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Abstract. We compare three different time discretization schemes in combination
with an augmented Lagrangian method to simulate the motion of an inextensi-
ble beam. The resulting saddle-point problem is solved with an Uzawa-Douglas-
Rachford algorithm. The three schemes are tested on a benchmark with an analyti-
cal solution and on a more challenging application. We found that in order to obtain
optimal convergence behavior in time, the stopping tolerance for the Uzawa-type
algorithm should be balanced against the time step size.

1 Introduction

The motion of an inextensible beam, while well studied (see, e.g, [4] and ref-
erences therein), remains to be a challenging problem numerically. The main
difficulties stem from the nonlinearity due to the inextensibility condition,
and the choice of appropriate time discretization scheme that is stable and
accurate (see [5] for a survey on different schemes). In this work, we eval-
uate the performance of the Houbolt scheme, a generalized Crank-Nicolson
scheme, and a Newmark scheme, which are combined with an Uzawa-type
algorithm for solving the saddle-point problem associated with an augmented
Lagrangian method employed to handle the inextensibility condition.

2 Motion of an inextensible beam

We consider an inextensible elastic beam in static and dynamic regimes,
assuming negligible torsional effects. We will denote by ρ the linear density
(i.e. mass per unit length), by L the length, and by EI the flexural stiffness
of the beam. We will use the following notation, with s denoting arc length

and t time: y′ = ∂y
∂s , ẏ = ∂y

∂t , y′′ = ∂2y
∂s2 , ÿ = ∂2y

∂t2 .

2.1 The static problem

We assume that the beam is subject to external forces f and that the strain-
stress relation is linear. The position of the beam at the equilibrium config-
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uration is solution of a non-convex constrained problem:

x = arg min
y∈K

J(y), where J(y) =
1

2

∫ L

0

EI |y′′|2 ds−
∫ L

0

f · y ds, (1)

and K =
{
y ∈ (H2(0, L))2, |y′| = 1, plus boundary conditions

}
.

To treat the inextensibility condition |y′| = 1, which is a quadratic con-
straint, we use an augmented Lagrangian Method (see, e.g., [1–4]). Let us
introduce the following space and set:

V =
{
y ∈ (H2(0, L))2, plus boundary conditions

}
,

Q =
{
q ∈ (L2(0, L))2, |q| = 1 a.e. on (0, L)

}
.

The static problem (1) is equivalent to

{x,x′} = arg min
{y,q}∈W

J(y), with W = {y ∈ V, q ∈ Q, y′ − q = 0}.

With r > 0, we introduce the following augmented Lagrangian functional:

Lr(y, q;µ) = J(y) +
r

2

∫ L

0

|y′ − q|2 ds+

∫ L

0

µ · (y′ − q) ds (2)

Let {x,p;λ} be a saddle point of Lr over (V × Q) × (L2(0, L))2. Then x
is a solution of the static problem (1) and p = x′. In order to solve the
above saddle-point problem, we employ the algorithm called ALG2 in, e.g.,
[2,4]. As shown in, e.g., [2], this Uzawa-type algorithm is in fact a ‘disguised’
Douglas-Rachford operator-splitting scheme. It reads as follow:

Step 0: The initial guess {x−1,λ0} ∈ V × (L2(0, L))2 is given.

Then, for k ≥ 0, {xk−1,λk, } being known, proceed with:

Step 1: Find pk ∈ Q such that:

Lr(xk−1,pk;λk) ≤ Lr(xk−1, q;λk), ∀q ∈ Q.

Step 2: Find xk ∈ V such that:

Lr(xk,pk;λk) ≤ Lr(y,pk;λk), ∀y ∈ V0. (3)

Step 3: Update the Lagrange multipliers by:

λk+1 = λk + r((xk)′ − pk).
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If the boundary conditions for problem (1) are y(0) = xA and y′(0) = xB ,
then the test function space at step 2 is defined by:

V0 =
{
y ∈ (H2(0, L))2, y(0) = 0, y′(0) = 0

}
.

To obtain pk at step 1, we have to solve the minimization problem:

min
|q|=1

Lr(xk−1, q;λk), with the solution pk =
r(xk−1)′ + λk

|r(xk−1)′ + λk|
. (4)

Problem (3) can be stated as the equivalent problem: Find xk ∈ V such
that for all y ∈ V0:

∫ L

0

EIx′′k · y′′ds+ r

∫ L

0

x′k · y′ds =

∫ L

0

f · yds+

∫ L

0

(rpk − λk) · y′ds.

Step 1, 2, and 3 are repeated till the following stopping criterion is satisfied:

||xk+1 − xk||
||xk||

< ε. (5)

2.2 The dynamic problem

Using the virtual work principle, the beam motion for t ∈ [0, T ] is modeled
by: Find x(t) ∈ Kt:

∫ L

0

ρẍ · yds+

∫ L

0

EI x′′ · y′′ds =

∫ L

0

f · yds, ∀y ∈ dKt(x), (6)

with

Kt =
{
y ∈ (H2(0, L))2, |y′| = 1, y(0) = xA(t), y′(0) = xB(t)

}
, (7)

dKt(x) =
{
y ∈ (H2(0, L))2, x′ · y′ = 0, y(0) = 0, y′(0) = 0

}
, (8)

and initial conditions x(s, 0) = x0(s) and ẋ(s, 0) = x1(s). Weak formulation
(6) assumes that at s = L natural boundary conditions x′′(L) = 0 and
x′′′(L) = 0 are imposed. Note that problem (6) in strong form reads: ρẍ +
EIx′′′′ = f .

For the time discretization of problem (6) we will consider three schemes:
a generalized Crank-Nicolson scheme, the Houbolt scheme, and a Newmark
scheme (see, e.g.,[4]). All these schemes are known to be second order accurate
for linear problems. Let ∆t be a time discretization step and set tn = n∆t,
for n = 1, .., N , with N = T/∆t. The time discrete problem reads: Find
xn+1 ∈ Ktn+1 :

∫ L

0

ρẍn+1 · yds+

∫ L

0

EI x̃′′ · y′′ds =

∫ L

0

f̃ · yds, (9)
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Table 1: Definition of ẍn+1, x̃, and f̃ in (9) for the time discretization schemes
under consideration: Generalized Crank-Nicolson (GCN), Houbolt, and Newmark
with β = 1/4, γ = 1/2. For GCN, 0 < α < 1/2.

GCN Houbolt Newmark∗

ẍn+1 xn+1 − 2xn + xn−1

∆t2
2xn+1 − 5xn + 4xn−1 − xn−2

∆t2
vn+1 − vn

∆t

x̃ αxn+1 + (1− 2α)xn + αxn−1 xn+1 xn+1 + xn

2

f̃ αfn+1 + (1− 2α)fn + αfn−1 fn+1 fn+1 + fn

2

∗ with
vn+1 + vn

2
=

xn+1 − xn

∆t
.

for all y ∈ dKtn+1(xn+1). The definition of ẍn+1, x̃, and f̃ in (9) is re-
ported in table 1 for each scheme under consideration. Time discretization
approximates problem (6) by a sequence of quasi-static problems for which
ALG2 still applies. For the space discretization of problem (9) we use a third
order Hermite finite element method (see, e.g., [1]). For details about the
discretization of pk ∈ Q (4) and λk ∈ (L2(0, L))2 we refer to [4].

3 Numerical results

3.1 Benchmark with analytical solution

We consider s ∈ [0, π/2] and t ∈ [0, 1], and a family of exact solutions which
is given by:

xex(s, t) = (φ(t))−1 [cos(sφ(t)), sin(sφ(t))]
T
. (10)

Notice that solution (10) satisfies the inextensibility condition |x|′ = 1 point-
wise for every function φ(t). We chose φ(t) = et, for which the solution is a
quarter of a circle of initial radius 1 that coils over time as its radius decreases
(see Fig. 1). At s = 0 and s = π/2, we impose the values of x and x′. The
forcing term fex needed to recover solution (10) is found by plugging xex

into the governing differential equations (strong form):

ρẍex + EIx′′′′ex = fex. (11)

For simplicity, we set ρ = 1 Kg/m3 and EI = 1 Kg m3/s2. The forcing
term fex is made up of two contributions: an external body force f b and an
internal force due to inextensibility f in. To find f in, we notice that problem
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Fig. 1: Comparison between analytical and numerical solution at t = 0 s (left),
t = 0.5 s (center), t = 1 s (right) for two values of stopping tolerance: ε = 10−1

(top) and ε = 10−5 (bottom). The legend in the subfigures on the left is common
to all the subfigures.

(6) is equivalent to minimization problem x = arg miny∈Kt
J(y), where the

total energy of the beam can be written as:

J(y) =
1

2

∫ L

0

ρ|ÿ|2ds+
1

2

∫ L

0

EI |y′′|2 ds+

∫ L

0

λ(|y′|2 − 1)ds−
∫ L

0

f · yds,

and λ is a scalar function that depends on time only. If the above functional
attains its minimum at x, it follows that its Gâteaux derivative must be
vanishing at x, leading to

∫ L

0

ρẍ · yds+

∫ L

0

EI x′′ · y′′ds =

∫ L

0

f · yds+

∫ L

0

(λx′)′ · yds,

for all y ∈ dKt(x). The second integral on the right-hand side (equal to
zero if y ∈ dKt(x), which is not the case for the test functions used in the
computations) gives the explicit contribution of f in. We are going to check
the convergence rates in time for the three schemes in table 1 in two cases:

– linear case: when the forcing term is fex the inextensibility condition
becomes inactive due to the fact that fex is given by (11) and the problem
reduces to the linear beam equation;

– nonlinear case: when then forcing term is fex + (λx′)′, with, e.g., λ = 1,
the problem becomes nonlinear and the inextensibility is treated via the
augmented Lagrangian method described in Sec. 2.

The space resolution ∆s is taken to be π/240. For the generalized Crank-
Nicolson scheme, we set α = 1/4 since in linear cases this choice leads to
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Fig. 2: Convergence rate in time for the generalized Crank-Nicolson (GCN) scheme,
the Houbolt scheme, and the Newmark scheme in the linear (left) and nonlin-
ear/inextensible (right) case.

Fig. 4: Convergence rate
in time for the gen-
eralized Crank-Nicolson
(GCN) scheme in the
nonlinear case for differ-
ent values of the stop-
ping tolerance ε.
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an unconditionally stable scheme which possesses a very small numerical
dissipation compared, e.g., to Houbolt method [1]. In the nonlinear case, for
ALG2 we set stopping tolerance ε = 10−5 (5) and r = 102. In Fig. 2, we
plot the L2 norm of the difference between the exact solution xex and the
numerical solution xh at t = 1 against time step (∆t = 0.2, 0.1, 0.05, 0.025,
0.0125, 0.00625) for the linear and nonlinear cases. The rates predicted by
the theory are achieved in the linear case: all the schemes are of second order.
We remark that for a given value of ∆t the Houbolt scheme is less accurate
than the other two. In the nonlinear case, for all the schemes the order of
convergence is even larger than 2 provided that ∆t is less than a critical value
for which the error reaches the stopping tolerance ε. If ∆t is greater than that
critical value, the error remains unchanged or even slightly increases.

As noted earlier, the error depends on the choice of ε. To illustrate this,
in Fig. 1 we compare analytical solution (10) with the numerical solution at
t = 0, 0.5, 1 s and for two values of the stopping tolerance: ε = 10−1 (top) and
ε = 10−5 (bottom), every other discretization parameter being the same. For
ε = 10−1 the difference between analytical and numerical solution is clearly
visible, while for ε = 10−5 the two solutions are almost superimposed.
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Finally, in order to evaluate the dependence of the error on ε, we report
in Fig. 4 the convergence rates in time for the generalized Crank-Nicolson
scheme in the nonlinear case for different values of the stopping tolerance
ε = 10−2, 10−3, 10−4, 10−5, 10−6, 10−7. The values for ∆t and ∆s are the
same as those used for the results in Fig. 2. We see that at the critical value
of ∆t the curves reach a plateau for all the values of ε, indicating that for a
given value of ε it does not make sense to choose a time step size that is too
small. Our computations seem to indicate that ∆t should be larger than

√
ε.

3.2 Swinging beam

The second test problem we consider involves the two-dimensional motion of
a beam subject to gravity, which is a an established test problem [3]. The
beam is attached at one extremity (denoted by A here) and free at the other
one (B). We aim at comparing our results with those reported in [3]. We
have: L = 32.6 m, EI = 700 Kg m3/s2, ρ = 7.67 Kg/m. At A = (0, 0)
the beam is fixed and B|t=0 = (20, 0). The initial position is given by the
solution of the static problem (1), with boundary conditions x(0) = (0, 0)
and x(L) = (20, 0). The motion of the beam for t ∈ [0, 10] s is visualized in
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Fig. 5: Position of the beam every 0.1 s for t ∈ [0, 5] s (left) and t ∈ [5, 10] (right).

Fig. 5. For the results in Fig. 5, we have used the generalized Crank-Nicolson
scheme (α = 1/4) with ∆t = 0.01, and ∆s = 32.6/60. For ALG2, we have set
r = 105 and ε = 10−5. Fig. 5 is qualitatively very similar to the corresponding
pictures in reference [3].

Next, we compare the displacement over time of the beam tip given by the
generalized Crank-Nicolson scheme, the Houbolt scheme, and the Newmark
scheme (see table 1). The ALG2 and discretization parameters are the same
used for the results in Fig. 5. Fig. 6 shows the x and y components of the
displacement for the three methods. We see that all the schemes are in good
agreement, with the Houbolt scheme giving larger oscillations than the other
two schemes.
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Fig. 6: Displacement of the beam tip for t ∈ [0, 10]: x-component (left) and y-
component (right).

4 Conclusions

We compared three different time discretization schemes (the Houbolt scheme,
a generalized Crank-Nicolson scheme, and a Newmark scheme) in combina-
tion with an augmented Lagrangian method to simulate the motion of an
inextensible beam. While all these schemes are known to be second order ac-
curate in time for linear problems, for the nonlinear problem considered here,
our numerical simulations for a benchmark problem with analytical solution
indicate that the accuracy increases when they are combined with an Uzawa-
type algorithm to account for inextensibility. Special care has to be taken in
selecting the termination criterion. Our computations suggest that the stop-
ping tolerance for the Uzawa-type algorithm should be balanced against the
time step size in a rather restrictive manner.
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