Complex Analysis Preliminary Exam, January 13, 2016

Name:

There are two parts of the exam. On this side are true-false questions and on the reverse side you will find problems requiring proofs.

True-False problems Circle either "T" if the statement is true, or "F" if the statement is false.

1. Let $a \in \mathbb{C}$ be a point and it is an isolated singularity of a rational function f. Then a could be an essential singularity for f.
2. Let $\Omega=\Delta(0,1)-\{0\}$. Any function $f \in \operatorname{Hol}(\Omega)$ is the derivative of some other function $g \in \operatorname{Hol}(\Omega)$.
3. There is no holomorphic function f defined on the punctured disk $\Delta(1)-\{0\}$ such that f^{\prime} has a simple pole at 0 .
4. Let $\Delta(1)^{+}=\{z \in \Delta(1) \mid \operatorname{Im}(z)>0\}$ be the upper half disk in \mathbb{C}. Let f be a holomorphic function defined in $\Delta(1)^{+}$and it is continuous to the closure $\overline{\Delta(1)^{+}}$. Then by using Schwarz Reflection Principle, f can be extended holomorphically in $\Delta(1)$.
5. By Riemann mapping theorem, any simply connected domain $\subseteq \mathbb{C}$ can be mapped by a biholomorphic map onto the unit disk.

Problems required proofs

1. Complete the following steps:
(a) State Liouville's theorem
(b) Computing $\oint_{\partial \Delta(0, R)} \frac{f(z)}{(z-a)(z-b)} d z$ where f is an entire function and $a, b \in \mathbb{C}$ with $a \neq b$.
(c) Prove Liouville's theorem from (a) and (b) above.
2. Let f be holomorphic in the unit disk $\Delta(1)$ and continues on $\overline{\Delta(1)}$. Assume that

$$
|f(z)|=\left|e^{z}\right| \quad \forall z \in \partial \Delta(1)
$$

Find all such f.
3. Let f be holomorphic function defined on the unit disk $\Delta(1)$ with the radius of convergence 1. Prove that there is at least one point in the boundary $\partial \Delta(1)$ at which the function f cannot extend holomorphically.
4. Evaluate the real integral

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{4}} d x
$$

5. Show that the polynomial $2 z^{5}-6 z^{2}+z+1$ has exactly three zeros (counting multiplicities) in $\{z|1<|z|<2\}$.
6. Prove the Schwatz-Pick lemma: Let $f: \Delta(1) \rightarrow \Delta(1)$ be holomorphic. Then

$$
\left|\frac{f(z)-f(a)}{1-\overline{f(a)} f(z)}\right| \leq\left|\frac{z-a}{1-\bar{a} z}\right|, \quad \forall a, z \in \Delta(1)
$$

