1. Find all solutions in \mathbb{C} to the equation $z^{4}=-16$.
2. Suppose that a function $f(z)=u(z)+i v(z)$, with u and v real-valued, is analytic in a domain D (we assume here that D is connected), and $v(z)=u^{2}(z)$ for every $z \in D$. Prove that f is constant on D.
3. Compute

$$
\int_{\gamma} \frac{e^{z^{3}}}{z^{4}} d z
$$

where γ is a simple closed curve with $0 \notin \gamma$.
4. (TRUE or FALSE?) Let $\Delta(1)^{+}=\{z \in \Delta(1) \mid \operatorname{Im}(z)>0\}$ be the upper half disk in \mathbb{C}. Let f be a holomorphic function defined in $\Delta(1)^{+}$and continuous on the closure $\overline{\Delta(1)^{+}}$. Then by using the Schwarz Reflection Principle, f can be extended holomorphically in $\Delta(1)$.
5. (TRUE or FALSE?) Let $\Omega=\Delta(0,1)-\{0\}$. Any function $f \in \operatorname{Hol}(\Omega)$ is the derivative of some other function $g \in \operatorname{Hol}(\Omega)$.
6. (TRUE or FALSE?) By the Riemann mapping theorem, any simply connected domain in \mathbb{C} can be mapped by a biholomorphic map onto the unit disk.
7. (TRUE or FALSE?) There is no holomorphic function f defined on the punctured disk $\Delta(1)-\{0\}$ such that f^{\prime} has a simple pole at 0 .
8. Let f be a holomorphic function on a connected open set $D \subseteq \mathbb{C}$ such that $\operatorname{Re} f(z)=\operatorname{Im} f(z)$ for all $z \in D$ (i.e. its real part is equal to its imaginary part on D). Prove that f is constant. (Hint: use the Cauchy-Riemann equations.)
9. Calculate:
(a)

$$
\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x \quad(a \in \mathbb{R})
$$

(b)

$$
\int_{0}^{\infty} \frac{x}{\left(1+x^{2}\right) x^{\alpha}} d x \quad(0<\alpha<1)
$$

10. (a) State Rouche's theorem.
(b) Determine how many zeros of the polynomial $p(z)=z^{5}+3 z+1$ lie in the disk $|z|<2$.
11. Let f be a holomorphic function defined in \mathbb{C}.
(a) Suppose there exists a positive integer n such that

$$
\int_{\partial \Delta(1)} \frac{f(z)}{(z-a)^{n}} d z=0 \quad \forall a \in \Delta(1) .
$$

Prove that f is a polynomial.
(b) Suppose that for each $a \in \Delta(1)$, there exists a positive integer $n(a)$ such that

$$
\int_{\partial \Delta(1)} \frac{f(z)}{(z-a)^{n(a)}} d z=0 .
$$

Prove that f is a polynomial.
12. Complete the following steps:
(a) State Liouville's theorem.
(b) Compute $\oint_{\partial \Delta(0, R)} \frac{f(z)}{(z-a)(z-b)} d z$, where f is an entire function and $a, b \in \mathbb{C}$ with $a \neq b$.
(c) Prove Liouville's theorem using (b).
13. Integrate the following functions over $|z|=1$:
(a) $\operatorname{Re}(z)$ (the real part of z);
(b) $\frac{1}{z^{4}}$;
(c) $z^{3} \cos \left(\frac{3}{z}\right)$ (recall that $\left.\cos z=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} z^{2 n}\right)$;
(d) $\frac{1}{8 z^{3}-1}$.
14. By letting $R \rightarrow \infty$, prove that

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{e^{1 / z}}{z^{k}} d z=0
$$

for any integer $k \geq 2$.
15. (a) Write down the Cauchy-Riemann equations for an analytic function $f(z)=u(x, y)+i v(x, y)$, where $z=x+i y$.
(b) Prove that $f(z)=x^{2}+y^{2}$ is not an analytic function.
16. (TRUE or FALSE?) Let $a \in \mathbb{C}$ be an isolated singularity of a rational function f. Then a could be an essential singularity for f.
17. (TRUE or FALSE?) Let f be a meromorphic function defined on a domain $E \subset \mathbb{C}$ with isolated singularity only. Suppose that all of the residue of f are zero. Then f must be holomorphic on E.
18. (TRUE or FALSE?) The function $\sin z$ defined on the complex plane is a bounded function.
19. Let f be a holomorphic function defined on the unit disk $\Delta(1)$ with radius of convergence 1 . Prove that there is at least one point in the boundary $\partial \Delta(1)$ at which the function f cannot extend holomorphically.
20. Let $f(z)=\frac{1}{z^{2}-5 z+4}=\frac{1}{(z-4)(z-1)}$.
(a) Find the Laurent expansion of f in the annulus $\left\{z|1<|z|<4\}\right.$. Especially find a_{-1}, a_{-10}, and a_{10}.
(b) Compute $\int_{\gamma} f d z$, where γ is a positively oriented circle centered at 4 of radius 1 .
21. Write i^{i} in the form $a+b i$.
22. Find the Laurent expansion at zero of the function $f(z)=\frac{2}{z^{2}-5 z+6}$ valid for $2<|z|<3$.
23. Show that $z^{5}+6 z^{3}-10$ has exactly two zeros, counting multiplicities, in the annulus $2<|z|<3$.
24. (a) State Cauchy's theorem on a simply connected region.
(b) Suppose that D is simply connected and f is analytic on D. Show that there is an analytic function F on D such that $F^{\prime}=f$ on D.
25. Find all solutions in \mathbb{C} to the equation $z^{4}=-16$.
26. (a) The function $\frac{z^{3}-1}{z^{2}+3 z-4}$ has a power series expansion in a neighborhood of the origin. What is its radius of convergence? Justify your assertion.
(b) Write out its power series expansion in a neighborhood of the origin.
27. (a) State the residue theorem.
(b) Use the residue theorem to evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{d x}{x^{2}+2 x+2}
$$

28. (a) State the maximum principle for analytic functions.
(b) Use (a) to prove the following statement (Schwarz lemma): Let $f(z)$ be holomorphic in $|z| \leq R$ with $|f(z)| \leq M$ on $|z|=R$. Then

$$
|f(z)-f(0)| \leq \frac{2 M|z|}{R}
$$

(c) State and prove Liouville's theorem (about the properties of entire functions).
(d) Deduce from Liouville's theorem that the range of a nonconstant entire function must be dense in \mathbb{C}.
29. Let $f(z)=\frac{z+i}{z-i}$. The lines $L_{1}=\{z \mid \operatorname{Im}(z)=1\}, L_{2}=\{z \mid \operatorname{Im}(z)=-1\}$ and the circle $C=\{z| | z \mid=1\}$ divide the complex space \mathbb{C} into five regions. What are the corresponding regions of the image under the map f ?
30. Show that the polynomial $2 z^{5}-6 z^{2}+z+1$ has exactly three zeros (counting multiplicities) in $\{z \mid 1<$ $|z|<2\}$.
31. State and prove the Little Picard Theorem.
32. Concerning approximation of a holomorphic function by a sequence of polynomials, show that there does not exist a sequence of holomorphic polynomials $P_{n}(z)$ which converges to $\frac{1}{z}$ uniformly on the domain $\left\{z \in \mathbb{C}\left|\frac{1}{2}<|z|<\frac{3}{2}\right\}\right.$.
33. Let f be holomorphic in the unit disk $\Delta(1)$ and continuous on $\overline{\Delta(1)}$. Assume that

$$
|f(z)|=\left|e^{z}\right| \quad \forall z \in \partial \Delta(1)
$$

Find all such f.
34. Evaluate the real integral

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{4}} d x
$$

35. Prove the Schwarz-Pick lemma: Let $f: \Delta(1) \rightarrow \Delta(1)$ be holomorphic. Then

$$
\left|\frac{f(z)-f(a)}{1-\overline{f(a)} f(z)}\right| \leq\left|\frac{z-a}{1-\bar{a} z}\right| \quad \forall a, z \in \Delta(1)
$$

36. Define the three types of isolated singularities (for a function f which is holomorphic on $D(a, r) \backslash\{a\}$ for some $r>0$), and give an example for each one.
37. (a) Suppose that f can be represented by the power series $f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ on $D\left(z_{0}, r\right)$. State a (integral) formula (in terms of f) to compute the coefficients a_{n}.
(b) i. Let $f(z)$ be an entire function (i.e. it is holomorphic on \mathbb{C}) with $|f(z)|<1$ on \mathbb{C}. Use the formula in (a) to prove that f is constant.
ii. Let $f(z)$ be an entire function with $|f(z)|<1+|z|^{99 / 2}$ on \mathbb{C}. Use the formula in (a) to prove that f is a polynomial.
(c) Suppose that f is holomorphic on $D(0,1) \backslash\{0\}$. Let $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$ be the Laurent expansion of f on $D(0,1) \backslash\{0\}$. State a (integral) formula (in terms of f) to compute the coefficients a_{n}.
(d) Suppose that f is holomorphic on $D(0,1) \backslash\{0\}$ with $|f(z)|<1$ for all $0<|z|<1$. Use the formula in (c) to prove that $a_{n}=0$ for all $n<0$, hence $z=0$ is a removable singularity.
(e) State the (general) Riemann removable singularity theorem.
38. Determine the number of zeros (counting multiplicities) of the polynomial $z^{7}-5 z+3$ in the annulus $\{z|1<|z|<2\}$.
