
Math 6342/7350: Topology and Geometry Sample Preliminary Exam Questions

1. For each of the following topological spaces Xi, determine whether Xi and Xi ×Xi are homeomorphic.

(a) X1 = [0, 1]

(b) X2 = R2

(c) X3 = Z
(d) X4 = the middle-third Cantor set

2. Let X = N = {1, 2, 3, . . . }, and equip X with the topology

T = {U ⊂ X | (2n− 1) ∈ U ⇒ 2n ∈ U}.

That is, U ∈ T if and only if every odd number (2n− 1) that is contained in U has a successor (2n) that
is also contained in U . Thus U = {1, 2, 3, 4} ∈ T since the odd elements of U (namely 1 and 3) have
successors (2 and 4) that are also contained in U ; on the other hand, V = {1, 2, 3} /∈ T since the odd
number 3 is an element of V but its successor 4 is not.

(a) Prove that (X, T ) is locally compact but not compact.

(b) Determine (with proof) the connected components of (X, T ), and show that (X, T ) is locally path-
connected.

3. Let Rω denote the set of all infinite sequences of real numbers and let 0 ∈ Rω be the sequence of all
zeros.

(a) What is the connected component of 0 in the product topology?

(b) What is the connected component of 0 in the uniform topology?

4. Prove that if X is Hausdorff, then any compact subset of X is closed. Also give an example of a
topological space that is not Hausdorff with a compact subset that is not closed.

5. Let p be an odd prime integer. Define d : Z × Z → R as follows. If m = n, set d(m,n) = 0. If m 6= n,
set d(m,n) = 1/(r + 1), where r is the largest nonnegative integer such that pr divides m− n.

(a) Prove that d is a metric on Z.

(b) With respect to the topology on Z induced by the metric d, is the set of even integers closed?

6. (a) Let X be a path connected topological space and let A be a path connected subset of X. Suppose
there exists a continuous map r : X → A such that r(a) = a for every a ∈ A. Prove that
r∗ : π1(X)→ π1(A) is surjective.

(b) Let D2 denote the closed unit disk in R2 and notice that the unit circle S1 forms the boundary of
D2. Prove that there does not exist a continuous map r : D2 → S1 such that r(z) = z for every
z ∈ S1.

7. Let Rω denote the set of all infinite sequences of real numbers and let R∞ ⊂ Rω be the set of all sequences
that are eventually 0: that is, (x1, x2, . . . ) ∈ R∞ if and only if there is N ∈ N such that xn = 0 for all
n ≥ N . Determine the closure of R∞ in the product topology, in the box topology, and in the uniform
topology.

8. Let L ⊂ R2 be the x-axis and H = {(x1, x2) | x2 > 0} the upper half-plane. Let X = H ∪ L. Given
x = (x1, x2) ∈ R2, let B(x, r) = {y ∈ R2 | d(x,y) < r}, where d is the usual Euclidean metric. Let

B1 = {B(x, r) | x = (x1, x2) ∈ H, 0 < r < x2}.

Given x ∈ R and r > 0, let A(x, r) = B((x, r), r) ∪ {(x, 0)}. Let

B2 = {A(x, r) | x ∈ R, r > 0}.

(a) Show that B = B1 ∪ B2 is a basis for a topology on X.
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(b) Determine (with proof) whether or not the topology T generated by B is first-countable and/or
second-countable.

(c) Show that (X, T ) is regular.

9. Let M be a smooth manifold and x ∈M .

(a) Define the tangent space TxM and explain why it is a vector space.

(b) Define the tangent bundle TM and explain why it is a smooth manifold.

10. Describe (with justification) the fundamental group of:

(a) the 2-sphere S2;

(b) the 2-torus T2;

(c) the real projective plane RP 2.

11. Let θ and γ be smooth 3-forms on S7. Prove that∫
S7
θ ∧ dγ =

∫
S7
dθ ∧ γ.

Hint: recall that if ω is a smooth k-form and η is a smooth l-form, we have

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη.

12. (a) State the Sard theorem.

(b) Let f : S1 → S2 be a smooth map. Prove that f cannot be surjective.

(c) For a plane P in R3, let πP : R3 → P denote the orthogonal projection onto P . Suppose that
g : S1 → R3 is a smooth embedding. Prove that there exists a plane P for which πP ◦ g is an
immersion.

13. (a) Prove that if X is a Hausdorff space, then for every point x ∈ X and every compact subset A ⊂ X,
there are disjoint neighbourhoods U 3 x and V ⊃ A.

(b) Let X be a locally compact Hausdorff space and give the definition of the one-point compactification
X∗ (you must define both the set and the topology).

(c) Use the previous two parts to prove that every locally compact Hausdorff space is regular.

14. Let M be a smooth manifold and S ⊂ M an embedded smooth submanifold. Let p ∈ S and v ∈ TpM
be such that vf = 0 for every f ∈ C∞(M) with f |S ≡ 0. Let ι : S →M be the inclusion map and show
that v ∈ dιp(TpS). Show that this may fail if S is only assumed to be immersed (instead of embedded).

15. Consider the map F : R3 → R2 given by F (x, y, z) = (z2 − xy, x2 + y2).

(a) Find all the critical points of F .

(b) Determine all values (a, b) such that F−1(a, b) is a smooth one-dimensional submanifold of R3.

16. Let [0, 1] have the usual topology. Let R+ denote the nonnegative reals, and define X :=
∏
α∈R+ [0, 1]

with the product topology. Prove that X is not first countable. (Hint: Let A := {(xα) : aα =
1/2 for all but finitely many α}. Prove that if 0 is the tuple in X with all entries equal to 0, then
0 ∈ A, but no sequence of points in A converges to 0.)

17. Let X be a nonempty compact Hausdorff space.

(a) Prove that X is normal.

(b) State the Tietze extension theorem.

(c) Prove that if X is also connected, then either X consists of a single point or X is uncountable.
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18. For n ∈ N, let Sn denote the unit sphere in Rn+1.

(a) Prove that Sn is connected and compact for every n ∈ N.

(b) Let R∞ be the space of sequences (xi)
∞
i=1 of real numbers such that at most finitely many of the

xi are nonzero. Embedding Rn into Rn+1 via (x1, . . . , xn) 7→ (x1, . . . , xn, 0), we may view R∞ as
the union of the Rn as n ranges over N. Define a topology on R∞ by declaring that a set C ⊂ R∞
is closed if and only if C ∩ Rn is closed in Rn for every n ∈ N. Now let S∞ be the subset of R∞
consisting of the union of the Sn as n ranges over N. Prove that S∞ is connected but not compact
in R∞.

19. Let R` be the real line with the lower limit topology; that is, the topology generated by the basis
{[a, b) | a < b ∈ R}. Is R` first countable? Is it second countable?

20. Consider the 2-form ω = z dx ∧ dy + (1 − 2y2z2) dy ∧ dz on R3, where we use the standard (x, y, z)-
coordinates.

(a) Let D = {(s, t) ∈ R2 | s2 + t2 ≤ 1} be the unit disc in R2, and let f : D → R be given by
f(s, t) = (1− s2 − t2)s2, so that f = 0 on ∂D. Let F : D → R3 be given by

F (s, t) = (f(s, t), s, t).

Then M = F (D) is a smooth submanifold (with boundary) of R3, and ∂M is the unit circle in the
yz-plane. Equip M with the orientation such that F is a smooth orientation-preserving map, and
compute

∫
M
ω.

(b) Let S2 be the unit sphere in R3 with the usual orientation, and compute
∫
S2 ω.

21. Prove that no two of R, R2, and R3 are homeomorphic (when equipped with the standard metric
topology).

22. Consider the equivalence relation on C2 \{0} given by putting (z1, z2) ∼ (ωz1, ωz2) for every ω ∈ C\{0};
write [z1, z2] = {(ωz1, ωz2) | ω ∈ C \ {0}} for the equivalence class of (z1, z2). Recall that the complex
projective plane CP 1 is defined as the quotient space of C2 \ {0} by this equivalence relation, so that
the elements of CP 1 are the equivalence classes [z1, z2].

(a) Determine (with proof) the fundamental group of CP 1.

(b) Let p be a polynomial in one variable with complex coefficients, and let G : C→ CP 1 be given by
G(z) = [z, 1]. Show that there is a unique continuous map p̃ : CP 1 → CP 1 such that p̃ ◦G = G ◦ p;
that is, the diagram below commutes.

C CP 1

C CP 1

G

p p̃

G

(c) Show that the map p̃ is smooth when CP 1 is given the standard smooth structure (as a real
manifold).

23. Let X and Y be topological spaces, and suppose that f : X → Y is continuous and injective.

(a) If X is Hausdorff, is it necessarily true that Y is Hausdorff? If you answer YES, provide a proof.
If you answer NO, provide a counterexample.

(b) If Y is Hausdorff, is it necessarily true that X is Hausdorff? If you answer YES, provide a proof.
If you answer NO, provide a counterexample.

24. Let X and Y be topological spaces. We say that a function f : X → Y is an open map if whenever U is
an open subset of X, then f(U) is an open subset of Y . Prove that if X is compact, Y is Hausdorff and
connected, and f : X → Y is a continuous open map, then f is surjective.
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25. Let M be a smooth manifold and fix p ∈M . Recall that a tangent vector v ∈ TpM can be viewed either
as a derivation or as an equivalence class of curves. Make each of these precise (define “derivation” and
“equivalence class of curves” in this setting), and describe the relationship between the two: given a
derivation, state which family of curves it corresponds to, and vice versa.

26. Let G be a Lie group with identity element e. Given v ∈ TeG, show that there is a unique left-invariant
vector field X on G such that Xe = v. In addition, prove that X is smooth.

27. Let R` be the real line with the lower limit topology; that is, the topology generated by the basis
{[a, b) | a < b ∈ R}.
(a) Is R` first countable? Is it second countable?

(b) Let L be a line in the plane equipped with the subspace topology it inherits as a subset of R`×R`.
Are all of the resulting topological spaces homeomorphic to each other? That is, if L,L′ are two
such lines, is L homeomorphic to L′? If so, prove it; if not, describe all the possible topologies on
L.

28. Let M be a smooth manifold and ω a differential form on M . Prove that if ω has even degree then
ω ∧ dω is exact.

29. Let G be the Heisenberg group; that is, G = R3 with multiplication given by identifying (x, y, z) with

the matrix

1 x z
0 1 y
0 0 1

 , so (x, y, z) · (x′, y′, z′) = (x + x′, y + y′, z + z′ + xy); write 0 for the identity

element with x = y = z = 0. Let X,Y, Z be the left invariant vector fields which evaluate at the identity
to X0 = ∂

∂x |0, Y0 = ∂
∂y |0, and Z0 = ∂

∂z |0. Let g = (a, b, c) ∈ G be an arbitrary element of G, and
determine Xg, Yg, Zg.

30. The Klein bottle K is the quotient space obtained by starting with the unit square

{(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}

and then making the identifications (0, y) ∼ (1, 1−y) for all y ∈ [0, 1] and (x, 0) ∼ (x, 1) for all x ∈ [0, 1].
Use the Seifert-van Kampen theorem to compute the fundamental group of K.

31. Let D2 denote the closed unit disk in R2. Let v : D2 → R2 \ {0} be a continuous, nonvanishing vector
field on D2. Prove that there exists a point z ∈ S1 at which v(z) points directly inward. Hint: argue by
contradiction.

32. Let v ∈ Rn be a nonzero vector. For c ∈ R, define

Lc = {(x,y) ∈ Rn × Rm : 〈x,v〉2 = ‖y‖2 + c.}

For c 6= 0, show that Lc is an embedded submanifold of Rn × Rm of codimension 1. Here ‖ · ‖ denotes
the Euclidean norm on Rm and 〈·, ·〉 denotes the Euclidean inner product on Rn.

33. Let (s, t) be coordinates on R2 and let (x, y, z) be coordinates on R3. Let f : R2 → R3 be defined by

f(s, t) = (sin(t), st2, s3 − 1).

(a) Let Xp be the tangent vector in TpR2 defined by Xp = ∂
∂s |p −

∂
∂t |p. Compute the push-forward

f∗Xp.

(b) Let ω be the smooth 1-form on R3 defined by ω = dx+ x dy + y2 dz. Compute the pullback f∗ω.

34. Let X and Y be topological spaces and let f : X → Y be a map. Prove that f is continuous if and only
if for every x ∈ X and every net (zα) such that (zα) converges to x, we have that (f(zα)) converges to
f(x).
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35. Recall that a topological space Y is said to be locally compact if for every y ∈ Y , there exists an open
neighborhood Uy of y such that Uy is compact.

(a) Give the definition of a second countable topological space.

(b) Let X be a second countable, locally compact, Hausdorff space. Let X+ = X ∪ {∞} be the one-
point compactification of X. Recall that a set V is open in X+ if and only if V is open in X or
V = X+ \ C for some compact set C ⊂ X. Prove that X+ is second countable.

36. Let X be a topological space and let A ⊂ X. A retraction r : X → A is a map such that r(x) = x for
all x ∈ A.

(a) State Stokes’ theorem for smooth orientable manifolds with boundary.

(b) Let M be a smooth n-dimensional compact connected orientable manifold with boundary. Prove
that there exists no smooth retraction r : M → ∂M . Hint: proceed by contradiction and consider
a nonvanishing smooth (n− 1)-form on ∂M .

37. Let S1 ⊂ C be the unit circle. Let X = R× S1 and Y = T2 = S1 × S1 ⊂ C× C. Define p : X → Y by
p(x, z) = (e2πix, z3). Pick a base point x0 ∈ X and let y0 = p(x0) ∈ Y .

(a) Determine the fundamental groups π1(X,x0) and π1(Y,y0).

(b) Determine the subgroup p∗(π1(X,x0)) ⊂ π1(Y,y0).

38. Let g and h be non-abelian two-dimensional Lie algebras. Prove that g and h are isomorphic.

39. Consider the smooth map F : R2 → R3 given by

F (θ, φ) = ((2 + cosφ) cos θ, (2 + cosφ) sin θ, sinφ).

Let M = F (R2) be the 2-torus obtained as the image of F and endowed with the orientation that makes
F orientation-preserving. Consider the 2-form ω = x dy ∧ dz. Compute F ∗ω and use this to compute∫
M
ω. Use your answer to determine the volume of the region in R3 enclosed by M .

40. Give [0, 1] the usual topology. Let X be a product of uncountably many copies of [0, 1]; view X as the
set of tuples (xα), where α ranges over the nonnegative reals R+ and xα ∈ [0, 1] for all α ∈ R+. Give X
the product topology. Prove that X is not first countable as follows.

(a) Let A ⊂ X be the set of tuples (xα) such that xα = 1/2 for all but finitely many values of α. Let
0 denote the tuple in X with all entries equal to 0. Prove that 0 ∈ A.

(b) Prove that no sequence in A converges to 0.

41. (a) State the Urysohn lemma.

(b) Let X be a normal topological space. Suppose that X = V ∪W , where V and W are open in X.
Prove that there exist open sets V1 and W1 such that V 1 ⊂ V , W 1 ⊂W , and X = V1 ∪W1.

42. Describe the universal cover of R2 \ {0}, together with the corresponding covering map. (If you prefer,
you can work with C \ {0}.) Prove that the covering space you give is the universal cover.

43. Let X be a set with the finite complement topology (i.e. U ⊆ X is open if and only if U is empty or
X \ U is finite). Exactly which subsets of X are compact? Give an argument proving that your answer
is correct.

44. For each of the following topological spaces Xi, determine whether Xi and Xi ×Xi are homeomorphic.
Give complete proofs.

(a) X1 = R.

(b) X2 = R2.

(c) X3 = Z.
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(d) X4 = {0} ∪ { 1n | n ∈ N}.

45. Given n ∈ N and 1 ≤ k ≤ n, recall that GkRn is the Grassmannian manifold consisting of the set of
k-dimensional subspaces of Rn, endowed with the usual smooth structure. Determine dim(GkRn) and
prove that GkRn is compact.

46. Let X1 ⊃ X2 ⊃ X3 ⊃ · · · be a nested sequence of nonempty compact connected subsets of Rn. Prove
that the intersection

X =

∞⋂
i=1

Xi

is nonempty, compact, and connected.

47. Let A be an annulus bounded by inner circle C1 and outer circle C2. Define a quotient space Q by
starting with A, identifying antipodal points on C2, and then identifying points on C1 that differ by
2π/3 radians. Use the Seifert-van Kampen theorem to compute the fundamental group π1(Q).

48. Let G be a Lie group with multiplication m : G × G → G defined by m(g, h) = gh and inversion
inv : G→ G defined by inv(g) = g−1. Let e denote the identity element of G.

(a) Show that the push-forward map m∗ : TeG⊕ TeG→ TeG is given by m∗(X,Y ) = X + Y .

(b) Show that the push-forward map inv∗ : TeG→ TeG is given by inv∗(X) = −X.

(c) Show that m : G×G→ G is a submersion.

49. Give R2 the usual topology, and define

K := {(x, y) ∈ R2 : x and y are either both rational or both irrational}.

Prove that K is a connected subset of R2.

50. Prove or disprove: A topological space X is Hausdorff if and only if the diagonal ∆ = {(x, x) | x ∈ X} ⊂
X ×X is closed.

51. Consider the smooth map F : R2 → R3 given by

F (θ, φ) = ((2 + cosφ) cos θ, (2 + cosφ) sin θ, sinφ).

Let M = F (R2) be the 2-torus obtained as the image of F and endowed with the orientation that makes
F orientation-preserving. Consider the 2-form ω = x2 dy ∧ dz. Compute F ∗ω and use this to compute∫
M
ω.

52. Determine (with justification) whether or not each of the following smooth maps is an immersion, a
submersion, an embedding, and/or a covering map. If it is a covering map, determine the degree of the
covering.

(a) F : S1 → R given by F (x, y) = y, where S1 ⊂ R2 is the unit circle.

(b) G : S2 → RP 2 given by G(x) = [x], where we recall that RP 2 can be defined as the quotient space
S2/ ∼ under the equivalence relation x ∼ −x, and [x] ∈ RP 2 is the equivalence class of x ∈ S2.
(We think of S2 as the unit sphere in R3.)

(c) H : R/Z→ S2 given by H([t]) = (cos 2πt, sin 2πt, 0).


