Applicable Analysis Preliminary Exam August 2009

Your grade will be based on your answers to the first three questions and 3 of the last five questions. In question 1, each correct answer is worth 4 points, in question 2 each correct answer is worth 5 points and in question 3 a correct answer is worth 4 points, an incorrect answer deducts 2 points while no answer is 0 points. The remaining questions are worth either 13 , or 14 , points each.

The notation is that used in the courses given in 2008-9. All vector spaces are real vector spaces. H_{1}, H_{2} will be real Hilbert spaces with inner products $\langle., .\rangle_{j} \mathrm{j}=1$ or 2 . Ask the exam supervisor if you have other questions about the notation.

Question 1: (4 points each)
(a): Let A be a real $m \times n$ matrix. Define the rank of A.
(b): Suppose X is a normed vector space and $f: X \rightarrow X$ is a function. What does it mean to say that f is Lipschitz continuous on X ?
(c): Let H be a Hilbert space and \mathcal{E} be a subset of H. What does it mean to say that \mathcal{E} is an orthonormal basis of H .
(d): Let H be a Hilbert space, and $L: H \rightarrow H$ be a continuous linear transformation. Define the operator norm of L .
(e): Suppose $L: H_{1} \rightarrow H_{2}$ is a continuous linear transformation. Define the adjoint operator L^{*}. What is its domain and range?

Question 2: (5 points each)
State carefully the following results; making sure that all conditions are included and significant terms are defined.
(a): The Weierstrass existence theorem for minimizers of a function $f: K \rightarrow \mathbb{R}$ with K a subset of \mathbb{R}^{n}.
(b): The local inverse function theorem for a function $f: I \rightarrow \mathbb{R}^{n}$ where I is an nonempty open subset of \mathbb{R}^{n}.
(c): The Fredholm splitting theorem for a continuous linear transformation $L: H_{1} \rightarrow H_{2}$.
(d): The Lax-Milgram theorem.

Question 3: (4 points for a correct answer, -2 points for an incorrect answer and 0 points for no answer). Answer T (true) or F (false) for each of the following statements.
(a) If K is an open convex set in $\mathbb{R}^{n}, f: K \rightarrow \mathbb{R}$ is convex and $\nabla f(\hat{x})=0$ then \hat{x} minimizes f on K .
(b) If $b \in \mathbb{R}^{m}, A$ is a real $m \times n$ matrix and there is a $c>0$ such that

$$
\|A x\|_{2} \geq c\|x\|_{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

then there is a unique solution of $A x=b$.
(c) If $L: H \rightarrow H$ be a continuous linear transformation and L is one-to-one (injective), then L^{*} is one-to-one.
(d) If K is an closed convex set in $\mathbb{R}^{n}, f: K \rightarrow \mathbb{R}$ is continuous and convex, then $f(x)^{2}$ is continuous and convex on K .
(e) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is $1-1$, onto and C^{1} on \mathbb{R} and g is its inverse function. Then g is C^{1} on \mathbb{R}.

For the following questions give reasons and proofs for your claims. You may use theorems proved in class or in a textbook. Your grade will be based on your answers to at most 3 of the problems. Question 7 is worth 14 points, the other are worth 13 points each.

Question 4: Derive a necessary and sufficient condition (involving the coefficients b and c) for there to be a real solution of the equation

$$
x^{2 m}+b x+c=0 \quad \text { where } \mathrm{m} \text { is a integer } \geq 1
$$

What is the maximum number of distinct real solutions that this equation can have? Why?

Question 5: \quad Let $B=[0,1]^{2}$ be the closed unit square in the plane and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a G-differentiable function.
(a) Give a system of linear inequalities that describes B.
(b) What is the KKT system of equations and inequalities that hold at a local minimizer of f on B ?
(c) If f attains a local minimum on B at the point $(0,1)$, what inequalities hold for the components of $\nabla f(0,1)$?

Question 6: Let C be a circular cylinder of radius R , height H and axis of symmetry along the z-axis. Under torsion, a point P with cylindrical polar coordinates (r, θ, z) is mapped to a point with Euclidean coordinates

$$
\left(x_{1}, x_{2}, x_{3}\right):=F(r, \theta, z)=(r \cos (\theta+\alpha z), r \sin (\theta+\alpha z), z)
$$

Here $\alpha \in(0,1)$. (a) Show that F maps C into itself and that F is 1-1.
(b) What is the inverse map of F ?
(c) Evaluate the Jacobian (or G-derivative) $D F(r, \theta, z)$ and find its singular points.

Question 7: (14 points) Let $H:=L^{2}(0,1)$ be the real Hilbert space that is the completion of the space $C[0,1]$ w.r.t. the usual inner product. Let $I:=[0,1]$ and K : $I \times I \rightarrow \mathbb{R}$ be given by

$$
K(x, y):=\sum_{j=1}^{J} f_{j}(x) g_{j}(y) \quad \text { where each } f_{j}, g_{j} \in C[I] .
$$

Assume that the $\left\{f_{j}: 1 \leq j \leq J\right\},\left\{g_{j}: 1 \leq j \leq J\right\}$ are orthonormal in $L^{2}(I)$ and define the linear integral operator $\mathcal{K}: H \rightarrow H$ by

$$
\mathcal{K} u(x):=\int_{0}^{1} K(x, y) u(y) d y
$$

(i) Describe the range of \mathcal{K}.
(ii) Describe the null space of \mathcal{K}. Is it finite dimensional?
(iii) What is the adjoint operator of \mathcal{K} ?
(iv) Find an upper bound for the L^{2}-operator norm of \mathcal{K}.
(v) Given $f \in H$, and that there are solutions $u \in H$ of the equation $\mathcal{K} u=f$, what can you say about f ?

Question 8: \quad Suppose $H=L^{2}(0,1)$ as in the previous question and $k \in C[0,1]$ obeys $0 \leq k(x) \leq M$ on $I:=[0,1]$. Define $\mathcal{K}: H \rightarrow H$ by

$$
\mathcal{K} u(x):=\int_{0}^{x} k(x-y) u(y) d y \quad \text { for } x \in I
$$

(i) Find the norm of \mathcal{K} as a map of H to itself.
(ii) What is the adjoint of the operator \mathcal{K} ?
(iii) Define $\mathcal{K}^{2} u:=\mathcal{K}(\mathcal{K} u)$ for each $u \in H$. Find an explicit formula for the integral kernel of the operator \mathcal{K}^{2}.

