My Solar System PhET Instructor's Guide http://phet.colorado.edu/en/simulation/my-solar-system

2. Select reset, then set body 2's V to $(v_x, v_y) = (20, 120)$.

3. Can you find an equation for the velocity at A that results in a circular orbit?

 $Mv^2/r = GmM/r^2$, $V_{circ} = sqrt(GM/r)$

4. What is the equation for the escape velocity of the planet? How does it compare to the velocity for a circular orbit?

 $\frac{1}{2}$ mv² - GmM/r² = 0, V_{esc} = sqrt(2GM/r). V_{esc} = sqrt(2)v_{circ}

Test: $120*sqrt(2) \sim 169.7$. Set simulation to fast. Vy = 165 is closed, but planet returns slowly, at clock \sim 600. Vy = 168 and great gives an open orbit.

5. To see this orbit, select Sun & Planet, set the following:

Body 1: m = 200, x = -100, y = 0, vx = 0, vy = -50. Body 2: m = 300, x = 100, y = 0, vx = 0, vy = 108.

Note that the suns are always opposite each other, with their center of mass fixed.

