Superconvergence of discontinuous Galerkin method for hyperbolic problems

Jingmei Qiu

Department of Mathematics University of Houston Supported by NSF and UH. Joint work w/ W. Guo and X.-H. Zhong

Feb. 2012, University of Houston

Outline

• Part I. Introduction

Superconvergence of DG

- Hyperbolic conservation laws
- DG method: formulation, implementation, properties
- Part II. Superconvergence of DG
 - Review of literature: negative norm, post-processed solution, Radau projection
 - Fourier analysis for linear problem
 - eigenvalues
 - eigenvectors
 - Simulation result
 - Ongoing and future work

Jingmei Qiu

DG for hyperbolic conservation laws

Hyperbolic conservation laws

$$\begin{cases} \mathbf{u}_t + \nabla \cdot \mathbf{f}(\mathbf{u}) = 0, \\ \mathbf{u}(\mathbf{x}, t = 0) = \mathbf{u}_0(\mathbf{x}) \end{cases}$$
(1)

• u: conserved quantities

$$\frac{d}{dt}\int \mathbf{u}dx=0.$$

- f: flux functions
- For example, Euler equations for fluid dynamics is a system of three equations in the form of (1) with

$$\mathbf{u}=(\rho,m,E)'$$

representing the conservation of mass, momentum and energy of the system.

Jingmei Qiu

Features of solutions for hyperbolic equations:

solution is constant along characteristics

$$\frac{dx}{dt} = f'(u)$$

- when f(u) is linear, e.g. f(u) = u
 - characteristics: $\frac{dx}{dt} = 1$

- linear advection of initial data from left to right with speed 1.

- when f(u) is nonlinear, e.g. $f(u) = u^2$
 - characteristics: $\frac{dx}{dt} = u(x(t = t_0), t = 0)$

- depending on the sign of initial data, characteristics go to different directions

- when characteristics run into each other: development of discontinuities even from smooth initial data

Approximation space for DG

Define the approximation space as

$$V_h^k = \left\{ \mathbf{v} : \mathbf{v}|_{I_j} \in P^k(I_j); \ 1 \le j \le N \right\}$$
(2)

based on a partition of the computational domain

$$[a, b] = \cup I_j = \cup [x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}].$$

- k is the polynomial degree, h is the mesh size
- Functions in V^k_h is in general discontinuous across the cell boundaries.
- Note that solutions for hyperbolic problem might develop discontinuities/shocks anyway.

DG for hyperbolic equation

A semi-discrete DG ¹ formulation for 1-D hyperbolic problem (1) is to find a piecewise polynomial function $u_h \in V_h^k$, s.t.

$$\frac{d}{dt} \int_{I_j} u_h v dx = \int_{I_j} f(u_h) v_x dx - \hat{f}_{j+1/2} v|_{x_{j+1/2}} + \hat{f}_{j-1/2} v|_{x_{j-1/2}}, \quad (3)$$
$$\forall v \in P^k(I_j).$$

• The numerical flux function

$$\hat{f}_{j+1/2} = \hat{f}(u_{j+1/2}^-, u_{j+1/2}^+),$$

is designed based on how information propagates along characteristics. Especially,

$$\hat{f}(\uparrow,\downarrow)$$

For example, Godunov flux, Lax-Friedrichs flux, ···

• Strong stability preserving Runge-Kutta method is used to evolve the solution in time.

Implementation of DG

1. Choose a set of basis for $P^k(I_j)$ on I_j

$$\{\phi_1(\xi),\cdots,\phi_{k+1}(\xi)\},\quad \xi=\frac{x-x_j}{h}$$

For example

- monomials $\{1, \xi, \cdots \xi^k\}$
- Legendre polynomials
- nodal basis

$$\{L_i(\xi) = L_{agrangian} \text{ polynomial}, \quad i = 1, \cdots k + 1\}$$

Jingmei Qiu

2. Let

$$u_{h}(x,t) = \sum_{i=1}^{k+1} \hat{u}_{i}(t)\phi_{i}(\xi)$$
$$v = \phi_{l}(\xi), \quad l = 1, \dots k+1$$
3. Let $\mathbf{u}_{j} = (\hat{u}_{1}, \dots \hat{u}_{k+1})'$
$$\frac{d}{dt}\mathbf{u}_{j} = \mathbf{f}(\mathbf{u}_{j-1}, \mathbf{u}_{j}, \mathbf{u}_{j+1})$$

e.g. for linear problem (f(u) = u),

$$\frac{d}{dt}\mathbf{u}_j = \frac{1}{h}(A\mathbf{u}_j + B\mathbf{u}_{j-1})$$

Jingmei Qiu

Properties of DG

- compact and flexible in handling complicated geometry
- h-p adaptivity
- maximum principle preserving limiters
- L^2 stability for nonlinear problems
- L^2 error estimate for linear problems
- super convergence

L^2 stability of DG

 L^2 stability ²: $\|u_h(T)\|_2^2 \le \|u_h(0)\|_2^2.$

Specifically,

$$\|u_h(T)\|_2^2 + \Theta_T(u_h) \le \|u_h(0)\|_2^2$$

with

$$\Theta_T(u_h) = \alpha \int_0^T \sum_j [u_h(t)]_{j+\frac{1}{2}}^2 dt.$$

 $\alpha = \max_u |f'(u)|.$

²Jiang and Shu, 90's

Error estimates of DG for linear equation

Let $e = u - u_h$

 $\|e(T)\|_2 \leq C \|u_0\|_{H^{k+2}} h^{k+1}$

Jingmei Qiu

Super convergence of DG

Superconvergen	ce
of DG	
Jingmei Qiu	

For linear problem

- Negative norm and post-processed solution (Cockburn et. al. 2003)
- Radau projection and time evolution of error (Cheng and Shu, 2008)
- Radau and downwind points (Adjerid et. al. 2001)
- Dispersion and dissipation error of physically relevant eigenvalues in Fourier analysis (Ainsworth, 2004)

Jingmei Qiu

Negative norm and post-processed solution

• L² norm

$$\|e(T)\|_2 \leq C \|u_0\|_{H^{k+2}} h^{k+1}$$

negative norm

$$\|e(T)\|_{-(k+1)} \le \|u_0\|_{H^{k+1}} h^{2k+1}$$

with negative norm defined by

$$\|u\|_{-I} = sup_{v \in C_0^{\infty}} \frac{\int_{\Omega} uvdx}{\|v\|_{I,\Omega}}$$

• Post-processed solution via kernel convolution: $u_h^{\star} = K * u_h$

$$\|u(T) - u_h^{\star}(T)\|_0 \le C h^{2k+1}$$

Figure: e(T = 0.1) of DG P^2 solution for linear advection equation. N = 10.

³Enhanced Accuracy by Post-Processing for Finite Element Methods for Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu and Endre Sli

Figure: e(T = 0.1) of DG P^2 solution for linear advection equation. N = 20.

⁴Enhanced Accuracy by Post-Processing for Finite Element Methods for Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu and Endre Sli

Superconvergence of DG Jingmei Qiu -2.5 _3 -3.5 (l⁴n – nj)⁰¹ Boj -5 -55h = 1/10h = 1/20h = 1/40-6.5 h = 1/80-7 ^L0 01 02 0.3 04 0.5 06 07 0.8 0.9 5

Figure: e(T = 0.1) of DG P^2 solution for linear advection equation. $||u - u_h^*|| = O(h^{2k+1}).$

⁵Enhanced Accuracy by Post-Processing for Finite Element Methods for Hyperbolic Equations, by Bernardo Cockburn, Mitchell Luskin, Chi-Wang Shu and Endre Sli

Radau projection

Let

P_h⁻u be polynomials interpolating *u* at Radau points on each element

•
$$\bar{e} = P_h^- u - u_h$$

Then

$$\|\bar{e}(T)\|_{2} \le C_{1} h^{k+2} T \tag{4}$$

$$|e(T)||_{2} \leq ||u - P_{h}^{-}u||_{2} + ||\bar{e}(T)||_{2}$$

$$\leq C_{2}h^{k+1} + C_{1}h^{k+2}T$$
(5)

Jingmei Qiu

Table 2.5

The errors ē and e for Example 1a when using P² polynomials and SSP ninth-order time discretization on a uniform mesh of N cells (GFL = 0.1)

	N	T=1		T= 100		T=1000	
		L ² error	Order	L ² error	Order	L ² error	Order
ē	20	4.17E-06		3.02E-05		2.99E-04	-
	40	2,62E-07	3.99	9.74E-07	4.95	9.38E-06	4.99
	80	1.64E08	4.00	3.36E-08	4.86	2.94E-07	5.00
	160	1.02E-09	4.00	1.37E-09	4.61	9.91E-09	4.89
e	20	1.07E-04		1.11E-04		3.18E-04	
	40	1.34E05	3.00	1.34E-05	3.05	1.63E-05	4.28
	80	1.67E-06	3.00	1.67E-06	3.00	1.70E-06	3.28
	160	2.09E-07	3.00	2.09E-07	3.00	2.09E-07	3.02

6

 $^6 {\rm Superconvergence}$ and time evolution of discontinuous Galerkin finite element solutions, by Yingda Cheng and Chi-Wang Shu

- The numerical solution u_h is closer to $P_h^- u$ than to the exact solution itself.
- When $T = o(\frac{1}{h})$, $C_2 h^{k+1}$ is the dominant term: - time independent and of order k + 1.
- When $T = \mathcal{O}(\frac{1}{h})$, $C_1 h^{k+2} T$ is the dominant term:
 - linearly grow with time and of order k + 2.

From equation (4), it is expected that \overline{e} is on the order of k + 2 = 4. However, superior performance (5th order) is observed. Sharper estimate is yet to be explored?

Jingmei Qiu

Explore super convergence via Fourier analysis

Fourier/Von Neumann analysis

- is an approach to analyze stability and accuracy of numerical schemes
- is restrictive
 - to problems with periodic b.c.
 - to schemes with uniform mesh
- may serve as
 - a sufficient condition as instability of a numerical algorithm
 - a guide for error estimate for more general setting

Fourier analysis for linear equation

Consider linear equation

$$\begin{cases} u_t + u_x = 0, \quad x \in [0, 2\pi], t > 0 \\ u(x, 0) = u_0(x), \ x \in [0, 2\pi] \end{cases}$$

In Fourier space, assume

$$u(x,t) = \sum_{\omega} \hat{u}_{\omega}(t) \exp(i\omega x)$$

then

$$rac{d}{dt}\hat{u}_{\omega}(t)+i\omega\hat{u}_{\omega}(t)=0\Rightarrow\hat{u}_{\omega}(t)=\exp(-i\omega t)\hat{u}_{\omega}(0)$$

WLOG, consider a single mode $exp(i\omega x)$.

Fourier analysis for DG

Based on the assumption of uniform mesh and initial data $u(x, 0) = exp(i\omega x)$, we assume on each element I_j

$$\mathbf{u}_j = \mathbf{u}(t) exp(i\omega x_j). \tag{6}$$

• $\mathbf{u} = (\hat{u}_1, \cdots \hat{u}_{k+1})'$ is the degree of freedom on each cell

 the spatial dependence is from exp(i\u03c6x_j). Especially, between neighboring cells, the difference is the ratio exp(i\u03c6h).

Substituting (6) into the DG scheme, the coefficient vector satisfies the following ODE system

$$\mathbf{u}'(t)=G\mathbf{u}(t),$$

where G is the amplification matrix of size $(k + 1) \times (k + 1)$

$$G=rac{1}{h}(A+Be^{-i\xi}), \quad \xi=\omega h.$$

Jingmei Qiu

Let

• eigenvalues of G as

$$\lambda_1, \cdots, \lambda_{k+1}$$

the corresponding eigenvectors as

 $\tilde{V}_1, \cdots, \tilde{V}_{k+1}$

Then

$$\mathbf{u}(t) = C_1 e^{\lambda_1 t} \tilde{V}_1 + \dots + C_{k+1} e^{\lambda_{k+1} t} \tilde{V}_{k+1}, \\ = e^{\lambda_1 t} V_1 + \dots + e^{\lambda_{k+1} t} V_{k+1}$$

where the coefficients C_1, \dots, C_{k+1} determined by the initial condition and $V_l = C_l \tilde{V}_l$.

Jingmei Qiu

Eigenvalues of G

(k+1) eigenvalues

- one of which is physically relevant, approximating $i\omega$ with high order accuracy 7
 - order 2k + 1 dissipation error
 - order 2k + 2 dispersion error
- k of which has large negative real part ($O(-\frac{1}{h})$).

- This indicates that the corresponding eigenvector will be damped out exponentially fast.

Remark

Eigenvalues are independent of choices of basis in DG implementation.

⁷Ainsworth, 04'

Jingmei Qiu

Symbolic analysis on eigenvalues

• P¹

 $\lambda_{1} = -ik - \frac{k^{4}}{72}h^{3} + O(h^{4})$ $\lambda_{2} = -\frac{6}{h} + 3ik + k^{2}h + O(h^{2})$

• *P*²

 $\lambda_1 = -ik - \frac{k^6}{7200}h^5 + O(h^6)$ $\lambda_2 = \frac{-3 + \sqrt{51}i}{\hbar} + O(1)$ $\lambda_3 = \frac{-3 - \sqrt{51}i}{h} + O(1)$

Jingmei Qiu

• P³

$$egin{aligned} \lambda_1 &= -ik - 7.1 imes 10^{-7}k^8h^7 + O(h^8) \ \lambda_2 &= rac{-0.42 + 6.61i}{h} + O(1) \ \lambda_3 &= rac{-0.42 - 6.61i}{h} + O(1) \ \lambda_4 &= -rac{19.15}{h} + O(1) \end{aligned}$$

Eigenvectors of G

With Lagrangian basis functions based on Radau points on each element,

$$V_l = \mathcal{O}(h^{k+2}), \quad l = 2, \dots k+1$$

 $\|V_1 - \mathbf{u}(t=0)\|_{\infty} \le \sum_{l=2}^{k+1} \|V_l\|_{\infty} = \mathcal{O}(h^{k+2})$

Symbolic analysis on eigenvectors

• *P*¹

$$P^{2}: V_{2,3} = \begin{pmatrix} -\frac{(153 + 408\sqrt{6} \pm i18\sqrt{34} \mp i29\sqrt{51})k^{4}}{2040000}h^{4} + O(h^{5}) \\ -\frac{(153 - 408\sqrt{6} \mp i18\sqrt{34} + \mp i29\sqrt{51})k^{4}}{2040000}h^{4} + O(h^{5}) \\ -\frac{ik^{4}}{160\sqrt{51}}h^{4} + O(h^{5}) \end{pmatrix}$$

Jingmei Qiu

• P³

$$V_{2} = \begin{pmatrix} (2.13 \times 10^{-5} + i1.19 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \\ (1.55 \times 10^{-6} - i1.86 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \\ (-1.73 \times 10^{-5} + i9.61 \times 10^{-6})k^{5}h^{5} + O(h^{6}) \\ (6.53 \times 10^{-6} + i2.31 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \end{pmatrix}$$

$$V_{3} = \left(\begin{array}{c} (-2.13 \times 10^{-5} + i1.19 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \\ (-1.55 \times 10^{-6} - i1.86 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \\ (1.73 \times 10^{-5} + i9.61 \times 10^{-6})k^{5}h^{5} + O(h^{6}) \\ (-6.53 \times 10^{-6} + i2.31 \times 10^{-5})k^{5}h^{5} + O(h^{6}) \end{array}\right)$$

$$V_4 = \left(egin{array}{c} 2.20 imes 10^{-5} i k^5 h^5 + O(h^6) \ -1.09 imes 10^{-5} i k^5 h^5 + O(h^6) \ 6.85 imes 10^{-6} i k^5 h^5 + O(h^6) \ -4.62 imes 10^{-5} i k^5 h^5 + O(h^6) \end{array}
ight)$$

Jingmei Qiu

Error of DG solution

Proposition

Consider DG with P^k $(k \le 3)$ solution space for linear hyperbolic equation $u_t + u_x = 0$ with uniform mesh, periodic boundary condition. Let \vec{u} and \vec{u}_h be the point values of exact and numerical solution at right Radau points respectively. Let $\vec{e} = \vec{u} - \vec{u}_h$. Then

$$\|\vec{e}(T)\| = \mathcal{O}(h^{2k+1})T + \mathcal{O}(h^{k+2})$$

Proof. Consider Lagrangian basis functions at Radau points as basis functions on each DG element,

$$\begin{split} \|\vec{e}(T)\| &= \|\vec{u}(T) - \vec{u}_{h}(T)\| \\ &= \|(\exp(i\omega T)\vec{u}(0) - \sum_{l=1}^{k+1} \exp(\lambda_{l}t)V_{l}\| \\ &\leq \|(\exp(i\omega T) - \exp(\lambda_{1}T))V_{1}\| \\ &+ \sum_{l=2}^{k+1} \|(\exp(i\omega t) - \exp(\lambda_{l}t))V_{l}\| \\ &\leq |\exp(i\omega T) - \exp(\lambda_{1}T)|\|V_{1}\| \\ &+ \sum_{l=2}^{k+1} (1 + |\exp(\lambda_{l}t)|)\|V_{l}\| \\ &= \mathcal{O}(h^{2k+1})T\|V_{1}\| + \sum_{l=2}^{k+1} (1 + \exp(-\frac{1}{h}))\|V_{l}\| \\ &= \mathcal{O}(h^{2k+1})T + \mathcal{O}(h^{k+2}) \quad \Box \end{split}$$

Remark

The error of the DG solution can be decomposed as two parts:

- 1 the dispersion and dissipation error of the physically relevant eigenvalue; this part of error will grow linearly in time and is of order 2k + 1
- 2 projection error, that is, there exists a special projection of the solution (V_1) such that the numerical solution is much closer to the special projection of exact solution, than the exact solution itself; the magnitude of this part of error will not grow in time.

Remark

- 1 When $T = o(\frac{1}{h^k})$, $\mathcal{O}(h^{k+2})$ is the dominant term: time independent and of order k + 2.
- 2 When $T = O(\frac{1}{h^k})$, $O(h^{2k+1})T$ is the dominant term: linearly grow with time and of order 2k + 1.

- The special projection V_1 is of order $\mathcal{O}(h^{k+2})$ close to the Radau projection of the solution.
- However, the exact form of such special projection is not known.
- To obtain V₁, one can use DG to integrate the solution to 2π. After time integration, the eigenvectors corresponding to unphysical eigenvalues will be damped out exponentially.

Corollary

Consider DG with P^k ($k \le 3$) solution space for linear hyperbolic equation $u_t + u_x = 0$ with uniform mesh, periodic boundary condition. Let *n* be a positive integer.

$$\|\vec{u}_h(2n\pi) - \vec{u}_h(2\pi)\| = \mathcal{O}(h^{2k+1})(n-1)$$

Simulation results: DG solution for $u_t + u_x = 0$

Table: Linear advection $u_t + u_x = 0$. The L^2 error and order of accuracy of $\bar{e}_1 = ||u_h(x, t = 4\pi) - u_h(x, t = 2\pi)||_2$. Uniform mesh.

	P^1		P^2		P^3	
mesh	L ² error	order	L ² error	order	L ² error	order
10	2.07E-02	_	8.35E-05	_	2.75E-06	_
20	2.66E-03	2.96	2.66E-06	4.97	4.50E-09	9.26
30	8.00E-04	2.97	3.51E-07	5.00	8.97E-11	9.65
40	3.37E-04	3.00	8.34E-08	4.99	1.04E-11	7.48
50	1.73E-04	2.99	2.73E-08	5.00	2.11E-12	7.16

Jingmei Qiu

Table: Linear advection $u_t + u_x = 0$. The L^2 error and order of accuracy of $\bar{e}_2 = \|u_h(x, t = 6\pi) - u_h(x, t = 2\pi)\|_2$. Uniform mesh.

	P^1		P^2		P^3	
mesh	L ² error	order	L ² error	order	L ² error	order
10	4.10E-02	_	1.67E-04	_	2.89E-06	_
20	5.32E-03	2.95	5.32E-06	4.97	5.75E-09	8.97
30	1.60E-03	2.97	7.02E-07	5.00	1.68E-10	8.72
40	6.74E-04	3.00	1.67E-07	4.99	2.08E-11	7.25
50	3.46E-04	2.99	5.46E-08	5.00	4.25E-12	7.13

Jingmei Qiu

Table: Linear advection $u_t + u_x = 0$. The L^2 error and order of accuracy of \bar{e}_1 . Nonuniform mesh with 10% random perturbation.

	P^1		P^2		P^3	
mesh	L ² error	order	L ² error	order	L ² error	order
10	4.22E-02	_	2.98E-04	_	4.31E-06	_
20	2.70E-03	3.97	2.95E-06	6.66	3.79E-09	10.15
30	8.07E-04	2.98	3.88E-07	5.00	5.10E-10	4.95
40	3.40E-04	3.00	9.66E-08	4.83	1.62E-10	3.99
50	1.75E-04	2.99	2.97E-08	5.29	4.96E-11	5.30

Figure: DG with P^1 for linear hyperbolic problem. Left: error of DG solution $|u - u_h|$ at $T = 4\pi$; right: error of $||u_h(4\pi) - u_h(2\pi)||$.

Figure: DG with P^2 for linear hyperbolic problem. Left: error of DG solution $|u - u_h|$ at $T = 4\pi$; right: error of $||u_h(4\pi) - u_h(2\pi)||$.

Figure: DG with P^3 for linear hyperbolic problem. Left: error of DG solution $|u - u_h|$ at $T = 4\pi$; right: error of $||u_h(4\pi) - u_h(2\pi)||$.

DG solution for linear variable coefficient equation

Consider

$$\begin{cases} u_t + (a(x)u)_x = b(x,t), & x \in [0,2\pi] \\ u(x,0) = \sin(x) \end{cases}$$

with

$$a(x) = \sin(x) + 2,$$

 $b(x, t) = (\sin(x) + 3)\cos(x + t) + \cos(x)\sin(x + t),$

and periodic boundary condition. The exact solution is

$$u(x,t)=\sin(x+t).$$

SSPRK(5,4) is used for the time integration.

Jingmei Qiu

Table: Linear variable coefficient problem. The L^2 error and order of accuracy of $\bar{e}_1 = ||u_h(x, t = 4\pi) - u_h(x, t = 2\pi)||_2$. Uniform mesh.

	P^1		P^2		P^3	
mesh	L ² error	order	L ² error	order	L ² error	order
20	5.00E-04	_	9.43E-07	_	8.70E-08	_
30	1.68E-04	2.68	1.24E-07	5.00	5.66E-09	6.74
40	7.37E-05	2.87	2.95E-08	5.00	7.42E-10	7.06
50	3.83E-05	2.93	9.67E-09	5.00	1.20E-10	8.17
60	2.23E-05	2.96	3.88E-09	5.00	2.26E-11	9.15

DG solution for nonlinear problem

Consider

$$\begin{cases} u_t + (u^3)_x = b(x, t), & x \in [0, 2\pi] \\ u(x, 0) = \sin(x) \end{cases}$$

with periodic boundary condition.

$$b(x,t) = (1 + 3\sin^2(x+t))\cos(x+t)$$

The exact solution is u(x, t) = sin(x + t). SSPRK(5,4) is used for the time integration.

Jingmei Qiu

Table: Nonlinear Problem. The L^2 error and order of accuracy of $\bar{e}_1.$ Uniform mesh.

	P^1		P^2		P^3	
mesh	L ² error	order	L ² error	order	L ² error	order
20	7.91E-05	_	7.55E-06	_	7.90E-08	_
40	3.52E-06	4.49	2.17E-07	5.12	3.43E-09	4.53
60	4.92E-07	4.85	2.72E-08	5.12	6.22E-10	4.21
80	1.10E-07	5.21	4.57E-09	6.20	1.81E-10	4.29
100	3.25E-08	5.47	9.97E-10	6.82	6.65E-11	4.49

Future work

- Theoretical, rather than symbolic, proof of results.
- Seek for the explicit form of special projection V_1 .
- Answers questions for non-uniform mesh and nonlinear problem.
- Extend this result to local DG.

Jingmei Qiu

THANK YOU!