Numerical Analysis and Scientific Computing

 Preprint Seria
Monotonicity in $R T_{0}$ and PWCF methods on triangular and tetrahedral meshes

E. Kikinzon Yu. A.Kuznetsov Zh. Liu

Preprint \#35

Department of Mathematics University of Houston

Monotonicity in $R T_{0}$ and PWCF methods on triangular and tetrahedral meshes

Evgeny Kikinzon* Yuri A. Kuznetsov* Zhuo Liu*

Abstract

In this paper, we derive the monotonicity conditions for condensed algebraic systems obtained by the discretization of the Poisson's problem by the classical lowest order Raviart-Thomas $\left(R T_{0}\right)$ and the piecewise constant fluxes (PWCF) MFE methods on triangular and tetrahedral meshes. We also establish the correspondence between the condensed system matrices resulting from application of these two methods.

1 Introduction

In this paper, we study the monotonicity characteristics of two mixed hybrid finite element methods [2] on unstructured triangular (2D) and tetrahedral (3D) meshes. The methods we consider are the classical lowest order Raviart-Thomas ($R T_{0}$) MFE method [5], [6] and the piecewise constant fluxes (PWCF) MFE method [3], [1].

The diffusion problem we discretize using both method is as follows:

$$
\begin{equation*}
-\Delta p=f \quad \text { in } \Omega \tag{1}
\end{equation*}
$$

with Dirichlet boundary condition:

$$
\begin{equation*}
p=0 \quad \text { on } \partial \Omega, \tag{2}
\end{equation*}
$$

where Ω is a simply connected domain either in 2 D or 3D.
For the PWCF method, we derive the underlying algebraic system and show the representation of the condensed system matrices that allows to easily establish the monotonicity criteria for both triangular and tetrahedral meshes. The similar study for the $R T_{0}$ method on triangular meshes was presented in [4], we extend it to the case of

[^0]tetrahedral meshes, and make the conclusion about the correspondence of the condensed matrices for the two methods in 2D and 3D.

In Section 2 we give the description of the mixed finite element method and the underlying algebraic system for problem (1), (2). We derive the monotonicity conditions for the PWCF method on triangular meshes in Section 3.1 and on tetrahedral meshes in Section 3.2. The monotonicity result for $R T_{0}$ MFEM on triangular meshes is given in Section 4.1, and the result on tetrahedral meshes, along with the comparison of matrices to the ones resulting from the PWCF method, is shown in Section 4.2.

2 Mixed Finite Element Method

2.1 Mixed hybrid formulation for a polygonal (2D) or polyhedral (3D) cell

Let $\boldsymbol{u}=-\nabla p$ be the flux vector function, then the equivalent mixed form of the problem (1), (2) is as follows:

$$
\begin{array}{rll}
\boldsymbol{u}+\nabla p & =0 & \text { in } \Omega \tag{3}\\
\nabla \cdot \boldsymbol{u} & =f & \text { in } \Omega \\
p & =0 & \text { on } \partial \Omega
\end{array}
$$

The weak formulation of (3) is as follows: Find $(\boldsymbol{u}, p) \in V \times P$ such that

$$
\begin{align*}
\int_{\Omega} \boldsymbol{u} \cdot \boldsymbol{v} d x-\int_{\Omega} p(\nabla \cdot \boldsymbol{v}) d x & =0 \tag{4}\\
\int_{\Omega}(\nabla \cdot \boldsymbol{u}) q d x & =\int_{\Omega} f q d x
\end{align*}
$$

for all $(\boldsymbol{v}, q) \in V \times P$. Here, $V=H_{\text {div }}(\Omega)$, and $P=L_{2}(\Omega)$.
We partition Ω into m mesh cells E_{k} with interfaces $\Gamma_{k l}$ between mesh cells E_{k} and $E_{l}, k<l$, and faces Γ_{i} on the boundary $\partial \Omega$. We can write $\Omega=\sum_{k=1}^{m} E_{k}$. The the mixed variational macro-hybrid formulation to (3), reads as follows: find $(\overline{\boldsymbol{u}}, \bar{p}, \bar{\lambda}) \in V \times P \times \Lambda$ such that

$$
\begin{align*}
a_{H}(\overline{\boldsymbol{u}}, \overline{\boldsymbol{v}})+b_{H}(\bar{p}, \overline{\boldsymbol{v}})+c_{H}(\bar{\lambda}, \overline{\boldsymbol{v}}) & =0 \\
b_{H}(\bar{q}, \overline{\boldsymbol{u}}) & =l_{H}(\bar{q}) \tag{5}\\
c_{H}(\bar{\mu}, \overline{\boldsymbol{u}}) & =0
\end{align*}
$$

for all $(\overline{\boldsymbol{v}}, \bar{q}, \bar{\mu}) \in V \times P \times \Lambda$, where

$$
\begin{gather*}
a_{H}(\overline{\boldsymbol{u}}, \overline{\boldsymbol{v}})=\sum_{k=1}^{m} a_{H, k}\left(\boldsymbol{v}_{k}, \boldsymbol{u}_{k}\right) \\
b_{H}(\bar{p}, \overline{\boldsymbol{v}})=\sum_{k=1}^{m} b_{H, k}\left(p_{k}, \boldsymbol{v}_{k}\right) \\
c_{H}(\bar{\lambda}, \overline{\boldsymbol{v}})=\sum_{\substack{k, l=1 \\
k<l}}^{m} \int_{\Gamma_{k l}}\left(\boldsymbol{v}_{k} \cdot \boldsymbol{n}_{k}\right) \lambda_{k l} d s \\
l_{H}(\bar{q})=-\sum_{k=1}^{m} f q_{k} d x \\
a_{H, k}=\int_{E_{k}} \boldsymbol{u}_{k} \cdot \boldsymbol{v}_{k} d x, \quad b_{H, k}=-\int_{E_{k}} p_{k}\left(\nabla \cdot \boldsymbol{v}_{k}\right) d x, \quad k=1, \ldots, m, \tag{6}
\end{gather*}
$$

and \boldsymbol{n}_{k} is the outward unit normal to ∂E_{k}, which is the boundary of $E_{k}, k=1, \ldots, m$.

Here,

$$
\begin{align*}
\boldsymbol{V} & =V_{1} \times \ldots \times V_{m} \\
\boldsymbol{P} & =P_{1} \times \ldots \times P_{m} \\
\boldsymbol{\Lambda} & =\prod_{\substack{k, l=1 \\
k<l}}^{m} \Lambda_{k l} \tag{7}
\end{align*}
$$

with $V_{k}=H_{d i v}\left(E_{k}\right), P_{k}=L_{2}\left(E_{k}\right)$, and $\Lambda_{k l}=L_{2}\left(\Gamma_{k l}\right),\left|\Gamma_{k l}\right| \neq 0$, $1 \leq k<l \leq m$.

Next, we choose finite dimensional subspaces $\boldsymbol{V}_{h} \subseteq \boldsymbol{V}, \boldsymbol{P}_{h} \subseteq \boldsymbol{P}$, and $\boldsymbol{\Lambda}_{h} \subseteq \boldsymbol{\Lambda}$. With these definitions, the mixed hybrid finite element discretization of (1), (2) reads as follows: find $\left(\overline{\boldsymbol{u}_{h}}, \overline{p_{h}}, \overline{\lambda_{h}}\right) \in V_{h} \times$ $P_{h} \times \Lambda_{h}$ such that

$$
\begin{align*}
a_{H}\left(\overline{\boldsymbol{u}}_{h}, \overline{\boldsymbol{v}}_{h}\right)+b_{H}\left(\bar{p}_{h}, \overline{\boldsymbol{v}}_{h}\right)+c_{H}\left(\bar{\lambda}_{h}, \overline{\boldsymbol{v}}_{h}\right) & =0 \\
b_{H}\left(\bar{q}_{h}, \overline{\boldsymbol{u}}_{h}\right)-\sigma_{H}\left(\bar{p}_{h}, \bar{q}_{h}\right) & =l_{H}\left(\bar{q}_{h}\right) \tag{8}\\
c_{H}\left(\bar{\mu}_{h}, \overline{\boldsymbol{u}}_{h}\right) & =0
\end{align*}
$$

for all $\left(\overline{\boldsymbol{v}}_{h}, \bar{q}_{h}, \bar{\mu}_{h}\right) \in V_{h} \times P_{h} \times \Lambda_{h}$. The latter FE problem results in the system of linear algebraic equations

$$
A\left(\begin{array}{l}
\bar{u} \tag{9}\\
\bar{p} \\
\bar{\lambda}
\end{array}\right)=\left(\begin{array}{c}
0 \\
\bar{F} \\
0
\end{array}\right)
$$

with the symmetric matrix

$$
A=\left(\begin{array}{ccc}
M & B^{T} & C^{T} \tag{10}\\
B & 0 & 0 \\
C & 0 & 0
\end{array}\right)=\sum_{k=1}^{m} \mathcal{N}_{k} A_{k} \mathcal{N}_{k}^{T}
$$

where

$$
A_{k}=\left(\begin{array}{ccc}
M_{k} & B_{k}^{T} & C_{k}^{T} \tag{11}\\
B_{k} & 0 & 0 \\
C_{k} & 0 & 0
\end{array}\right)
$$

each M_{k}, B_{k}, C_{k} are local matrices for a cell E_{k}, and \mathcal{N}_{k} is an appropriate subassembling matrix, $k=1, \ldots, m$.

2.2 Reduced algebraic system (Schur-complement)

To get the monotonicity condition for the algebraic system (9), we perform the following condensation procedure:

First, eliminating the variable \bar{u}, we get the system:

$$
\begin{equation*}
S_{p \lambda}\left(\frac{\bar{p}}{\lambda}\right)=\binom{-\bar{F}}{0} \tag{12}
\end{equation*}
$$

where

$$
S_{p \lambda}=\binom{B}{C} M^{-1}\left(\begin{array}{ll}
B^{T} & C^{T} \tag{13}
\end{array}\right)=\sum_{k=1}^{m} \mathcal{N}_{p \lambda, k} S_{p \lambda, k} \mathcal{N}_{p \lambda, k}^{T}
$$

is a symmetric positive definite (SPD) matrix.
Then, eliminating the variable \bar{p}, we come to the Schur-complement system:

$$
\begin{equation*}
S_{\lambda} \bar{\lambda}=\bar{\phi} \tag{14}
\end{equation*}
$$

with the Schur-complement matrix

$$
\begin{equation*}
S_{\lambda}=\left(B M^{-1} B^{T}-B M^{-1} C^{T}\left(C M^{-1} C^{T}\right)^{-1} C M^{-1} B^{T}\right)=\sum_{k=1}^{m} \mathcal{N}_{\lambda, k} S_{\lambda, k} \mathcal{N}_{\lambda, k}^{T} \tag{15}
\end{equation*}
$$

and the right-hand side

$$
\begin{equation*}
\bar{\phi}=C\left(M^{-1} B^{T}\left(B M^{-1} B^{T}\right)^{-1}\right) \bar{F} \tag{16}
\end{equation*}
$$

Here,

$$
\begin{gather*}
S_{p \lambda, k}=\binom{B_{k}}{C_{k}} M_{k}^{-1}\left(\begin{array}{ll}
B_{k}^{T} & C_{k}^{T}
\end{array}\right) \\
S_{\lambda, k}=\left(B_{k} M_{k}^{-1} B_{k}^{T}-B_{k} M_{k}^{-1} C_{k}^{T}\left(C_{k} M_{k}^{-1} C_{k}^{T}\right)^{-1} C_{k} M_{k}^{-1} B_{k}^{T}\right) \tag{17}
\end{gather*}
$$

and $\mathcal{N}_{p \lambda, k}$ and $\mathcal{N}_{\lambda, k}$ are the appropriate subassembling matrices, $k=$ $\overline{1, m}$.

3 Piece-Wise Constant Fluxes (PWCF) Method on triangular and tetrahedral meshes

3.1 Monotonicity condition for PWCF method on triangular meshes

Assume that the domain Ω is partitioned using a triangular mesh Ω_{h}. Let E_{k} be a mesh cell, we denote its faces by Γ_{i}, and we denote an angle opposite to Γ_{i} by $\alpha_{i}, i=\overline{1,3}$. In this Section we investigate conditions under which the global system matrix for the problem (1)(2) is a singular M-matrix. Note that the global matrix S_{λ} is an Mmatrix if and only if local matrices $S_{\lambda, k}$ are M-matrices for all mesh cells E_{k}.

We consider a triangular cell E_{k}. Without the loss of generality, we assume the height dropped onto the face Γ_{1} to be of length 1, i.e. $h_{1}=1$. As before, we denote the angle opposite to the face Γ_{i} by α_{i}, $i=\overline{1,3}$. We denote the outward unit normal vector to Γ_{i} by \boldsymbol{n}_{i}.

There are two distinct geometries that can be described by the measure of one of the angles, say, α_{2}. The first is a triangle with three acute angles, as shown on Figure 1. The second is a triangle with an obtuse angle α_{2}. An example of such triangle is given on Figure 2.

Figure 1: A triangle with three acute angles.

Regardless of the shape of α_{2}, we have

$$
\begin{gather*}
\left|\Gamma_{1}\right|^{(1)}=\cot \alpha_{2}+\cot \alpha_{3}, \quad\left|\Gamma_{2}\right|^{(1)}=\frac{1}{\sin \alpha_{3}}, \quad\left|\Gamma_{3}\right|^{(1)}=\frac{1}{\sin \alpha_{2}} \\
\boldsymbol{n}_{1}^{(1)}=\binom{0}{-1}, \quad \boldsymbol{n}_{2}^{(1)}=\binom{\sin \alpha_{3}}{\cos \alpha_{3}}, \quad \boldsymbol{n}_{3}^{(1)}=\binom{-\sin \alpha_{2}}{\cos \alpha_{2}} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
\left|E_{k}\right|=\frac{1}{2}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) . \tag{19}
\end{equation*}
$$

We use the PWCF method to discretize the problem (3) on E. To do so, we split the cell E_{k} into two triangular subcells e_{1} and e_{2}

Figure 2: A triangle with an obtuse angle α_{2}.
by passing the line through the node opposite to the face Γ_{1} and the middle of the face Γ_{1}. Clearly, $\left|e_{1}\right|=\left|e_{2}\right|=\frac{1}{2}|E|$.

Let $\boldsymbol{w}_{i}, i=\overline{1,3}$, be the PWCF basis vector functions satisfying the following:
In e_{1},

$$
\begin{aligned}
& \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{1}=1, \quad \boldsymbol{w}_{1} \cdot n_{2}=0 \\
& \boldsymbol{w}_{2} \cdot \boldsymbol{n}_{1}=0, \quad \boldsymbol{w}_{2} \cdot n_{2}=1 \\
& \boldsymbol{w}_{3} \equiv 0
\end{aligned}
$$

In e_{2},

$$
\begin{aligned}
& \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{1}=1, \quad \boldsymbol{w}_{1} \cdot n_{3}=0 \\
& \boldsymbol{w}_{3} \cdot \boldsymbol{n}_{1}=0, \quad \boldsymbol{w}_{3} \cdot n_{3}=1 \\
& \boldsymbol{w}_{2} \equiv 0
\end{aligned}
$$

Therefore, the basis vector functions can be written explicitly:

$$
\begin{aligned}
& \boldsymbol{w}_{1}= \begin{cases}\left(\frac{\cos \alpha_{3}}{\sin \alpha_{3}}\right. & -1)^{T} \\
\left(-\frac{\cos \alpha_{2}}{\sin \alpha_{2}}\right. & -1)^{T} \\
\text { in } e_{1}, \\
\text { in } e_{2},\end{cases} \\
& \boldsymbol{w}_{2}= \begin{cases}\left(\frac{1}{\sin \alpha_{3}}\right. & 0)^{T} \\
0, & \text { in } e_{1}, \\
0, & \text { in } e_{2},\end{cases} \\
& \boldsymbol{w}_{3}= \begin{cases}\left(-\frac{1}{\sin \alpha_{2}}, 0\right)^{T} & \text { in } e_{2}, \\
0, & \text { in } e_{1} .\end{cases}
\end{aligned}
$$

The resulting matrix blocks for the local system are as follows:

$$
\left.\begin{array}{l}
M_{k}=\frac{\left|E_{k}\right|}{2}\left(\begin{array}{ccc}
\frac{1}{\sin ^{2} \alpha_{3}}+\frac{1}{\sin ^{2} \alpha_{2}} & \frac{\cos \alpha_{3}}{\sin ^{2} \alpha_{3}} & \frac{\cos \alpha_{2}}{\sin ^{2} \alpha_{2}} \\
\frac{\cos \alpha_{3}}{\sin ^{2} \alpha_{3}} & \frac{1}{\sin ^{2} \alpha_{3}} & 0 \\
\frac{\cos \alpha_{2}}{\sin ^{2} \alpha_{2}} & 0 & \frac{1}{\sin ^{2} \alpha_{2}}
\end{array}\right) \\
B_{k}=-\left(\cot \alpha_{2}+\cot \alpha_{3}\right. \tag{20}\\
\frac{1}{\sin \alpha_{3}}
\end{array} \frac{1}{\sin \alpha_{2}}\right), ~\left(\begin{array}{ccc}
\cot \alpha_{2}+\cot \alpha_{3} & 0 & 0 \\
0 & \frac{1}{\sin \alpha_{3}} & 0 \\
C_{k} & =\left(\begin{array}{c}
\frac{1}{\sin \alpha_{2}}
\end{array}\right)
\end{array}\right.
$$

Let

$$
\begin{equation*}
f_{k}=\frac{1}{\left|E_{k}\right|} \int_{E_{k}} f d x \tag{21}
\end{equation*}
$$

Then, the local system for the cell E can be written as

$$
\left(\begin{array}{ccc}
M_{k} & B_{k}^{T} & C_{k}^{T} \tag{22}\\
B_{k} & 0 & 0 \\
C_{k} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\bar{u} \\
p \\
\bar{\lambda}
\end{array}\right)=\left(\begin{array}{c}
0 \\
-f_{k} \\
0
\end{array}\right)
$$

Taking the Schur complement, we obtain the system in terms of p and $\bar{\lambda}$,

$$
\begin{equation*}
S_{p \lambda, k}\left(\frac{p}{\lambda}\right)=\binom{f_{k}}{0} \tag{23}
\end{equation*}
$$

with the system matrix

$$
S_{p \lambda, k}=\frac{1}{\left|E_{k}\right|}\left(\begin{array}{ccc}
4 & 0 & -2 \tag{24}\\
0 & \left(\cot \alpha_{2}+\cot \alpha_{3}\right)^{2} & -\cot \alpha_{3}\left(\cot \alpha_{2}+\cot \alpha_{3}\right)
\end{array}\right]-\cot \alpha_{2}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) ~\left(\begin{array}{cc}
1 \\
-2-\cot \alpha_{3}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) & 1+\frac{1}{\sin ^{2} \alpha_{3}}
\end{array}\right.
$$

Taking the Schur complement again, we get the system in terms of $\bar{\lambda}$,

$$
\begin{equation*}
S_{\lambda, k} \bar{\lambda}=\bar{F} \tag{25}
\end{equation*}
$$

where

$$
S_{\lambda, k}=\frac{1}{\left|E_{k}\right|}\left(\begin{array}{ccc}
\left(\cot \alpha_{2}+\cot \alpha_{3}\right)^{2} & -\cot \alpha_{3}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) & -\cot \alpha_{2}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) \tag{26}\\
-\cot \alpha_{3}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) & \frac{1}{\sin ^{2} \alpha_{3}} & \cot \alpha_{2} \cot \alpha_{3}-1 \\
-\cot \alpha_{2}\left(\cot \alpha_{2}+\cot \alpha_{3}\right) & \cot \alpha_{2} \cot \alpha_{3}-1 & \frac{1}{\sin ^{2} \alpha_{2}}
\end{array}\right)
$$

and

$$
\bar{F}=\frac{f_{k}}{2}\left(\begin{array}{l}
0 \tag{27}\\
1 \\
1
\end{array}\right)
$$

We assume that only α_{2} can be obtuse, therefore $\cot \alpha_{3}>0$. Hence, for matrix $S_{\lambda, k}$ to be an M-matrix, we should have

$$
\begin{gather*}
\alpha_{3} \leq \frac{\pi}{2} \\
\alpha_{2} \leq \frac{\pi}{2} \tag{28}\\
\alpha_{2}+\alpha_{3} \geq \frac{\pi}{2} .
\end{gather*}
$$

That condition can be written as

$$
\begin{equation*}
\alpha_{i} \leq \frac{\pi}{2}, \quad i=\overline{1,3} \tag{29}
\end{equation*}
$$

Note that unlike the matrix $S_{\lambda, k}$, the matrix $S_{p \lambda, k}$ is never an Mmatrix.

If condition 29 holds for all the cells $E_{k}, k=\overline{1, m}$, including the cells adjacent to the boundary of Ω, i.e. E_{k} such that $\left|\partial E_{k} \cap \partial \Omega\right| \neq 0$, then the global matrix S_{λ} is also a singular M-matrix.

3.2 Monotonicity condition for PWCF method on tetrahedral meshes

In this Section, we consider the problem (1)-(2) in the domain $\Omega \in \mathbb{R}^{3}$. We assume that Ω is partitioned into tetrahedral mesh cells E_{k}, and consider the PWCF method on the corresponding tetrahedral mesh Ω_{h}.

3.2.1 PWCF basis vector functions

Let E_{k} be a tetrahedral mesh cell with vertices V_{i} and faces $\Gamma_{i}, i=$ $\overline{1,4}$. We set $\Gamma_{1}=\left(V_{2} V_{3} V_{4}\right), \Gamma_{2}=\left(V_{1} V_{3} V_{4}\right), \Gamma_{3}=\left(V_{1} V_{2} V_{4}\right)$, and $\Gamma_{4}=\left(V_{1} V_{2} V_{3}\right)$. Let \boldsymbol{n}_{i} be the outward unit normal vector on a face $\Gamma_{i}, i=\overline{1,4}$. We partition the cell E_{k} into two tetrahedral subcells e_{1} and e_{2} with the internal triangular interface formed by the vertices V_{1}, V_{4} and the midpoint of the edge $V_{2} V_{3}$, as shown on Figure 3.

We define the PWCF basis vector functions, $\boldsymbol{w}_{i}, i=\overline{1,4}$, as follows: In e_{1},

$$
\begin{array}{ll}
\boldsymbol{w}_{1} \cdot \boldsymbol{n}_{1}=1, & \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{3}=0, \\
\boldsymbol{w}_{3} \cdot \boldsymbol{n}_{1}=0, & \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{4}=0 \\
\boldsymbol{w}_{3} \cdot \boldsymbol{n}_{3}=1, & \boldsymbol{w}_{3} \cdot \boldsymbol{n}_{4}=0 \\
\boldsymbol{w}_{1}=0, & \boldsymbol{w}_{4} \cdot \boldsymbol{n}_{3}=0, \\
\boldsymbol{w}_{2} \equiv 0
\end{array}
$$

Figure 3: A tetrahedral cell E_{k} partitioned into subcells e_{1} and e_{2}.

In e_{2},

$$
\begin{aligned}
& \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{1}=1, \quad \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{2}=0, \quad \boldsymbol{w}_{1} \cdot \boldsymbol{n}_{4}=0 \\
& \boldsymbol{w}_{2} \cdot \boldsymbol{n}_{1}=0, \quad \boldsymbol{w}_{2} \cdot \boldsymbol{n}_{2}=1, \quad \boldsymbol{w}_{2} \cdot \boldsymbol{n}_{4}=0 \\
& \boldsymbol{w}_{4} \cdot \boldsymbol{n}_{1}=0, \quad \boldsymbol{w}_{4} \cdot \boldsymbol{n}_{2}=0, \quad \boldsymbol{w}_{4} \cdot \boldsymbol{n}_{4}=1 \\
& \boldsymbol{w}_{3} \equiv 0
\end{aligned}
$$

Then, we can write the PWCF basis explicitly:

$$
\begin{align*}
& \boldsymbol{w}_{1}= \begin{cases}\frac{\boldsymbol{n}_{3} \times \boldsymbol{n}_{4}}{\boldsymbol{n}_{1} \cdot\left(\boldsymbol{n}_{3} \times \boldsymbol{n}_{4}\right)} & \text { in } e_{1} \\
\frac{\boldsymbol{n}_{2} \times \boldsymbol{n}_{4}}{\boldsymbol{n}_{1} \cdot\left(\boldsymbol{n}_{2} \times \boldsymbol{n}_{4}\right)} & \text { in } e_{2}\end{cases} \\
& \boldsymbol{w}_{2}= \begin{cases}0 & \text { in } e_{1} \\
\frac{\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}}{\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)} & \text { in } e_{2}\end{cases} \tag{30}\\
& \boldsymbol{w}_{3}= \begin{cases}\frac{\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}}{\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)} & \text { in } e_{1} \\
0 & \text { in } e_{2}\end{cases} \\
& \boldsymbol{w}_{4}= \begin{cases}\frac{\boldsymbol{n}_{1} \times \boldsymbol{n}_{3}}{\boldsymbol{n}_{4} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{3}\right)} & \text { in } e_{1} \\
\frac{\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}}{\boldsymbol{n}_{4} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{2}\right)} & \text { in } e_{2}\end{cases}
\end{align*}
$$

The local matrices M_{k}, B_{k} and C_{k} can be written as:

$$
\begin{align*}
M_{k} & =\frac{\left|E_{k}\right|}{2}\left(\begin{array}{cccc}
\left\|\boldsymbol{w}_{1}\right\|^{2} & \boldsymbol{w}_{1} \cdot \boldsymbol{w}_{2} & \boldsymbol{w}_{1} \cdot \boldsymbol{w}_{3} & \boldsymbol{w}_{1} \cdot \boldsymbol{w}_{4} \\
\boldsymbol{w}_{2} \cdot \boldsymbol{w}_{1} & \left\|\boldsymbol{w}_{2}\right\|^{2} & \boldsymbol{w}_{2} \cdot \boldsymbol{w}_{3} & \boldsymbol{w}_{2} \cdot \boldsymbol{w}_{4} \\
\boldsymbol{w}_{3} \cdot \boldsymbol{w}_{1} & \boldsymbol{w}_{3} \cdot \boldsymbol{w}_{2} & \left\|\boldsymbol{w}_{3}\right\|^{2} & \boldsymbol{w}_{3} \cdot \boldsymbol{w}_{4} \\
\boldsymbol{w}_{4} \cdot \boldsymbol{w}_{1} & \boldsymbol{w}_{4} \cdot \boldsymbol{w}_{2} & \boldsymbol{w}_{4} \cdot \boldsymbol{w}_{3} & \left\|\boldsymbol{w}_{4}\right\|^{2}
\end{array}\right) \tag{31}\\
B_{k} & =\left(-\left|\Gamma_{1}\right|-\left|\Gamma_{2}\right|\right. \\
-\left|\Gamma_{3}\right| & \left.-\left|\Gamma_{4}\right|\right) \\
C_{k} & =\operatorname{diag}\left\{\left|\Gamma_{1}\right|,\left|\Gamma_{2}\right|,\left|\Gamma_{3}\right|,\left|\Gamma_{4}\right|\right\}
\end{align*}
$$

where $\left|E_{k}\right|$ is the volume of the tetrahedron E_{k}, and $\left|\Gamma_{i}\right|$ is the area of face $\Gamma_{i}, i=1, \ldots, 4$.

By calculation, we obtain the following result:
Statement 1 Let $S_{\lambda, k}$ be the condensed matrix defined as in (15), which is obtained by using PWCF method, then $S_{\lambda, k}$ can be represented as:

$$
S_{\lambda, k}=\frac{1}{\left|E_{k}\right|}\left(\begin{array}{cccc}
\left|\Gamma_{1}\right|^{2}\left\|\boldsymbol{n}_{1}\right\|^{2} & \left|\Gamma_{1}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{1}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{1}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{4}\right) \tag{32}\\
\left|\Gamma_{2}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{2}\right|^{\|}\left\|\boldsymbol{n}_{2}\right\|^{2} & \left|\Gamma_{2}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{2}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{3}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{3}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{3}\right|| | \boldsymbol{n}_{3} \|^{2} & \left|\Gamma_{3}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{4}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{4}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{4}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{4}\right|^{2}\left\|\boldsymbol{n}_{4}\right\|^{2}
\end{array}\right) .
$$

Therefore, $S_{\lambda, k}$ is a singular M-matrix if and only if the angle between any two faces is less or equal to $\frac{\pi}{2}$.

Let us state the following facts:
Statement 2 Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ be vectors in \mathbb{R}^{3}, then

$$
\begin{equation*}
(\boldsymbol{a} \cdot(\boldsymbol{b} \times \boldsymbol{c}))^{2}=\|\boldsymbol{a}\|^{2}\|\boldsymbol{b} \times \boldsymbol{c}\|^{2}-(\boldsymbol{a} \cdot \boldsymbol{b})((\boldsymbol{b} \times \boldsymbol{c}) \cdot(\boldsymbol{a} \times \boldsymbol{c}))+(\boldsymbol{a} \cdot \boldsymbol{c})((\boldsymbol{b} \times \boldsymbol{c}) \cdot(\boldsymbol{a} \times \boldsymbol{b})) . \tag{33}
\end{equation*}
$$

Statement 3 Let a, b, c, d be vectors in \mathbb{R}^{3}, then

$$
\begin{align*}
& (\boldsymbol{a} \cdot(\boldsymbol{c} \times \boldsymbol{d}))(\boldsymbol{b} \cdot(\boldsymbol{c} \times \boldsymbol{d})) \\
= & (\boldsymbol{a} \cdot \boldsymbol{b})\|\boldsymbol{c} \times \boldsymbol{d}\|^{2}-(\boldsymbol{a} \cdot \boldsymbol{c})((\boldsymbol{c} \times \boldsymbol{d}) \cdot(\boldsymbol{b} \times \boldsymbol{d}))+(\boldsymbol{a} \cdot \boldsymbol{d})((\boldsymbol{c} \times \boldsymbol{d}) \cdot(\boldsymbol{b} \times \boldsymbol{c})) \\
= & (\boldsymbol{a} \cdot \boldsymbol{b})\|\boldsymbol{c} \times \boldsymbol{d}\|^{2}-(\boldsymbol{b} \cdot \boldsymbol{c})((\boldsymbol{c} \times \boldsymbol{d}) \cdot(\boldsymbol{a} \times \boldsymbol{d}))+(\boldsymbol{b} \cdot \boldsymbol{d})((\boldsymbol{c} \times \boldsymbol{d}) \cdot(\boldsymbol{a} \times \boldsymbol{c})) . \tag{34}
\end{align*}
$$

Then, we derive the inverse of matrix M_{k}, which is as follows:

$$
M_{k}^{-1}=\frac{1}{\left|E_{k}\right|}\left(\begin{array}{cccc}
\left\|\boldsymbol{n}_{1}\right\|^{2} & \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2} & \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{3} & \boldsymbol{n}_{1} \cdot \boldsymbol{n}_{4} \tag{35}\\
\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{1} & \left\|\boldsymbol{n}_{2}\right\|^{2}+\frac{\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)^{2}}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}-\frac{\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)\right.}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} \\
\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{1} & \boldsymbol{n}_{2} \cdot \boldsymbol{n}_{4} \cdot \boldsymbol{n}_{2}-\frac{\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & \left\|\boldsymbol{n}_{3}\right\|^{2}+\frac{\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)^{2}}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & \boldsymbol{n}_{3} \cdot \boldsymbol{n}_{4} \\
\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{1} & \boldsymbol{n}_{4} \cdot \boldsymbol{n}_{2} & \boldsymbol{n}_{4} \cdot \boldsymbol{n}_{3} & \left\|\boldsymbol{n}_{4}\right\|^{2}
\end{array}\right) \cdot
$$

Using the Statements (2), (3), one can verify by matrix multiplication that $M M^{-1}=I_{4}$.

Let us state another fact used in our derivation:
Statement 4 In the notations used, we have the following relationship:

$$
\begin{equation*}
\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)=-\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right) \tag{36}
\end{equation*}
$$

Proof Let $\boldsymbol{u}_{1}=\overrightarrow{V_{1} V_{2}}, \boldsymbol{u}_{2}=\overrightarrow{V_{1} V_{3}}, \boldsymbol{u}_{3}=\overrightarrow{V_{1} V_{4}}$, then we have

$$
\begin{array}{ll}
\boldsymbol{n}_{1}=\frac{\left(\boldsymbol{u}_{3}-\boldsymbol{u}_{2}\right) \times\left(\boldsymbol{u}_{2}-\boldsymbol{u}_{1}\right)}{\left|\Gamma_{1}\right|}, & \boldsymbol{n}_{2}=\frac{\boldsymbol{u}_{2} \times \boldsymbol{u}_{3}}{\left|\Gamma_{2}\right|} \tag{37}\\
\boldsymbol{n}_{3}=\frac{\boldsymbol{u}_{3} \times \boldsymbol{u}_{1}}{\left|\Gamma_{3}\right|}, & \boldsymbol{n}_{4}=\frac{\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}}{\left|\Gamma_{4}\right|} .
\end{array}
$$

Consequently,

$$
\begin{align*}
\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right) & =\boldsymbol{n}_{1} \cdot\left(\boldsymbol{n}_{4} \times \boldsymbol{n}_{2}\right)=\boldsymbol{n}_{1} \cdot \frac{\left(\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}\right) \times\left(\boldsymbol{u}_{2} \times \boldsymbol{u}_{3}\right)}{\left|\Gamma_{2}\right|\left|\Gamma_{4}\right|} \\
& =\frac{\left(\left(\boldsymbol{u}_{3} \times \boldsymbol{u}_{1}\right) \cdot \boldsymbol{u}_{2}\right)\left(\boldsymbol{u}_{2} \cdot\left(\boldsymbol{u}_{1} \times \boldsymbol{u}_{3}\right)\right)}{\left|\Gamma_{1}\right|\left|\Gamma_{2}\right|\left|\Gamma_{4}\right|} \tag{38}
\end{align*}
$$

and

$$
\begin{align*}
\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right) & =\boldsymbol{n}_{1} \cdot\left(\boldsymbol{n}_{4} \times \boldsymbol{n}_{3}\right)=\boldsymbol{n}_{1} \cdot \frac{\left(\boldsymbol{u}_{1} \times \boldsymbol{u}_{2}\right) \times\left(\boldsymbol{u}_{3} \times \boldsymbol{u}_{1}\right)}{\left|\Gamma_{3}\right|\left|\Gamma_{4}\right|} \\
& =-\frac{\left(\left(\boldsymbol{u}_{3} \times \boldsymbol{u}_{2}\right) \cdot \boldsymbol{u}_{1}\right)\left(\boldsymbol{u}_{1} \cdot\left(\boldsymbol{u}_{2} \times \boldsymbol{u}_{3}\right)\right)}{\left|\Gamma_{1}\right|\left|\Gamma_{3}\right|\left|\Gamma_{4}\right|} \tag{39}
\end{align*}
$$

The result follows.
Using the facts above, we derive

$$
M^{-1} B^{T}\left(B M^{-1} B^{T}\right)^{-1} B M^{-1}=
$$

$$
\frac{1}{\left|E_{k}\right|}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \tag{40}\\
0 & \frac{\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)^{2}}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & -\frac{\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & 0 \\
0 & -\frac{\left(\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & \frac{\left(\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)^{2}\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|^{2}} & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

The result given in Statement (1) can then be easily obtained. If the condition in the statement holds for all the cells $E_{k}, k=\overline{1, m}$, including the cells adjacent to the boundary of Ω, i.e. E_{k} such that $\left|\partial E_{k} \cap \partial \Omega\right| \neq 0$, then the global matrix S_{λ} is also a singular M-matrix.

Additionally, let

$$
\begin{align*}
\alpha & =\frac{\boldsymbol{n}_{2} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|} \tag{41}\\
\beta & =\frac{\boldsymbol{n}_{3} \cdot\left(\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right)}{\left\|\boldsymbol{n}_{1} \times \boldsymbol{n}_{4}\right\|}
\end{align*}
$$

then we can derive

$$
\begin{gather*}
B M^{-1} B^{T}=-\frac{4 \alpha \beta\left|\Gamma_{2}\right|\left|\Gamma_{3}\right|}{\left|E_{k}\right|} \tag{42}\\
B M^{-1} C^{T}=\frac{1}{\left|E_{k}\right|}\left(\begin{array}{ll}
0 & 2 \alpha \beta\left|\Gamma_{2}\right|\left|\Gamma_{3}\right| \quad 2 \alpha \beta\left|\Gamma_{2}\right|\left|\Gamma_{3}\right| \quad 0
\end{array}\right), \tag{43}
\end{gather*}
$$

and

$$
\begin{gather*}
C M^{-1} C^{T}= \\
\frac{1}{\left|E_{k}\right|}\left(\begin{array}{cccc}
\left|\Gamma_{1}\right|^{2}| | \boldsymbol{n}_{1} \|^{2} & \left|\Gamma_{1}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{1}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{1}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{2}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{1}\right|^{2}\left(\left\|\boldsymbol{n}_{2}\right\|^{2}+\alpha^{2}\right) & \left|\Gamma_{2}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}-\alpha \beta\right) & \left|\Gamma_{2}\right|\left|\Gamma_{5}\right|\left(\boldsymbol{n}_{2} \boldsymbol{n}_{4}\right) \\
\left.\left|\Gamma_{3}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{1}\right)\left|\Gamma_{3}\right|\left|\Gamma_{2}\right| \boldsymbol{n}_{3} \cdot \boldsymbol{n}_{3} \cdot \alpha \boldsymbol{n}_{2}-\alpha\right) & \left|\Gamma_{3}\right|^{2}\left(\left\|\boldsymbol{n}_{3}\right\|^{2}+\beta^{2}\right) & \left|\Gamma_{\mid}\right|\left|\left|\left.\right|_{4}\right| \boldsymbol{n}_{3} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{4}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{4}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{4}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{4}\right|^{2}\left\|\boldsymbol{n}_{4}\right\|^{2}
\end{array}\right) . \tag{44}
\end{gather*}
$$

This gives us the reduced matrix $S_{p \lambda, k}$, first introduced in (13).

4 Lowest order Raviart-Thomas ($R T_{0}$) Method on triangular and tetrahedral meshes

4.1 Monotonicity condition for $R T_{0}$ Method on triangular meshes

Let us consider the problem (1)-(2) in the domain $\Omega \in \mathbb{R}^{2}$. We assume that Ω is partitioned into triangular mesh cells E_{k}, and consider the $R T_{0}$ method on the corresponding triangular mesh Ω_{h}.

As shown in [4], the monotonicity condition for the local matrix $S_{\lambda, k}$ is as follows:
$S_{\lambda, k}$ is a singular M-matrix if and only if none of the interior angles of mesh cell E_{k} are obtuse angles.

Under the notations introduced in Section 3.1, it can be written as

$$
\begin{equation*}
\alpha_{i} \leq \frac{\pi}{2}, \quad i=\overline{1,3} \tag{45}
\end{equation*}
$$

Note that matrices S_{λ} and, therefore, the monotonicity conditions, coincide for $R T_{0}$ and PWCF methods on triangular meshes.

4.2 Monotonicity condition for $R T_{0}$ Method on tetrahedral meshes

In this Section, we consider the problem (1)-(2) in the domain $\Omega \in \mathbb{R}^{3}$. We assume that Ω is partitioned into tetrahedral mesh cells E_{k}, and consider the $R T_{0}$ method on the corresponding tetrahedral mesh Ω_{h}.

First, let us observe the following fact:
Statement 5 The condensed matrix $S_{\lambda, k}$ is independent of basis choice on $R T_{0}(K)$ space.

Proof Let $\left\{\boldsymbol{w}_{i}\right\},\left\{\boldsymbol{e}_{i}\right\}$ be two sets of basis vector functions for $R T_{0}(K)$, then there exists a linear transformation P such that

$$
\begin{equation*}
P\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}, \boldsymbol{w}_{4}\right)=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right) \tag{46}
\end{equation*}
$$

Therefore, for matrices M, B, C for two different basis, we have

$$
\begin{equation*}
M_{e}=P^{T} M_{w} P, \quad B_{e}=B_{w} P, \quad C_{e}=C_{w} P \tag{47}
\end{equation*}
$$

Hence,

$$
\begin{align*}
S_{e}= & C_{e} M_{e}^{-1}\left(M_{e}-B_{e}^{T}\left(B_{e} M_{e}^{-1} B_{e}^{T}\right)^{-1} B_{e}\right) M_{e}^{-1} C_{e}^{T} \\
= & C_{w} P P^{-1} M_{w}^{-1} P^{-T}\left(P^{T} M_{w} P-P^{T} B_{w}^{T}\left(B_{w} P P^{-1} M_{w}^{-1} P^{-T} P^{T} B_{w}\right)^{-1} B_{w} P\right) . \\
& P^{-1} M_{w}^{-1} P^{-T} P^{T} C_{w}^{T} \\
= & C_{w} M_{w}^{-1}\left(M_{w}-B_{w}^{T}\left(B_{w} M_{w}^{-1} B_{w}^{T}\right)^{-1} B_{w}\right) M_{w}^{-1} C_{w}^{T} \\
= & S_{k} . \tag{48}
\end{align*}
$$

Since $S_{\lambda, k}$ is independent of basis choice on $R T_{0}(K)$ space, instead of using classical basis $\left\{\boldsymbol{w}_{i}\right\}$ for \boldsymbol{u}_{h}, s.t. $\boldsymbol{w}_{i} \cdot \boldsymbol{n}_{j}=\delta_{i j}$ on Γ_{j}, we use the following basis:

$$
\boldsymbol{e}_{1}=\left(\begin{array}{l}
1 \tag{49}\\
0 \\
0
\end{array}\right), \quad \boldsymbol{e}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{e}_{4}=\left(\begin{array}{l}
x_{1}-x_{1}^{c} \\
x_{2}-x_{2}^{c} \\
x_{3}-x_{3}^{c}
\end{array}\right)
$$

where $\boldsymbol{x}^{c}=\left(x_{1}^{c}, x_{2}^{c}, x_{3}^{c}\right)^{T}$ is the barycenter of E_{k}, i.e.

$$
\begin{align*}
x_{1}^{c} & =\frac{1}{\left|E_{k}\right|} \int_{E_{k}} x_{1} d x \\
x_{2}^{c} & =\frac{1}{\left|E_{k}\right|} \int_{E_{k}} x_{2} d x \tag{50}\\
x_{3}^{c} & =\frac{1}{\left|E_{k}\right|} \int_{E_{k}} x_{3} d x
\end{align*}
$$

As a result, the matrix M_{k} now becomes a diagonal matrix and can be easily inverted:

$$
M_{k}=\left|E_{k}\right| \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \tag{51}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \frac{1}{\left|E_{k}\right|} \int_{E_{k}}\left(x_{1}-x_{1}^{c}\right)^{2}+\left(x_{2}-x_{2}^{c}\right)^{2}+\left(x_{3}-x_{3}^{c}\right)^{2} d x
\end{array}\right)
$$

The corresponding matrices B_{k} and C_{k} are:

$$
B_{k}=-\left(\nabla \cdot \boldsymbol{e}_{1} \quad \nabla \cdot \boldsymbol{e}_{2} \quad \nabla \cdot \boldsymbol{e}_{3} \quad \nabla \cdot \boldsymbol{e}_{4}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & -3\left|E_{k}\right| \tag{52}
\end{array}\right),
$$

$$
\begin{align*}
C_{k}= & \left(\begin{array}{l}
\int_{\Gamma_{1}} \boldsymbol{e}_{1} \cdot \boldsymbol{n}_{1} d x \int_{\Gamma_{1}} \boldsymbol{e}_{2} \cdot \boldsymbol{n}_{1} d x \int_{\Gamma_{1}} \boldsymbol{e}_{3} \cdot \boldsymbol{n}_{1} d x \int_{\Gamma_{1}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{1} d x \\
\int_{\Gamma_{2}} \boldsymbol{e}_{1} \cdot \boldsymbol{n}_{2} d x \int_{\Gamma_{2}} \boldsymbol{e}_{2} \cdot \boldsymbol{n}_{2} d x \int_{\Gamma_{2}} \boldsymbol{e}_{3} \cdot \boldsymbol{n}_{2} d x \int_{\Gamma_{2}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{2} d x \\
\int_{\Gamma_{3}} \boldsymbol{e}_{1} \cdot \boldsymbol{n}_{3} d x \int_{\Gamma_{3}} \boldsymbol{e}_{2} \cdot \boldsymbol{n}_{3} d x \int_{\Gamma_{3}} \boldsymbol{e}_{3} \cdot \boldsymbol{n}_{3} d x \int_{\Gamma_{3}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{3} d x \\
\int_{\Gamma_{4}} \boldsymbol{e}_{1} \cdot \boldsymbol{n}_{4} d x \int_{\Gamma_{4}} \boldsymbol{e}_{2} \cdot \boldsymbol{n}_{4} d x \int_{\Gamma_{4}} \boldsymbol{e}_{3} \cdot \boldsymbol{n}_{4} d x \int_{\Gamma_{4}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{4} d x
\end{array}\right) \\
= & \left(\begin{array}{l}
\left.\left|\Gamma_{1}\right| n_{1, x_{1}}\left|\Gamma_{1}\right| n_{1, x_{2}}\left|\Gamma_{1}\right| n_{1, x_{3}} \int_{\Gamma_{\Gamma_{1}} n_{1, x_{1}}\left(x_{1}-x_{1}^{c}\right)+n_{1, x_{2}}\left(x_{2}-x_{2}^{c}\right)+n_{1, x_{3}}\left(x_{3}-x_{3}^{c}\right) d x} \begin{array}{l}
\left|\Gamma_{2}\right| n_{2, x_{1}}\left|\Gamma_{2}\right| n_{2, x_{2}}\left|\Gamma_{2}\right| n_{2, x_{3}} \\
\int_{\Gamma_{2}} n_{2, x_{1}}\left(x_{1}-x_{1}^{c}\right)+n_{2, x_{2}}\left(x_{2}-x_{2}^{c}\right)+n_{2, x_{3}}\left(x_{3}-x_{3}^{c}\right) d x \\
\left|\Gamma_{3}\right| n_{3, x_{1}}\left|\Gamma_{3}\right| n_{3, x_{2}}\left|\Gamma_{3}\right| n_{3, x_{3}} \int_{\Gamma_{3}} n_{3, x_{1}}\left(x_{1}-x_{1}^{c}\right)+n_{3, x_{2}}\left(x_{2}-x_{2}^{c}\right)+n_{3, x_{3}}\left(x_{3}-x_{3}^{c}\right) d x \\
\left|\Gamma_{4}\right| n_{4, x_{1}}\left|\Gamma_{4}\right| n_{4, x_{2}}\left|\Gamma_{4}\right| n_{4, x_{3}} \int_{\Gamma_{4}} n_{4, x_{1}}\left(x_{1}-x_{1}^{c}\right)+n_{4, x_{2}}\left(x_{2}-x_{2}^{c}\right)+n_{4, x_{3}\left(x_{3}-x_{3}^{c}\right) d x}^{(-0)}
\end{array}\right),
\end{array}\right. \tag{53}
\end{align*}
$$

where $\boldsymbol{n}_{i}=\left(\begin{array}{lll}n_{i, x_{1}} & n_{i, x_{2}} & n_{i, x_{3}}\end{array}\right)^{T}, i=1,2,3,4$.
Simple calculations lead to:

$$
\begin{align*}
G_{k} & =M_{k}^{-1} B_{k}^{T}=\left(\begin{array}{llll}
0 & 0 & 0 & -\frac{3\left|E_{k}\right|}{\int_{E_{k}}\left(x_{1}-x_{1}^{c}\right)^{2}+\left(x_{2}-x_{2}^{c}\right)^{2}+\left(x_{3}-x_{3}^{c}\right)^{2} d x}
\end{array}\right)^{T}, \\
g_{k} & =B_{k} M_{k}^{-1} B_{k}^{T}=\frac{9\left|E_{k}\right|^{2}}{\int_{E_{k}}\left(x_{1}-x_{1}^{c}\right)^{2}+\left(x_{2}-x_{2}^{c}\right)^{2}+\left(x_{3}-x_{3}^{c}\right)^{2} d x}, \\
H_{k} & =M_{k}^{-1}-\frac{1}{g_{k}} G_{k} G_{k}^{T}=\frac{1}{\left|E_{k}\right|} \cdot \operatorname{diag}\{1,1,1,0\}, \tag{54}
\end{align*}
$$

and the condensed matrix $S_{\lambda, k}=C_{k} H_{k} C_{k}^{T}$ with entries:

$$
\begin{equation*}
\left(S_{\lambda, k}\right)_{i, j}=\frac{1}{\left|E_{k}\right|}\left|\Gamma_{i}\right|\left|\Gamma_{j}\right| \boldsymbol{n}_{i} \cdot \boldsymbol{n}_{j}, \quad i, j=1,2,3,4 \tag{55}
\end{equation*}
$$

This matrix is exactly same as the condensed matrix in (32), therefore we can state the following:

Statement 6 The condensed matrices $S_{\lambda, k}$ for $P W C F$ and $R T_{0}$ methods coincide, and, therefore, the monotonicity conditions for both methods are also the same.

Therefore, the global matrices S_{λ} also coincide for both methods, with monotonicity conditions being the same as derived in Section 3.2.

Now, let

$$
\begin{equation*}
\eta=\int_{E_{k}}\left(x_{1}-x_{1}^{c}\right)^{2}+\left(x_{2}-x_{2}^{c}\right)^{2}+\left(x_{3}-x_{3}^{c}\right)^{2} d x \tag{56}
\end{equation*}
$$

then

$$
\begin{equation*}
B M^{-1} B^{T}=\frac{9\left|E_{k}\right|^{2}}{\eta} \tag{57}
\end{equation*}
$$

Let us first consider matrix C_{k}. The last column of C_{k} is composed of $\int_{\Gamma_{i}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{i} d x$, where

$$
\boldsymbol{e}_{4}=\left(\begin{array}{l}
x_{1}-x_{1}^{c} \tag{58}\\
x_{2}-x_{2}^{c} \\
x_{3}-x_{3}^{c}
\end{array}\right)
$$

Since for any points on the face $\Gamma_{i}, \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{i}=\operatorname{dist}\left(\boldsymbol{x}^{c}, \Gamma_{i}\right)$, we have that $\int_{\Gamma_{i}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{i} d x$ equals three times the volume of subtetrahedrons with vertices \boldsymbol{x}^{c} and three vertexes of Γ_{i}. One important property for barycenter \boldsymbol{x}^{c} is that the the volumes of four subtetrahedrons obtained by connecting \boldsymbol{x}^{c} and four faces are equal, therefore,

$$
\begin{equation*}
\int_{\Gamma_{1}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{1} d x=\int_{\Gamma_{2}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{2} d x=\int_{\Gamma_{3}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{3} d x=\int_{\Gamma_{4}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{4} d x \tag{59}
\end{equation*}
$$

Another important equation is:

$$
\begin{equation*}
\sum_{i=1}^{4} \int_{\Gamma_{i}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{i} d x=\int_{E} \nabla \cdot \boldsymbol{e}_{4} d x=3\left|E_{k}\right| \tag{60}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\int_{\Gamma_{i}} \boldsymbol{e}_{4} \cdot \boldsymbol{n}_{i} d x=\frac{3\left|E_{k}\right|}{4}, \quad i=1,2,3,4 \tag{61}
\end{equation*}
$$

Let us calculate $S_{p, \lambda}$ as defined in (13). We have

$$
B M^{-1} C^{T}=\left(\begin{array}{llll}
-\frac{9\left|E_{k}\right|^{2}}{4 \eta} & -\frac{9\left|E_{k}\right|^{2}}{4 \eta} & -\frac{9\left|E_{k}\right|^{2}}{4 \eta} & -\frac{9\left|E_{k}\right|^{2}}{4 \eta} \tag{62}
\end{array}\right),
$$

and

$$
\begin{align*}
C M^{-1} C^{T}= & \frac{1}{\left|E_{k}\right|}\left(\begin{array}{cccc}
\left|\Gamma_{1}\right|^{2}\left\|\boldsymbol{n}_{1}\right\|^{2} & \left|\Gamma_{1}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{1}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{3}\right)\left|\Gamma_{1}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{1} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{2}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{1}\right) & \left|\Gamma_{2}\right|^{2} \mid \boldsymbol{n}_{2} \|^{2} & \left|\Gamma_{2}\right|\left|\Gamma_{3}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{3}\right)\left|\Gamma_{2}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{2} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{3}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{1}\right)\left|\Gamma_{3}\right|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{2}\right) & \left|\Gamma_{3}\right|^{2}\left\|\boldsymbol{n}_{3}\right\|^{2} & \left|\Gamma_{3}\right|\left|\Gamma_{4}\right|\left(\boldsymbol{n}_{3} \cdot \boldsymbol{n}_{4}\right) \\
\left|\Gamma_{4}\right|\left|\Gamma_{1}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{1}\right)\left|\Gamma_{4}\right|\left|\left|\Gamma_{2}\right|\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{2}\right)\right| \Gamma_{4}| | \Gamma_{3} \mid\left(\boldsymbol{n}_{4} \cdot \boldsymbol{n}_{3}\right) & \left|\Gamma_{4}\right|^{2}\left\|\boldsymbol{n}_{4}\right\|^{2}
\end{array}\right) \\
+ & =\frac{1}{\left|E_{k}\right|}\left(\begin{array}{llll}
\frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} \\
\frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} \\
\frac{9\left|E_{k}\right|^{3}}{1 \sigma \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} \\
\frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta} & \frac{9\left|E_{k}\right|^{3}}{16 \eta}
\end{array}\right) . \tag{63}
\end{align*}
$$

We can conclude the following:
Statement 7 Unlike the condensed matrices $S_{\lambda, k}$, the reduced matrices $S_{p \lambda, k}$ for $P W C F$ and $R T_{0}$ methods do not coincide.

References

[1] O. Boyarkin, E. Kikinzon, Yu. Kuznetsov, and A. Prokopenko, Approximations with piece-wise constant fluxes for diffusion equations: algorithms and applications. Russian J. Numer. Anal. Math. Modelling (2012) 27, No. 4, 339-368.
[2] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin, Heidelberg, 1991.
[3] Yu. Kuznetsov, Approximations with piece-wise constant fluxes for diffusion equations J. Numer. Math. (2011) 19, No. 4, 309328.
[4] A. Mazzia, An analysis of monotonicity conditions in the mixed hybrid finite element method on unstructured triangulations. Int. J. Numer. Meth. Engng (2008) 76, 351-375.
[5] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Math. 606 (Eds. I. Galligani and E. Magenes). Springer-Verlag, Berlin, 1977, pp. 292-315.
[6] J. E. Roberts and J.-M. Thomas, Mixed and hybrid method. In: Handbook of Numerical Analysis, Vol. II (Eds. P. Ciarlet and J. Lions). North-Holland, Amsterdam, 1991, pp. 523-639.

[^0]: *University of Houston, Department of Mathematics, 641 PGH, Houston, TX 77204, USA. E-mail: kuz@math.uh.edu

