- 1. For each of the following topological spaces X_i , determine whether X_i and $X_i \times X_i$ are homeomorphic.
 - (a) $X_1 = [0, 1]$
 - (b) $X_2 = \mathbb{R}^2$
 - (c) $X_3 = \mathbb{Z}$
 - (d) X_4 = the middle-third Cantor set
- 2. Let $X = \mathbb{N} = \{1, 2, 3, \dots\}$, and equip X with the topology

$$\mathcal{T} = \{ U \subset X \mid (2n-1) \in U \Rightarrow 2n \in U \}.$$

That is, $U \in \mathcal{T}$ if and only if every odd number (2n-1) that is contained in U has a successor (2n) that is also contained in U. Thus $U = \{1, 2, 3, 4\} \in \mathcal{T}$ since the odd elements of U (namely 1 and 3) have successors (2 and 4) that are also contained in U; on the other hand, $V = \{1, 2, 3\} \notin \mathcal{T}$ since the odd number 3 is an element of V but its successor 4 is not.

- (a) Prove that (X, \mathcal{T}) is locally compact but not compact.
- (b) Determine (with proof) the connected components of (X, \mathcal{T}) , and show that (X, \mathcal{T}) is locally pathconnected.
- 3. Let \mathbb{R}^{ω} denote the set of all infinite sequences of real numbers and let $\mathbf{0} \in \mathbb{R}^{\omega}$ be the sequence of all zeros.
 - (a) What is the connected component of **0** in the product topology?
 - (b) What is the connected component of **0** in the uniform topology?
- 4. Prove that if X is Hausdorff, then any compact subset of X is closed. Also give an example of a topological space that is not Hausdorff with a compact subset that is not closed.
- 5. Let p be an odd prime integer. Define $d : \mathbb{Z} \times \mathbb{Z} \to \mathbb{R}$ as follows. If m = n, set d(m, n) = 0. If $m \neq n$, set d(m, n) = 1/(r+1), where r is the largest nonnegative integer such that p^r divides m n.
 - (a) Prove that d is a metric on \mathbb{Z} .
 - (b) With respect to the topology on \mathbb{Z} induced by the metric d, is the set of even integers closed?
- 6. (a) Let X be a path connected topological space and let A be a path connected subset of X. Suppose there exists a continuous map $r : X \to A$ such that r(a) = a for every $a \in A$. Prove that $r_* : \pi_1(X) \to \pi_1(A)$ is surjective.
 - (b) Let D^2 denote the closed unit disk in \mathbb{R}^2 and notice that the unit circle \mathbb{S}^1 forms the boundary of D^2 . Prove that there does not exist a continuous map $r: D^2 \to \mathbb{S}^1$ such that r(z) = z for every $z \in \mathbb{S}^1$.
- 7. Let \mathbb{R}^{ω} denote the set of all infinite sequences of real numbers and let $\mathbb{R}^{\infty} \subset \mathbb{R}^{\omega}$ be the set of all sequences that are eventually 0: that is, $(x_1, x_2, ...) \in \mathbb{R}^{\infty}$ if and only if there is $N \in \mathbb{N}$ such that $x_n = 0$ for all $n \geq N$. Determine the closure of \mathbb{R}^{∞} in the product topology, in the box topology, and in the uniform topology.
- 8. Let $L \subset \mathbb{R}^2$ be the *x*-axis and $H = \{(x_1, x_2) \mid x_2 > 0\}$ the upper half-plane. Let $X = H \cup L$. Given $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, let $B(\mathbf{x}, r) = \{\mathbf{y} \in \mathbb{R}^2 \mid d(\mathbf{x}, \mathbf{y}) < r\}$, where *d* is the usual Euclidean metric. Let

$$\mathcal{B}_1 = \{ B(\mathbf{x}, r) \mid \mathbf{x} = (x_1, x_2) \in H, \ 0 < r < x_2 \}.$$

Given $x \in \mathbb{R}$ and r > 0, let $A(x, r) = B((x, r), r) \cup \{(x, 0)\}$. Let

$$\mathcal{B}_2 = \{ A(x,r) \mid x \in \mathbb{R}, \ r > 0 \}.$$

(a) Show that $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for a topology on X.

- (b) Determine (with proof) whether or not the topology \mathcal{T} generated by \mathcal{B} is first-countable and/or second-countable.
- (c) Show that (X, \mathcal{T}) is regular.
- 9. Let M be a smooth manifold and $x \in M$.
 - (a) Define the tangent space $T_x M$ and explain why it is a vector space.
 - (b) Define the tangent bundle TM and explain why it is a smooth manifold.
- 10. Describe (with justification) the fundamental group of:
 - (a) the 2-sphere S^2 ;
 - (b) the 2-torus \mathbb{T}^2 ;
 - (c) the real projective plane $\mathbb{R}P^2$.
- 11. Let θ and γ be smooth 3-forms on \mathbb{S}^7 . Prove that

$$\int_{\mathbb{S}^7} \theta \wedge d\gamma = \int_{\mathbb{S}^7} d\theta \wedge \gamma$$

Hint: recall that if ω is a smooth k-form and η is a smooth l-form, we have

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta.$$

- 12. (a) State the Sard theorem.
 - (b) Let $f: \mathbb{S}^1 \to \mathbb{S}^2$ be a smooth map. Prove that f cannot be surjective.
 - (c) For a plane P in \mathbb{R}^3 , let $\pi_P : \mathbb{R}^3 \to P$ denote the orthogonal projection onto P. Suppose that $g : \mathbb{S}^1 \to \mathbb{R}^3$ is a smooth embedding. Prove that there exists a plane P for which $\pi_P \circ g$ is an immersion.
- 13. (a) Prove that if X is a Hausdorff space, then for every point $x \in X$ and every compact subset $A \subset X$, there are disjoint neighbourhoods $U \ni x$ and $V \supset A$.
 - (b) Let X be a locally compact Hausdorff space and give the definition of the one-point compactification X^* (you must define both the set and the topology).
 - (c) Use the previous two parts to prove that every locally compact Hausdorff space is regular.
- 14. Let M be a smooth manifold and $S \subset M$ an embedded smooth submanifold. Let $p \in S$ and $v \in T_p M$ be such that vf = 0 for every $f \in C^{\infty}(M)$ with $f|_S \equiv 0$. Let $\iota : S \to M$ be the inclusion map and show that $v \in d\iota_p(T_pS)$. Show that this may fail if S is only assumed to be immersed (instead of embedded).
- 15. Consider the map $F : \mathbb{R}^3 \to \mathbb{R}^2$ given by $F(x, y, z) = (z^2 xy, x^2 + y^2)$.
 - (a) Find all the critical points of F.
 - (b) Determine all values (a, b) such that $F^{-1}(a, b)$ is a smooth one-dimensional submanifold of \mathbb{R}^3 .
- 16. Let [0,1] have the usual topology. Let \mathbb{R}^+ denote the nonnegative reals, and define $X := \prod_{\alpha \in \mathbb{R}^+} [0,1]$ with the product topology. Prove that X is not first countable. (Hint: Let $A := \{(x_\alpha) : a_\alpha = 1/2 \text{ for all but finitely many } \alpha\}$. Prove that if **0** is the tuple in X with all entries equal to 0, then $\mathbf{0} \in \overline{A}$, but no sequence of points in A converges to **0**.)
- 17. Let X be a nonempty compact Hausdorff space.
 - (a) Prove that X is normal.
 - (b) State the Tietze extension theorem.
 - (c) Prove that if X is also connected, then either X consists of a single point or X is uncountable.

- 18. For $n \in \mathbb{N}$, let \mathbb{S}^n denote the unit sphere in \mathbb{R}^{n+1} .
 - (a) Prove that \mathbb{S}^n is connected and compact for every $n \in \mathbb{N}$.
 - (b) Let \mathbb{R}^{∞} be the space of sequences $(x_i)_{i=1}^{\infty}$ of real numbers such that at most finitely many of the x_i are nonzero. Embedding \mathbb{R}^n into \mathbb{R}^{n+1} via $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n, 0)$, we may view \mathbb{R}^{∞} as the union of the \mathbb{R}^n as n ranges over \mathbb{N} . Define a topology on \mathbb{R}^{∞} by declaring that a set $C \subset \mathbb{R}^{\infty}$ is closed if and only if $C \cap \mathbb{R}^n$ is closed in \mathbb{R}^n for every $n \in \mathbb{N}$. Now let \mathbb{S}^{∞} be the subset of \mathbb{R}^{∞} consisting of the union of the \mathbb{S}^n as n ranges over \mathbb{N} . Prove that \mathbb{S}^{∞} is connected but not compact in \mathbb{R}^{∞} .
- 19. Let \mathbb{R}_{ℓ} be the real line with the lower limit topology; that is, the topology generated by the basis $\{[a, b) \mid a < b \in \mathbb{R}\}$. Is \mathbb{R}_{ℓ} first countable? Is it second countable?
- 20. Consider the 2-form $\omega = z \, dx \wedge dy + (1 2y^2 z^2) \, dy \wedge dz$ on \mathbb{R}^3 , where we use the standard (x, y, z)coordinates.
 - (a) Let $D = \{(s,t) \in \mathbb{R}^2 \mid s^2 + t^2 \leq 1\}$ be the unit disc in \mathbb{R}^2 , and let $f : D \to \mathbb{R}$ be given by $f(s,t) = (1-s^2-t^2)s^2$, so that f = 0 on ∂D . Let $F : D \to \mathbb{R}^3$ be given by

$$F(s,t) = (f(s,t), s, t)$$

Then M = F(D) is a smooth submanifold (with boundary) of \mathbb{R}^3 , and ∂M is the unit circle in the yz-plane. Equip M with the orientation such that F is a smooth orientation-preserving map, and compute $\int_M \omega$.

- (b) Let S^2 be the unit sphere in \mathbb{R}^3 with the usual orientation, and compute $\int_{S^2} \omega$.
- 21. Prove that no two of \mathbb{R} , \mathbb{R}^2 , and \mathbb{R}^3 are homeomorphic (when equipped with the standard metric topology).
- 22. Consider the equivalence relation on $\mathbb{C}^2 \setminus \{\mathbf{0}\}$ given by putting $(z_1, z_2) \sim (\omega z_1, \omega z_2)$ for every $\omega \in \mathbb{C} \setminus \{0\}$; write $[z_1, z_2] = \{(\omega z_1, \omega z_2) \mid \omega \in \mathbb{C} \setminus \{0\}\}$ for the equivalence class of (z_1, z_2) . Recall that the complex projective plane $\mathbb{C}P^1$ is defined as the quotient space of $\mathbb{C}^2 \setminus \{\mathbf{0}\}$ by this equivalence relation, so that the elements of $\mathbb{C}P^1$ are the equivalence classes $[z_1, z_2]$.
 - (a) Determine (with proof) the fundamental group of $\mathbb{C}P^1$.
 - (b) Let p be a polynomial in one variable with complex coefficients, and let $G : \mathbb{C} \to \mathbb{C}P^1$ be given by G(z) = [z, 1]. Show that there is a unique continuous map $\tilde{p} : \mathbb{C}P^1 \to \mathbb{C}P^1$ such that $\tilde{p} \circ G = G \circ p$; that is, the diagram below commutes.

$$\begin{array}{c} \mathbb{C} & \stackrel{G}{\longrightarrow} \mathbb{C}P^{1} \\ \downarrow^{p} & \qquad \downarrow^{\tilde{p}} \\ \mathbb{C} & \stackrel{G}{\longrightarrow} \mathbb{C}P^{1} \end{array}$$

- (c) Show that the map \tilde{p} is smooth when $\mathbb{C}P^1$ is given the standard smooth structure (as a real manifold).
- 23. Let X and Y be topological spaces, and suppose that $f: X \to Y$ is continuous and injective.
 - (a) If X is Hausdorff, is it necessarily true that Y is Hausdorff? If you answer YES, provide a proof. If you answer NO, provide a counterexample.
 - (b) If Y is Hausdorff, is it necessarily true that X is Hausdorff? If you answer YES, provide a proof. If you answer NO, provide a counterexample.
- 24. Let X and Y be topological spaces. We say that a function $f: X \to Y$ is an open map if whenever U is an open subset of X, then f(U) is an open subset of Y. Prove that if X is compact, Y is Hausdorff and connected, and $f: X \to Y$ is a continuous open map, then f is surjective.

- 25. Let M be a smooth manifold and fix $p \in M$. Recall that a tangent vector $v \in T_p M$ can be viewed either as a derivation or as an equivalence class of curves. Make each of these precise (define "derivation" and "equivalence class of curves" in this setting), and describe the relationship between the two: given a derivation, state which family of curves it corresponds to, and vice versa.
- 26. Let G be a Lie group with identity element e. Given $v \in T_eG$, show that there is a unique left-invariant vector field X on G such that $X_e = v$. In addition, prove that X is smooth.
- 27. Let \mathbb{R}_{ℓ} be the real line with the lower limit topology; that is, the topology generated by the basis $\{[a, b) \mid a < b \in \mathbb{R}\}.$
 - (a) Is \mathbb{R}_{ℓ} first countable? Is it second countable?
 - (b) Let L be a line in the plane equipped with the subspace topology it inherits as a subset of $\mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$. Are all of the resulting topological spaces homeomorphic to each other? That is, if L, L' are two such lines, is L homeomorphic to L'? If so, prove it; if not, describe all the possible topologies on L.
- 28. Let M be a smooth manifold and ω a differential form on M. Prove that if ω has even degree then $\omega \wedge d\omega$ is exact.
- 29. Let G be the Heisenberg group; that is, $G = \mathbb{R}^3$ with multiplication given by identifying (x, y, z) with the matrix $\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$, so $(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + xy)$; write **0** for the identity element with x = y = z = 0. Let X, Y, Z be the left invariant vector fields which evaluate at the identity to $X_{\mathbf{0}} = \frac{\partial}{\partial x}|_{\mathbf{0}}$, $Y_{\mathbf{0}} = \frac{\partial}{\partial y}|_{\mathbf{0}}$, and $Z_{\mathbf{0}} = \frac{\partial}{\partial z}|_{\mathbf{0}}$. Let $g = (a, b, c) \in G$ be an arbitrary element of G, and determine X_g, Y_g, Z_g .
- 30. The Klein bottle \mathbb{K} is the quotient space obtained by starting with the unit square

$$\{(x, y) \in \mathbb{R}^2 : 0 \le x, y \le 1\}$$

and then making the identifications $(0, y) \sim (1, 1-y)$ for all $y \in [0, 1]$ and $(x, 0) \sim (x, 1)$ for all $x \in [0, 1]$. Use the Seifert-van Kampen theorem to compute the fundamental group of \mathbb{K} .

- 31. Let D^2 denote the closed unit disk in \mathbb{R}^2 . Let $\mathbf{v} : D^2 \to \mathbb{R}^2 \setminus \{\mathbf{0}\}$ be a continuous, nonvanishing vector field on D^2 . Prove that there exists a point $z \in \mathbb{S}^1$ at which $\mathbf{v}(z)$ points directly inward. Hint: argue by contradiction.
- 32. Let $\mathbf{v} \in \mathbb{R}^n$ be a nonzero vector. For $c \in \mathbb{R}$, define

$$L_c = \{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R}^n \times \mathbb{R}^m : \langle \mathbf{x}, \mathbf{v} \rangle^2 = \|\mathbf{y}\|^2 + c. \}$$

For $c \neq 0$, show that L_c is an embedded submanifold of $\mathbb{R}^n \times \mathbb{R}^m$ of codimension 1. Here $\|\cdot\|$ denotes the Euclidean norm on \mathbb{R}^m and $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n .

33. Let (s,t) be coordinates on \mathbb{R}^2 and let (x,y,z) be coordinates on \mathbb{R}^3 . Let $f:\mathbb{R}^2\to\mathbb{R}^3$ be defined by

$$f(s,t) = (\sin(t), st^2, s^3 - 1)$$

- (a) Let X_p be the tangent vector in $T_p \mathbb{R}^2$ defined by $X_p = \frac{\partial}{\partial s}|_p \frac{\partial}{\partial t}|_p$. Compute the push-forward f_*X_p .
- (b) Let ω be the smooth 1-form on \mathbb{R}^3 defined by $\omega = dx + x \, dy + y^2 \, dz$. Compute the pullback $f^*\omega$.
- 34. Let X and Y be topological spaces and let $f: X \to Y$ be a map. Prove that f is continuous if and only if for every $x \in X$ and every net (z_{α}) such that (z_{α}) converges to x, we have that $(f(z_{\alpha}))$ converges to f(x).

- 35. Recall that a topological space Y is said to be locally compact if for every $y \in Y$, there exists an open neighborhood U_y of y such that $\overline{U_y}$ is compact.
 - (a) Give the definition of a second countable topological space.
 - (b) Let X be a second countable, locally compact, Hausdorff space. Let $X^+ = X \cup \{\infty\}$ be the onepoint compactification of X. Recall that a set V is open in X^+ if and only if V is open in X or $V = X^+ \setminus C$ for some compact set $C \subset X$. Prove that X^+ is second countable.
- 36. Let X be a topological space and let $A \subset X$. A retraction $r: X \to A$ is a map such that r(x) = x for all $x \in A$.
 - (a) State Stokes' theorem for smooth orientable manifolds with boundary.
 - (b) Let M be a smooth *n*-dimensional compact connected orientable manifold with boundary. Prove that there exists no smooth retraction $r: M \to \partial M$. Hint: proceed by contradiction and consider a nonvanishing smooth (n-1)-form on ∂M .
- 37. Let $S^1 \subset \mathbb{C}$ be the unit circle. Let $X = \mathbb{R} \times S^1$ and $Y = \mathbb{T}^2 = S^1 \times S^1 \subset \mathbb{C} \times \mathbb{C}$. Define $p: X \to Y$ by $p(x, z) = (e^{2\pi i x}, z^3)$. Pick a base point $\mathbf{x}_0 \in X$ and let $\mathbf{y}_0 = p(\mathbf{x}_0) \in Y$.
 - (a) Determine the fundamental groups $\pi_1(X, \mathbf{x}_0)$ and $\pi_1(Y, \mathbf{y}_0)$.
 - (b) Determine the subgroup $p_*(\pi_1(X, \mathbf{x}_0)) \subset \pi_1(Y, \mathbf{y}_0)$.
- 38. Let \mathfrak{g} and \mathfrak{h} be non-abelian two-dimensional Lie algebras. Prove that \mathfrak{g} and \mathfrak{h} are isomorphic.
- 39. Consider the smooth map $F : \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$F(\theta, \phi) = ((2 + \cos \phi) \cos \theta, (2 + \cos \phi) \sin \theta, \sin \phi).$$

Let $M = F(\mathbb{R}^2)$ be the 2-torus obtained as the image of F and endowed with the orientation that makes F orientation-preserving. Consider the 2-form $\omega = x \, dy \wedge dz$. Compute $F^*\omega$ and use this to compute $\int_M \omega$. Use your answer to determine the volume of the region in \mathbb{R}^3 enclosed by M.

- 40. Give [0, 1] the usual topology. Let X be a product of uncountably many copies of [0, 1]; view X as the set of tuples (x_{α}) , where α ranges over the nonnegative reals \mathbb{R}^+ and $x_{\alpha} \in [0, 1]$ for all $\alpha \in \mathbb{R}^+$. Give X the product topology. Prove that X is not first countable as follows.
 - (a) Let $A \subset X$ be the set of tuples (x_{α}) such that $x_{\alpha} = 1/2$ for all but finitely many values of α . Let **0** denote the tuple in X with all entries equal to 0. Prove that $\mathbf{0} \in \overline{A}$.
 - (b) Prove that no sequence in A converges to **0**.
- 41. (a) State the Urysohn lemma.
 - (b) Let X be a normal topological space. Suppose that $X = V \cup W$, where V and W are open in X. Prove that there exist open sets V_1 and W_1 such that $\overline{V}_1 \subset V$, $\overline{W}_1 \subset W$, and $X = V_1 \cup W_1$.
- 42. Describe the universal cover of $\mathbb{R}^2 \setminus \{0\}$, together with the corresponding covering map. (If you prefer, you can work with $\mathbb{C} \setminus \{0\}$.) Prove that the covering space you give is the universal cover.
- 43. Let X be a set with the finite complement topology (i.e. $U \subseteq X$ is open if and only if U is empty or $X \setminus U$ is finite). Exactly which subsets of X are compact? Give an argument proving that your answer is correct.
- 44. For each of the following topological spaces X_i , determine whether X_i and $X_i \times X_i$ are homeomorphic. Give complete proofs.
 - (a) $X_1 = \mathbb{R}$.
 - (b) $X_2 = \mathbb{R}^2$.
 - (c) $X_3 = \mathbb{Z}$.

(d) $X_4 = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}.$

- 45. Given $n \in \mathbb{N}$ and $1 \leq k \leq n$, recall that $G_k \mathbb{R}^n$ is the Grassmannian manifold consisting of the set of k-dimensional subspaces of \mathbb{R}^n , endowed with the usual smooth structure. Determine dim $(G_k \mathbb{R}^n)$ and prove that $G_k \mathbb{R}^n$ is compact.
- 46. Let $X_1 \supset X_2 \supset X_3 \supset \cdots$ be a nested sequence of nonempty compact connected subsets of \mathbb{R}^n . Prove that the intersection

$$X = \bigcap_{i=1}^{\infty} X_i$$

is nonempty, compact, and connected.

- 47. Let A be an annulus bounded by inner circle C_1 and outer circle C_2 . Define a quotient space Q by starting with A, identifying antipodal points on C_2 , and then identifying points on C_1 that differ by $2\pi/3$ radians. Use the Seifert-van Kampen theorem to compute the fundamental group $\pi_1(Q)$.
- 48. Let G be a Lie group with multiplication $m : G \times G \to G$ defined by m(g,h) = gh and inversion inv $: G \to G$ defined by $inv(g) = g^{-1}$. Let e denote the identity element of G.
 - (a) Show that the push-forward map $m_*: T_e G \oplus T_e G \to T_e G$ is given by $m_*(X, Y) = X + Y$.
 - (b) Show that the push-forward map $\operatorname{inv}_*: T_e G \to T_e G$ is given by $\operatorname{inv}_*(X) = -X$.
 - (c) Show that $m: G \times G \to G$ is a submersion.
- 49. Give \mathbb{R}^2 the usual topology, and define

 $K := \{(x, y) \in \mathbb{R}^2 : x \text{ and } y \text{ are either both rational or both irrational}\}.$

Prove that K is a connected subset of \mathbb{R}^2 .

- 50. Prove or disprove: A topological space X is Hausdorff if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\} \subset X \times X$ is closed.
- 51. Consider the smooth map $F : \mathbb{R}^2 \to \mathbb{R}^3$ given by

 $F(\theta, \phi) = ((2 + \cos \phi) \cos \theta, (2 + \cos \phi) \sin \theta, \sin \phi).$

Let $M = F(\mathbb{R}^2)$ be the 2-torus obtained as the image of F and endowed with the orientation that makes F orientation-preserving. Consider the 2-form $\omega = x^2 dy \wedge dz$. Compute $F^*\omega$ and use this to compute $\int_M \omega$.

- 52. Determine (with justification) whether or not each of the following smooth maps is an immersion, a submersion, an embedding, and/or a covering map. If it is a covering map, determine the degree of the covering.
 - (a) $F: S^1 \to \mathbb{R}$ given by F(x, y) = y, where $S^1 \subset \mathbb{R}^2$ is the unit circle.
 - (b) $G: S^2 \to \mathbb{R}P^2$ given by G(x) = [x], where we recall that $\mathbb{R}P^2$ can be defined as the quotient space S^2/\sim under the equivalence relation $x \sim -x$, and $[x] \in \mathbb{R}P^2$ is the equivalence class of $x \in S^2$. (We think of S^2 as the unit sphere in \mathbb{R}^3 .)
 - (c) $H : \mathbb{R}/\mathbb{Z} \to S^2$ given by $H([t]) = (\cos 2\pi t, \sin 2\pi t, 0).$