This exam has 6 questions, for a total of 100 points.
Please answer the questions in the spaces provided on the question sheets.

Name and SSN: \qquad
15 points 1. Suppose that we wish to solve $U x=b$, where $b \in R^{m}$ and $U \in R^{m \times m}$, nonsingular and upper-triangular, are given, and $x \in R^{m}$ is unknown. Assume that we do this by the back substitution algorithm, i.e., solving for the components of x one after another, beginning with x_{m} and finishing with x_{1}.
(a) Write down the back substitution algorithm.
(b) Determine the exact numbers of additions, subtractions, multiplications, and divisions involving in the algorithm.
2. Let $A \in R^{m \times m}$ be nonsingular. Suppose that for each k with $1 \leq k \leq m$, the upperleft $k \times k$ block of A is nonsingular. Assume that that A is written in the block form $A=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ where A_{11} is $n \times n$ and A_{22} is $(m-n) \times(m-n)$.
(a) Verify the formula

$$
\left(\begin{array}{cc}
I & 0 \\
-A_{21} A_{11}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}-A_{21} A_{11}^{-1} A_{12}
\end{array}\right)
$$

for "elimination" of the block A_{21}. The matrix $A_{22}-A_{21} A_{11}^{-1} A_{12}$ is known as the Schur complement of A_{11} in A.
(b) Suppose now that A_{21} is eliminated row by row by means of n steps of Gaussian elimination without pivoting:

$$
\begin{aligned}
& \hline U=A, L=I \\
& \text { for } k=1 \text { to } n \\
& \quad \text { for } j=k+1 \text { to } m \\
& \quad l_{j k}=u_{j k} / u_{k k} \\
& \quad u_{j, k: m}=u_{j, k: m}-l_{j k} u_{k, k: m} \\
& \hline
\end{aligned}
$$

Show that the bottom-right $(m-n) \times(m-n)$ block of the result is again $A_{22}-$ $A_{21} A_{11}^{-1} A_{12}$.
3. Consider the conjugate gradient method applied to a symmetric positive definite matrix problem $A x=b$:

$x_{0}=0, r_{0}=b, p_{0}=r_{0}$	
for $n=1,2, \cdots$	
$\alpha_{n}=\left(r_{n-1}^{T} r_{n-1}\right) /\left(p_{n-1}^{T} A p_{n-1}\right)$	step length
$x_{n}=x_{n-1}+\alpha_{n} p_{n-1}$	approximate solution
$r_{n}=r_{n-1}-\alpha_{n} A p_{n-1}$	residual
$\beta_{n}=\left(r_{n}^{T} r_{n}\right) /\left(r_{n-1}^{T} r_{n-1}\right)$	improvement this step
$p_{n}=r_{n}+\beta_{n} p_{n-1}$	search direction

(a) Show that the coefficients α_{n} and β_{n} in the conjugate gradient method can be written in the alternative (but less convenient) form

$$
\begin{aligned}
& \alpha_{n}=\frac{p_{n-1}^{T} r_{n-1}}{p_{n-1}^{T} A p_{n-1}}, \\
& \beta_{n}=-\frac{p_{n-1}^{T} A r_{n}}{p_{n-1}^{T} A p_{n-1}} .
\end{aligned}
$$

(b) Prove the three-terms recursive relation

$$
A r_{n}=-\frac{1}{\alpha_{n+1}} r_{n+1}+\left(\frac{1}{\alpha_{n+1}}+\frac{\beta_{n}}{\alpha_{n}}\right) r_{n}-\frac{\beta_{n}}{\alpha_{n}} r_{n-1}
$$

for the residual in the conjugate gradient method.
4. Suppose that we want to approximate the improper integral $I(f)=\int_{0}^{\infty} f(x) d x$ where $f(x)=\cos ^{2}(x) e^{-x}$. $I(f)$ can be approximated up to an absolute error equal to δ by first splitting $I(f)$ as $I(f)=I_{1}+I_{2}$, where $I_{1}=\int_{0}^{c} f(x) d x$ and $I_{2}=\int_{c}^{\infty} f(x) d x$, then selecting c to guarantee that I_{2} equals to $\delta / 2$ and computing the corresponding I_{1} up to an absolute error equals to $\delta / 2$.
(a) Let $\delta=10^{-3}$. Find the constant $c>0$ such that $I_{2} \approx \delta / 2$.
(b) Estimate how many subintervals are needed if we use the composite trapezoidal formula for approximating I_{1} up to an error $\delta / 2$.

15 points 5. Let T_{n} be the Chebyshev polynomial of degree n.
(a) Show that the polynomial $p^{*}(x)=x^{n}-2^{1-n} T_{n}$ is the polynomial of best approximation of x^{n} in the interval $[-1,1]$ such that

$$
\left\|x^{n}-p^{*}\right\|_{\infty}=\min _{p \in P_{n-1}}\left\|x^{n}-p\right\|_{\infty}
$$

where P_{n-1} is the vector space of polynomials of degree $n-1$.
(b) Use the above result to prove the following minimax property of the Chebyshev polynomials

$$
\left\|2^{1-n} T_{n}\right\|_{\infty} \leq \min _{p \in P_{n}^{1}}\|p\|_{\infty}
$$

where $P_{n}^{1}=\left\{x^{n}\right\}+P_{n-1}$.
6. Consider the following family of linear multistep methods

$$
u_{n+1}=\alpha u_{n}+\frac{h}{2}\left(2(1-\alpha) f_{n+1}+3 \alpha f_{n}-\alpha f_{n-1}\right)
$$

where α is a real parameter.
(a) Analyze consistency and order of the methods as functions of α, determining the value α^{*} for which the resulting method has maximal order.
(b) Study the zero-stability of the method with $\alpha=\alpha^{*}$.

When you finish this exam, you should go back and reexamine your work for any errors that you may have made.

