PROBABILITY AND STATISTICS PRELIMINARY EXAM.

THERE ARE 5 QUESTIONS. ATTEMPT 5 OUT OF 5 QUESTIONS.

SHOW ALL WORKING.

THIS IS A THREE HOUR CLOSED BOOK EXAM.

EACH QUESTION IS WORTH 20 POINTS.

SHOW ALL WORKING.

GOOD LUCK.
(1) (a) Consider a homogeneous Markov chain $\left\{X_{n}\right\}$ with state space $\{0,1,2,3\}$ and transition probabilities $p_{i j}=P\left(X_{n+1}=j \mid X_{n}=i\right)$ given by $p_{00}=1, p_{10}=0.1, p_{11}=0.5, p_{12}=0.4, p_{21}=0.5, p_{22}=0.3, p_{23}=0.2, p_{33}=1$.
(i) Determine the probability that a Markov chain starting in state 1 (i.e. $X_{0}=1$) is absorbed in state 3 .
(ii) Determine the expected time to absorption from state 2 i.e. the expected time for a Markox chain starting in state $2\left(X_{0}=2\right)$ to enter either of the absorbing states $\{0\}$ or $\{3\}$.
(b) Consider a Markov chain $\left\{X_{n}\right\}$ with state space $\{0,1\}$ and transition matrix

$$
P=\left(\begin{array}{ll}
1 / 3 & 2 / 3 \\
1 / 4 & 3 / 4
\end{array}\right)
$$

Find (via a stationary distribution or otherwise)

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=1 \mid X_{0}=0\right)
$$

and

$$
\lim _{n \rightarrow \infty} P\left(X_{n}=0, X_{2}=1, X_{1}=1 \mid X_{0}=0\right)
$$

(2) Consider a random walk on the integers \mathbf{Z}. If the walk is at site $x \in Z$ it moves to $x+1$ with probability p and to site $x-1$ with probability q. Let $X_{n} \in \mathbf{Z}$ denote the position of the walk at time n. Define

$$
p_{00}^{(n)}=P\left\{X_{n}=0, X_{0}=0\right\}
$$

and

$$
A_{n}=\left\{X_{n}=0, X_{0}=0\right\}
$$

(a) Characterize the event " a random walk starts at 0 and returns to 0 infinitely often" in terms of the sets A_{n}, giving a brief explanation of your characterization.
(b) Show, by using the Borel-Cantelli lemma or otherwise, that if

$$
\sum_{n=0}^{\infty} p_{00}^{(n)}<\infty
$$

then with probability one a random walk starting in state 0 does not return to the state 0 infinitely many times.
(c) Show that if $p \neq q$ then

$$
\sum_{n=0}^{\infty} p_{00}^{(n)}<\infty
$$

You may assume Stirling's approximation,

$$
n!\sim\left(\frac{n}{e}\right)^{n} \sqrt{2 \pi n}
$$

(3) Suppose that X, Y are independent $N(0,1)$ random variables.
(a) Prove that the random variables (i) $X+Y$ and (ii) $X-Y$ both have distribution $N(0,2)$.
Hint: You may use the method of moment generating functions. State any theorems you use.
(b) Show that $X+Y, X-Y$ are independent random variables. State clearly any theorems you use.
(c) Suppose that U, V are independent and have a uniform distribution on $[0,1]$. Are $U+V, U-V$ independent? Prove your assertion.
(4) (a) Construct a sequence $\left\{X_{n}\right\}$ of random variables on the probability space $([0,1], \mathcal{B}, m)$ where m is Lebesgue measure with the properties
(i) $\lim \inf X_{n}=-1$
(ii) $\limsup X_{n}=1$
(iii) $\lim _{n \rightarrow \infty} X_{n}=0$ (in probability)
(iv) $\left|X_{n}\right| \leq 1$ for all n
(b) Does the sequence $\left\{X_{n}\right\}$ from (a) necessarily have limit 0 in the L^{1} norm? In other words, need

$$
\lim _{n} \int_{0}^{1}\left|X_{n}\right| d x=0 ?
$$

Prove your assertion.
(5) Suppose that the random variable X is uniformly distributed on $[0,1]$ and conditional on $X=x$ the random variable Y has a uniform distribution on $(0, x)$.
(a) Find $f(x, y)$, the joint density of X and Y.
(b) Find the marginal distributions $f_{Y}(y)$ and $f_{X}(x)$.
(c) Find $P(Y>1 / 2)$.

