Prelim Exam

NUMERICAL ANALYSIS

2005 - Samples

May, 2005

This exam has 6 questions, for a total of 100 points. Please answer the questions in the spaces provided on the question sheets.

Name and SSN: _

- 1. Suppose that we wish to solve Ux = b, where $b \in \mathbb{R}^m$ and $U \in \mathbb{R}^{m \times m}$, nonsingular 15 points and upper-triangular, are given, and $x \in \mathbb{R}^m$ is unknown. Assume that we do this by the back substitution algorithm, i.e., solving for the components of x one after another, beginning with x_m and finishing with x_1 .
 - (a) Write down the back substitution algorithm.
 - (b) Determine the exact numbers of additions, subtractions, multiplications, and divisions involving in the algorithm.

15 points

2. Let $A \in \mathbb{R}^{m \times m}$ be nonsingular. Suppose that for each k with $1 \leq k \leq m$, the upperleft $k \times k$ block of A is nonsingular. Assume that that A is written in the block form $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ where A_{11} is $n \times n$ and A_{22} is $(m - n) \times (m - n)$.

(a) Verify the formula

$$\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}$$

for "elimination" of the block A_{21} . The matrix $A_{22} - A_{21}A_{11}^{-1}A_{12}$ is known as the *Schur complement* of A_{11} in A.

(b) Suppose now that A_{21} is eliminated row by row by means of *n* steps of Gaussian elimination without pivoting:

$$U = A, L = I$$

for $k = 1$ to n
for $j = k + 1$ to m
 $l_{jk} = u_{jk}/u_{kk}$
 $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$

Show that the bottom-right $(m - n) \times (m - n)$ block of the result is again $A_{22} - A_{21}A_{11}^{-1}A_{12}$.

- 25 points 3. Consider the *conjugate gradient method* applied to a symmetric positive definite matrix problem Ax = b:
 - $\begin{array}{ll} x_0 = 0, \ r_0 = b, \ p_0 = r_0 \\ \text{for } n = 1, 2, \cdots \\ \alpha_n = (r_{n-1}^T r_{n-1})/(p_{n-1}^T A p_{n-1}) & \text{step length} \\ x_n = x_{n-1} + \alpha_n p_{n-1} & \text{approximate solution} \\ r_n = r_{n-1} \alpha_n A p_{n-1} & \text{residual} \\ \beta_n = (r_n^T r_n)/(r_{n-1}^T r_{n-1}) & \text{improvement this step} \\ p_n = r_n + \beta_n p_{n-1} & \text{search direction} \end{array}$
 - (a) Show that the coefficients α_n and β_n in the conjugate gradient method can be written in the alternative (but less convenient) form

$$\alpha_n = \frac{p_{n-1}^T r_{n-1}}{p_{n-1}^T A p_{n-1}},$$

$$\beta_n = -\frac{p_{n-1}^T A r_n}{p_{n-1}^T A p_{n-1}}.$$

(b) Prove the three-terms recursive relation

$$Ar_{n} = -\frac{1}{\alpha_{n+1}}r_{n+1} + \left(\frac{1}{\alpha_{n+1}} + \frac{\beta_{n}}{\alpha_{n}}\right)r_{n} - \frac{\beta_{n}}{\alpha_{n}}r_{n-1}$$

for the residual in the conjugate gradient method.

- 15 points 4. Suppose that we want to approximate the improper integral $I(f) = \int_0^\infty f(x)dx$ where $f(x) = \cos^2(x)e^{-x}$. I(f) can be approximated up to an absolute error equal to δ by first splitting I(f) as $I(f) = I_1 + I_2$, where $I_1 = \int_0^c f(x)dx$ and $I_2 = \int_c^\infty f(x)dx$, then selecting c to guarantee that I_2 equals to $\delta/2$ and computing the corresponding I_1 up to an absolute error equals to $\delta/2$.
 - (a) Let $\delta = 10^{-3}$. Find the constant c > 0 such that $I_2 \approx \delta/2$.
 - (b) Estimate how many subintervals are needed if we use the composite trapezoidal formula for approximating I_1 up to an error $\delta/2$.

15 points

5. Let T_n be the Chebyshev polynomial of degree n.

(a) Show that the polynomial $p^*(x) = x^n - 2^{1-n}T_n$ is the polynomial of best approximation of x^n in the interval [-1, 1] such that

$$||x^{n} - p^{*}||_{\infty} = \min_{p \in P_{n-1}} ||x^{n} - p||_{\infty},$$

where P_{n-1} is the vector space of polynomials of degree n-1.

(b) Use the above result to prove the following minimax property of the Chebyshev polynomials

$$||2^{1-n}T_n||_{\infty} \le \min_{p \in P_n^1} ||p||_{\infty},$$

where $P_n^1 = \{x^n\} + P_{n-1}$.

15 points 6. Consider the following family of linear multistep methods

$$u_{n+1} = \alpha u_n + \frac{h}{2} \left(2(1-\alpha)f_{n+1} + 3\alpha f_n - \alpha f_{n-1} \right)$$

where α is a real parameter.

- (a) Analyze consistency and order of the methods as functions of α , determining the value α^* for which the resulting method has maximal order.
- (b) Study the zero-stability of the method with $\alpha = \alpha^*$.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.