figure 6: 3D flow around a square cylinder. Top: mesh through the midplane, coloring by
pressure. Middle: slices of the mesh on various downstream planes. Bottom: q-criterion
and vorticity magnitude contours at t=12.0 that show the 3d structure of the solution.

The results in Table 3 show good agreement with the reference values from the literature
even though the mesh is relatively coarse. Note that [28] does not give reference intervals
for this problem, and we simply show the maximum and minimum values of lift, drag, and
the Strouhal numbers for several DNS results included in [28]. However, these intervals can
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Figure 7: Lift and drag coefficients of the flow around the 3d square cylinder plotted over
time T.

be not very accurate. The visualizations in Figure 6 show that 3d flow structures develop
behind the cylinder as expected.

5 Conclusions and Future Directions

We have developed a new discrete formulation for incompressible Navier-Stokes equations,
named the EMA-conserving (EMAC) formulation herein, which conserves energy, momen-
tum, angular momentum, and appropriately defined vorticity, helicity, and enstrophy, when
the solenoidal constraint on the velocity is enforced only weakly. Moreover, we show that
none of the commonly used convective, conservative, rotational, and skew-symmetric for-
mulations conserve each of energy, momentum, and angular momentum. Results of several
numerical experiments have been provided which verify the discrete conservation properties
of the EMAC scheme, and also show that it performs at least as good, or better, than the
commonly used formulations.

Aside from further testing, one important future direction is to consider more efficient
treatments of the EMA-conserving formulation. That is, in this initial study, we consider
schemes that solve the nonlinear problem at each timestep. However, it is typical with
the more commonly used formulations to linearize the nonlinear term at each time step by
approximating one of the velocities using previous time step solutions; such schemes need
only one linear solve per time step, whereas schemes that resolve the full nonlinear problem
with Newton’s method often require two or three.
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