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Abstract. Motivated by modeling blood flow in human arteries, we study a
fluid-structure interaction problem in which the structure is composed of mul-

tiple layers, each with possibly different mechanical characteristics and thick-

ness. In the problem presented in this manuscript the structure is composed
of two layers: a thin layer modeled by the 1D wave equation, and a thick

layer modeled by the 2D equations of linear elasticity. The flow of an in-

compressible, viscous fluid is modeled by the Navier-Stokes equations. The
thin structure is in contact with the fluid thereby serving as a fluid-structure

interface with mass. The coupling between the fluid and the structure is non-

linear. The resulting problem is a nonlinear, moving-boundary problem of
parabolic-hyperbolic-hyperbolic type. We show that the model problem has a

well-defined energy, and that the energy is bounded by the work done by the in-

let and outlet dynamic pressure data. The spaces of weak solutions reveal that
the presence of a thin fluid-structure interface with mass regularizes solutions

of the coupled problem. This opens up a new area withing the field of fluid-
structure interaction problems, possibly revealing properties of FSI solutions

that have not been studied before.

1. Motivation. Fluid-structure interaction (FSI) problems arise in many applica-
tions. They include multi-physics problems in engineering such as aeroelasticity and
propeller turbines, as well as biofluidic application such as self-propulsion organisms,
fluid-cell interactions, and the interaction between blood flow and cardiovascular tis-
sue. In biofluidic applications, such as the interaction between blood flow and car-
diovascular tissue, the density of the structure (arterial walls) is roughly equal to the
density of the fluid (blood). In such problems the energy exchange between the fluid
and the structure is significant, leading to a highly nonlinear FSI coupling which is
responsible for the instabilities in loosely coupled partitioned algorithms [3]. Despite
a significant progress within the past decade [1, 2, 7, 8, 10, 13, 14, 6, 5, 4, 11, 15],
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a comprehensive study of these problems remains to be a challenge due to their
strong nonlinearity and multi-physics nature. In the blood flow application, the
problems are further exacerbated by the fact that arterial walls of major arteries
are composed of several layers, each with different mechanical characteristics. The
main layers are the tunica intima, the tunica media, and the tunica adventitia.
They are separated by the thin elastic laminae, see Figure 1, left. To this date,

Figure 1. Left: Arterial wall structure. Right: Domain sketch.

there are no fluid-structure interaction models or computational solvers in hemody-
namics that take into account the multi-layered structure of arterial walls. In this
manuscript we take a first step in this direction by proposing a benchmark problem
in fluid-multi-layered-structure interaction. The proposed problem is a nonlinear
moving-boundary problem of parabolic-hyperbolic-hyperbolic type for which the
questions of well-posedness and numerical simulation are wide open. This opens
up a new area within the field of FSI problems, in which the structure is com-
posed of multiple layers, each with possibly different mechanical characteristics and
thickness.

2. The benchmark problem. We study a FSI problem in which the structure
consists of two layers: a “thin” structural layer (modeled, e.g., by the linearly elastic
Koiter shell equations), and a “thick” layer (modeled, e.g., by the equations of
2D/3D elasticity). To simplify matters, we will be assuming that the elastodynamics
of the thin structure is modeled by the 1D linear wave equation. The wave equation
model retains the main difficulties associated with the study of solutions to the
more general elastodynamics models mentioned above. The thin structural layer
is in contact with the flow of an incompressible, viscous fluid, modeled by the
Navier-Stokes equations. From an application point of view, it is of interest to
study this fluid-multi-structure interaction problem on a cylindrical domain, with
the flow driven by the time-dependent dynamic pressure data, see Figure 1, right.
The Navier-Stokes equations are defined in a time-dependent fluid domain ΩF (t),
which is not known a priori:

FLUID :
ρF (∂tu + u · ∇u) = ∇ · σ,

∇ · u = 0,

}
in ΩF (t), t ∈ (0, T ), (1)

where ρF denotes the fluid density; u the fluid velocity; σ = −pI + 2µFD(u) is
the fluid Cauchy stress tensor; p is the fluid pressure; µF is the dynamic viscosity
coefficient; and D(u) = 1

2 (∇u +∇Tu) is the symmetrized gradient of u.
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We assume that the reference fluid domain is a cylinder of radius R and length
L, denoted by ΩF , with the lateral boundary denoted by Γ. To fix ideas, consider
the fluid domain to be a subset of R2 with z and r denoting the axial (horizontal)
and radial (vertical) coordinates. The cylinder wall is assumed to be compliant and
consisting of two layers: a thin layer, whose location at time t is denoted by Γ(t),
and a thick structural layer, whose location at time t is denoted by ΩS(t), as shown
in Figure 1, right. The thin layer Γ(t) is modeled by the 1D linear wave equation

THIN STRUCTURE : m∂ttη = T∂zzη + f, on Γ× (0, T ). (2)

Here η := η(t, z) denotes the radial (transverse) displacement from the reference
position Γ = {(z,R)|z ∈ (0, L)}, f is the source term (the radial component), m is
mass per unit length, and T is tension. The elastodynamics of the thick structural
layer is governed by the 2D equations of linear elasticity:

THICK STRUCTURE : ρ∂ttd = ∇ · S in ΩS , t ∈ (0, T ). (3)

Here d := (dr(t, z, r), dz(t, z, r)) describes the displacement of a thick elastic struc-
ture with respect to a fixed, reference configuration ΩS , and S is the first Piola-
Kirchoff stress tensor S = 2µD(d) + λ(∇ · d)I, with the Lamé constants λ and µ,
where D(d) is the symmetrized gradient of d, and ρ is the mass density.

To capture a full two-way coupling between the fluid and the structure, and
between the two structural layers, two sets of boundary conditions need to be pre-
scribed: the kinematic and dynamic coupling conditions. The kinematic condition
provides information about the kinematic quantities, such as velocity. We adopt
the no-slip condition requiring continuity of velocities at both the fluid-structure
interface and at the structure-structure interface. The dynamic coupling condition,
on the other hand, describes the second Newton’s Law of motion. This condition
states that the rate of change of (radial) momentum ∂ttη of the interface with mass
is a result of the balancing of all the forces exerted onto Γ(t), which includes the
radial component of the trace of normal stress σn exerted by the fluid onto Γ(t),
the trace of the radial component of the normal Piola-Kirchoff stress Ser exerted
by the thick structure onto Γ(t), and the action of the elastic forces associated with
Γ(t). Therefore, the coupling conditions are given by:

COUPLING :
u|Γ(t) = (∂tη, 0)T

d|Γ = (η, 0)T (or ∂td|Γ = (∂tη, 0)T ),
m∂ttη − T∂zzη = −Jσn|Γ(t) · er + S|Γer · er,





on Γ
×(0, T ),

(4)

where J =
√

1 + (∂zη)2 is the Jacobian of the transformation between the La-
grangian coordinates used in the formulation of the structure problem and the
Eulerian coordinates used in the formulation of the fluid problem. Vector er is the
unit normal to the reference cylinder Γ, while ur and dr denote the vertical compo-
nents of the velocity and displacement of the thick structure, respectively. Notation
u|Γ(t) = (∂tη, 0)T means u(t, z, R+ η(t, z)) = (∂tη(t, z), 0)T on Γ× (0, T ).

We supplement this problem by the initial and boundary conditions. For exam-
ple, let the inlet and outlet boundary data for the fluid be given in terms of the
dynamic pressure (p + |u|2/2 = Pin/out(t) on Γin/out) and assume that the fluid
is entering and leaving the domain parallel to the axis of symmetry (ur = 0 on
Γin/out). Furthermore, assume that the displacement of both structures is equal to
zero at the in/out boundaries (η = dr = dz = 0 on Γin/out), and that Ser = 0 at the
external wall of the thick structure. We can also introduce the symmetry boundary
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Γb = {(z, 0)|z ∈ (0, L)} with the symmetry boundary conditions ur = ∂ruz = 0,
and consider the problem only in the upper half-domain.

The resulting fluid-multi-structure-interaction problem can be summarized as
follows (for simplicity we take all the parameters in the problem equal to 1, i.e.,
m = T = ρ = λ = µ = ρF = µF = 1): find u, η and d such that

(∂tu + (u · ∇)u) = ∇ · σ
∇ · u = 0

}
in ΩF (t), t ∈ (0, T ), (5)

∂ttd = ∇ · S on ΩS × (0, T ), (6)

u|Γ(t) = (∂tη, 0)T ,
d|Γ = (η, 0)T ,

∂ttη − ∂zzη = −Jσn|Γ(t) · er + S|Γer · er



 on Γ× (0, T ), (7)

p+ |u|2/2 = Pin/out(t)
ur = 0

}
on Γfin/out × (0, T ), (8)

η = 0 on ∂Γ
d = 0 on ΓSin/out

(9)

Ser = 0 on Γext, (10)

ur = 0
∂ruz = 0

}
on Γb × (0, T ), (11)

with u(0, ·) = u0, η(0, ·) = η0, ∂tη(0, ·) = v0,d(0, ·) = d0, ∂d(0, ·) = V0.

Problem (5)-(7) defines a nonlinear, moving boundary problem of mixed, parabolic-
hyperbolic-hyperbolic type. The nonlinearity appears both in the equations, as well
as in the coupling conditions (7) via the composite function u|Γ(t) := u(t, z, R +
η(t, z)). The hyperbolic problem in (7) (3rd equation) serves as a lateral boundary
condition for both the fluid problem (5) and for the thick-structure problem (6).

Lemma 2.1. Problem (5)-(10) satisfies the following energy inequality

d

dt
(Ekin(t) + Eel(t)) +D(t) ≤ C(Pin(t), Pout(t)), (12)

where

Ekin(t) := ‖u‖2L2(Ω(t)) + ‖∂tη‖2L2(Γ) + ‖∂td‖2L2(ΩS),

Eel(t) := ‖∂zη‖2L2(Γ) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS),

denote the kinetic and elastic energy of the coupled problem, respectively, and the
term D(t) captures dissipation D(t) := ‖D(u)‖2L2(Ω(t)). The bound C(Pin(t), Pout(t)))

depends only on the inlet and outlet pressure data.

Proof. To show that (12) holds,multiply the first equation in (5) by u, integrate
over ΩF (t), and formally integrate by parts to obtain:∫

ΩF (t)

(
∂tu·u+(u·∇)u·u

)
+2

∫

ΩF (t)

|Du|2−
∫

∂ΩF (t)

(−pI+2D(u))n(t)·u = 0. (13)

To deal with the inertia term we first recall that ΩF (t) is moving in time and
that the velocity of the lateral boundary is given by u|Γ(t). The transport theorem
applied to the first term on the left hand-side of the above equation then gives:∫

ΩF (t)

∂tu · u =
1

2

d

dt

∫

ΩF (t)

|u|2 − 1

2

∫

Γ(t)

|u|2u · n(t).
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To deal with the nonlinear advection term in (13) we integrate by parts, and use
the divergence-free condition to obtain:∫

ΩF (t)

(u · ∇)u · u =
1

2

∫

∂ΩF (t)

|u|2u · n(t) =
1

2

( ∫

Γ(t)

|u|2u · n(t)

−
∫

Γin

|u|2uz +

∫

Γout

|u|2uz
)
.

These two terms added together give∫

Ωη(t)

∂tu · u +

∫

Ωη(t)

(u · ∇)u · u =
1

2

d

dt

∫

Ωη(t)

|u|2 − 1

2

∫

Γin

|u|2uz +
1

2

∫

Γout

|u|2uz.

(14)
Notice the importance of nonlinear advection in canceling the cubic term

∫
Γ(t)
|u|2u·

n(t)!
To deal with the boundary integral over ∂ΩF (t) of the normal stress in (13)

we first employ the boundary condition ur = 0 form (8) in combination with the
divergence-free condition to obtain ∂zuz = −∂rur = 0. Now, using the fact that
the normal to Γin/out is n = (∓1, 0), we get:

∫

Γin/out

(−pI + 2D(u))n · u =

∫

Γin

Pinuz −
∫

Γout

Poutuz. (15)

In a similar way, using the symmetry boundary condition (11), we obtain
∫

Γb

(−pI + 2D(u))n · u = 0.

What is left is to integrate the normal stress over Γ(t). For this purpose we consider
the wave equation (2), multiply it by ∂tη, and integrate by parts to obtain

∫

Γ

f∂tη =
1

2

d

dt
‖∂tη‖2L2(Γ) +

1

2

d

dt
‖∂zη‖2L2(Γ) (16)

Furthermore, we consider the elasticity equation (6), multiply it by ∂td and integrate
by parts over ΩS to obtain:

1

2

d

dt

(
‖∂td‖2L2(ΩS) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS)

)
= −

∫

Γ

Ser · ∂td. (17)

By enforcing the dynamic and kinematic coupling conditions (7) we obtain

−
∫

Γ(t)

σn(t) · u = −
∫

Γ

Jσn · u =

∫

Γ

(f − Ser)∂tη. (18)

Finally, by combining (18) with (16), (17), and by adding the remaining contribu-
tions to the energy of the FSI problem one obtains the following energy equality:

1

2

d

dt

∫

ΩF (t)

|u|2 +
1

2

d

dt
‖∂tη‖2L2(0,1) + 2

∫

ΩF (t)

|Du|2 +
1

2

d

dt
‖∂zη‖2L2(0,1)

+
1

2

d

dt

(
‖∂td‖2L2(ΩS) + 2‖D(d)‖2L2(ΩS) + ‖∇ · d‖2L2(ΩS)

)
= ±Pin/out(t)

∫

Γin/out

uz

By using the trace inequality and Korn inequality one can estimate:

|Pin/out(t)
∫

Γin/out

uz| ≤ C|Pin/out|‖u‖H1(ΩF (t)) ≤
C

2ε
|Pin/out|2+

εC

2
‖D(u)‖2L2(ΩF (t).
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By choosing ε such that εC
2 ≤ 1 we get the energy inequality (12).

3. Weak Solutions. To define weak solutions of the moving-bounday problem
(5)-(11) we introduce the following notation. We use aS to denote the following
bilinear form associated with the elastic properties of the thick structure:

aS(d,ψ) :=

∫

ΩS

2D(d) : D(ψ) + (∇ · d) (∇ ·ψ). (19)

Here A : B := tr
[
ABT

]
. Furthermore, we use b to denote the following trilinear

form corresponding to the (symmetrized) nonlinear advection term in the Navier-
Stokes equations:

b(t,u,v,w) :=
1

2

∫

ΩF (t)

(u · ∇)v ·w − 1

2

∫

ΩF (t)

(u · ∇)w · v. (20)

Finally, we define a linear functional which associates the inlet and outlet dynamic
pressure boundary data to a test function v in the following way:

〈F (t),v〉Γin/out = Pin(t)

∫

Γin

vz − Pout(t)
∫

Γout

vz.

To define a weak solution to problem (5)-(11) we introduce the following function
spaces. For the fluid velocity we would like to work with the classical function space.
However, due to the moving fluid-structure interface which is modeled by the wave
equation, the lateral boundary of the fluid domain is not necessarily a Lipshitz
function. Namely, from the energy inequality (12) we see that η ∈ H1(0, 1). The
Sobolev embedding then implies that η ∈ C0,1/2(0, 1), which means that ΩF (t) is
not necessarily a Lipshitz domain. However, ΩF (t) is locally a sub-graph of a Hölder
continuous function. In that case one can define a“Lagrangian” trace

γΓ(t) : C1(ΩF (t))→ C(Γ),

γΓ(t) : v 7→ v(t, z, r + η(t, z)).
(21)

Furthermore, it was shown in [4, 11, 16] that the trace operator γΓ(t) can be extended

by continuity to a linear operator from H1(ΩF (t)) to Hs(Γ), 0 ≤ s < 1
4 . Therefore,

we define the fluid velocity solution space to be the closure in H1(ΩF (t)) of the set

{u = (uz, ur) ∈ C1(ΩF (t))2 : ∇ · u = 0,uz = 0 on Γ(t), ur = 0 on ΩF (t) \ Γ(t)}. Us-
ing the fact that ΩF (t) is locally a sub-graph of a Hölder continuous function we can
get the following characterization of the velocity solution space VF (t): (see [4, 11])

VF (t) = {u = (uz, ur) ∈ H1(Ωη(t))2 : ∇ · u = 0,
uz = 0 on Γ(t), ur = 0 on Ωη(t) \ Γ(t)}. (22)

The function space associated displacement of the thin structural layer is

VK = H1
0 (Γ), (23)

and the function space associated with displacement of the thick structural layer is

VS = {d = (dz, dr) ∈ H1(ΩS)2 : dz = 0 on Γ, d = 0 on Γsin/out ∪ Γext}. (24)

Motivated by the energy inequality (12) we also define the corresponding evolution
spaces for the fluid and structure sub-problems, respectively:

WF (0, T ) = L∞(0, T ;L2(ΩF (t)) ∩ L2(0, T ;VF (t)), (25)

WK(0, T ) = W 1,∞(0, T ;L2(Γ)) ∩ L2(0, T ;VK), (26)

WS(0, T ) = W 1,∞(0, T ;L2(ΩS)) ∩ L2(0, T ;VS). (27)
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Finally, we are in a position to define the solution space for the coupled fluid-
multi-layered-structure interaction problem. This space must involve the kinematic
coupling condition. The dynamic coupling condition will be enforced in a weak
sense, through integration by parts in the weak formulation of the problem. Thus,
we define

W(0, T ) = {(u, η,d) ∈ WF (0, T )×WK(0, T )×WS(0, T ) :
u(t, z, R+ η(t, z)) = ∂tη(t, z)er, d(t, z, R) = η(t, z)er}. (28)

The equality u(t, z, R + η(t, z)) = ∂tη(t, z)er is taken in a sense of operator γΓ(t),
defined in (21). The corresponding test space will be denoted by

Q(0, T ) = {(q, ψ,ψ) ∈ C1
c ([0, T );VF × VK × VS) :

q(t, z, R+ η(t, z)) = ψ(t, z)er = ψ(t, z, R)}. (29)

Definition 3.1. (Weak Solution) We say that (u, η,d) ∈ W(0, T ) is a weak
solution of problem (5)-(11) if for every (q, ψ,ψ) ∈ Q(0, T ) the following holds:

−
∫ T

0

∫

ΩF (t)

u · ∂tq +

∫ T

0

b(t,u,u,q) + 2

∫ T

0

∫

ΩF (t)

D(u) : D(q)

−1

2

∫ T

0

∫

Γ

(∂tη)2ψ −
∫ T

0

∫

Γ

∂tη∂tψ +

∫ T

0

∫

Γ

∂zη∂zψ

−
∫ T

0

∫

ΩS

∂td · ∂tψ +

∫ T

0

as(d,ψ) =

∫ T

0

〈F (t),q〉Γin/out

+

∫

ΩF (0)

u0 · q(0) +

∫

Γ

v0ψ(0) +

∫

ΩS

V0 ·ψ(0).

(30)

In deriving the weak formulation we used integration by parts in a classical way,
and the following equalities which hold for smooth functions:

∫

ΩF (t)

(u · ∇)u · q =
1

2

∫

ΩF (t)

(u · ∇)u · q− 1

2

∫

ΩF (t)

(u · ∇)q · u

+
1

2

∫

Γ

(∂tη)2ψ ± 1

2

∫

Γout/in

|ur|2vr,

∫ T

0

∫

ΩF (t)

∂tu · q = −
∫ T

0

∫

ΩF (t)

u · ∂tq−
∫

ΩF (0)

u0 · q(0)−
∫ T

0

∫

Γ

(∂tη)2ψ.

4. Conclusions. The energy estimate (12) and the spaces of weak solutions show
that the presence of a fluid-structure interface with mass regularizes the solution
of this fluid-structure interaction problem. If we had a FSI problem between an
incompressible, viscous fluid and a thick structure only, the trace of the displacement
of the structure would not have been defined at the fluid-structure interface, and
the evolution of the fluid-structure interface could not be controlled by the energy
estimates. In problem (5)-(11) not only that the trace of the displacement and
the axial derivative of the displacement of the fluid-structure interface are well
defined, but the time-derivative of the displacement of the fluid-structure interface
is controlled by the energy estimate. The kinetic energy term ‖∂tη‖2 in the energy
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estimate (12), which is responsible for the control of the evolution of the fluid-
structure interface, appears in (12) due to the inertia of the fluid-structure interface
with mass. Our preliminary results indicate that this will play a crucial role in
proving existence of a weak solution to this fluid-multi-structure interaction problem
[17]. Namely, in a problem in which viscoelasticity of the structure is lacking,
the inertia of the fluid-structure interface with mass provides a new regularizing
mechanism for a weak solution to exist. This is reminiscent of the results by Hansen
and Zuazua [12] in which the presence of a point mass at the interface between two
linearly elastic strings with solutions in asymmetric spaces (different regularity on
each side) allowed the proof of well-posedness due to the regularizing effects by the
point mass. Further research in this direction for problem (5)-(11) is under way [17].
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