- 1. Define the following concepts:
 - (a) A complete metric space (X, ρ) .
 - (b) The spectrum of a linear bounded operator A. What is an eigenvalue of A?
 - (c) A complete orthonormal set $\{\varphi_n\}$ in a Hilbert space H.
 - (d) A convex function $f: C \to \mathbb{R}$ on an open convex $C \subset \mathbb{R}^n$.
 - (e) The synoptic sets, the effective domain and the graph of the function $f: X \to \overline{\mathbb{R}}$. (Here, $\overline{\mathbb{R}}$ denotes the extended real line, i.e. $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.)
- 2. State carefully the following results, making sure that all conditions are included and significant terms are defined.
 - (a) Let Ω be an open set in \mathbb{R}^n and $x_0 \in \Omega$. State the inverse function theorem for a function $f: \Omega \to \mathbb{R}^n$.
 - (b) State the Parseval equality for vectors in a real Hilbert space.
 - (c) Let $L: H \to H$ be a continuous linear transformation on a real Hilbert space H. State the Fredholm splitting (or decomposition) theorem for H and L.
 - (d) State Young's inequality for vectors in \mathbb{R}^n .
- 3. Let *H* be a Hilbert space; let $\mathcal{B}(H)$ denote the space of linear bounded operators from *H* to *H*; and for $A \in \mathcal{B}(H)$, let $\mathcal{R}(A)$ denote the range of *A*. Answer **True** or **False** to each of the following questions (work need not be shown):
 - (a) If $A \in \mathcal{B}(H)$, then A is closed.
 - (b) If M and N are sets in H such that every $x \in H$ is uniquely represented by x = u + v with $u \in M$ and $v \in N$, then both M and N are subspaces of H.
 - (c) If $A \in \mathcal{B}(H)$, then $[\ker(A^*)]^{\perp} = \mathcal{R}(A)$.
 - (d) Let $f: X \to X$, where (X, ρ) is a metric space. If $f \circ f$ is a contraction, then f is continuous.
 - (e) If a function $f:[a,b] \to \mathbb{R}$ is convex on [a,b], then f is uniformly continuous on [a,b].
- 4. Consider $f(x) := x \coth(x)$ for x > 0.
 - (a) Find the range $R(f) \subset \mathbb{R}$ of this function and $\alpha(f) := \inf_{x>0} f(x)$. Is this infimum attained? Give reasons and proofs for your claims.
 - (b) Show that f is a 1-1 map.
 - (c) Let g be the inverse function of f. Prove that g(y) < y for all $y \in R(f)$.
- 5. Let H be a real Hilbert space. Answer **True** or **False** for each of the following statements:
 - (a) If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and continuous, then f has a finite lower bound on \mathbb{R}^n .
 - (b) If $L: H \to H$ is a continuous linear transformation and $\lambda > ||L||$, then for any $f \in H$, there is a unique solution to the equation $\lambda u Lu = f$.
 - (c) If a compact linear transformation $L: H \to H$ is 1-1 and onto, then so is its adjoint operator L^* .
 - (d) If f, g are C^1 functions on the interval (0, 1), then the function $h(x) := \max(f(x), g(x))$ is a C^1 function on (0, 1).
 - (e) If a nonempty subset E of H is an orthogonal set, then it is a linearly independent set.
- 6. (a) Prove that every *compact* subset K of a metric space X is closed and bounded.
 - (b) Prove that a closed subset M of a compact metric space X is compact.
 - (c) Prove that if X, Y are metric spaces, and $f: X \to Y$ is a continuous mapping, and K is compact in X, then the image f(K) is compact in Y.

7. Consider $H = \ell^2$ with the canonical scalar product and the canonical orthonormal system of unit vectors $\{e_n\}_{n \in \mathbb{N}}$. Define the vectors $f_n := e_n - 2e_{n+2}$ for $n \in \mathbb{N}$. Thus,

$$f_1 = (1, 0, -2, 0, \dots), \quad f_2 = (0, 1, 0, -2, 0, \dots), \quad f_3 = (0, 0, 1, 0, -2, 0, \dots), \dots$$

Also, consider $S = \{f_n\}_{n \in \mathbb{N}}$.

- (a) Find a finite orthonormal system $\{h_j\}_{j=1}^N$ that spans $F = S^{\perp}$.
- (b) Define an orthogonal projection of x onto $M = \text{span}\{e_j \mid j = 1, \dots, n\} \subset H$ by

$$P_M x := \sum_{j=1}^n (x, e_j) e_j.$$

Compute $P_M x$ for $x = e_1 + e_2$.

(c) Define an *orthogonal projection* of x onto F, found in part (a), by

$$P_F x := \sum_{j=1}^N (x, h_j) h_j.$$

Compute $P_F x$ for $x = e_1 + e_2$.

8. Show that the set S defined by

$$S = \{ \varphi \mid \varphi \in C^1([0,1]), \varphi(0) = 0, |\varphi'(x)| \le 1 \ \forall x \in [0,1] \}.$$

is pre-compact in $C^0([0,1])$.

- 9. State carefully the following theorems:
 - (a) The *contraction mapping* theorem.
 - (b) The representation theorem for a linear bounded functional on a Hilbert space.
 - (c) Bessel's inequality.
 - (d) Give a characterization for a *convex* function $f: I \to \mathbb{R}$ with $f \in C^1(I)$ and open $I \subset \mathbb{R}$.
 - (e) A characterization for a *lower semi-continuous* function $f: X \to \overline{\mathbb{R}}$ on a metric space X. (Here, $\overline{\mathbb{R}}$ denotes the *extended real line*, i.e. $\overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$.)
- 10. Consider $f(x) := x \ln(1+x)$ for x > 0.
 - (a) Show that this function is strictly increasing and strictly convex on $(0, \infty)$.
 - (b) Find $\alpha(f) := \inf_{x>0} f(x)$. Is this infimum attained?
 - (c) Let g be the inverse function of f. Give the domain of g and show that g is strictly increasing and strictly concave on this domain.
 - (d) With f, g as above, prove that 1 < g(1) < 2.
- 11. (a) Let M be a closed convex set in a real Hilbert space H. Show that $y \in M$ satisfies $\rho(x, M) = ||x-y||$ if and only if for any $z \in M$, the following inequality holds:

$$(x-y, y-z) \ge 0.$$

- (b) Let two sequences $\{x_n\}$ and $\{y_n\}$ of the closed unit ball $B_1(0)$ in a Hilbert space H be such that $(x_n, y_n) \to 1$ as $n \to \infty$. Prove that $||x_n y_n|| \to 0$ as $n \to \infty$.
- 12. Let V be a subspace of a real Hilbert space H, and let V^{\perp} be its orthogonal complement.
 - (a) Show that V^{\perp} is a closed subspace of H.

- (b) Prove that if $V \subseteq W$, then $W^{\perp} \subseteq V^{\perp}$.
- (c) Prove that V is dense in H if and only if $V^{\perp} = \{0\}$.
- 13. Define the following concepts:
 - (a) A metric $\rho(x, y)$ for $x, y \in X$, and two equivalent metrics ρ_1 and ρ_2 on X.
 - (b) A compact mapping $f: X \to Y$ where X and Y are metric spaces.
 - (c) A self-adjoint operator $S: H \to H$, normal operator $N: H \to H$, and unitary operator $U: H \to H$ on a Hilbert space H.
 - (d) A weakly coercive $f : \mathbb{R}^n \to \mathbb{R}$ and coercive function $g : \mathbb{R}^n \to \mathbb{R}$.
 - (e) A convex function $f: \Omega \to \overline{\mathbb{R}}$, where $\Omega \subset \mathbb{R}^n$ is a non-empty convex set.
- 14. Let X be a metric space. Prove the following statements:
 - (a) A set $F \subset X$ is closed if and only if for every convergent sequence $x_n \to x$ in X such that all $x_n \in F$, it follows that also $x \in F$.
 - (b) Let F be a subset of a complete metric space X. Then F is *closed* in X if and only if F (as a metric space in its own right) is *complete*.
- 15. Consider the sequence $\{u_n\}_{n\geq 1}$ defined by

$$u_n(x) = \cos n\pi x, \quad x \in [0,1].$$

- (a) Show that $u_n \to 0$ weakly in $L^2(0,1)$. (Hint: Use the density of $C^0[0,1]$ in $L^2(0,1)$ and the Weierstrass polynomial approximation theorem.
- (b) Show that the sequence $\{u_n\}_{n\geq 1}$ does not converge strongly to 0 in $L^2(0,1)$.
- 16. (a) Prove that if $f \in C^0[0,1]$, then the two-point boundary value problem

$$\begin{cases} -u'' = f \text{ in } (0,1) \\ u(0) = u(1) = 0 \end{cases}$$

has a unique solution in $C^{2}[0,1]$ given by

$$u(x) = \int_0^1 k(x, y) f(y) \, dy \qquad \forall x \in [0, 1],$$

with

$$k(x,y) = \begin{cases} (1-x)y & \text{if } y \le x \\ x(1-y) & \text{if } x \le y \end{cases}$$

(b) Let us consider now the following *nonlinear* two-point boundary value problem:

$$\begin{cases} -u'' = \frac{u}{1+u^2} + f \text{ in } (0,1) \\ u(0) = u(1) = 0, \end{cases}$$
(1)

with f still in $C^0[0,1]$. Using an equivalent integral equation formulation of (1), and the Banach contraction mapping theorem, prove that (1) has a unique solution in $C^2[0,1]$.

17. Consider the function $G: \mathbb{R}^n \to \overline{\mathbb{R}}$ defined by

$$G(x) := \|x\|_2^4 - 2\langle Ax, x \rangle$$

where A is an $n \times n$ real symmetric matrix.

(a) Prove that this function is bounded below and has minimizers on \mathbb{R}^n .

- (b) What is the equation satisfied by the critical points of G on \mathbb{R}^n ?
- (c) What mathematical properties can you say about the critical points and/or minimizers of G?
- 18. (a) Given $p \in (1, \infty)$, define the *p*-norm on \mathbb{R}^n . Write out this formula explicitly when p = 4.
 - (b) Suppose $F: X \to X$ is a function. What does it mean to say that F is a contraction mapping?
 - (c) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable at a point $x \in \mathbb{R}^n$. Define the **G-derivative** of f at x.
 - (d) Let H be a Hilbert space, and $L: H \to H$ be a continuous linear transformation. Define the **adjoint** of L.
 - (e) Let H be a Hilbert space and V be a subspace of H. What is the **orthogonal complement** of V?
 - (f) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a function. What is the definition of a strictly convex function?
- 19. State carefully the following results; making sure that all conditions are included and significant terms are defined.
 - (a) Let Ω be an open set in \mathbb{R}^n and $x_0 \in \Omega$. State the inverse function theorem for a function $f: \Omega \to \mathbb{R}^n$.
 - (b) State the Riesz (or Riesz-Frechet) theorem regarding continuous linear functionals on a real Hilbert space H.
 - (c) Let $L: H \to H$ be a continuous linear transformation. State the Fredholm splitting (or decomposition) theorem for H and L.
 - (d) State the Parseval equality for vectors in a real Hilbert space.
- 20. Answer **True** or **False** to each of the following statements (work need not be shown):
 - (a) All norms in an arbitrary linear normed space X are equivalent.
 - (b) If M is a linear set in a Hilbert space H, then $M^{\perp \perp} = M$.
 - (c) If $\{\varphi_k\}$ is an orthonormal subset of a Hilbert space H, then

$$x = \sum_{k} (x, \varphi_k) \varphi_k \quad \text{for all } x \in H$$

is equivalent to

$$||x||^{2} = \sum_{k} |(x,\varphi_{k})|^{2} \text{ for all } x \in H.$$

- (d) Suppose $f: (a,b) \to \mathbb{R}$ is such that $f''(x) \ge 0$ for each $x \in (a,b)$. Then f is C^1 and convex on (a,b).
- (e) There exists exactly one minimizer of a lower semi-continuous and quasi-convex function $f : \Omega \to \mathbb{R}$, where Ω is a nonempty compact convex set in \mathbb{R}^n .
- 21. Let X be a Banach space and ||x|| a norm of $x \in X$. Introduce a scalar product (x, y) in X that gives rise to a new norm $||x||_s = \sqrt{(x, x)}$ which is, in general, different from $|| \cdot ||$. Suppose there exists a constant $\gamma > 0$ such that

$$||x||_s \le \gamma ||x|| \qquad \forall x \in X.$$

Consider a linear set $M \subset X$ dense in X in metric $\|\cdot\|_s$. Suppose that for any $\hat{x} \in M$, its Fourier series $\sum_k x_k \varphi_k$, with respect to the orthogonal system $\{\varphi_k\}$, converges to \hat{x} in metric $\|\cdot\|$. Prove that $\{\varphi_k\}$ is complete (or equivalently, maximal) in X in metric $\|\cdot\|_s$.

- 22. Define the following concepts:
 - (a) An open set $M \subset X$, where (X, ρ) is a metric space.
 - (b) A complete metric space (X, ρ) .
 - (c) $A: D(A) \subset H \to H$ is a *closed* operator, where H is a Hilbert space.

- (d) A function $f: E \to \mathbb{R}$ is *lower semi-continuous* at a point $x \in E$, where X is a metric space and $\emptyset \neq E \subset X$.
- (e) A weakly coercive function $f : \mathbb{R}^n \to \mathbb{R}$.

23. State carefully the following theorems:

- (a) The contraction mapping theorem.
- (b) Parseval's identity.
- (c) The *Hahn-Banach* theorem.
- (d) The characterization (the necessary and sufficient conditions) of a lower semi-continuous function.
- (e) Second order necessary conditions for a function $f:(a,b) \to \mathbb{R}$ to have a local minimum at $x^* \in (a,b)$.
- 24. (a) For the questions in this part, you may provide just a Yes or No answer without justification. Do the following linear sets of functions from C[-, 1, 1] form a *subspace*?
 - i. monotone functions
 - ii. even functions
 - iii. polynomials
 - iv. polynomials of degree less than k
 - v. continuously differentiable functions
 - vi. continuous piecewise linear functions
 - vii. functions such that x(0) = 0
 - viii. functions such that $\int_{-1}^{1} x(t) dt = 0$
 - (b) Is the linear set $L = \{x \in \ell_2 : x = (x_1, x_2, \dots), \sum_{k=1}^{\infty} x_k = 0\}$ a subspace? Explain your answer.
 - (c) For the questions in this part, provide a **Yes** or **No** answer with justification for a **Yes** answer and a counterexample for a **No** answer.

Given two metric spaces (X, ρ_X) and (Y, ρ_Y) , let $A, B \subset X$ be two arbitrary sets such that $\rho_X(A, B) = 0$. Is it possible that $\rho_Y(f(A), f(B)) = 0$ if

- i. $f: X \to Y$ is a continuous mapping;
- ii. $f: X \to Y$ is a uniformly continuous mapping?
- 25. For $0 < \alpha \leq 1$, consider the space $C^{0,\alpha}[a,b]$ of Hölder-continuous functions $f : [a,b] \to \mathbb{R}$. Let $f \in C^{0,\alpha}[a,b]$, and define

$$||f||_{0,\alpha} := \inf\{L \ge 0 : |f(x) - f(y)| \le L|x - y|^{\alpha} \text{ for } x, y \in [a, b]\}.$$

Also, introduce $E = \{f : [a, b] \rightarrow \mathbb{R} : f \in C^{0, \alpha}[a, b], f(a) = 0\}.$

- (a) Show that if $f \in E$, then $|f(x) f(y)| \le ||f||_{0,\alpha} |x y|^{\alpha}$ for all $x, y \in [a, b]$ (i.e. the infimum in the definition of $||f||_{0,\alpha}$ is actually a minimum).
- (b) Show that $||f||_{0,\alpha}$ is a norm on E.
- (c) Show that $||f||_{\infty} \leq (b-a)^{\alpha} ||f||_{0,\alpha}$ for $f \in E$.
- (d) Show that the space $(E, ||f||_{0,\alpha})$ is complete.
- 26. Let H be a (complex) Hilbert space. Suppose that $\{e_n\}_{n\in\mathbb{N}}$ is a complete orthonormal system on H and $\{g_n\}_{n\in\mathbb{N}}$ is a sequence of vectors in H such that

$$c^2 := \sum_{k=1}^{\infty} \|g_k\|^2 < \infty.$$

- (a) Show that for every $x \in H$, the series $\sum_{k=1}^{\infty} (x, g_k)e_k$ is convergent.
- (b) Using (a), define

$$Ax := \sum_{k=1}^{\infty} (x, g_k) e_k, \quad x \in H.$$

Show that A is a bounded linear operator on H, i.e. $A \in \mathcal{B}(H)$, with $||A|| \leq c$.

(c) Define $A_n \in \mathcal{B}(H)$ by

$$A_n x := \sum_{k=1}^n (x, g_k) e_k, \quad x \in H$$

Show that $||A_n - A|| \to 0$ as $n \to \infty$.

- (d) Compute A^*e_n for all $n \in \mathbb{N}$, and then provide a formula for A^*x for arbitrary $x \in H$.
- 27. Suppose Q is an $n \times n$ positive definite matrix, A is an $m \times n$ real matrix with rank A = m where $m \leq n-1$, and $b \in \mathbb{R}^m$. Consider the optimization problem:

Minimize
$$f(x) = (Qx, x)$$
 subject to $Ax = b, x \in \mathbb{R}^n$,

assuming that the solution set of the linear equation has a dimension $d \ge 1$.

- (a) Give a necessary and sufficient condition for a point $x \in \mathbb{R}^n$ to be an optimal solution of this optimization problem.
- (b) Find the formula for the minimal value of this problem.
- (c) Use Lagrange multipliers to find an optimal solution to this problem for the following values:

$$Q = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 4 & 2 \end{bmatrix}, \quad b = -8.$$

28. Consider a Hilbert space H and a complete orthonormal system $\{e_n\}$ in H. Define an operator A by

$$Ax = \sum_{n} \zeta_n e_{n+1}, \quad \text{where} \quad H \ni x = \sum_{n} \zeta_n e_n \quad \text{with} \quad \|x\|^2 = \sum_{n} |\zeta_n|^2.$$

- (a) Show that A is *linear* and *continuous*.
- (b) What is its *adjoint* A^* ?
- (c) Show that $0 \mod not$ be an eigenvalue of A.
- 29. (a) Let A be an $m \times n$ real matrix. Define the rank of A.
 - (b) Suppose $F : X \to Y$ is a function with X, Y being normed vector spaces. What does it mean to say that F is **Lipschitz continuous** on X?
 - (c) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is convex. Define a subgradient of f at x.
 - (d) Let H be a Hilbert space, and $L: H \to H$ be a continuous linear transformation. Define the **adjoint** of L.
 - (e) Let H be a Hilbert space and V be a subspace of H. What is the **orthogonal complement** of V?
 - (f) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a function. What is the definition of a strictly convex function?
- 30. Answer T (true) or F (false) for each of the following statements.
 - (a) If $f: \mathbb{R}^n \to \mathbb{R}$ is convex and continuous, then f has a finite lower bound on \mathbb{R}^n .
 - (b) If $L: H \to H$ is a continuous linear transformation and $\lambda > ||L||$, then for any $f \in H$ there is a unique solution of the equation $\lambda u Lu = f$.
 - (c) If a linear transformation $L: H \to H$ is 1-1, then so also is its adjoint operator L^* .

- (d) If f, g are C^1 functions on the interval (0, 1), then the function $h(x) := \max(f(x), g(x))$ is a C^1 function on (0, 1).
- (e) A nonempty orthogonal subset E of a Hilbert space H is a linearly independent set.
- 31. Let H be a real Hilbert space, and suppose $L: H \to H$ is a continuous linear operator with ||L|| < 1.
 - (a) Prove that the operator norm of the adjoint linear operator L^* obeys $||L^*|| < 1$.
 - (b) Prove that both (I L) and $(I L^*)$ are 1-1 maps of H to itself.
 - (c) Given $f \in H$ prove there is a unique solution of the equation u Lu = f.
 - (d) Find an explicit formula for the inverse operator $(I-L)^{-1}$ and find an upper bound on $||(I-L)^{-1}||$.
- 32. Let Δ'_n be the set of all probability vectors in \mathbb{R}^n . That is, Δ'_n is the set of vectors in \mathbb{R}^n that satisfy $x_j \ge 0$ for each j and $\sum_{j=1}^n x_j = 1$. Suppose that $g : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function.
 - (a) Give reasons why g attains both its infimum and its supremum on Δ'_n .
 - (b) Describe the explicit formulae satisfied by the partial derivatives $D_j g(\hat{x})$ of g at a local minimizer of g on Δ'_n . In particular give the number of (independent) equations that must hold at a local minimizer and the number of inequalities that must hold.
- 33. Consider the function $f : \mathbb{R}^n \to \mathbb{R}$ defined by $f(x) := ||Ax b||_2^2$ with A being an $m \times n$ real matrix and $b \in \mathbb{R}^m$.
 - (a) Show that f is a convex function on \mathbb{R}^n .
 - (b) Find the expression for the G-derivative $\nabla f(x)$ and the equation that holds at a local minimizer of f on \mathbb{R}^n .
 - (c) Describe conditions on A, A^T that imply a minimizer of f is actually a solution of the linear equation Ax = b.
- 34. (a) Let (X, ρ) be a complete metric space, and (Y, ρ) be a subspace of (X, ρ) . Prove that (Y, ρ) is complete if and only if Y is a closed set in (X, ρ) .
 - (b) Let (X, ρ) be a metric space. Show that a continuous image f(K) of a compact set $K \subset X$ is compact.
- 35. Consider a linear operator $A: X \to Y$ where X and Y are linear normed spaces. Show that A is closed if and only if its domain $\mathcal{D}(A)$ is a Banach space in the norm $|||x||| = ||x||_X + ||Ax||_Y$.
- 36. Let X be a linear normed space, $f \in X^*$, $f \neq 0$. Consider a hyperplane $L = \{x \in X : \langle x, f \rangle = 1\}$ (here $\langle x, f \rangle$ denotes the dual pairing of $x \in X$ and $f \in X^*$). Prove that

$$||f|| = \frac{1}{\inf_{x \in L} ||x||}$$

- 37. State carefully the following theorems:
 - (a) The Riesz Representation Theorem.
 - (b) *Bessel's* inequality.
 - (c) The Heine-Borel Theorem.
 - (d) A characterization for a *lower semi-continuous* function $f: X \to \overline{\mathbb{R}}$ on a metric space X.
 - (e) First order necessary conditions for a function $f : \Omega \to \mathbb{R}$ to have a local minimum at $x^* \in \Omega$, where $\Omega \subset \mathbb{R}^n$ is an open set.
- 38. (a) Is $\rho(x,y) = |x-y|^2$ a metric on \mathbb{R} ? Is the same true for $\rho(x,y) = \sqrt{|x-y|}$? Justify.
 - (b) Suppose metrics ρ_1 and ρ_2 are equivalent. Show that a sequence $\{x_n\}_{n=1}^{\infty} \subset X$ is convergent in (X, ρ_1) if and only if it is convergent in (X, ρ_2) .

- (c) Show that any two of the metrics ρ_p on \mathbb{R}^n are equivalent. (Editor's note: probably ρ_p (for $p \ge 1$) is meant to be the metric defined $\rho_p(x, y) = \left(\sum_{i=1}^n |x_i y_i|^p\right)^{1/p}$ for $x = (x_1, x_2, \dots, x_n), y = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n$.
- 39. (a) Define the space ℓ_p and its norm. For what values of p is it a Hilbert space?
 - (b) For $x = (x_1, x_2, ...) \in \ell_2$, we set $A_n x = (x_{n+1}, x_{n+2}, ...)$. Show that A_n is a linear bounded operator, and $A_n \to 0$ strongly as $n \to \infty$.
 - (c) Define the adjoint operator A_n^* . Then find it and investigate if it is true that $A_n^* \to 0$ strongly as $n \to \infty$.
- 40. Define the following concepts:
 - (a) A complete metric space (X, ρ_X) .
 - (b) Uniform and strong convergence of a sequence of operators $\{T_n\}$ in the space of linear bounded operators $\mathcal{B}(X,Y)$ between normed linear spaces X and Y.
 - (c) The orthogonal complement M^{\perp} of a nonempty subset M in a Hilbert space H.
 - (d) A complete orthonormal set $\{\varphi_n\}$ in a Hilbert space H.
 - (e) A convex function $f: C \to \mathbb{R}$ on an open convex subset $C \subset \mathbb{R}^n$.
- 41. State carefully the following theorems:
 - (a) The Open Mapping Theorem.
 - (b) The Contraction Mapping Theorem.
 - (c) The Pythagoras Theorem.
 - (d) The second order necessary condition for a point to be a local minimizer of $f:(a,b) \to \mathbb{R}$.
 - (e) A characterization (other than the definition) for a real-valued C^1 function f defined on an open interval I of \mathbb{R} to be convex.
- 42. Answer **True** or **False** to each of the following questions (work need not be shown):
 - (a) If X and Y are normed linear spaces, then strong convergence of operators $\{T_n\} \subset \mathcal{B}(X,Y)$ implies their uniform convergence.
 - (b) If A is a bounded linear operator on a Hilbert space H, then $H = \operatorname{ran} A \oplus \ker A^*$.
 - (c) Let $\{\varphi_n\}$ be an orthonormal system in a Hilbert space H and $\lambda = (\lambda_1, \ldots, \lambda_n, \ldots)$. Then the following assertions are equivalent:
 - i. The sum $\sum_{k=1}^{\infty} \lambda_k \varphi_k$ converges in H. ii. $\lambda \in \ell^2$.
 - (d) A contraction mapping is uniformly continuous.
 - (e) There exists exactly one minimizer of a lower semi-continuous and quasi-convex function $f: \Omega \to \mathbb{R}$ where Ω is a nonempty compact convex set in \mathbb{R}^n .
- 43. Let X := C[0,1] be the usual space of continuous real-valued functions on [0,1] with the inner product

$$\langle f,g\rangle:=\int_0^1 f(t)g(t)\,dt.$$

Define $\mathcal{K}: X \to X$ by $\mathcal{K}f(t) := \int_0^t f(s) \, ds$ for $f \in X$.

- (a) Show that \mathcal{K} is a continuous linear transformation of X to itself and find its norm.
- (b) Define, and determine, the null space of \mathcal{K} .
- (c) Find the adjoint operator \mathcal{K}^* (restricted to X).

- (d) Does the equation $\mathcal{K}u(t) = f(t)$ have a solution in X for every $f \in X$? Give reasons for your answer.
- 44. Let H be a Hilbert space, and let $\mathcal{B}(H)$ denote the space of linear bounded operators from H to H. Answer **True** or **False** to each of the following questions (work need not be shown):
 - (a) Let $f: X \to X$ where (X, ρ) is a metric space. If the composition $f \circ f$ is a *contraction*, then f is *continuous*.
 - (b) The inner product of two weakly convergent sequences converges.
 - (c) If $A \in \mathcal{B}(H)$ is *compact*, then A^* is also a compact operator.
 - (d) If $f:(a,b) \to \mathbb{R}$ is such that $f''(x) \ge 0$ for each $x \in (a,b)$, then f is C^1 and convex on (a,b).
- 45. Consider the optimization problem:

Minimize
$$f(x) = (Qx, x)$$
 subject to $Ax = b, x \in \mathbb{R}^n$,

where Q is an $n \times n$ positive semi-definite matrix, A is an $m \times n$ matrix and $b \in \mathbb{R}^m$, and the linear system Ax = b has an n - m dimensional set of solutions.

- (a) Give a necessary and sufficient condition for a point $x \in \mathbb{R}^n$ to be an optimal solution of this optimization problem.
- (b) Find an optimal solution to this problem for the following values:

$$Q = \begin{bmatrix} 3 & 2\\ 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 4 & 2 \end{bmatrix}, \quad b = -8.$$

- 46. Suppose that $f(x) = ax + bx^{\beta}$ for x > 0, with a, b, β all strictly positive.
 - (a) Show that f is convex and has a minimizer on $(0, \infty)$.
 - (b) Find the minimizer of this function and find the numbers $C > 0, \gamma$ such that

$$\inf_{x \ge 0} f(x) = Ca^{\gamma} b^{1-\gamma}.$$

Verify that this C is independent of a and b.

- (c) When $b, \beta > 0$ and a = 0, show that f is convex and bounded below but does not have a minimizer on $(0, \infty)$.
- 47. Let Ω be a nontrivial convex set in \mathbb{R}^n , (a, b) an interval in \mathbb{R} , and $f : \Omega \to \mathbb{R}$ a convex function with $f(\Omega) \subset (a, b)$. Show that if $\varphi : (a, b) \to \mathbb{R}$ is convex and increasing, then $g(x) := \varphi(f(x))$ is convex on Ω .
- 48. Consider the optimization problem:

Minimize
$$f(x) = (Qx, x) - (b, x), \quad x \in \mathbb{R}^n,$$

where Q is an $n \times n$ positive semi-definite matrix, and $b \in \mathbb{R}^n$.

- (a) Give a *necessary* and *sufficient* condition for a point $x \in \mathbb{R}^n$ to be an optimal solution of this optimization problem.
- (b) Find an optimal solution to this problem for the following values:

$$Q = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}, \quad b = \begin{bmatrix} -2 & 2 \end{bmatrix}.$$