1. (Gaussian Elimination and Schur Complement)

Let $A \in \mathbb{R}^{m \times m}$ be nonsingular. Suppose that for each k with $1 \leq k \leq m$, the upper-left $k \times k$ block of A is nonsingular. Assume that A is written in the block form $A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$ where A_{11} is $n \times n$ and A_{22} is $(m-n) \times (m-n)$.

(a) Verify the formula

$$\begin{pmatrix} I & 0 \\ -A_{21}A_{11}^{-1} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}$$

for "elimination" of the block A_{21} . The matrix $A_{22} - A_{21}A_{11}^{-1}A_{12}$ is known as the *Schur complement* of A_{11} in A.

(b) Suppose now that A_{21} is eliminated row by row by means of *n* steps of Gaussian elimination without pivoting:

$$U = A, \ L = I$$

for $k = 1$ to n
for $j = m - n + 1$ to m
 $l_{jk} = u_{jk}/u_{kk}$
 $u_{j,k:m} = u_{j,k:m} - l_{jk}u_{k,k:m}$

Show that the bottom-right $(m-n) \times (m-n)$ block of the result is again $A_{22} - A_{21}A_{11}^{-1}A_{12}$.

2. (Exponential Interpolation)

Some modeling considerations have mandated a search for a function

$$u(x) = c_0 e^{c_1 x + c_2 x^2}$$

where the unknown coefficients c_1 and c_2 are expected to be nonpositive. Given are data pairs to be interpolated, (x_0, z_0) , (x_1, z_1) , and (x_2, z_2) , where $z_i > 0$, i = 0, 1, 2. Thus, we require $u(x_i) = z_i$. The function u(x) is not linear in its coefficients, but $v(x) = \ln(u(x))$ is linear in its.

Find a quadratic polynomial v(x) that interpolates appropriately defined three data pairs, and then give a formula for u(x) in terms of the original data.

3. The gradient method (the steepest descent method) for solving a linear system, $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A} is a real and symmetric positive definite $n \times n$ matrix, is given as follows:

Given initial guess \mathbf{x}_0 , for $k \ge 0$, we compute (i) $\mathbf{g}_k = \mathbf{A}\mathbf{x}_k - \mathbf{b}$, (ii) $\rho_k = \mathbf{g}_k^t \mathbf{g}_k / \mathbf{g}_k^t \mathbf{A}\mathbf{g}_k$, (iii) $\mathbf{x}_{k+1} = \mathbf{x}_k - \rho_k \mathbf{g}_k$.

- (a) Verify that $\mathbf{g}_k \cdot \mathbf{g}_{k+1} = 0$ for $k = 0, 1, \ldots$
- (b) Via the result in (a), can we prove that the gradient method always converges at most in *n* iterations? Justify your answer.
- (c) For the following descent method,

Given initial guess \mathbf{x}_0 , for $k \ge 0$, we compute (i) $\mathbf{g}_k = \mathbf{A}\mathbf{x}_k - \mathbf{b}$, (ii) $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha \mathbf{g}_k$,

find the conditions on α so that the revised descent method converges.

4. For computing the integral $\int_{-\pi/2}^{\pi/2} \cos(x) f(x) dx$, find a two point quadrature formula

$$S_2(f) = c_1 f(x_1) + c_2 f(x_2),$$

which is exact for all polynomials of a maximal possible degree.

5. The modified Euler method for the approximation of the Cauchy problem is defined as:

$$u_{n+1} = u_n + hf(t_{n+1}, u_n + hf(t_n, u_n))$$

$$u_0 = y_0$$

Find the region of stability for this method when applied to the test problem

$$\begin{cases} y'(t) = \lambda y(t), & t > 0\\ y(0) = 1, \end{cases}$$

where $\lambda \in \mathbb{R}^-$.

6. Consider the matrix

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

Is it possible to find the Cholesky factorization of A? If so, find the unique upper triangular matrix H such that $A = H^T H$.

Assume that you have computed the upper triangular matrix affected by rounding errors \widetilde{H} with $\widetilde{H}^T \widetilde{H} = A + \delta A$. Find an estimate of $\|\delta A\|_2$ for the given matrix A.

7. Find all the functions $f(x) = a_2 x^2 + a_1 x + a_0$ whose polynomial of best approximation of degree 1 on the interval [2, 4] is $p_1^*(x) = 0$.

8. (Interpolation and Weak Line Search)

A popular technique arising in methods for minimizing functions in several variables involves a *weak* line search, where an approximate minimum x^* is found for a function in one variable, f(x), for which the values of f(0), f'(0), and f(1) are given. The function f(x) is defined for all nonnegative x, has a continuous second derivative, and satisfies f(0) < f(1) and f'(0) < 0. We then interpolate the given values by a quadratic polynomial and set x^* as the minimum of the interpolant.

- (a) Find x^* for the values f(0) = 1, f'(0) = -1, f(1) = 2.
- (b) Show that the quadratic interpolant has a unique minimum satisfying $0 < x^* < 1$. Can you show the same for the function f itself?

9. (Gaussian Elimination)

Given an m-by-m nonsingular matrix A, how do you efficiently solve the following problems, using Gaussian elimination with partial pivoting?

- (a) Solve the linear system $A^k x = b$, where k is a positive integer.
- (b) Compute $\alpha = c^T A^{-1} b$.
- (c) Solve the matrix equation AX = B, where B is m-by-n.

You should: (1) describe your algorithms, (2) present them in pseudocode (using a Matlab-like language), and (3) give the required flops.

10. Let **A** be a strictly diagonally dominant $n \times n$ matrix. Show that the Jacobi iterative method generates a convergent sequence of approximate solutions when applying it to solve the linear system $\mathbf{A}\mathbf{x} = \mathbf{B}$ for any initial guess \mathbf{x}_0 .

11. Find solutions of the two systems of equations:

$$\begin{cases} x_1 + 3x_2 &= 4\\ x_1 + 3.00001x_2 &= 4.00001 \end{cases} \iff A_1 x = b$$

and

$$\begin{cases} y_1 + 3y_2 &= 4\\ y_1 + 2.99999y_2 &= 4.00001 \end{cases} \iff A_2 y = b$$

Compute $||A_1 - A_2||_{\infty}$ and $||x - y||_{\infty}$. Using the notion of the matrix condition number, explain why $||x - y||_{\infty}$ is much larger than $||A_1 - A_2||_{\infty}$.

12. Consider the following two fixed point methods to find the root $z \approx 0.6$ of the equation $x + \ln x = 0$:

1)
$$x_{n+1} = -\ln x_n$$
, 2) $x_{n+1} = \exp(-x_n)$.

Study the convergence of the methods and argue which one you would prefer.

- 13. Find the polynomial of best approximation $p_1^*(x)$ for f(x) = |x| on [-1,3].
- 14. For the solution of the linear system $A\mathbf{x} = \mathbf{b}$ with

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} 3 \\ 5 \end{bmatrix},$$

consider the following iterative method: given $\mathbf{x}^{(0)} \in \mathbb{R}^2$, find

$$\mathbf{x}^{(k+1)} = B(\theta)\mathbf{x}^{(k)} + \mathbf{g}(\theta) \quad \text{for } k \ge 0$$

where θ is a real parameter and

$$B(\theta) = \frac{1}{4} \begin{bmatrix} 2\theta^2 + 2\theta + 1 & -2\theta^2 + 2\theta + 1 \\ -2\theta^2 + 2\theta + 1 & 2\theta^2 + 2\theta + 1 \end{bmatrix}, \qquad \mathbf{g} = \begin{bmatrix} \frac{1}{2} - \theta \\ \frac{1}{2} - \theta \end{bmatrix}.$$

Address the following points:

- (a) Check that the method is consistent $\forall \theta \in \mathbb{R}$.
- (b) Determine the values of θ for which the method is convergent.
- (c) Find the optimal value of θ , i.e. the value of θ for which $\rho(B(\theta))$ is minimum.
- 15. Consider the function $f(x) = \ln(x) + 6\sqrt{x} 9$, which has a zero on the interval [1, 2]. Given two fixed point methods $x = \phi_i(x)$, i = 1, 2, where

$$\phi_1(x) = \frac{(9 - \ln(x))^2}{36}$$
 and $\phi_2(x) = e^{9 - 6\sqrt{x}}$

verify that the zero of f is a fixed point for ϕ_1 and ϕ_2 . Which method would you use to calculate the zero of f? Justify your answer.

- 16. Consider $f(x) = \sin(\pi x)$ on the interval [-1, 1]. Find the polynomial $\Pi_2 f(x)$ interpolating f(x) at the Chebyshev nodes.
- 17. Given a nonsingular matrix $A \in \mathbb{R}^{n \times n}$, consider the preconditioned nonstationary Richardson method:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k P^{-1}(\mathbf{b} - A\mathbf{x}^{(k)}),$$

where $P \in \mathbb{R}^{n \times n}$ is nonsingular. Find a formula for the parameter α_k such that $\mathbf{x}^{(k+1)}$ minimizes the Euclidean norm of the preconditioned residual $\|P^{-1}(A\mathbf{y} - \mathbf{b})\|_2$ among all vectors $\mathbf{y} \in \mathbb{R}^n$ of the form:

$$\mathbf{y} = \mathbf{x}^{(k)} + \alpha P^{-1} (\mathbf{b} - A \mathbf{x}^{(k)}).$$

18. (Cholesky Factorization)

Given an m-by-m symmetric and positive definite matrix A, how do you efficiently solve the following problems, using the Cholesky factorization of A?

- (a) Solve the linear system $A^k x = b$, where k is a positive integer.
- (b) Compute $\alpha = c^T A^{-1} b$.
- (c) Solve the matrix equation AX = B, where B is m-by-n.

You should: (1) describe your algorithms, (2) present them in pseudocode (using a Matlab-like language), and (3) give the required flops.

19. (Orthogonal Polynomials)

Let $\phi_0(x), \phi_1(x), \phi_2(x), \ldots$ be a sequence of orthogonal polynomials on an interval [a, b] with respect to a positive weight function w(x). Let x_1, \ldots, x_n be the *n* zeros of $\phi_n(x)$; it is known that these roots are real and $a < x_1 < \cdots < x_n < b$.

(a) Show that the Lagrange polynomials of degree n-1 based on these points are orthogonal to each other, so we can write

$$\int_{a}^{b} w(x)L_{j}(x)L_{k}(x) \, dx = 0, \qquad j \neq k$$

where

$$L_j(x) = \prod_{k \neq j} \frac{(x - x_k)}{(x_j - x_k)}, \qquad 1 \le j \le n$$

(b) For a given function f(x), let $y_k = f(x_k)$, k = 1, ..., n. Show that the polynomial $p_{n-1}(x)$ of degree at most n-1 that interpolates the function f(x) at the zeros $x_1, ..., x_n$ of the orthogonal polynomial $\phi_n(x)$ satisfies

$$||p_{n-1}||^2 = \sum_{k=1}^n y_k^2 ||L_k||^2$$

in the weighted least squares norm. This norm for any suitably integrable function g(x) is defined by

$$\|g\|^2 = \int_a^b w(x) [g(x)]^2 \, dx$$

- 20. Given a function $f(x) = \sin x$ on $[-\pi, \pi]$, we want to approximate f by Lagrange interpolating polynomials $P_n(x)$ with equally spaced nodes, $x_i = -\pi + \frac{2i\pi}{n}$, for i = 0, 1, ..., n, i.e., the supporting pairs are $\{(x_i, f(x_i))\}_{i=0}^n$, and we have $P_n(x_i) = f(x_i)$, for i = 0, 1, ..., n. Does $P_n(x)$ converge to f(x) on $[-\pi, \pi]$ as $n \to \infty$?
- 21. We consider the initial value problem

$$\left\{ \begin{array}{ll} y'(t)=f(t,y(t)), & t>0\\ y(0)=\alpha. \end{array} \right.$$

Define h > 0 and $t_i = ih$ for i = 0, 1, ... Let w_i be the approximate solution of $y(t_i)$ obtained with the following Trapezoidal method:

$$w_{i+1} = w_i + \frac{h}{2}(f(t_i, w_i) + f(t_{i+1}, w_{i+1})),$$

for $i = 0, 1, ..., and w_0 = \alpha$. Find the stability condition on h so that the modified Trapezoidal method is stable when applying it to the stiff problem

$$\begin{cases} y' = -\lambda y\\ y(0) = \alpha \end{cases}$$

with positive λ .

22. Find a parameter $\tau \in \mathbb{R}$ such that the Richardson method

$$x^{k+1} = x^k - \tau (Ax^k - b)$$

converges to a solution of Ax = b, if

$$A = \begin{pmatrix} 3 & 1 & & \mathbf{0} \\ 1 & 3 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & 3 & 1 \\ \mathbf{0} & & & 1 & 3 \end{pmatrix} \in \mathbb{R}^{N \times N}.$$

23. Check if the following scheme approximates the equation y' = f(x, y):

$$\frac{1}{2h}(y_k - y_{k-2}) = \frac{1}{2}(f(x_k, y_k) + f(x_{k-2}, y_{k-2})).$$

Find the stability region for the scheme.

24. Consider the matrix

$$A = \begin{bmatrix} \epsilon & 1\\ 1 & 0 \end{bmatrix}$$

where ϵ is a very small number (e.g., 10^{-15}). Prove that the matrices L and U have entries very large in absolute value.

If rounding errors are accounted for, the LU factorization yields matrices \hat{L} and \hat{U} , such that $A + \delta A = \hat{L}\hat{U}$. Explain why for the given matrix A, we do not have control on the size of the perturbation matrix δA .

Finally, check that by using GEM with pivoting we have control on the size of δA .

25. To compute numerically the integral $I(f) = \int_0^2 f(x) dx$ with $f(x) = \frac{1}{1+x}$, consider the composite quadrature formula:

$$I_c(f) = \frac{1}{10} [f(0) + 2f(0.2) + 2f(0.4) + \dots + 2f(1.8) + f(2)].$$

Find an estimate for:

$$|I(f) - I_c(f)|.$$

- 26. Let {P₀(x), P₁(x),..., P_n(x)} be the set of Legendre polynomials satisfying the following properties:
 i. For each n, P_n(x) is a polynomial of degree n.
 - 1. For each n, $T_n(w)$ is a polynomial of degree n.

ii. $\int_{-1}^{1} P(x) P_n(x) dx = 0$ for any polynomial P(x) of degree less than n.

Suppose that x_1, x_2, \ldots, x_n are the roots of the n^{th} Legendre polynomial $P_n(x)$ and

$$c_i = \int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{x - x_j}{x_i - x_j} \, dx$$

for i = 1, 2, ..., n.

(a) Show that if P(x) is any polynomial of degree less than 2n, then

$$\int_{-1}^{1} P(x) \, dx = \sum_{i=1}^{n} c_i P(x_i).$$

(b) For n = 2, we have

$$\int_{-1}^{1} P(x) \, dx = P(x_1) + P(x_2),$$

for any polynomial P(x) of degree at most three with $x_1 = -\sqrt{3}/3$ and $x_2 = \sqrt{3}/3$. Verify that

$$\int_{-1}^{1} \int_{-1}^{1} P(x,y) \, dx \, dy = P(x_1,x_1) + P(x_1,x_2) + P(x_2,x_1) + P(x_2,x_2)$$

where the degree of P(x, y) in x (resp., y) is at most three (resp., three).

27. Let **A** be a real and symmetric positive definite $n \times n$ matrix. The linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is solved by the conjugate gradient method as follows:

Given initial guess
$$\mathbf{x}_0$$
, we compute
 $\mathbf{g}_0 = \mathbf{A}\mathbf{x}_0 - \mathbf{b}$, and $\mathbf{w}_0 = -\mathbf{g}_0$.
For $k \ge 0$, knowing \mathbf{x}_k we compute \mathbf{x}_{k+1} as follows:
(a). $\rho_k = \mathbf{g}_k^t \mathbf{g}_k / \mathbf{w}_k^t \mathbf{A} \mathbf{w}_k$,
(b). $\mathbf{x}_{k+1} = \mathbf{x}_k + \rho_k \mathbf{w}_k$,
(c). $\mathbf{g}_{k+1} = \mathbf{g}_k + \rho_k \mathbf{A} \mathbf{w}_k$,
(d). $\beta_k = \mathbf{g}_{k+1}^t \mathbf{g}_{k+1} / \mathbf{g}_k^t \mathbf{g}_k$,
(e). $\mathbf{w}_{k+1} = -\mathbf{g}_{k+1} + \beta_k \mathbf{w}_k$

Suppose that with a given initial guess \mathbf{x}_0 , the initial error $\mathbf{x}_0 - \mathbf{x}$ has an expression of the form

$$\mathbf{x}_0 - \mathbf{x} = \sum_{i=1}^n c_i \mathbf{v}_i = \mathbf{A}^{-1} \mathbf{g}_0$$

where $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are eigenvectors of **A**. Let *m* be the number of nonzero coefficients in the set $\{c_1, \ldots, c_n\}$. Prove that the conjugate gradient method converges in *m* iterations with the initial guess \mathbf{x}_0 .

28. To obtain an approximate solution of the initial value problem

$$y'(x) = 0, \quad y(0) = \alpha,$$

we apply the following linear multistep method:

$$\eta_{j+2} = -9\eta_{j+1} + 10\eta_j + \frac{h}{2}(13f(x_{j+1}, \eta_{j+1}) + 9f(x_j, \eta_j)), \quad j \ge 0.$$

Let the starting values be $\eta_0 = \alpha$ and $\eta_1 = \alpha + \epsilon$ (ϵ = machine precision). What values η_j are to be expected for arbitrary h? Is this linear multistep method convergent?

29. (Runge-Kutta Method and Numerical Solution of ODEs)

Consider Heun's method

$$y_{n+1} = y_n + \frac{h}{2}[f_n + f(t_{n+1}, y_n + hf_n)].$$

- (a) Show that Heun's method is an explicit two-stage Runge-Kutta method.
- (b) Prove that Heun's method has order 2 with respect to h.
- (c) Sketch the region of absolute stability of the method in the complex plane.