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Natural vorticity boundary conditions on solid walls

Maxim A. Olshanskii∗ Timo Heister† Leo G. Rebholz‡ Keith J. Galvin§

Abstract

We derive boundary conditions for the vorticity equation with solid wall boundaries.
The formulation uses a Dirichlet condition for the normal component of vorticity, and
Neumann type conditions for the tangential components. In a Galerkin (integral) for-
mulation the tangential condition is natural, i.e. it is enforced by a right-hand side
functional and does not impose a boundary constraint on trial and test spaces. The
functional involves the pressure variable, and we discuss several velocity-vorticity for-
mulations where the proposed condition is appropriate. Several numerical experiments
are given that illustrate the validity of the approach.

1 Introduction

Fluid flow vorticity is an important dynamic variable and many phenomena can be described
in terms of vorticity more readily than in terms of primitive variables. Vorticity plays a
fundamental role in understanding the physics of laminar, transitional and turbulent flows
[7, 36, 30], in mathematical analysis of fluid equations [25], and in computational fluid
dynamics [10].

The vorticity dynamics of incompressible viscous fluid flows is driven by the system of
equations

∂w

∂t
− ν∆w + (u · ∇)w − (w · ∇)u = ∇× f (1)

where u is the fluid velocity in a non-inertial reference frame, w = ∇ × u is the flow
vorticity, ν is the kinematic viscosity coefficient, and f is a vector function of body forces
per unit mass. To obtain a closed system, one should complement (1) with equations for
u and initial conditions, and if a flow problem is posed in domain with boundaries, then
boundary conditions should be prescribed. Commonly, boundary conditions are given in
terms of primal variables and stress tensor, rather than in terms of the vorticity. However,
for analysis and for numerical methods based on vorticity equations, it is important to
endow (1) with boundary conditions on w.

Appropriate vorticity boundary conditions have been a subject of intensive discussion
in the literature, especially, in the context of numerical methods for fluid equations. In
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section 2, we include a brief review of several main approaches. One should be especially
careful with assigning vorticity boundary conditions on solid walls, i.e. those parts of the
boundary where a fluid is assumed to have no-slip velocity, since these regions are responsible
for vorticity production and give rise to physical and numerical boundary layers. An obvious
choice of using the vorticity definition w = ∇ × u for the boundary condition on w is
not always optimal with respect to numerical accuracy. This motivated our search for an
alternative way of prescribing boundary conditions on w.

The main result of this paper is that on a no-slip boundary, an appropriate vorticity
boundary condition is written in terms of a functional corresponding to a certain distribution
along the boundary. In PDEs language, such boundary conditions are called natural. We
derive this condition in section 3. Natural boundary conditions are easy to implement
numerically, since they do not impose boundary constraints on trial and test spaces in a
Galerkin method, and are less prone to produce numerical boundary layers. Our analysis
determines that the functional depends on pressure distribution along the boundary. The
critical role of tangential pressure gradients for boundary vorticity generation is known in
the literature and discussed, e.g., in [27, 30]. However, this relationship has seemingly not
been exploited for devising numerically efficient boundary conditions. In section 3 we also
discuss what new insight the boundary conditions may give in a possible role of pressure
and surface curvature in the vorticity production along solid boundaries.

The remainder of the paper is organized as follows. In section 2, we give necessary pre-
liminaries and briefly review boundary conditions suggested in the literature to complement
the vorticity equations (1). The natural vorticity boundary conditions are derived in sec-
tion 3. Section 4 discusses several options to close the system of equations by combining (1)
with the vector Poisson equations for velocity or the momentum equations with nonlinear
terms driven by the Lamb vector. Section 5 presents results of several numerical experi-
ments which demonstrate the utility and efficiency of the new vorticity boundary conditions
for computing incompressible viscous flows. Section 6 collects a few closing remarks.

2 Problem setup and boundary conditions review

We consider the flow of an incompressible viscous Newtonian fluid in a bounded domain
Ω ∈ R3. In primitive (velocity-pressure) variables, the fluid motion is described by the
Navier-Stokes equations





∂u

∂t
− ν∆u + u · ∇u +∇p = f ,

divu = 0,

u|t=0 = u0.

(2)

We distinguish between the upstream (inflow), downstream (outflow) and no-slip parts of
the boundary, Γin, Γout, and Γw (∂Ω = Γin∪Γout∪Γw), by the type of boundary conditions
imposed on them. On Γin we assume a prescribed velocity profile uin and an outflow
boundary condition on Γout, e.g., the vanishing normal component of the stress tensor [17].
On the no-slip boundary Γw we have

u = g on Γw, with g · n = 0, (3)

where n is an outward normal vector for Γw and g(x, t) is a tangential velocity of the solid
part of boundary. It is common to have g = 0 for flows past a steady object or channel
flow.
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For the inflow, one may assume vorticity to be know and set w = ∇× uin on Γin, and
letting the normal vorticity derivative vanish is a reasonable outflow boundary condition [13,
26]: (∇w)n = 0 on Γout. The situation is more delicate with vorticity boundary conditions
on Γw and several suggestions can be found in the literature. One common choice, see, e.g.,
[13, 24, 40, 42, 43, 44], is the kinematic condition

w = ∇× u on Γw. (4)

Note that opposite to inflow and outflow conditions, the vorticity boundary values on Γw

depend on a generally unknown velocity field. For a computational treatment, this can be
problematic, since numerical differentiation applied to a discrete velocity field on Γw may
reduce the accuracy of the computed vorticity in the whole domain Ω, see [23]. Indeed,
a numerical error introduced to vorticity values on Γw propagates into boundary layers
and further may be convected in the interior of Ω. To mitigate the accuracy reduction
and restrictions on w caused by (4), some authors [19, 13], consider a weak numerical
enforcement of (4), e.g., by using the Nitsche method.

A variant of (4), suggested in [35, 42, 45], uses only tangential part of the kinematic
condition and enforces free divergence of w on Γw:

w × n = (∇× u)× n, divw = 0 on Γw. (5)

The explicit enforcement of the div-free constraint on w along the boundary helps to ensure
the vorticity to be solenoidal in Ω. However, it does not resolve accuracy issues related to
(4).

Another class of vorticity boundary conditions are non-local conditions involving integral
or integral-differential constraints, see, e.g. [1, 21, 34]. This approach uses the Biot-Savart
formula to express the velocity from w and further to find the vorticity diffusive flux on
Γw solving an integral equation. Unlike this approach, we shall consider local differential
boundary conditions on w.

If the Navier-Stokes equations are written in terms of vorticity-stream (vector) function,
then boundary conditions following from (4) are written in terms of the stream function
rather than velocity, cf. [9].

3 Vorticity boundary conditions

In this section, we look for alternative boundary conditions to (4) on solid walls.
One vorticity condition easily follows from (3):

w · n = (∇× g) · n on Γw. (6)

The right hand-side of (6) is well-defined, since (∇×u) ·n depends only on boundary values
of u, as is easy to see from the Kelvin-Stokes theorem (see also Proposition 3.1 below). Thus,
w · n is defined only by given boundary values of u, rather than by the unknown velocity
in the fluid domain.

3.1 Neumann vorticity boundary conditions

We need two more vorticity boundary conditions on Γw. To deduce them, we rewrite the
momentum equation as

∂u

∂t
+ ν∇×w + w × u +∇P = f ,
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where P = 1
2 |u|2 + p is the Bernoulli pressure, p is the kinematic pressure. Taking the

tangential component on Γw and substituting (3) yields:

ν(∇×w)× n = (f −∇P −w × g − gt)× n

= (f −∇P − gt)× n− g((∇× g) · n) on Γw.
(7)

Here we used the identity: (w × g) × n = g(w · n) − w(g · n) = g(w · n) and (6). We
note that the terms on the right hand side of (7) depend only on boundary values of g and
p. The relation (7) gives two more boundary conditions on w. Since (∇|u|2) × n depends
only on the boundary values of u, the right-hand side in (7) can be also rewritten using the
kinematic pressure through

(∇P )× n = (∇p)× n +
1

2
(∇|g|2)× n.

To simplify the notations, we use the identity

g((∇× g) · n) = ((∇× g)× g)× n,

for g satisfying g · n = 0, and denote g̃ = f − gt − (∇ × g) × g − 1
2(∇|g|2) on Γw. The

Neumann vorticity boundary conditions now take more compact form:

ν(∇×w)× n = (g̃ −∇p)× n on Γw. (8)

We obtained Neumann type vorticity boundary conditions (8). The right hand side in
(8) depends on the gradient of the pressure variable. For f = 0 and g = 0, the conditions (8)
are discussed in [30] as possessing rich physical and mathematical information relevant to
vorticity dynamics. In particular, it is noted that the dynamic boundary conditions for the
vorticity and pressure gradient naturally match the acceleration adherence, which makes the
boundary conditions and compatibility condition merge into one. This is argued to reflect
the correct physics, since the acceleration adherence determines the vorticity creation from
the boundary.

For the further understanding of conditions (8) assume that the boundary Γw is static,
there are no external forces and so g̃ = 0. Recall that n is the normal vector pointing from
Γw outward into the fluid domain, hence the vector ∂w

∂n is the boundary vorticity flux, i.e.

−∂w
∂n can be considered as the vorticity production on the solid boundary. Note the identity

(∇×w)× n = [(∇w)− (∇w)T ]n =
∂w

∂n
− (∇w)Tn. (9)

Denote by H the Weingarten map or the shape operator for the surface Γw. We need the
following properties of H(x), x ∈ Γw: H is a symmetric 3 × 3 tensor on Γw, eigenvalues
of H are {0, κ1, κ2}, where κ1, κ2 are the principle curvatures of Γw and the eigenvectors
are the corresponding principal directions in which the surface bends at each point. It also
holds H = ∇Γn for the surface gradient ∇Γ. With the help of H and recalling w ·n = 0 on
Γ, we can rewrite the last term in (9) as

(∇w)Tn = ∇(w · n)− (∇n)w =
∂(w · n)

∂n
n−Hw.

Substituting this into (9) and (8), gives the expression for the production of the streamwise
and spanwise vorticity on the solid wall boundary:

−
(
∂w

∂n
− ∂(w · n)

∂n
n

)
= −ν−1n×∇p+ Hw on Γw. (10)
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On left hand side of (10) one has the total vorticity production on the boundary minus
the flux into the normal vorticity component. Hence the left hand side corresponds to the
boundary flux for the longitudinal and latitudinal vorticity components. The right hand
side indicates that the vorticity production depends on the variation of pressure along the
boundary and on the shape of the boundary. It is well-known in the literature [27] that
the tangential pressure gradients plays an important role for the generation vorticity on a
boundary. Note that for convex (as viewed from the fluid domain) boundaries, the bilinear
form 〈H·, ·〉 is negative definite on planes tangent to Γw, while it is positive definite for
concave boundaries. Thus, (10) explicitly shows that the vorticity production is suppressed
along convex boundaries and intensified along concave boundaries. In particular, this may
give a formal mathematical explanation to the well-known effects of convex (stabilizing)
and concave (destabilizing) shape on turbulent boundary layers [18, 28], and longitudinal
vorticity production along concave walls [41]. We shall pursue investigating implications
of (10) on the vorticity generation and boundary layer properties elsewhere. Summarizing,
conditions (8) possess rich physical, mathematical and geometrical information relevant
to vorticity dynamics, and in this paper we concentrate on employing them for efficient
numerical treatment of incompressible viscous flows.

In previous studies, the boundary w−p coupling was deemed to cause the basic difficulty
of vorticity formulations and an effort was made to bypass this coupling numerically at the
expense of stability/accuracy restrictions in terms of time step and Reynolds numbers. A
different point of view and numerical approach is taken in the present article. Several
observations play further a key role and contrast conditions (8) to (4) or (5) and our
approach to decoupling strategies:

• First, Neumann boundary conditions are natural in an integral formulation of the
Navier-Stokes equations and so in any Galerkin method, i.e. the conditions are ac-
counted for by a right-hand side functional and do not enter the definitions of trial or
test spaces.

• Second, (∇p)×n depends only on boundary values of p and one can apply integration
by parts over Γw to avoid computing the pressure gradient.

• Finally, the vorticity equations can be complemented with velocity-pressure equa-
tions driven by the Lamb vector, which gives the consistent and numerically efficient
coupling and provides the pressure for the boundary functional.

We explain these observations below in more detail.
From the implementation viewpoint, one may consider involving the pressure gradient

along the boundary as a disadvantage of (8). Below we show that (8) can be efficiently
implemented and computing the pressure derivatives is avoided.

3.2 Vorticity boundary conditions as a functional

Assume u and p are given and consider the integral formulation of the vorticity equation (1)
subject to conditions (6), (8) as well as inflow and outflow boundary conditions : Find w,
satisfying w · n = (∇× g) · n on Γw, w = ∇× uin on Γin and
∫

Ω

(∂w
∂t

+ (u · ∇)w − (w · ∇)u
)
· v + ν(∇×w) · (∇× v) + ν divw divv dx

=

∫

Ω
(∇× f) · v dx +

∫

Γw

((g̃ −∇p)× n) · v ds for all t > 0, (11)
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for any smooth v such that v · n = 0 on Γw and v = 0 on Γin. The outflow conditions we
used in (11) read:

(∇×w)× n = 0 and divw = 0 on Γout.

Other outflow boundary conditions are possible, but would lead to extra boundary integral
terms in (11).

To avoid computing pressure gradient over Γw, we shall rewrite the last term in (11)
using integration by parts on Γw. For a smooth surface Γ, recall the definition of the surface
gradient and divergence:

∇Γp = ∇p− (n · ∇p)n and divΓ v = tr(∇Γv)

which are the intrinsic surface quantities and do not depend on extensions of a scalar
function p and a vector function v off a surface, see, e.g., [12]. Assume that Γ is sufficiently
smooth and has a boundary ∂Γ whose intrinsic unit outer normal (conormal) is denoted by
µ. We will need the following identity for integration by parts over Γ (see [8, 11] for more
details): ∫

Γ
(∇Γ)ip ds =

∫

Γ
κpni ds +

∫

∂Γ
pµi dl

where κ is the surface mean curvature (κ = divΓ n). This leads to the following identity:

∫

Γ
p divΓ v + v · ∇Γp ds =

∫

Γ
κ(v · n)p ds +

∫

∂Γ
pv · (dl× n). (12)

The definition of the surface gradient immediately yields the identity:

(∇p)× n = (∇Γp)× n.

Hence assuming Γw is smooth and thanks to (12) we manipulate with the pressure term
from (11):

∫

Γw

((∇p)× n) · v ds =

∫

Γw

((∇Γp)× n) · v ds = −
∫

Γw

(v × n) · ∇Γp ds

=

∫

Γw

divΓ(v × n)p ds−
∫

∂Γw

p(v × n) · (dl× n). (13)

For the last term in (13), one gets using v · n = 0, |n|2 = 1 and vector identities

(v × n) · (dl× n) = v · dl.

This identity shows that (13) is valid also for piecewise smooth surfaces Γw. Indeed, the
formula (12) can be applied on each smooth part of Γw and the contour integrals over shared
boundaries of these parts cancel out.

Finally, one can also rewrite the first term on the right-hand side of (13) using the
following simple result.

Proposition 3.1. Assume v is a vector field defined in a R3 neighborhood of a smooth
surface Γ and v · n = 0, then it holds

divΓ(v × n) = (∇× v) · n on Γ. (14)

In particular, (14) implies that (∇× v) · n depends only on boundary values of v.
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Proof. Fix any p ∈ Γ and consider a sufficiently small neighborhood O(p) ⊂ R3 of
p. Let φ be a signed distance function of Γ in O(p). Then n = ∇φ is defined in O(p)
and coincides with the normal vector on Γ. Denote by H = ∇2φ the Hessian of φ and
P = I − nnT the normal projector on level sets of φ. Then it holds (cf, e.g., [12]):

∇Γ = P∇ on Γ and PH = HP = H in O(p). (15)

For a vector n, denote by [n]× a 3× 3 skew-symmetric matrix, such that [n]×a = n× a for
any a ∈ R3. Using this formalism, we compute

divΓ(v × n) = tr(P∇(v × n)) = −tr (P[n]×(∇v)) + tr (P[v]×H) . (16)

Using the elementary properties of the trace operation and (15) we get:

tr (P[v]×H) = tr ([v]×HP) = tr ([v]×H) = 0.

The last equality holds since H = HT and [v]× = −[v]T×. Further, note that P[n]× = [n]×.
For the first term on the right-hand side of (16), we have

−tr (P[n]×(∇v)) = −tr ([n]×(∇v)) =
3∑

i,j=1

([n]×)i,j
∂vi
∂xj

= (∇× v) · n.

�
Summarizing, the integral formulation of the vorticity equations reads: Find w, satisfy-

ing w · n = (∇× g) · n on Γw, w = ∇× uin on Γin and

∫

Ω

(∂w
∂t

+ (u · ∇)w − (w · ∇)u
)
· v + ν(∇×w) · (∇× v) + ν divw divv dx

=

∫

Ω
(∇× f) · v dx +

∫

Γw

(g̃ × n) · v ds−
∫

Γw

p(∇× v) · n ds +

∫

∂Γw

pv · dl ∀ t > 0,

(17)

for any smooth v such that v · n = 0 on Γw and v = 0 on Γin.
The Neumann vorticity boundary conditions (8) are accounted by the surface and con-

tour integrals on the right-hand side of (17) and impose no restrictions on a functional
space, where vorticity is sought. If the pressure distribution is known along Γw, then these
integrals are functionals defined for test functions v and this constitutes the mathemati-
cally sound problem formulation. Although we avoid computing pressure derivatives now,
one might consider bringing back pressure variable into the velocity-vorticity system of
equations as a potential downside of the natural vorticity boundary conditions. Thus, the
next section discusses several ways of closing the system such that the pressure variable is
naturally recovered.

4 Velocity-vorticity coupling

There are several ways to couple equations for velocity and pressure to the vorticity equation.
In this section we discuss three such couplings. We start with recalling the most commonly
found in the literature, which is based on the velocity and pressure Poisson equations.
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4.1 Velocity and pressure Poisson equations

Typical coupling of velocity to the vorticity equation is done via the relation

−∆u = ∇×w. (18)

These relations do not involve pressure, and so they are not applicable directly for the
proposed boundary condition. However, taking divergence of the Navier-Stokes momentum
equation provides

−∆p = div(u · ∇u− f). (19)

for kinematic pressure or
−∆P = div(w × u− f), (20)

for the Bernoulli pressure.
If (20) or (19) is equipped with appropriate boundary conditions, then pressure could

easily be incorporated into a time stepping scheme for a velocity-vorticity system of the
form (1), (18).

4.2 Lamb vector and Bernoulli pressure

Another way is to couple vorticity equations to the momentum equations written in the
rotations form. This gives the coupled system





∂u

∂t
− ν∆u + w × u +∇P = f ,

divu = 0,

∂w

∂t
− ν∆w + (u · ∇)w − (w · ∇)u = ∇× f .

(21)

In this system, the Bernoulli pressure is unknown variable and the velocity dynamics is
mainly driven by the Lamb vector w × u, which gives the strong coupling of the vorticity
and the velocity.

It is discussed in [31] how this system can be decoupled in an energy stable way in a
time-stepping scheme, by extrapolating vorticity in time in the momentum equation (which
linearizes it), then using the velocity solution in the (now linear) vorticity equation. Further-
more, [15] proves that for 2D flows the numerical method’s discrete vorticity and velocity
are both long-time stable in the L2 and H1 norms, without any timestep restriction.

4.3 Lamb vector, rate of deformation tensor and kinematic pressure

For certain problems, the use of Bernoulli pressure may lead to increased numerical error
in finite element methods where mass conservation is not strongly enforced [22]. If one
is interested in computing lift and drag around an object, solving for Bernoulli pressure
can lead to worse accuracy, since a recovered kinematic pressure may be less accurate than
directly computed.

In such cases, it may be advantageous to use a variant of (21) that utilizes the vector
identity

D(u)v = v · ∇u− 1

2
(∇× u)× v, (22)

where D(u) = 1
2(∇u + (∇u)T ) represents the rate of deformation tensor. Relation (22)

enables the velocity – vorticity coupling by including the Lamb vector in the momentum
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equations without altering the kinematic pressure. To our knowledge, the identity (22) was
first pointed out in [4] for use in the Navier-Stokes equations. This leads to the coupled
system 




∂u

∂t
− ν∆u +

1

2
w × u +D(u)u +∇p = f ,

divu = 0,

∂w

∂t
− ν∆w + (u · ∇)w − (w · ∇)u = ∇× f .

(23)

Similar to (21) the system (23) can be also integrated numerically using time splitting
techniques as shown in the next section.

Given these three coupling strategies, the authors of this paper give some preference to
those in (21) and (23), since these formulations do not require pressure boundary conditions,
directly lead to energy stable finite element discretizations, cf. [23], and admit natural
and simple time-stepping strategies. In the numerical examples section, we will test finite
element algorithms based on (21) and (23).

5 Numerical examples

We provide four numerical experiments in this section, with the goals of 1) testing the
feasibility of the proposed natural boundary condition for vorticity, and 2) testing the ac-
curacy of the velocity-vorticity schemes that use the natural vorticity boundary conditions.
Our results all indicate that both the proposed boundary condition and the schemes per-
form very well, and at least as good as often better than related schemes that use only
velocity-pressure variables.

The first test is a steady flow with known analytical solution, and we calculate conver-
gence rates of a method that uses the proposed boundary conditions; optimal convergence
rates are found. The second test is for channel flow past a normal flat plate at Re=100 and
Re=150, and we find the proposed method to work significantly better than an analogous
method that uses velocity-pressure variables only. For the third test, we consider is time
dependent flow around a cylinder, and we compare the solutions of schemes for (21) and
(23). Here, we find for more accurate lift and drag predictions, it is better to use (23) since
it uses the usual pressure instead of the Bernoulli pressure. Our final test is for 3D steady
flow around a square cylinder at Re=20. Because of the singular solution behavior near
the sharp edges of the cylinder, getting accurate lift and drag is very challenging, especially
if a numerical approach involves higher order flow dynamics variables, such as vorticity.
Hence, this test requires locally adapted fine meshes. We compare solutions of the pro-
posed (steady) velocity-vorticity method (23) to the standard scheme in velocity-pressure
variables on meshes up to 5 million dof, and find the proposed method works well, giving a
significantly better lift prediction and slightly worse drag prediction.

5.1 Finite element algorithms

For the two tests of steady flows, the velocity boundary condition is given as Dirichlet on the
entire boundary, so we take Γ = Γw and apply the proposed vorticity boundary condition
on the entire boundary. Denoting by τh a mesh of Ω, we define the space

Wg
h := {wh ∈ H1(Ω) ∩Pk(τh), wh · n|Γ = (∇× g) · n}.
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In particular, the test space is W0
h := Wg

h for g = 0. Next, we compute using the following
finite element method: For a given u ∈ H1(Ω), p ∈ L2(Γ), and f ∈ L2(Ω), set g̃ =
f − (∇× g)× g, and find wh ∈Wg

h, satisfying

((u · ∇)wh,vh)− ((wh · ∇)u,vh) + ν(∇×wh,∇× vh) + ν(divwh, divvh)

= (∇× f ,vh) +

∫

Γ
(g̃ × n) · vh ds−

∫

Γ
p(∇× vh) · n ds +

∫

Γ
pvh · dl ∀ vh ∈W0

h. (24)

For the time dependent problem, there will be an inflow and outflow which will be given
as analytic functions for velocity (u = g on Γin and Γout). Hence we will take the vorticity
as fully Dirichlet on these boundaries, and enforce w = ∇× g on Γin and Γout.

We test finite element implementation of both (21) and (23), which use a natural splitting
in the time stepping and thus decouple the velocity-pressure system from the vorticity
system by extrapolating the vorticity through previous timesteps. Hence for this problem
we define the spaces as

Vg
h := {vh ∈ H1(Ω) ∩Pk(τh), vh|Γ = g}, V0

h = Vg
h

Wg
h := {wh ∈ H1(Ω) ∩Pk(τh), wh · n|Γw = (∇× g) · n, wh|Γin,out = ∇× g}.

Denoting

φn+ 1
2 :=

φn + φn+1

2
,

the linearized Crank-Nicolson, finite element discretization of (21) is then (at each timestep):

Step 1: Find (un+1
h , P

n+ 1
2

h ) ∈ (Vg
h, Qh) satisfying

1

∆t
(un+1

h − un
h,vh) +

(
(
3

2
wn

h −
1

2
wn−1

h )× u
n+ 1

2
h ,vh

)

−(P
n+ 1

2
h ,∇ · vh) + ν(∇un+1/2

h ,∇vh) = 0 ∀ vh ∈ V0
h

(∇ · un+1
h , qh) = 0 ∀ qh ∈ Qh.

Step 2: Find wn+1
h ∈Wg

h satisfying

1

∆t
(wn+1

h −wn
h ,χh) + (u

n+ 1
2

h · ∇wn+ 1
2

h ,χh)− (w
n+ 1

2
h · ∇un+ 1

2
h ,χh)

+ ν(∇ ·wn+ 1
2

h ,∇ · χh) + ν(∇×w
n+ 1

2
h ,∇× χh) = ((∇× f(tn+ 1

2 )),χh)

+

∫

Γw

(g̃(tn+ 1
2 )× n) ·χh ds−

∫

Γw

P
n+ 1

2
h (∇×χh) · n ds+

∫

∂Γw

P
n+ 1

2
h χh · dl ∀ χh ∈W0

h.

(25)

Since the right-hand side of (25) contains the Bernoulli pressure, the definition of g̃ is
adjusted here to g̃ = f − gt − (∇× g)× g on Γw.

We will also test a finite element algorithm for the coupled system (23). This scheme
splits the system in a similar way as for (21). The Step 1 is replaced by

Alternate Step 1: Find (uh, ph) ∈ (Vh, Qh) satisfying

1

∆t
(un+1

h − un
h,vh) +

1

2
(w

n+ 1
2

h × u
n+ 1

2
h ,vh) + (D(u

n+ 1
2

h )u
n+ 1

2
h ,vh)

−(p
n+ 1

2
h ,∇ · vh) + ν(∇un+1/2

h ,∇vh) = (fn+ 1
2 ,vh) ∀ vh ∈ V0

h

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.
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Alternate Step 2 is the same as (21) with P
n+ 1

2
h replaced by the kinematic pressure p

n+ 1
2

h

and g̃ = f − gt − (∇× g)× g − 1
2(∇|g|2) on Γw.

5.2 Numerical Experiment 1: convergence rates

Our first numerical experiment is designed to test the accuracy of the proposed boundary
condition, by calculating convergence rates of the following finite element method solution,
for a steady problem with known analytical solution given on Ω = (0, 1)3 by

u(x, y, z) = {sin(2πy), cos(2πz), ex}T
p(x, y, z) = sin(2πx) + cos(2πy) + sin(2πz).

We choose ν = 1, g = u on ∂Ω, and the forcing f is calculated from the Navier-Stokes
momentum equation and the analytical solution. Vorticity approximations are computed
using Step 2, with ∆t = ∞ and taking un+1

h as the nodal interpolant of the analytical
velocity solution, using Q1, Q2 and Q3 elements on uniform quadrilateral meshes, and the
software deal.II [2, 3]. The calculated vorticity errors and rates are given in Tables 1-3, and
we observe the rates are optimal in both the L2 and H1 norms, for both choices of elements.
For Q3 elements, we observe a slightly higher than optimal rate of convergence in the H1

norm, but believe that with finer meshes this will reduce to third order.

h ‖w −wh‖0 rate ‖w −wh‖1 rate

1/4 1.440E-0 1.776E+1

1/8 3.736E-1 1.95 8.942E-0 0.99

1/16 9.427E-2 1.99 4.475E-0 1.00

1/32 2.362E-2 2.00 2.238E-0 1.00

Table 1: Vorticity L2 and H1 errors and rates from Q1 element computations.

h ‖w −wh‖0 rate ‖w −wh‖1 rate

1/4 1.158E-1 3.587E-0

1/8 1.466E-2 2.98 9.106E-1 1.98

1/16 1.835E-3 3.00 2.278E-1 2.00

1/24 5.436E-4 3.00 1.012E-1 2.00

Table 2: Vorticity L2 and H1 errors and rates from Q2 element computations.

h ‖w −wh‖0 rate ‖w −wh‖1 rate

1/2 2.511E-1 1.019E-0

1/4 1.741E-2 3.85 7.995E-2 3.67

1/8 1.123E-3 3.95 6.082E-3 3.72

1/12 2.234E-4 3.98 1.369E-3 3.68

Table 3: Vorticity L2 and H1 errors and rates from Q3 element computations.
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5.3 Numerical Experiment 2: Flow past a normal flat plate

We consider next a numerical experiment for flow past normal flat plate, following [37, 29,
38]. We take as the domain the [−7, 20]× [−10, 10] rectangle channel with a 0.125× 1 flat
plate placed 10 units into the channel from the left, and centered top to bottom. The inflow
velocity is taken to be uin = 〈1, 0〉, and f = 0. We run tests with ν = 1

100 and ν = 1
150 , giving

Reynolds numbers of Re = 100 and Re = 150, respectively, based on the height of the plate.
On the walls and plate, no-slip conditions are enforced for velocity, and no-penetration for
vorticity along with the additional natural boundary conditions derived herein. For the
outflow, the zero-traction boundary condition is enforced for velocity, and the homogeneous
Neumann condition for vorticity. We note that, due to the outflow condition, we use only
Alternate Step 1, since it uses usual pressure and thus more easily enforces zero traction
(with the ‘do-nothing’ condition).

We compute both with the proposed scheme, and for comparison, we also compute
using typical schemes for velocity-pressure in primitive variables. In particular, we use the
standard Crank-Nicolson linear extrapolation algorithm, which is given by
CNLE-UP: Find (uh, ph) ∈ (Vh, Qh) satisfying

1

∆t
(un+1

h − un
h,vh) +

((
3

2
un
h −

1

2
un−1
h

)
· ∇un+ 1

2
h ,vh

)

−(p
n+ 1

2
h ,∇ · vh) + ν(∇un+1/2

h ,∇vh) = (fn+ 1
2 ,vh) ∀ vh ∈ V0

h,

(∇ · un+1
h , qh) = 0 ∀qh ∈ Qh.

For the Re = 150 simulation, we use an analogous decoupled linearized scheme with BDF3
timestepping.

The quantities of interest in the simulations are the time averaged drag coefficient and
the Strouhal number. The drag coefficients are calculated at each timestep by the formula,

Cd(tm) =
2

LU2

∫

S

(
ν
∂utS (tm)

∂n
ny − pmh nx

)
dS,

where S is the plate boundary, n = 〈nx, ny〉 is the outward normal to S, utS (tm) is the
tangential velocity, the maximum inlet velocity U = 1, and L = 1 is the plate length.
The drag coefficients are then averaged over the last 10 periods in the simulation. In all
cases, volume integral formulas are used, as they are believed more accurate [20]. The
Strouhal number was calculated as in [37, 38], using the fast Fourier transform of the
transverse velocity at (4.0,0.0) from T=130 to T=200 to calculate the frequency f , and
then St = fL/U = f

5.3.1 Re = 100

The Re = 100 simulation with the Alternate Step 1 velocity-vorticity (CNLE-VV) scheme
was run using (P2, P1, P2) elements for velocity, pressure and vorticity, and used grad-div
stabilization [32]. This provided 24,264 velocity dof, 3,073 pressure dof, and 12,132 vorticity
dof, using a Delaunay generated mesh with aspect ratio of approximately 80. A timestep
was chosen to be ∆t = 0.02, and the simulation was run to the end time of T = 200;
the flow reached a statistically steady, periodic-in-time state by around T = 120. For a
fair comparison, we also ran CNLE-UP using the same mesh, timestep, and with the same
(P2, P1) velocity-pressure element choice.
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Table 4 shows the time averaged drag coefficients and Strouhal numbers from the solu-
tions, along with reference values from [38]. Comparing to the reference values, we observe
that both CNLE-VV and CNLE-UP accurately predict the Strouhal number, however the
velocity-vorticity method with the proposed boundary conditions gives a much better ap-
proximation of the time averaged drag coefficient.

Figures 1 shows both the time averaged vorticities and the T=200 instantaneous vor-
ticities for CNLE-VV and CNLE-UP. For CNLE-UP, the curl of the velocity was used as
the vorticity and for VV, the vorticity variable wh was used. We observe that CNLE-UP
vorticity and averaged vorticity appears significantly less resolved than for CNLE-VV on
this same discretization.

Re scheme Cd Strouhal number

100 CNLE-VV 2.61 0.183

100 CNLE-UP 2.74 0.183

100 Reference [38] 2.60 0.183

Table 4: Long-time average drag coefficients and Strouhal numbers for the Re=100 simu-
lations.

5.3.2 Re=150

For Re = 150 simulations, we found second order in time schemes to be too inaccurate,
and so we used BDF3 timestepping, and changed velocity-vorticity scheme and primitive
variable scheme accordingly. We will refer to the velocity-vorticity scheme as BDF3-VV,
and the primitive variable scheme by BDF3-UP. We again use (P2, P1) elements for velocity
and pressure, and for vorticity we use P2 in the BDF3-VV scheme. Here we used a finer
Delaunay-generated mesh, which provided 71,370 velocity dof, 8990 pressure dof, and 35,635
vorticity dof, and had an aspect ratio of around 90. A timestep of ∆t = 0.01 was used to
the end time of T=200; a statistically steady, periodic-in-time behavior was reached by
around T=120. Strouhal numbers were calculated from solutions from T=130 to 200, and
the average drag coefficient was taken by averaging the drag coefficients from the final 10
periods.

Table 5 shows the time averaged drag coefficients and Strouhal numbers from the solu-
tions, along with reference values from [38]. Comparing to the reference values, we observe
that both BDF3-VV and BDF3-UP predict the Strouhal number with good accuracy; the
calculated Str number 0.171 is the closest discrete frequency to 0.167 (recall an FFT is
used from T=130 to T=200). We also observe that BDF3-VV with the proposed boundary
conditions is significantly closer than BDF3-UP to the reference solution’s time averaged
drag coefficient. Figures 2 show both the time averaged vorticities and the T=200 instan-
taneous vorticities for BDF3-VV and BDF3-UP. We observe, as in the Re=100 case, that
the primitive variable formulation’s vorticity and averaged vorticity appears significantly
less resolved than for the velocity-vorticity method.

5.4 Numerical Experiment 3: Time dependent flow around a cylinder

Our next experiment tests the algorithms above based on the coupling (21) (Step 1) and
(23) (Alternate Step 1), both using the proposed boundary condition, on the benchmark
problem of time dependent flow around a cylinder. This test problem is taken from [20, 39],
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Figure 1: Shown above are plots of the vorticity contours for Re=100 for CNLE-VV and
CNLE-UP, both time averaged and instantaneous at T=200.

Re scheme Cd Strouhal number

150 BDF3-VV 2.65 0.171

150 BDF3-UP 2.78 0.171

150 Reference [38] 2.54 0.167

Table 5: Shown above are long-time average drag coefficients and Strouhal numbers for the
Re=150 simulations.

and the domain for the problem is a 2.2×0.41 rectangular channel with a cylinder of radius
0.05 centered at (0.2, 0.2) (taking the bottom left corner of the rectangle as the origin), see
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Figure 2: Shown above are plots of the vorticity contours for Re=150 for VV and CNLE,
both time averaged and instantaneous at T=200.

Figure 3.
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Figure 3: The domain for the channel flow around a cylinder numerical experiment.
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The cylinder, top and bottom of the channel are prescribed no slip boundary conditions,
and the time dependent inflow and outflow profile are

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(π t/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The viscosity is set as ν = 10−3 and the external force f = 0. The Reynolds number
of the flow, based on the diameter of the cylinder and on the mean velocity inflow is
0 ≤ Re(t) ≤ 100.

It is known that as the flow rate increases from time t = 2 to t = 4, two vortices start
to develop behind the cylinder. They then separate into the flow, and soon after a vortex
street forms which can be visible through the final time t = 8. Lift and drag coefficients for
fully resolved flows will lie in the reference intervals ([39])

crefd,max ∈ [2.93, 2.97], crefl,max ∈ [0.47, 0.49]

For the lift and drag to be accurate, the correct prediction of the boundary layer is critical,
and thus we believe this is another good test for the proposed vorticity boundary condition.

We compute with the finite element algorithms discussed above, for the systems (21)
(Step 1- Step 2) and (23) (Alternate Step 1 - Step 2). A Delaunay triangulation is used as the
mesh, and it provided 65, 080 velocity dof (and 48,366 pressure dof) using ((P2)2, P disc

1 , P2)
velocity-pressure-vorticity elements. A time step of ∆t = 0.01 is used for the timestepping
to an endtime of T = 8. Plots of solutions at T=4 and T=6 are shown in Figure 4 for the
solution of the scheme for (21), and agree well with the literature [20, 14]. The solution
plots of the scheme for (23) are visually indistinguishable from that of (21).

The lift and drag coefficients were calculated using volume integral formulas (see e.g.
[20]) to be:

(21) (Step 1-Step 2): cV V
d,max = 2.877 cV V

l,max = 0.508

(23) (Alternate Step 1-Step 2): cV V
d,max = 2.955 cV V

l,max = 0.470

Hence using the scheme for (23) gave better lift and drag coefficient predictions that lie
in the reference intervals, while the scheme for (21) did not. We believe this difference
in accuracies is due to the use of the Bernoulli pressure in (21), since Bernoulli pressure
is much more complex (and thus more error prone) than usual pressure in flows around
objects [22]. Significant error in the Bernoulli pressure would cause error in the vorticity
through the natural boundary condition, particularly near the boundaries, which in turn
would cause velocity error through the nonlinearity in the momentum equation.

5.5 Numerical Experiment 4: 3D flow around a square cylinder

As a final test we compute the 3d flow around a square cylinder benchmark with Reynolds
number 20. The geometry setup is given in Figure 5, see [33, 5] for more details and
reference values. An important feature of the flow past square cylinder problem is the
singularity of the geometry, which destroys the regularity of the Navier-Stokes solution. The
regularity theory from [6] predicts p /∈ H1(Ω) and u /∈ H2(Ω)3. This, in particular, implies
that the pressure and vorticity gradients are both unbounded in the vicinity of the edges.
This lack of solution smoothness makes the correct prediction of drag and lift coefficients

16



T = 4

T=6

Figure 4: Velocity vector plot and speed contours at T=4 and T=6 for the 2D flow around a
cylinder using the scheme for (23); the solution plots of (21) are visually indistinguishable.
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Figure 5: Setup for the 3d flow around a square cylinder
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a challenging test for a numerical method based on vorticity as well as for for boundary
conditions involving pressure.

For the computations we use a code written in deal.II ([2, 3]) using Q2-Q1 Taylor-
Hood elements on quadrilaterals. The starting mesh is adaptively refined using a gradient
jump error estimator based on the previous velocity. A cut of the meshes used in the
computations can be seen in Figure 6.

Figure 6: Cuts of the adaptively refined meshes in the middle of the domain. The total num-
ber of unknowns for velocity and pressure are 153,728, 498,807, 1,694,279, and 5,851,731,
respectively.

As the solution for this Reynolds number is stationary, we solve the coupled vorticity-
Navier-Stokes system as a stationary problem (in contrast to the examples before). We first
solve the nonlinear velocity-pressure formulation

ν(∇uh,∇vh) + (uh · ∇uh,vh)− (ph,∇ · vh) + γ(∇ · uh,∇ · vh) = (f ,vh) ∀ vh ∈ V0
h

(∇ · uh, qh) = 0 ∀qh ∈ Qh.

(26)

using a damped Newton iteration until convergence. Note that we are adding grad-div
stabilization with γ = 0.1 to the system to help with accuracy and the linear solvers for
the saddle point system (see [16]). We then proceed with a fixed point iteration for the
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vorticity formulation

ν(∇uh,∇vh) +
1

2
(wh × uh,vh) + (D(uh)uh,vh)

−(ph,∇ · vh) + γ(∇ · uh,∇ · vh) = (f ,vh) ∀ vh ∈ V0
h

(∇ · uh, qh) = 0 ∀qh ∈ Qh

ν(∇×wh,∇× χh) + ν(∇ ·wh,∇ · χh)− (wh · ∇uh,χh) + (uh · ∇wh,χh)

−
∫

Γw

ph(∇× χh) · n ds +

∫

∂Γw

phχh · dl = (∇× f ,χh) ∀ χh ∈W0
h

(27)

with the previously computed Navier-Stokes solution as a starting guess. In each fixed point
iteration, we alternate between solving the stationary vorticity system and the stationary
and linearized Navier-Stokes formulation. The iteration is stopped when the nonlinear
residuals reach 10−6.

The results for lift and drag are given in Table 6. For the vorticity-velocity method
with the proposed boundary conditions, we observe the convergence of the statistics to the
reference values despite a non-smooth and singular behavior of the pressure and vorticity
in the vicinity of the upstream cylinder edges, see Figure 7, where the computed solution is
visualized. We run experiments with both the standard velocity-pressure formulation (26)
and the vorticity-velocity formulation (27) with the proposed vorticity boundary conditions.
While for both formulations the statistics of interest converge to reference values, it is
interesting that the vorticity formulation gives much better results for the drag, while the
lift is better without using the vorticity form. Note that the meshes are coarse compared
to the reference values in [5], which were computed with 20 to 30 million unknowns.

dofs lift err% drag err% lift err% drag err%
reference [5] 0.06893 7.767 0.06893 7.767

{w,u, p}-formulation {u, p}-formulation
153,728 0.0968 40.4% 7.7843 0.22% 0.0772 12.0% 8.0476 3.61%
497,886 0.0789 14.5% 7.6619 1.35% 0.0758 9.97% 7.9049 1.78%

1,691,920 0.0720 4.45% 7.6794 1.13% 0.0725 5.18% 7.8306 0.83%
5,848,298 0.0684 0.77% 7.7021 0.84% 0.0706 2.42% 7.7993 0.42%

Table 6: Values for lift and drag for the stationary flow around a 3d square cylinder on a
sequence of adaptively refined meshes. Underlined numbers are more accurate. The number
of unknowns in column one corresponds to the sum of velocity and pressure unknowns.

6 Conclusions

We have derived and tested new natural vorticity boundary conditions. The conditions are
local and have been derived directly from the momentum balance for an incompressible
fluid without invoking any further empirical or ad hoc assumptions. We argued that the
devised condition possesses rich physical and geometrical information relevant to vortex
dynamics, and we concentrated on employing them for the numerical simulation of viscous
incompressible flows. Since methods that solve directly for vorticity are believed to be more
accurate near the boundary for vortex dominated flows, using physically-derived boundary
conditions should help to improve their accuracy. Despite the vorticity-pressure coupling,
it appears that the conditions are easy to implement in finite element or other Galerkin
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Figure 7: Velocity magnitude, pressure, and vorticity magnitude on the midplane around
the cylinder (zoomed) and 3d view of streamlines and vorticity magnitude contours around
the cylinder. The singularities in the pressure and vorticity in the corners of the cylinder
making this a very challenging problem.
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methods for velocity-vorticity formulations that solve for pressure. Two numerical formu-
lations were suggested that benefit from the new vorticity boundary conditions and solve
for velocity, vorticity and pressure in a decoupled time-stepping fashion. Several numerical
experiments with laminar flows were provided to demonstrate the consistency and accuracy
of the approach. In all experiments, computed solutions converge to reference data, and
in those problems where near or far wake flow dynamics behind an object are of interest,
the approach based on the vorticity equation and new boundary conditions demonstrated
a superior performance.
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