Preliminary Examination in Algebra
 January 2022

Instructions: This exam is 3 hours long, and you are expected to answer all problems. Calculators, books, and notes are not permitted.

Problem 1: Construct two non-isomorphic, non-Abelian groups of order 27. Prove that they are non-Abelian and non-isomorphic to one another.

Problem 2:

(a) Let p be a prime number, let G be a finite Abelian group, and let H be a subgroup of G. Prove that H has index p in G if and only if it is the kernel of surjective homomorphism

$$
\varphi: G \rightarrow \mathbb{Z} / p \mathbb{Z}
$$

(b) Give an example to show that the conclusion of (a) is not true in general if G is not assumed to be Abelian.
(c) Using part (a), calculate the number of subgroups of index 5 in the group

$$
G=\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

Problem 3:

(a) Let R be the subring of \mathbb{C} defined by

$$
R=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}
$$

and let $I \subseteq R$ be the principal ideal $I=(1+\sqrt{-5})$. Find a complete set of distinct representatives for the quotient ring R / I.
(b) Prove that the ideal I from part (a) is not a prime ideal.

Problem 4:

(a) Let p be a prime number with $p=1 \bmod 4$. Prove that there are exactly two solutions to the equation $x^{2}=-1 \bmod p$. You may use the fact that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic.
(b) Suppose that $N=p_{1} p_{2} \cdots p_{k}$, where $p_{1}<\cdots<p_{k}$ are prime numbers satisfying $p_{i}=1 \bmod 4$ for each $1 \leq i \leq k$. Calculate the number of elements of order 4 in $(\mathbb{Z} / N \mathbb{Z})^{\times}$.

