1. For each of the following topological spaces X_{i}, determine whether X_{i} and $X_{i} \times X_{i}$ are homeomorphic.
(a) $X_{1}=[0,1]$
(b) $X_{2}=\mathbb{R}^{2}$
(c) $X_{3}=\mathbb{Z}$
(d) $X_{4}=$ the middle-third Cantor set
2. Let $X=\mathbb{N}=\{1,2,3, \ldots\}$, and equip X with the topology

$$
\mathcal{T}=\{U \subset X \mid(2 n-1) \in U \Rightarrow 2 n \in U\}
$$

That is, $U \in \mathcal{T}$ if and only if every odd number $(2 n-1)$ that is contained in U has a successor (2n) that is also contained in U. Thus $U=\{1,2,3,4\} \in \mathcal{T}$ since the odd elements of U (namely 1 and 3) have successors (2 and 4) that are also contained in U; on the other hand, $V=\{1,2,3\} \notin \mathcal{T}$ since the odd number 3 is an element of V but its successor 4 is not.
(a) Prove that (X, \mathcal{T}) is locally compact but not compact.
(b) Determine (with proof) the connected components of (X, \mathcal{T}), and show that (X, \mathcal{T}) is locally pathconnected.
3. Let \mathbb{R}^{ω} denote the set of all infinite sequences of real numbers and let $\mathbf{0} \in \mathbb{R}^{\omega}$ be the sequence of all zeros.
(a) What is the connected component of $\mathbf{0}$ in the product topology?
(b) What is the connected component of $\mathbf{0}$ in the uniform topology?
4. Prove that if X is Hausdorff, then any compact subset of X is closed. Also give an example of a topological space that is not Hausdorff with a compact subset that is not closed.
5. Let p be an odd prime integer. Define $d: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{R}$ as follows. If $m=n$, set $d(m, n)=0$. If $m \neq n$, set $d(m, n)=1 /(r+1)$, where r is the largest nonnegative integer such that p^{r} divides $m-n$.
(a) Prove that d is a metric on \mathbb{Z}.
(b) With respect to the topology on \mathbb{Z} induced by the metric d, is the set of even integers closed?
6. (a) Let X be a path connected topological space and let A be a path connected subset of X. Suppose there exists a continuous map $r: X \rightarrow A$ such that $r(a)=a$ for every $a \in A$. Prove that $r_{*}: \pi_{1}(X) \rightarrow \pi_{1}(A)$ is surjective.
(b) Let D^{2} denote the closed unit disk in \mathbb{R}^{2} and notice that the unit circle \mathbb{S}^{1} forms the boundary of D^{2}. Prove that there does not exist a continuous map $r: D^{2} \rightarrow \mathbb{S}^{1}$ such that $r(z)=z$ for every $z \in \mathbb{S}^{1}$.
7. Let \mathbb{R}^{ω} denote the set of all infinite sequences of real numbers and let $\mathbb{R}^{\infty} \subset \mathbb{R}^{\omega}$ be the set of all sequences that are eventually 0 : that is, $\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{R}^{\infty}$ if and only if there is $N \in \mathbb{N}$ such that $x_{n}=0$ for all $n \geq N$. Determine the closure of \mathbb{R}^{∞} in the product topology, in the box topology, and in the uniform topology.
8. Let $L \subset \mathbb{R}^{2}$ be the x-axis and $H=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}>0\right\}$ the upper half-plane. Let $X=H \cup L$. Given $\mathbf{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, let $B(\mathbf{x}, r)=\left\{\mathbf{y} \in \mathbb{R}^{2} \mid d(\mathbf{x}, \mathbf{y})<r\right\}$, where d is the usual Euclidean metric. Let

$$
\mathcal{B}_{1}=\left\{B(\mathbf{x}, r) \mid \mathbf{x}=\left(x_{1}, x_{2}\right) \in H, 0<r<x_{2}\right\}
$$

Given $x \in \mathbb{R}$ and $r>0$, let $A(x, r)=B((x, r), r) \cup\{(x, 0)\}$. Let

$$
\mathcal{B}_{2}=\{A(x, r) \mid x \in \mathbb{R}, r>0\} .
$$

(a) Show that $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ is a basis for a topology on X.
(b) Determine (with proof) whether or not the topology \mathcal{T} generated by \mathcal{B} is first-countable and/or second-countable.
(c) Show that (X, \mathcal{T}) is regular.
9. Let M be a smooth manifold and $x \in M$.
(a) Define the tangent space $T_{x} M$ and explain why it is a vector space.
(b) Define the tangent bundle $T M$ and explain why it is a smooth manifold.
10. Describe (with justification) the fundamental group of:
(a) the 2 -sphere S^{2};
(b) the 2 -torus \mathbb{T}^{2};
(c) the real projective plane $\mathbb{R} P^{2}$.
11. Let θ and γ be smooth 3 -forms on \mathbb{S}^{7}. Prove that

$$
\int_{\mathbb{S}^{7}} \theta \wedge d \gamma=\int_{\mathbb{S}^{7}} d \theta \wedge \gamma
$$

Hint: recall that if ω is a smooth k-form and η is a smooth l-form, we have

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

12. (a) State the Sard theorem.
(b) Let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{2}$ be a smooth map. Prove that f cannot be surjective.
(c) For a plane P in \mathbb{R}^{3}, let $\pi_{P}: \mathbb{R}^{3} \rightarrow P$ denote the orthogonal projection onto P. Suppose that $g: \mathbb{S}^{1} \rightarrow \mathbb{R}^{3}$ is a smooth embedding. Prove that there exists a plane P for which $\pi_{P} \circ g$ is an immersion.
13. (a) Prove that if X is a Hausdorff space, then for every point $x \in X$ and every compact subset $A \subset X$, there are disjoint neighbourhoods $U \ni x$ and $V \supset A$.
(b) Let X be a locally compact Hausdorff space and give the definition of the one-point compactification X^{*} (you must define both the set and the topology).
(c) Use the previous two parts to prove that every locally compact Hausdorff space is regular.
14. Let M be a smooth manifold and $S \subset M$ an embedded smooth submanifold. Let $p \in S$ and $v \in T_{p} M$ be such that $v f=0$ for every $f \in C^{\infty}(M)$ with $\left.f\right|_{S} \equiv 0$. Let $\iota: S \rightarrow M$ be the inclusion map and show that $v \in d \iota_{p}\left(T_{p} S\right)$. Show that this may fail if S is only assumed to be immersed (instead of embedded).
15. Consider the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by $F(x, y, z)=\left(z^{2}-x y, x^{2}+y^{2}\right)$.
(a) Find all the critical points of F.
(b) Determine all values (a, b) such that $F^{-1}(a, b)$ is a smooth one-dimensional submanifold of \mathbb{R}^{3}.
16. Let $[0,1]$ have the usual topology. Let \mathbb{R}^{+}denote the nonnegative reals, and define $X:=\prod_{\alpha \in \mathbb{R}^{+}}[0,1]$ with the product topology. Prove that X is not first countable. (Hint: Let $A:=\left\{\left(x_{\alpha}\right): a_{\alpha}=\right.$ $1 / 2$ for all but finitely many $\alpha\}$. Prove that if $\mathbf{0}$ is the tuple in X with all entries equal to 0 , then $\mathbf{0} \in \bar{A}$, but no sequence of points in A converges to $\mathbf{0}$.)
17. Let X be a nonempty compact Hausdorff space.
(a) Prove that X is normal.
(b) State the Tietze extension theorem.
(c) Prove that if X is also connected, then either X consists of a single point or X is uncountable.
18. For $n \in \mathbb{N}$, let \mathbb{S}^{n} denote the unit sphere in \mathbb{R}^{n+1}.
(a) Prove that \mathbb{S}^{n} is connected and compact for every $n \in \mathbb{N}$.
(b) Let \mathbb{R}^{∞} be the space of sequences $\left(x_{i}\right)_{i=1}^{\infty}$ of real numbers such that at most finitely many of the x_{i} are nonzero. Embedding \mathbb{R}^{n} into \mathbb{R}^{n+1} via $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}, 0\right)$, we may view \mathbb{R}^{∞} as the union of the \mathbb{R}^{n} as n ranges over \mathbb{N}. Define a topology on \mathbb{R}^{∞} by declaring that a set $C \subset \mathbb{R}^{\infty}$ is closed if and only if $C \cap \mathbb{R}^{n}$ is closed in \mathbb{R}^{n} for every $n \in \mathbb{N}$. Now let \mathbb{S}^{∞} be the subset of \mathbb{R}^{∞} consisting of the union of the \mathbb{S}^{n} as n ranges over \mathbb{N}. Prove that \mathbb{S}^{∞} is connected but not compact in \mathbb{R}^{∞}.
19. Let \mathbb{R}_{ℓ} be the real line with the lower limit topology; that is, the topology generated by the basis $\{[a, b) \mid a<b \in \mathbb{R}\}$. Is \mathbb{R}_{ℓ} first countable? Is it second countable?
20. Consider the 2-form $\omega=z d x \wedge d y+\left(1-2 y^{2} z^{2}\right) d y \wedge d z$ on \mathbb{R}^{3}, where we use the standard (x, y, z) coordinates.
(a) Let $D=\left\{(s, t) \in \mathbb{R}^{2} \mid s^{2}+t^{2} \leq 1\right\}$ be the unit disc in \mathbb{R}^{2}, and let $f: D \rightarrow \mathbb{R}$ be given by $f(s, t)=\left(1-s^{2}-t^{2}\right) s^{2}$, so that $f=0$ on ∂D. Let $F: D \rightarrow \mathbb{R}^{3}$ be given by

$$
F(s, t)=(f(s, t), s, t)
$$

Then $M=F(D)$ is a smooth submanifold (with boundary) of \mathbb{R}^{3}, and ∂M is the unit circle in the $y z$-plane. Equip M with the orientation such that F is a smooth orientation-preserving map, and compute $\int_{M} \omega$.
(b) Let S^{2} be the unit sphere in \mathbb{R}^{3} with the usual orientation, and compute $\int_{S^{2}} \omega$.
21. Prove that no two of $\mathbb{R}, \mathbb{R}^{2}$, and \mathbb{R}^{3} are homeomorphic (when equipped with the standard metric topology).
22. Consider the equivalence relation on $\mathbb{C}^{2} \backslash\{\mathbf{0}\}$ given by putting $\left(z_{1}, z_{2}\right) \sim\left(\omega z_{1}, \omega z_{2}\right)$ for every $\omega \in \mathbb{C} \backslash\{0\}$; write $\left[z_{1}, z_{2}\right]=\left\{\left(\omega z_{1}, \omega z_{2}\right) \mid \omega \in \mathbb{C} \backslash\{0\}\right\}$ for the equivalence class of $\left(z_{1}, z_{2}\right)$. Recall that the complex projective plane $\mathbb{C} P^{1}$ is defined as the quotient space of $\mathbb{C}^{2} \backslash\{\mathbf{0}\}$ by this equivalence relation, so that the elements of $\mathbb{C} P^{1}$ are the equivalence classes $\left[z_{1}, z_{2}\right]$.
(a) Determine (with proof) the fundamental group of $\mathbb{C} P^{1}$.
(b) Let p be a polynomial in one variable with complex coefficients, and let $G: \mathbb{C} \rightarrow \mathbb{C} P^{1}$ be given by $G(z)=[z, 1]$. Show that there is a unique continuous map $\tilde{p}: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ such that $\tilde{p} \circ G=G \circ p ;$ that is, the diagram below commutes.

(c) Show that the map \tilde{p} is smooth when $\mathbb{C} P^{1}$ is given the standard smooth structure (as a real manifold).
23. Let X and Y be topological spaces, and suppose that $f: X \rightarrow Y$ is continuous and injective.
(a) If X is Hausdorff, is it necessarily true that Y is Hausdorff? If you answer YES, provide a proof. If you answer NO, provide a counterexample.
(b) If Y is Hausdorff, is it necessarily true that X is Hausdorff? If you answer YES, provide a proof. If you answer NO, provide a counterexample.
24. Let X and Y be topological spaces. We say that a function $f: X \rightarrow Y$ is an open map if whenever U is an open subset of X, then $f(U)$ is an open subset of Y. Prove that if X is compact, Y is Hausdorff and connected, and $f: X \rightarrow Y$ is a continuous open map, then f is surjective.
25. Let M be a smooth manifold and fix $p \in M$. Recall that a tangent vector $v \in T_{p} M$ can be viewed either as a derivation or as an equivalence class of curves. Make each of these precise (define "derivation" and "equivalence class of curves" in this setting), and describe the relationship between the two: given a derivation, state which family of curves it corresponds to, and vice versa.
26. Let G be a Lie group with identity element e. Given $v \in T_{e} G$, show that there is a unique left-invariant vector field X on G such that $X_{e}=v$. In addition, prove that X is smooth.
27. Let \mathbb{R}_{ℓ} be the real line with the lower limit topology; that is, the topology generated by the basis $\{[a, b) \mid a<b \in \mathbb{R}\}$.
(a) Is \mathbb{R}_{ℓ} first countable? Is it second countable?
(b) Let L be a line in the plane equipped with the subspace topology it inherits as a subset of $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$. Are all of the resulting topological spaces homeomorphic to each other? That is, if L, L^{\prime} are two such lines, is L homeomorphic to L^{\prime} ? If so, prove it; if not, describe all the possible topologies on L.
28. Let M be a smooth manifold and ω a differential form on M. Prove that if ω has even degree then $\omega \wedge d \omega$ is exact.
29. Let G be the Heisenberg group; that is, $G=\mathbb{R}^{3}$ with multiplication given by identifying (x, y, z) with the matrix $\left(\begin{array}{lll}1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1\end{array}\right)$, so $(x, y, z) \cdot\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+x y\right)$; write $\mathbf{0}$ for the identity element with $x=y=z=0$. Let X, Y, Z be the left invariant vector fields which evaluate at the identity to $X_{\mathbf{0}}=\left.\frac{\partial}{\partial x}\right|_{\mathbf{0}}, Y_{\mathbf{0}}=\left.\frac{\partial}{\partial y}\right|_{\mathbf{0}}$, and $Z_{\mathbf{0}}=\left.\frac{\partial}{\partial z}\right|_{\mathbf{0}}$. Let $g=(a, b, c) \in G$ be an arbitrary element of G, and determine X_{g}, Y_{g}, Z_{g}.
30. The Klein bottle \mathbb{K} is the quotient space obtained by starting with the unit square

$$
\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x, y \leq 1\right\}
$$

and then making the identifications $(0, y) \sim(1,1-y)$ for all $y \in[0,1]$ and $(x, 0) \sim(x, 1)$ for all $x \in[0,1]$. Use the Seifert-van Kampen theorem to compute the fundamental group of \mathbb{K}.
31. Let D^{2} denote the closed unit disk in \mathbb{R}^{2}. Let $\mathbf{v}: D^{2} \rightarrow \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ be a continuous, nonvanishing vector field on D^{2}. Prove that there exists a point $z \in \mathbb{S}^{1}$ at which $\mathbf{v}(z)$ points directly inward. Hint: argue by contradiction.
32. Let $\mathbf{v} \in \mathbb{R}^{n}$ be a nonzero vector. For $c \in \mathbb{R}$, define

$$
L_{c}=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}:\langle\mathbf{x}, \mathbf{v}\rangle^{2}=\|\mathbf{y}\|^{2}+c .\right\}
$$

For $c \neq 0$, show that L_{c} is an embedded submanifold of $\mathbb{R}^{n} \times \mathbb{R}^{m}$ of codimension 1 . Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^{m} and $\langle\cdot, \cdot\rangle$ denotes the Euclidean inner product on \mathbb{R}^{n}.
33. Let (s, t) be coordinates on \mathbb{R}^{2} and let (x, y, z) be coordinates on \mathbb{R}^{3}. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
f(s, t)=\left(\sin (t), s t^{2}, s^{3}-1\right)
$$

(a) Let X_{p} be the tangent vector in $T_{p} \mathbb{R}^{2}$ defined by $X_{p}=\left.\frac{\partial}{\partial s}\right|_{p}-\left.\frac{\partial}{\partial t}\right|_{p}$. Compute the push-forward $f_{*} X_{p}$.
(b) Let ω be the smooth 1 -form on \mathbb{R}^{3} defined by $\omega=d x+x d y+y^{2} d z$. Compute the pullback $f^{*} \omega$.
34. Let X and Y be topological spaces and let $f: X \rightarrow Y$ be a map. Prove that f is continuous if and only if for every $x \in X$ and every net $\left(z_{\alpha}\right)$ such that $\left(z_{\alpha}\right)$ converges to x, we have that $\left(f\left(z_{\alpha}\right)\right)$ converges to $f(x)$.
35. Recall that a topological space Y is said to be locally compact if for every $y \in Y$, there exists an open neighborhood U_{y} of y such that $\overline{U_{y}}$ is compact.
(a) Give the definition of a second countable topological space.
(b) Let X be a second countable, locally compact, Hausdorff space. Let $X^{+}=X \cup\{\infty\}$ be the onepoint compactification of X. Recall that a set V is open in X^{+}if and only if V is open in X or $V=X^{+} \backslash C$ for some compact set $C \subset X$. Prove that X^{+}is second countable.
36. Let X be a topological space and let $A \subset X$. A retraction $r: X \rightarrow A$ is a map such that $r(x)=x$ for all $x \in A$.
(a) State Stokes' theorem for smooth orientable manifolds with boundary.
(b) Let M be a smooth n-dimensional compact connected orientable manifold with boundary. Prove that there exists no smooth retraction $r: M \rightarrow \partial M$. Hint: proceed by contradiction and consider a nonvanishing smooth $(n-1)$-form on ∂M.
37. Let $S^{1} \subset \mathbb{C}$ be the unit circle. Let $X=\mathbb{R} \times S^{1}$ and $Y=\mathbb{T}^{2}=S^{1} \times S^{1} \subset \mathbb{C} \times \mathbb{C}$. Define $p: X \rightarrow Y$ by $p(x, z)=\left(e^{2 \pi i x}, z^{3}\right)$. Pick a base point $\mathbf{x}_{0} \in X$ and let $\mathbf{y}_{0}=p\left(\mathbf{x}_{0}\right) \in Y$.
(a) Determine the fundamental groups $\pi_{1}\left(X, \mathbf{x}_{0}\right)$ and $\pi_{1}\left(Y, \mathbf{y}_{0}\right)$.
(b) Determine the subgroup $p_{*}\left(\pi_{1}\left(X, \mathbf{x}_{0}\right)\right) \subset \pi_{1}\left(Y, \mathbf{y}_{0}\right)$.
38. Let \mathfrak{g} and \mathfrak{h} be non-abelian two-dimensional Lie algebras. Prove that \mathfrak{g} and \mathfrak{h} are isomorphic.
39. Consider the smooth map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
F(\theta, \phi)=((2+\cos \phi) \cos \theta,(2+\cos \phi) \sin \theta, \sin \phi) .
$$

Let $M=F\left(\mathbb{R}^{2}\right)$ be the 2-torus obtained as the image of F and endowed with the orientation that makes F orientation-preserving. Consider the 2 -form $\omega=x d y \wedge d z$. Compute $F^{*} \omega$ and use this to compute $\int_{M} \omega$. Use your answer to determine the volume of the region in \mathbb{R}^{3} enclosed by M.
40. Give $[0,1]$ the usual topology. Let X be a product of uncountably many copies of $[0,1]$; view X as the set of tuples $\left(x_{\alpha}\right)$, where α ranges over the nonnegative reals \mathbb{R}^{+}and $x_{\alpha} \in[0,1]$ for all $\alpha \in \mathbb{R}^{+}$. Give X the product topology. Prove that X is not first countable as follows.
(a) Let $A \subset X$ be the set of tuples $\left(x_{\alpha}\right)$ such that $x_{\alpha}=1 / 2$ for all but finitely many values of α. Let $\mathbf{0}$ denote the tuple in X with all entries equal to 0 . Prove that $\mathbf{0} \in \bar{A}$.
(b) Prove that no sequence in A converges to $\mathbf{0}$.
41. (a) State the Urysohn lemma.
(b) Let X be a normal topological space. Suppose that $X=V \cup W$, where V and W are open in X. Prove that there exist open sets V_{1} and W_{1} such that $\bar{V}_{1} \subset V, \bar{W}_{1} \subset W$, and $X=V_{1} \cup W_{1}$.
42. Describe the universal cover of $\mathbb{R}^{2} \backslash\{\mathbf{0}\}$, together with the corresponding covering map. (If you prefer, you can work with $\mathbb{C} \backslash\{0\}$.) Prove that the covering space you give is the universal cover.
43. Let X be a set with the finite complement topology (i.e. $U \subseteq X$ is open if and only if U is empty or $X \backslash U$ is finite). Exactly which subsets of X are compact? Give an argument proving that your answer is correct.
44. For each of the following topological spaces X_{i}, determine whether X_{i} and $X_{i} \times X_{i}$ are homeomorphic. Give complete proofs.
(a) $X_{1}=\mathbb{R}$.
(b) $X_{2}=\mathbb{R}^{2}$.
(c) $X_{3}=\mathbb{Z}$.
(d) $X_{4}=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$.
45. Given $n \in \mathbb{N}$ and $1 \leq k \leq n$, recall that $G_{k} \mathbb{R}^{n}$ is the Grassmannian manifold consisting of the set of k-dimensional subspaces of \mathbb{R}^{n}, endowed with the usual smooth structure. Determine $\operatorname{dim}\left(G_{k} \mathbb{R}^{n}\right)$ and prove that $G_{k} \mathbb{R}^{n}$ is compact.
46. Let $X_{1} \supset X_{2} \supset X_{3} \supset \cdots$ be a nested sequence of nonempty compact connected subsets of \mathbb{R}^{n}. Prove that the intersection

$$
X=\bigcap_{i=1}^{\infty} X_{i}
$$

is nonempty, compact, and connected.
47. Let A be an annulus bounded by inner circle C_{1} and outer circle C_{2}. Define a quotient space Q by starting with A, identifying antipodal points on C_{2}, and then identifying points on C_{1} that differ by $2 \pi / 3$ radians. Use the Seifert-van Kampen theorem to compute the fundamental group $\pi_{1}(Q)$.
48. Let G be a Lie group with multiplication $m: G \times G \rightarrow G$ defined by $m(g, h)=g h$ and inversion inv: $G \rightarrow G$ defined by $\operatorname{inv}(g)=g^{-1}$. Let e denote the identity element of G.
(a) Show that the push-forward map $m_{*}: T_{e} G \oplus T_{e} G \rightarrow T_{e} G$ is given by $m_{*}(X, Y)=X+Y$.
(b) Show that the push-forward map $\operatorname{inv}_{*}: T_{e} G \rightarrow T_{e} G$ is given by $\operatorname{inv}_{*}(X)=-X$.
(c) Show that $m: G \times G \rightarrow G$ is a submersion.
49. Give \mathbb{R}^{2} the usual topology, and define

$$
K:=\left\{(x, y) \in \mathbb{R}^{2}: x \text { and } y \text { are either both rational or both irrational }\right\} .
$$

Prove that K is a connected subset of \mathbb{R}^{2}.
50. Prove or disprove: A topological space X is Hausdorff if and only if the diagonal $\Delta=\{(x, x) \mid x \in X\} \subset$ $X \times X$ is closed.
51. Consider the smooth map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
F(\theta, \phi)=((2+\cos \phi) \cos \theta,(2+\cos \phi) \sin \theta, \sin \phi)
$$

Let $M=F\left(\mathbb{R}^{2}\right)$ be the 2-torus obtained as the image of F and endowed with the orientation that makes F orientation-preserving. Consider the 2-form $\omega=x^{2} d y \wedge d z$. Compute $F^{*} \omega$ and use this to compute $\int_{M} \omega$.
52. Determine (with justification) whether or not each of the following smooth maps is an immersion, a submersion, an embedding, and/or a covering map. If it is a covering map, determine the degree of the covering.
(a) $F: S^{1} \rightarrow \mathbb{R}$ given by $F(x, y)=y$, where $S^{1} \subset \mathbb{R}^{2}$ is the unit circle.
(b) $G: S^{2} \rightarrow \mathbb{R} P^{2}$ given by $G(x)=[x]$, where we recall that $\mathbb{R} P^{2}$ can be defined as the quotient space S^{2} / \sim under the equivalence relation $x \sim-x$, and $[x] \in \mathbb{R} P^{2}$ is the equivalence class of $x \in S^{2}$. (We think of S^{2} as the unit sphere in \mathbb{R}^{3}.)
(c) $H: \mathbb{R} / \mathbb{Z} \rightarrow S^{2}$ given by $H([t])=(\cos 2 \pi t, \sin 2 \pi t, 0)$.

