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AN UNCONDITIONALLY STABLE SEMI-IMPLICIT FSI FINITE
ELEMENT METHOD ∗

ALEXANDER LOZOVSKIY† , MAXIM A. OLSHANSKII‡ , VICTORIA SALAMATOVA § ,

AND YURI V. VASSILEVSKI¶

Abstract. The paper addresses the numerical simulation of fluid-structure interaction (FSI)
problems involving incompressible viscous Newtonian fluid and hyperelastic material. A well known
challenge in computing FSI systems is to provide an effective time-marching algorithm, which avoids
numerical instabilities due to the loose coupling of fluid and structure motion on the FSI interface. In
this work, we introduce a semi-implicit finite element scheme for an Arbitrary Lagrangian–Eulerian
formulation of the fluid–structure interaction problem. The approach strongly enforces the coupling
conditions on the fluid–structure interface, but requires only a linear problem to be solved on each
time step. Further, we prove that the numerical solution to the fully discrete problem satisfies the
correct energy balance, and the stability estimate follows without any extra model simplifications or
assumptions on the time step. The analysis covers the cases of Saint Venant–Kirchhoff compressible
and incompressible neo-Hookean materials. Results of several numerical experiments are included to
illustrate the properties of the method and its applicability for the simulation of certain hemodynamic
flows. We also experiment with the enforcement of material incompressibility condition in the finite
element via an integral constraint or alternatively letting the Poisson ratio in the compressible model
to be close to 1

2
. From these experiments conclusions are drawn concerning the accuracy of flow

statistics prediction for incompressible vs. nearly incompressible structure models. In particular,
we observe that the numerical compressibility in the discrete ‘incompressible’ model may be large
enough for realistic meshes making such approach to model incompressible materials inferior to using
a compressible neo-Hooken model and letting the Poisson ratio to be close to 1

2
.
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numerical stability, finite element method
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1. Introduction. Fluid–structure interaction phenomena is of great importance
in many engineering and life science applications. Among these applications, hemo-
dynamic and cardiovascular FSI problems received recently much attention, see, e.g.,
[3, 13, 38]. In this paper, we address the numerical solution of a fluid-structure inter-
action problem involving a viscous incompressible fluid and hyperelastic compressible
and incompressible materials. This model is often used to describe blood motion in
compliant vessels and the heart.

Two major approaches to the solution of FSI problem can be distinguished: the
monolithic approach and partitioned one. In the scope of the monolithic approach
[18, 19, 20, 26, 30], the fluid and the structure are treated as a single continuum,
and the coupling conditions at interface are implicit for the solution procedure. The
partitioned approach [1, 7, 8, 18, 27] treats the fluid and the structure separately. In
the course of simulations, one consequently solves fluid and structure subproblems,
using the computed forces of the one subproblem as boundary conditions for the other
subproblem. One known issue of the partitioned approach is that the accuracy of
satisfying the coupling conditions at the interface between the fluid and the structure
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may significantly effect the numerical stability of the method. At the same time,
monolithic approaches are generally more demanding for efficient algebraic solvers
and require more implementation effort if a legacy CFD code is used.

Following a common convention, we call a numerical FSI algorithm ‘strongly’
coupled, if the interface conditions are exactly satisfied at every time step. Other-
wise, we call it a loosely or weakly coupled algorithm. It is well-known that a weak
coupling may lead to numerical instabilities due to added-mass effect [5, 14]. Strongly
coupled methods are generally more stable, but computationally more demanding.
Note that, it is possible to enforce the strong coupling for partitioned solvers, but
it can be expensive due to slow convergence of iterations between subdomains [12];
see also [24] for optimization based enforcement of coupling conditions in partitioned
solvers. This paper studies a strongly coupled algorithm within a monolithic finite
element approach. The reduction of computational costs is achieved by an extrap-
olation technique leading to a semi-implicit method, which requires only one linear
problem to be solved on every time step.

Numerical analysis of a finite element method for the FSI problem is challenging
due to the non-linearity of the system and its mixed hyperbolic–parabolic type. Sev-
eral results on stability of finite element solutions are known in the literature, and for
most of them the time-stepping scheme has to be implicit in fluid–structure coupling
and geometry advancing. Thus, in [28] energy stability of a second order implicit finite
element method was proved. In the same reference, a stability estimate subject to a
time-step restriction was proved for a semi-implicit algorithm based on the Leap-Frog
discretisation for the structure and on the implicit Euler discretisation for the fluid. In
order to linearize the convection term of the Navier–Stokes equation, a supplementary
fluid problem has to be solved. In [11], an algorithm based on the Chorin–Temam
projection scheme for incompressible flows is proposed. On each time-step, the algo-
rithm is linear in convection-diffusion and non-linear in projection sub-steps because
of the implicit coupling to the structure equation. The stability was proved when
the fluid domain is fixed. In the present paper, we show correct energy balance and
prove the unconditional (without a time-step restriction) stability of a finite-element
FSI method, which treats geometric non-linearities in an explicit way and linearizes
fluid inertia terms. The analysis is applied to the fully discrete formulation of a 3D
FSI problem with hyperelastic compressible and incompressible models for the mate-
rial. We note that stability of FSI finite element schemes with time-lagged geometric
non-linearities was previously observed in numerical experiments, see, e.g., [2], but
the analysis was available only for simplified FSI problems [16, 34].

Numerical FSI approaches may employ either conforming meshes fitted to fluid-
structure interface or non-conforming (unfitted) meshes [18]. In the present study,
we use a mesh fitted to the structure. The Arbitrary Lagrangian Eulerian (ALE)
formulation [9, 17, 21] of the FSI problem is employed. Both fluid and structure
equations are discretized in a reference domain and so mesh reconstruction is avoided.
This limits the present approach to the case of modest (but not necessarily ‘small’)
deformations and does not allow topological changes.

The paper also aims at the application of the developed numerical methodology in
hemodynamic simulations such as the computing of incompressible viscous fluid flow
in a deformable vessel. This application of FSI numerical techniques received signif-
icant attention in the literature, see, e.g., [4, 6, 10, 28]. In numerical simulations,
vessel walls are often modeled using a thin shell approximation, while in reality, the
blood vessel wall thickness can be significant, cf., e.g., [29], and accounting for this is
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important for obtaining physiologically relevant solutions to hemodynamic problems.
Here we treat the vessel wall as a hyperelastic body. Accurate simulation of me-
chanical properties of blood vessel walls such as nonlinear constitutive equation and
near incompressibility [42] challenges an FSI numerical method. While the question
of vessel wall compressibility is not ultimately answered by now, it is often accepted
that the wall is an incompressible material. At the same time, recent experimental
research shows that relative compressibility of vessel wall may be as large as 2-6%
under physiological pressure range [43]. Results in [44] show that the effect of arterial
compressibility (about 3%) may lead to notable difference in observed displacement
and stresses values. Thus, we experiment numerically with both incompressible and
slightly compressible elasticity models. The results presented in Section 5 show that
a weak enforcement of the mass conservation property for finite elements is another
factor affecting the respond of computed solutions to the choice of compressibility pa-
rameters of the model. In particular, in the finite element ‘incompressible’ model the
numerical compressibility may be significant for realistic meshes. In this case, a com-
pressible neo-Hooken model with the Poisson ratio close to 1

2 turns out to produce
more accurate results for incompressible materials in the monolithic finite element
approach.

Summarizing, the present paper studies a monolithic strongly coupled finite ele-
ment method for the ALE formulation of FSI problem. The proposed scheme is second
order accurate in time and requires solving only a linear system of algebraic equations
per time step. For the first order in time counterpart of the method, we prove the
energy stability without restrictions on time step. Results of the numerical experi-
ments suggest that the second order variant of the method is also stable. The energy
estimate is shown if the fluid is incompressible Newtonian and Saint Venant–Kirchhoff
or incompressible neo-Hookean constitutive laws are used to describe the structure.
FSI models with incompressible and slightly compressible neo-Hooken materials are
compared in numerical experiments.

The outline of the remainder of the paper is the following. In section 2 we recall
the governing equations for monolithic ALE formulation and introduce necessary pre-
liminaries. In section 3 we introduce the finite element method and the semi-implicit
scheme. The method is analysed in Section 4, where suitable a priori energy esti-
mates for numerical solutions are shown. Results of numerical experiments for two
dimensional FSI problems are presented and discussed in Section 5. The method
is implemented using the open source package Ani2D [25]. Section 6 collects a few
closing remarks.

2. FSI model. Consider a time-dependent domain Ω(t) ⊂ RN , N = 2, 3, par-
titioned into a subdomain Ωf (t) occupied by fluid and Ωs(t) occupied by solid. Let
Γfs(t) := ∂Ωf (t)∩ ∂Ωs(t) be the interface where the interaction of the fluid and solid
takes place. Denote the reference domains by

Ωf = Ωf (0), Ωs = Ωs(0), Γfs = Γfs(0),

and the deformation of the solid medium by

ξs : Ωs × [0, t]→
⋃

t∈[0,T ]

Ωs(t),

with the corresponding displacement us given by us(x, t) := x− ξs(x, t) and velocity
vs = ∂tu

s = ∂tξ
s(x, t).
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The fluid dynamics is described by the velocity vector field vf (x, t) and the pres-
sure function pf (x, t) defined in Ωf (t) for t ∈ [0, T ]. In this paper, we adopt an
Arbitrary Lagrangian-Eulerian formulation by introducing another auxiliary mapping

ξf : Ωf × [0, t]→
⋃

t∈[0,T ]

Ωf (t)

such that ξs = ξf on Γfs. In general ξf does not follow material trajectories. Instead,
it is defined by a continuous extension of the displacement field to the flow reference
domain

uf := Ext(us) = x− ξf (x, t) in Ωf × [0, t]. (2.1)

Furthermore, assume no-slip no-penetration boundary conditions on the fluid–
structure interface:

vs = vf on Γfs. (2.2)

Hence, following [19] we consider a monolithic numerical approach using the contin-
uous globally defined displacement and velocity fields

u =

{
us in Ωs,

uf in Ωf ,
v =

{
vs in Ωs,

vf in Ωf .

The corresponding globally defined deformation gradient is F = I +∇u. Its determi-
nant will be denoted by J := det(F).

Denote by ρs and ρf = const the densities of solid and fluid, and by σs, σf

the Cauchy stress tensors, so that J(σs ◦ ξs)F−T is the Piola-Kirchhoff tensor in the
structure, σs ◦ ξs(x) := σs(ξ

s(x)).
The dynamic equations for the fluid and structure in the reference domains read

∂v

∂t
=





ρ−1
s div (J(σs ◦ ξs)F−T ) in Ωs,

(Jρf )−1div (J(σf ◦ ξf )F−T )− (∇v)(F−1(v − ∂u

∂t
)) in Ωf .

(2.3)

The definition of v in the solid domain gives

∂u

∂t
= v in Ωs. (2.4)

The fluid is assumed incompressible. The mass conservation of fluid leads to the
equation in the reference domain:

div (JF−1v) = 0 in Ωf . (2.5)

In addition to (2.2), the balance of normal stresses provides the second interface
condition:

σfF−Tn = σsF
−Tn on Γfs. (2.6)

The boundary of Ω(0) is subdivided into the structure boundary Γs0 := ∂Ω(0) ∩
∂Ωs, fluid Dirichlet and outflow boundaries: ∂Ω(0)∩∂Ωf = Γf0∪Γout. The governing
equations are complemented with boundary conditions

v = g on Γf0, σfF−Tn = 0 on Γout, u = 0 on Γs0 ∪ Γf0 ∪ Γout, (2.7)
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and initial conditions

u(x, 0) = 0 on Ω(0), v(x, 0) = v0(x) in Ω(0). (2.8)

We assume the fluid to be Newtonian, with the viscosity parameter µf . In the
reference domain the constitutive relation for the fluid reads

σf = −pfI + µf (∇vF−1 + F−T (∇v)T ) in Ωf . (2.9)

For the structure we consider two hyperelastic materials. The first one is the com-
pressible geometrically non-linear Saint Venant–Kirchhoff material with

σs =
1

J
F(λstr(E) + 2µsE)FT , (2.10)

where E = 1
2

(
FTF− I

)
is the Lagrange-Green strain tensor and λs, µs are the Lame

constants. The second one is the incompressible neo-Hookean material with

σs = µsFFT − psI, (2.11)

and a new multiplier ps. The first Piola-Kirchoff tensor for the incompressible material
can be written as

JσsF
−T = µsF− JpsF−T .

For the notation convenience, we set ps = 0 in Ωs for the compressible structure and
define the global pressure variable by

p =

{
pf in Ωf ,

ps in Ωs.

Thus, the FSI problem in the reference coordinates consists in finding pressure
distribution p and continuous velocity and displacement fields v, u satisfying the set
of equations, interface and boundary conditions (2.3)–(2.9), together with (2.10) or
(2.11), and subject to a given extension rule (2.1).

Before recalling the energy balance of the FSI problem, we note a few identities
that are useful for the design of numerical method and analysis. The mass balance
yields in the fluid region the equality

∂J

∂t
+ div (JF−1(v − ∂u

∂t
)) = 0 in Ωf . (2.12)

The Piola identity div (JF−1) = 0 implies the following equality

div (JF−1v) = J(∇v) : F−T in Ωf , (2.13)

where A : B :=
∑N

i,j=1AijBij . For the incompressible homogenous material, i.e.
J = 1 and ρs = const, the Piola identity also yields

J(∇v) : F−T = 0 in Ωs. (2.14)
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2.1. Energy equality. For the brevity, assume the homogeneous boundary con-
ditions, i.e. g = 0. We make use of the identity:
∫

Ωf

((w·∇u)v+
1

2
((div w)uv) dx =

∫

Ωf

1

2
((w·∇u)v−(w·∇v)u) dx+

1

2

∫

∂Ωf

(n·w)uv ds.

(2.15)
Multiplying the fist equality in (2.3) by ρsv, the second one by Jρfv, integrating over
the reference domain, and employing (2.15) gives

1

2

d

dt

(∫

Ωs

ρs|v|2 dx + ρf

∫

Ωf

J |v|2 dx

)
− ρf

2

∫

Ωf

∂J

∂t
|v|2 dx

+

∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx +

∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx

− ρf
2

∫

Ωf

div (JF−1(v − ∂u

∂t
)) |v|2 dx +

ρf
2

∫

Γout

v · n|v|2 ds = 0.

The identity (2.12) leads to some cancellations and we get

1

2

d

dt

(∫

Ωs

ρs|v|2 dx + ρf

∫

Ωf

J |v|2 dx

)
+

∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx

+

∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx +
ρf
2

∫

Γout

v · n|v|2 ds = 0.

For the Saint Venant–Kirchhoff problem, we can rewrite the third term as
∫

Ωs

J(σs ◦ ξs)F−T : ∇v dx =

∫

Ωs

J(σs ◦ ξs)F−T : ∇∂u

∂t
dx

=

∫

Ωs

J(σs ◦ ξs)F−T :
∂F

∂t
dx =

∫

Ωs

F(λstr(E) + 2µsE) :
∂F

∂t
dx

=

∫

Ωs

(λstr(E)I + 2µsE) : FT ∂F

∂t
dx =

1

2

∫

Ωs

(λstr(E)I + 2µsE) :
∂(FTF)

∂t
dx

=

∫

Ωs

(λstr(E)I + 2µsE) :
∂E

∂t
dx =

1

2

d

dt

∫

Ωs

(λstr(E)2 + 2µs|E|2F ) dx .

Here and in the remainder, | . . . |F stands for the Frobenius norm. Using the nota-

tion D̂(v) = 1
2 (∇vF−1 + F−T (∇v)T ) for the rate of deformation tensor in the ALE

coordinates, we get with the help of (2.5) and (2.13)

∫

Ωf

J(σf ◦ ξf )F−T : ∇v dx = 2µf

∫

Ωf

J |D̂(v)|2F dx.

Therefore, the energy equality in ALE coordinates takes the form

1

2

d

dt

(∫

Ωs

ρs

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dx + ρf

∫

Ωf

J |v|2 dx +

∫

Ωs

(λstr(E)2 + 2µs|E|2F ) dx

)

+ 2µf

∫

Ωf

J |D̂(v)|2F dx +
ρf
2

∫

Γout

v · n|v|2 ds = 0 , (2.16)
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i.e. the variation of the total system energy is balanced by the fluid viscous dissi-
pation and the energy rate at the open boundary. For the FSI problem with the
incompressible neo-Hookean material, the energy balance takes the same form with
the potential energy of the structure (third term in (2.16)) equal

∫
Ωs
µs|F|2F dx. We

shall look whether the energy balance of our numerical method resembles (2.16).

3. Discretization method. In this section we introduce both time and space
discretization of the FSI problem. Treating the problem in reference coordinates
allows us to avoid triangulations and finite element function spaces dependent on
time. For an alternative approach based on space-time finite element methods see,
for example, [36, 37]. Thus, consider a collection of simplexes (triangles in 2D and
tetrahedra in 3D), which form a consistent regular triangulation of the reference
domain Ω(0) = Ωs ∪ Ωf . In the monolithic approach we consider conforming FE
spaces Vh ⊂ H1(Ω(0))N and Qh ⊂ L2(Ω(0)) for trial functions and the follow-
ing two subspaces for the test functions: V0

h = {v ∈ Vh : v|Γs0∪Γf0
= 0} and

V00
h = {v ∈ V0

h : v|Γsf
= 0}. We assume that V0

h and Qh form the LBB-stable finite
element pair: There exists a mesh-independent constant c0, such that

inf
qh∈Qh

sup
vh∈V0

h

(qh,div vh)

‖∇vh‖‖qh‖
≥ c0 > 0.

Assuming a constant time step ∆t, we use the notation uk(x) ≈ u(k∆t,x), and similar
for v and p.

To formulate the discretization method, we need some further notations. For a
tensor A ∈ RN×N , we denote its symmetric part as {A}s = 1

2 (A + AT ). We shall
emphasize the dependence on a displacement field in F(u) := I +∇u and set

Duv = {(∇v)F−1(u)}s, E(u1,u2) =
1

2

{
F(u1)TF(u2)− I

}
s
,

S(u1,u2) = λstr(E(u1,u2)) + 2µsE(u1,u2).

Note that S(u1,u2) = ST (u1,u2) = S(u2,u1).

Let Jk := det(F(uk)). For given finite element functions f i, i = 0, . . . , k, f̃k

denote extrapolated values at t = (k + 1)∆t, and
[
∂f
∂t

]k
stand for a finite differ-

ence approximation of a time derivative at t = k∆t. For the case of the com-
pressible Saint Venant–Kirchhoff material, the finite element method reads: Find
{uk+1,vk+1, pk+1} ∈ V0

h×Vh×Qh such that vk+1 = gh(·, (k+1)∆t) on Γf0, vk+1 = 0
on Γs0 and the following equations hold:

∫

Ωs

ρs

[
∂v

∂t

]k+1

ψ dx +

∫

Ωs

F(ũk)S(uk+1, ũk) : ∇ψ dx

+

∫

Ωf

ρf J̃
k

[
∂v

∂t

]k+1

ψ dx +

∫

Ωf

ρf J̃
k(∇vk+1)F−1(ũk)

( ˜
vk −

[
∂u

∂t

]k)
ψ dx

+

∫

Ωf

2µf J̃
kDũkvk+1 : Dũkψ dx−

∫

Ωf

pk+1J̃kF−T (ũk) : ∇ψ dx

+

∫

Ωf

ρf
2

([
∂J

∂t

]k
+ div

(
JkF−1(ũk)(

˜
vk −

[
∂u

∂t

]k
)
))

vk+1ψ dx = 0

(3.1)
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for all ψ ∈ V0
h,

∫

Ωs

[
∂u

∂t

]k+1

φ dx−
∫

Ωs

vk+1φ dx = 0 (3.2)

for all φ ∈ V00
h , and

∫

Ωf

J̃k(∇vk+1) : F−T (ũk)q dx = 0 (3.3)

for all q ∈ Qh. The integrals over the interface in (3.1) cancel out due to the interface
condition (2.6). The coupling condition on Γsf is enforced strongly

[
∂u

∂t

]k+1

= vk+1 on Γsf . (3.4)

We note that the strong enforcement of the interface condition (3.4) together with

(3.2) imply that the equality
[
∂u
∂t

]k+1
= vk+1 is satisfied in the usual sense in Ωs.

Equations (3.1)–(3.4) subject to initial conditions and a choice of continuous extension
of uk+1 from Ωs onto Ωf ensuring uk+1 ∈ V0

h, define the discrete problem. In numer-
ical experiments, we shall use an extension based on auxiliary elasticity equation, see
Section 5.

Note that although strong coupling (3.4) is imposed on the interface, only a linear
algebraic system should be solved on each time step. The finite element method (3.1)–
(3.4) becomes the second order semi-implicit scheme if one sets

f̃k := 2fk − fk−1,

[
∂f

∂t

]k
:=

3fk − 4fk−1 + fk−2

2∆t
.

In the next section we study the energy stability of the first order finite element
scheme (3.1)–(3.4).

Remark 3.1. The last term in (3.1) is consistent due to the identity (2.12) and
is added in the FE formulation to enforce the conservation property of the discretiza-
tion. While computations show that in practice this term can be skipped, numerical
analysis in the next section benefits from including it. In the analysis of FEM for
incompressible Navier-Stokes equations in Eulerian description, including this term
corresponds to the Temam’s [35] skew-symmetric form of convective terms.

Remark 3.2. The following modifications to the finite element formulation
should be made for the incompressible neo-Hooken material:
(i) Change the domain of integration in the pressure dependent term (sixths term in
(3.1)) to the whole Ω(0), so it now reads:

−
∫

Ωs∪Ωf

pk+1J̃kF−T (ũk) : ∇ψ dx; (3.5)

(ii) Replace the second term in (3.1) with

µs

∫

Ωs

F(uk+1) : ∇ψ dx;
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(iii) Consider the incompressibility condition in the form of identity (2.14) and add
the following constraint to the finite element formulation:

∫

Ωs

J̃k∇vk+1 : F−T (ũk)q dx = 0 ∀ q ∈ Qh.

Hence instead of (3.3) we enforce the constraint in the whole reference domain Ω(0):

∫

Ωs∪Ωf

J̃k(∇vk+1) : F−T (ũk)q dx = 0 ∀ q ∈ Qh. (3.6)

4. Stability analysis. In this section, we show energy balance and stability
estimate for the solution to (3.1)–(3.4). We treat here only the first order method
defined by setting

f̃k = fk,

[
∂v

∂t

]k
:=

vk − vk−1

∆t
,

[
∂u

∂t

]k
:=

uk − uk−2

2∆t
. (4.1)

Moreover, for the clear analysis we make the third term in (3.1) ‘more explicit’ re-
placing it with

∫

Ωf

ρfJ
k−1

[
∂v

∂t

]k+1

ψ dx. (4.2)

As common in the stability analysis, we consider the homogeneous boundary condi-
tions on Γf0, i.e. g = 0 in (2.7).

We first treat the case of the compressible Saint Venant–Kirchhoff material. Note
the following identities:

2
(
E(uk,uk+1)−E(uk−1,uk)

)
= {F(uk)TF(uk+1)}s − {F(uk−1)TF(uk)}s
= {F(uk)TF(uk+1)}s − {F(uk)TF(uk−1)}s
= {F(uk)T (F(uk+1)− F(uk−1))}s
= {F(uk)T (∇uk+1 −∇uk−1)}s.

(4.3)

Hence due to the symmetry of S it holds

F(uk)S(uk+1,uk) : (∇uk+1 −∇uk−1)

= S(uk+1,uk) : {F(uk)T (∇uk+1 −∇uk−1)}s
= 2S(uk+1,uk) : (E(uk,uk+1)−E(uk−1,uk)). (4.4)

Now we set in (3.1)

ψ =





[
∂u

∂t

]k+1

in Ωs,

vk+1 in Ωf .

Thanks to (3.4), ψ is a suitable test function, i.e. ψ ∈ V0
h. We handle each resulting
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term separately and start with the first term in (3.1):

∫

Ωs

ρs

[
∂v

∂t

]k+1

ψ dx =

∫

Ωs

ρs

(
vk+1 − vk

∆t

)(
uk+1 − uk−1

2∆t

)
dx

=

∫

Ωs

ρs

(
uk+1 − uk − uk−1 + uk−2

(∆t)2

)(
uk+1 − uk−1

2∆t

)
dx

=
1

2∆t

∫

Ωs

ρs

(∣∣∣∣
uk+1 − uk−1

2∆t

∣∣∣∣
2

−
∣∣∣∣
uk − uk−2

2∆t

∣∣∣∣
2
)

dx

+
∆t

2

∫

Ωs

ρs

∣∣∣∣
uk+1 − uk − uk−1 + uk−2

2(∆t)2

∣∣∣∣
2

dx.

(4.5)

Thanks to (4.3) and (4.4) we obtain for the second term in (3.1):
∫

Ωs

F(uk)S(uk+1,uk) : ∇ψ dx =
1

∆t

∫

Ωs

S(uk+1,uk) : (E(uk,uk+1)−E(uk−1,uk)) dx

=
λs

2∆t

∫

Ωs

(
[
tr(E(uk,uk+1))

]2 −
[
tr(E(uk−1,uk))

]2
) dx

+
µs

∆t

∫

Ωs

(|E(uk,uk+1)|2F − |E(uk−1,uk)|2F ) dx

+
λs

2∆t

∫

Ωs

[
tr(E(uk,uk+1))− tr(E(uk−1,uk))

]2
dx

+
µs

∆t

∫

Ωs

∣∣E(uk,uk+1)−E(uk−1,uk)
∣∣2
F

dx.

(4.6)

Straightforward computations show for the third term in (3.1):

∫

Ωf

ρfJ
k−1

[
∂v

∂t

]k+1

ψ dx =

∫

Ωf

ρf
2

Jk|vk+1|2 − Jk−1|vk|2
∆t

dx

−
∫

Ωf

ρf |vk+1|2
2

[
∂J

∂t

]k
dx +

∫

Ωf

∆t ρfJ
k−1

2

∣∣∣∣∣

[
∂v

∂t

]k+1
∣∣∣∣∣

2

dx. (4.7)

Applying (2.15) to the forth (inertia) term in (3.1) and using boundary and interface
conditions give

∫

Ωf

ρfJ
k(∇vk+1)F−1(uk)(vk −

[
∂u

∂t

]k
)ψ dx

= −
∫

Ωf

ρf
2

div

(
JkF−1(uk)(vk −

[
∂u

∂t

]k
)

)
|vk+1|2 dx

+

∫

Γout

ρf
2

vk · n|vk+1|2 ds. (4.8)

The fifth term in (3.1) gives
∫

Ωf

µfJ
kDuk(vk+1) : Dukψ dx =

∫

Ωf

µfJ
k
∣∣Duk(vk+1)

∣∣2
F

dx ,
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and the next pressure term vanishes due to the incompressibility condition (3.3).
Substituting all equalities into (3.1), we obtain after some cancellations the energy
balance for finite element FSI problem with the first order discretization in time:

1

2

∫

Ωs

ρs
∆t



∣∣∣∣∣

[
∂u

∂t

]k+1
∣∣∣∣∣

2

−
∣∣∣∣∣

[
∂u

∂t

]k∣∣∣∣∣

2

 dx

+
ρf
2

∫

Ωf

1

∆t

(
Jk|vk+1|2 − Jk−1|vk|2

)
dx





variation of
kinetic energy

+
λs

2∆t

(
‖tr(E(uk,uk+1))‖2Ωs

− ‖tr(E(uk−1,uk))‖2Ωs

)

+
µs

∆t

(
‖E(uk,uk+1)‖2Ωs

− ‖E(uk−1,uk)‖2Ωs

)





variation of
potential energy

+ 2µf

∫

Ωf

Jk
∣∣Duk(vk+1)

∣∣2
F

dx

}
energy dissipation
in fluid

+
λs∆t

2
‖ 1

∆t

(
tr(E(uk,uk+1))− tr(E(uk−1,uk))

)
‖2Ωs

+ µs∆t‖
1

∆t
(E(uk,uk+1)−E(uk−1,uk))‖2Ωs

+
ρf (∆t)

2

∫

Ωf

Jk−1

∣∣∣∣∣

[
∂v

∂t

]k+1
∣∣∣∣∣

2

dx

+
∆t

2

∥∥∥∥ρ
1
2
s

uk+1 − uk − uk−1 + uk−2

2(∆t)2

∥∥∥∥
2

Ωs





O(∆t) dissipative
terms

= −ρf
2

∫

Γout

vk · n|vk+1|2 ds .

}
energy flux through
open boundary

Here and further ‖ · ‖Ωs
denotes the L2(Ωs) norm. One notes that the above equality

resembles the energy balance (2.16) of the original FSI problem up to several O(∆t)
terms. In the structure these extra terms are always dissipative, while for the fluid
we need the following assumption on the ALE displacement field. Assume that the
extension of displacements to the fluid domain is such that for all k it holds Jk > 0 in
Ωf , i.e. the displacements do not tangle the mesh. For the sake of notation we shall

also use ‖ · ‖Ωk
f

:=
(∫

Ωf
Jk| · |2 dx

) 1
2

, which defines a k-dependent norm for Jk > 0.

The terms in the fourth group on the left-hand side are non-negative and dropping
them changes the equality to inequality. If Γout is always an outflow boundary or
Γout = ∅, then the boundary term is non-negative and standing with minus sign it
can be also dropped. We end up with the inequality:

1

2

∥∥∥∥∥ρ
1
2
s

[
∂u

∂t

]k+1
∥∥∥∥∥

2

Ωs

+
ρf
2
‖vk+1‖2Ωk

f

+
λs
2
‖tr(E(uk,uk+1))‖2Ωs

+ µs‖E(uk,uk+1)‖2Ωs
+ 2µf (∆t)‖Duk(vk+1)‖2Ωk

f

≤ 1

2

∥∥∥∥∥ρ
1
2
s

[
∂u

∂t

]k∥∥∥∥∥

2

Ωs

+
ρf
2
‖vk‖2

Ωk−1
f

+
λs
2
‖tr(E(uk−1,uk))‖2Ωs

+µs‖E(uk−1,uk)‖2Ωs
.
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To define the time-stepping method for k = 0, 1, we set u−2 := u−1 := u0. Energy
estimate follows if we sum up the above inequality for k = 0, . . . , N − 1:

1

2

∥∥∥∥∥ρ
1
2
s

[
∂u

∂t

]N∥∥∥∥∥

2

Ωs

+
λs
2
‖tr(E(uN−1,uN ))‖2Ωs

+ µs‖E(uN−1,uN )‖2Ωs

+
ρf
2
‖vN‖2ΩN−1

f

+ 2µf

N−1∑

k=0

∆t‖Duk(vk+1)‖2Ωk
f

≤ ρf
2
‖v0‖2Ω0

f
+
λs
2
‖tr(E(u0,u0))‖2Ωs

+ µs‖E(u0,u0)‖2Ωs
. (4.9)

The analysis for the incompressible neo-Hooken material model follows the same
lines. The second stress tensor term in (3.1) is different. It now gives:

µs

2∆t

∫

Ωs

F(uk+1) : ∇(uk+1 − uk−1) dx =
µs

2∆t

∫

Ωs

F(uk+1) : (F(uk+1)− F(uk−1)) dx

=
µs

4∆t

∫

Ωs

|F(uk+1)− F(uk−1)|2F dx +
µs

4∆t

∫

Ωs

(
|F(uk+1)|2F − |F(uk−1)|2F

)
dx.

(4.10)

Similar to (4.9), the summation over k = 0, . . . , N − 1 gives the a priori estimate:

1

2

∥∥∥∥∥ρ
1
2
s

[
∂u

∂t

]N∥∥∥∥∥

2

Ωs

+
µs

4
‖F(uN )‖2Ωs

+
ρf
2
‖vN‖2ΩN−1

f

+ 2µf

N−1∑

k=0

∆t‖Duk(vk+1)‖2Ωk
f

≤ ρf
2
‖v0‖2Ω0

f
+
µs

2
‖F(u0)‖2Ωs

. (4.11)

We summarize the results in the following theorem.
Theorem 4.1. Assume that the extension of the finite element displacement field

to Ωf is such that Jk > 0 for all k = 1, . . . , N − 1, and Γout is always the outflow
boundary or Γout = ∅. Then the solution to the finite element method (3.1)–(3.4),
with extrapolation and time derivatives defined in (4.1), (4.2) satisfies the a priori
estimate (4.9). For the incompressible material, the changes explained in Remark 3.2
are applied. In this case, numerical solution satisfies the a priori estimate (4.11).

5. Numerical experiments. This section presents the results of numerical sim-
ulations of two model FSI problems. The first problem is suggested in [39] for the
purpose of benchmarking and is commonly used for the assessment of FSI numerical
methods. For the second test, we simulate a 2D blood flow in a compliant vessel with
aneurysm and compute flow statistics of interest. The second order in time variant
of the semi-implicit finite element FSI scheme from section 3 is used in all experi-
ments. For the continuous extension of the displacement field in (2.1), we use the
linear elasticity equation [31]

−div (λm(div u)I + µm(grad u + grad uT )) = 0 in Ωf , (5.1)

with space dependent auxiliary parameters λm, µm.
We use P2-P1 (Taylor-Hood) elements for fluid variables and P2 elements for

displacements. An exact sparse factorization solver was applied to handle the linear
algebraic system on each time step. We leave for the future research the development
of preconditioned iterative methods based on inexact LU factorizations [23] for the
resulting algebraic systems.
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5.1. Flexible beam in 2D. We start with the unsteady flexible beam fluid-
structure problem suggested in [39] as FSI3 test case. The problem was considered
for the purpose of benchmarking by a number of authors, see [41] for the collection
of results.

An absolutely rigid circle of radius r = 0.05 and center (0.2, 0.2) is placed in the
two-dimensional rectangular domain [0, 2.5]× [0, 0.41]. Here and further in section 5.1
we use meters and seconds for distance and time units. A rectangular structure (a
beam) of width 0.02 and length 0.35 with a mid-line passing through the center of
the circle parallel to x-axis is attached to the circle. The fluid part Ωf compirses
the whole domain except the circle and the beam. The solid part Ωs represents the
beam only. The statistics of interest are the x- and y-deflection of the point A(t)
of the beam, with initial coordinates A(0) = (0.6, 0.19), the drag and lift forces FD,
FL exerted by the fluid on the whole body, i.e. the cylinder and the beam, and the
frequencies f1 and f2 of x- and y-deflections of the beam, when a periodic motion is
settled.

The beam is treated as a compressible Saint-Venant Kirchoff structure. The fluid
and material parameters are summarized in Table 5.1. On the inflow boundary the

Table 5.1
Fluid and material parameters for FSI3

ρs λs µs ρf µf

1 000 kg/m3 8 000 000 Pa 2 000 000 Pa 1 000 kg/m3 1 Pa · s

parabolic profile

v1(0, y, t) =
12

0.1681
v(t)y(0.41− y), y ∈ [0, 0.41],

is prescribed, with

v(t) =





1

2

(
1− cos

(
πt

2

))
for t < 2,

1 for t ≥ 2.

The outflow boundary is located at x = 2.5.
To apply the finite element method (3.1)–(3.4), we first build a quasi-uniform

conforming mesh in reference domains Ωf ∪ Ωs. Further, the mesh was refined in Ωs

and in the vicinity of the beam, leading to the final mesh with 334 triangular elements
in Ωs and 17540 elements in Ωf . This refined mesh is illustrated in Figure 5.1. The
application of P2-P1-P2 elements results in 154242 active degrees of freedom.

The artificial elasticity parameters in the extension equation (3.3) were taken ad
hoc piecewise constant in Ωf :

λm(x) =

{
20λs if dist(x,Γfs) < 0.1,

λs otherwise
µm(x) =

{
20µs if dist(x,Γfs) < 0.1,

µs otherwise.

The increased stiffness for small mesh elements near the beam provides more uniform
mesh deformation over the fluid domain, thus ensuring J ≥ c0 > 0 in Ωf , see [33].

The simulations were run with the time step ∆t = 10−3 until the final time t = 8.
By the time t = 4, the computed solution attains an unsteady periodic regime. The
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Fig. 5.1. Deformed (virtual) mesh at t = 7.96, corresponding to the largest displacement in a
cross-flow direction. Only a part of the domain close to the cylinder and the beam is shown.

Fig. 5.2. The velocity vector field of the periodic solution at t = 8.

velocity field of the periodic solution at t = 8 is shown in Figure 5.2. The street of
vorticies detaching from the structure is clearly seen. Figure 5.3 shows the graphs of
displacements u1(A(t)) and u2(A(t)) on time interval [7, 8].
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Fig. 5.3. The plots of the x- and y-deflections of the beam at point A

The flow and structure statistics of interest are summarized in Table 5.2. They
were computed for the time interval [7, 8]. The mean values of the displacements and
forces were calculated by averaging the maximum and the minimum values over the
time interval [7, 8]. The periods f1 and f2 are computed by measuring time lapses
between peek values. All statistics are in good agreement with the results from [41].

5.2. Blood flow in a vessel with aneurysm. Our second test case is a vari-
ant of the 2D hemodynamic model problem from [40]. The computational domain
Ω(0) ⊂ [−8, 0] × [0, 8] and the grid are shown in Figure 5.4. In section 5.2 we use
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Table 5.2
Computed statistics for FSI3 test for the time interval [7,8]

u1(A) u2(A) FD FL f1 f2

−0.0031± 0.0029 0.0014± 0.0364 454± 27 2.8± 150 11.11 5.41

millimeters and seconds for distance and time units. The shaded part is the structure
(the compliant wall of the vessel) and the rest is the fluid domain. The dilatation of
the vessel models an aneurysm. The aneurysm wall is typically thinner than that of
the healthy artery part, which can lead to possible rupture and bleeding. The goal of
this numerical experiment is to demonstrate the reliability of the semi-implicit finite
element method (3.1)–(3.4) for the hemodynamic simulations. We shall also study the
influence of elasticity model parameters on the flow dynamics and the wall response
for aneurysm.

Fig. 5.4. The triangulated computational domain for the model hemodynamic problem. The
upper open part of the boundary is the inflow. The bottom open part of the boundary serves as the
outflow.

In [40], the authors look at the difference of flow dynamics depending on whether
the vessels wall is treated as rigid or neo-Hookean compressible material. Here we are
interested in the response of the system towards the variation of material parameters
and constitutive relations describing the elastic structure. In particular, we compare
compressible and incompressible elasticity models for the walls. For the compressible
case, we use the neo-Hookean material with Cauchy stress tensor given by

σs =
µs

J2

(
FFT − 1

2
tr (FFT )I

)
+

(
λs +

2µs

3

)
(J − 1)I. (5.2)

The constitutive relation is different from the St. Venant-Kirchhoff model in (2.10)
and is not covered by the analysis of the paper. Numerical experiments, however,
show stability of the semi-implicit finite element method in this case as well.
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Since we are interested in having a linear system of equations on every time step,
the time discretization of the elasticity part in the case of the neo-Hookean law was
done as follows. The first Piola-Kirchoff stress tensor is

P =
µs

J

(
F− 1

2
tr (FFT )F−T

)
+

(
λs +

2µs

3

)
J(J − 1)F−T .

In 2D, taking into account

F−T =
1

J
(I + ∇̂u), tr (FFT ) = 2 + 2 div u +∇u : ∇u, J = 1 + div u +

1

2
∇̂u : ∇u,

the first Piola-Kirchoff stress tensor can be rewritten as

P =
µs

J
∇u +

µs

2J2
(∇̂u : ∇u−∇u : ∇u)I− µs

J2
(1 + div u +

1

2
∇u : ∇u)∇̂u

+

(
λs +

2µs

3

)
J(J − 1)F−T ,

with ∇̂u =

(
∂u2

∂y −∂u2

∂x

−∂u1

∂y
∂u1

∂x

)
. We use the following linearization at time step k + 1:

Pk+1 ≈ µs

J̃k
∇uk+1 +

µs

2(J̃k)2
((∇̂ũk −∇ũk) : ∇uk+1)I

− µs

(J̃k)2
(1 + div ũk +

1

2
∇ũk : ∇ũk)∇̂uk+1

+

(
λs +

2µs

3

)

(

1 +
∂̃u2

∂y

)k
∂u1

∂x

k+1

− ∂̃u2

∂x

k
∂u1

∂y

k+1

+
∂u2

∂y

k+1


 (I + ∇̂ũk).

In the incompressible case, we use the elasticity model defined in (2.11). We take the
same µs for both models, and vary λs in (5.2) to change the response to compressional
deformations. In the limit λs → ∞, the above neo-Hookean model is expected to
behave similarly to the incompressible one with respect to compressional deformations.
However, we shall see that this is not always the case in the discrete setting.

Following [40], we impose the pulsatile incoming flow according to

v1(0, y, t) = −50(8− y)(y − 6)(1 + 0.75 sin(2πt)), 6 ≤ y ≤ 8.

The upper and lower ends of the artery walls are fixed. The flow and material pa-
rameters are given in Table 5.3. The values of ρs, ρf , and µf are taken from [40],
while the shear modulus µs is taken from [22], where it was experimentally measured
for a dog’s artery. The time step is equal to 10−3. Finally, for the extension equation
(5.1), we set µm = µs and λm = 4λs. For the compressible material, the second

Table 5.3
Fluid and material parameters for the blood flow in a vessel test

ρs µs ρf µf

1.12 · 103 kg/m3 270000 Pa 1.035 · 103 kg/m3 3.4983 · 10−3 Pa · s

parameter was varied: λs ∈ {104, 106, 108} kPa. The corresponding Poisson’s ratios
ν = 1

2λs/(λs + µs) are equal to 0.4869, 0.499865 and 0.49999865, respectively.
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Fig. 5.5. Both plots show the evolution of the area of Ωs for different models of vessels wall: neo-
Hookean compressible, and neo-Hookean incompressible. The bottom plot excludes the incompressible
case and shows the area evolution for the other models in a different scale.

First we compute the area of the solid domain over the time interval [1, 3] for
different elasticity models. Figure 5.5 shows how the area of the solid domain changes
over time. Two phenomena become apparent. First, for the large values of the second
elasticity parameter λs, the neo-Hookean compressible model produces much smaller
variations of the walls volume than the incompressible model. This phenomena is
numerical and results from the weak enforcement of the incompressibility condition
in the finite element method. In particular, the finite element incompressibility con-
straint depends on the choice of the Lagrange multiplier functional space Qh and for
most elements produces numerical compressibility. One may expect the numerical
compressibility to decay for a finer mesh. This is exactly what experiments demon-
strate. Indeed, Figure 5.6 shows the variation of area(Ωs) for the mesh shown in
Figure 5.4 and for a finer mesh with 3 and 5 layers of triangles in the aneurism
and the healthy part of the vessel wall, respectively. The mesh in the fluid domain
was correspondingly modified to match the refined mesh in Ωs. The results in Fig-
ure 5.6 suggest the mesh-convergence of the finite element incompressible model to
the ‘true’ incompressible limit (the ‘reference’ is the area in the incompressible limit).
The second phenomena clearly seen in Figure 5.5 is the development of non-physical
oscillations for λs = 108 kPa. These oscillations are small in amplitude (note the
scaling of the ‘area’ axis). They may result from solving algebraic systems with poor
conditioned matrices in finite precision arithmetics. A closer look at this phenomena
requires additional studies. Such studies will be done elsewhere. We remark that we
also experimented with the enforcement of the incompressibility condition through
the linearized J − 1 = 0 condition and using the same space for the finite element
Lagrange multiplier. We observed a somewhat better conservation of area by the
discrete solution in this case comparing to (3.6) (although again not as good as for
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Fig. 5.6. The plot demonstrates the improvement in the area conservation by the finite element
incompressible model if the mesh is refined.

large λ for slightly compressible material), but we have no analysis of this modified
finite element method.

Wall shear stress (WSS) values is another statistic of a common interest. Accord-
ing to [32] measuring WSS peak values along the vessel wall is crucial in estimating
the risk of both aneurysm formation in the initial stages and the eventual rupture. In
Figure 5.7, we present the maximum and the average of the absolute values of WSS
evaluated along the dilatation wall. The overprediction of the WSS is seen for the
incompressible case.

Fig. 5.7. The absolute value of the wall shear stress on the inside of the aneurysm wall; Top:
maximum along the wall; Bottom: average along the wall.

6. Conclusion. In this paper we focused on the numerical model of FSI in-
volving incompressible viscous Newtonian fluid and hyperelastic compressible or in-
compressible material. The monolithic finite element method based on Arbitrary
Lagrangian–Eulerian formulation was introduced. Within this approach the fluid and
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solid equations are discretized in a triangulated reference domain. We introduced the
semi-explicit time discretization, which leads to a linear system to be solved on every
time step and the strong enforcement of coupling conditions on the fluid-structure in-
terface. This yields the numerically stable FSI method which avoids inner iterations
between subdomains. The energy balance and stability estimate for the numerical so-
lutions were shown in the fully discrete setting and without any model simplifications
or time-step restrictions. An assumption was that the ALE displacement field in the
fluid domain should provide an untangled (virtual) triangulation. This may limit the
method to simulations of problems where the structure displacements are moderate
and no topological changes occur. The finite element method was numerically tested
on the benchmark FSI3 problem from [41] and the model hemodynamic problem for
the flow in the complaint vessel with aneurysm [40]. The numerical results confirmed
the stability and numerical efficiency of the FSI algorithm.

Since our approach treats compressible and incompressible materials in a unified
manner, we experimented with the dependence of flow statistics on the choice of the
model and parameters of the model. We found that in the finite element setting, when
the incompressibility constrain is enforced only weakly, the numerical compressibility
may lead to larger errors in structure volume than if a compressible material with
Poisson ratio close to 1

2 is used. The difference in predicted wall shear stresses can be
also significant between both (incompressible and slightly compressible) cases. These
numerical effects vanish when the mesh gets finer.

Acknowledgements. We are grateful to Annalisa Quaini for informative and
fruitful discussions.
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