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Abstract

In this dissertation, we prove the existence of a metric of definite holomorphic

sectional curvature on certain compact fibrations. The basic idea for these curvature

computations is to use the already available information on the signs of the

holomorphic sectional curvatures along the base and the fibers of the fibration,

and construct an appropriate warped metric on the total space. For a few

specific fibrations, like Hirzebruch surfaces, isotrivial families of curves, and product

manifolds, we shall also comment on the pinching constants of the holomorphic

sectional curvatures. All these results are either in the case of strictly positive

holomorphic sectional curvature, or in the case of strictly negative holomorphic

sectional curvature. At the end of this dissertation, we give a few examples to show

that the sign of the holomorphic sectional curvature of a fibration might not be

what we would expect in the cases where the base or the fibers have semi-definite

holomorphic sectional curvatures.
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Chapter 1

Introduction

The simplest example of a fibration in our context is a trivial fiber bundle f :

X × Y → Y , where X and Y are complex manifolds and the mapping f is the

projection onto the second coordinate. In general however, a fibration does not even

possess a local product structure. Nevertheless, we can always talk about the two

“directions” of a fibration: base and fibers. Therefore, in order to address a problem

on the holomorphic sectional curvature of a fibration, i.e., sectional curvature along

holomorphic tangent directions, it might be helpful to consider the behavior of the

holomorphic sectional curvature along (i) the fibers, (ii) the base, and (iii) the skew

directions. If the holomorphic sectional curvatures along the base and the fibers of a

fibration have same signs, then in this dissertation, we would like to find a Hermitian

metric on the total space with the same sign of the holomorphic sectional curvature

as on the base and the fibers.

For the product of two complex manifolds, the product metric is the required

metric, as we shall see in Theorem 3.2 and Theorem 4.2. However, for a more general

fibration, we need to consider the more sophisticated concept of a warped product
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CHAPTER 1. INTRODUCTION

metric: g + λh, where g and h are Hermitian metrics obtained from the base and

the fiber directions, respectively, and λ is a constant, called warp factor. The idea of

a warped product metric was first promoted by Bishop-O’Neill in [BO69] to obtain

metrics of negative curvature. This concept is further seen to be used by Hitchin in

[Hit75] in order to produce a metric of positive holomorphic sectional curvature on

the Hirzebruch surfaces Fn = P
(
OP1(n) ⊕ OP1

)
, n ∈ {0, 1, . . .}. Cheung also used

a warp factor λ in [Che89] to prove the negative holomorphic sectional curvature of

a compact fibration when the base and the fibers of the fibration carry a metric of

negative holomorphic sectional curvature.

In this dissertation, we shall extend the work of Hitchin and Cheung, and

prove some new results on the holomorphic sectional curvature of a fibration. This

dissertation is organized as follows:

In Chapter 2, we shall recall some elementary definitions which will be required

in the remaining chapters of this dissertation.

Chapter 3 is focused on the Hirzebruch surfaces. The main purpose of this chapter

is to evaluate a pinching constant for the positive holomorphic sectional curvature

of Hitchin’s metric on the Hirzebruch surfaces. We also discuss the pinching of a

product manifold M ×N when both M and N carry a Hermitian metric of positive

holomorphic sectional curvature, in order to address the case of the 0-th Hirzebruch

surface. The contents of this chapter have already been published in [ACH15].

Chapter 4 is on the holomorphic sectional curvature of an isotrivial family of

curves over a smooth curve, f : F → C, where the base C, and the fiber F are

curves of genus greater than or equal to 2. Both C and F carry Hermitian metrics

(Poincaré metric) of constant negative holomorphic sectional curvature equal to −1.

The main result of this chapter (Theorem 4.1) shows that, in this case, there exists

2



CHAPTER 1. INTRODUCTION

a Hermitian metric of −1
2
-pinched holomorphic sectional curvature on F . Theorem

4.1 on isotrivial families of curves is the negative curvature analog of Theorem 3.1 on

the Hirzebruch surfaces. However, surprisingly the pinching constant −1
2

in Theorem

4.1 is independent of how “twisted” the family is. We shall also prove the (semi-)

negative holomorphic sectional curvature analog of Theorem 3.2, and an equivalence

between the negative holomorphic sectional curvatures of a complex manifold and

its covering space. These two theorems, in the 1-dimensional case, are crucial in the

proof of Theorem 4.1. However, we observe that these two theorems are valid even

for higher dimensional complex manifolds.

In Chapter 5, we show the existence of a Hermitian metric of positive holomorphic

sectional curvature on a compact fibration when the base and the fibers of the

fibration, both possess metrics of positive holomorphic sectional curvature. This

result could perhaps be considered to be the main theorem of this dissertation. It

is widely believed that the “curvature decreasing property for subbundles” is very

helpful in proving results for negative curvature, but usually not as useful in positive

curvature. As we shall see in this chapter, the same “curvature decreasing” property

helps us prove the existence of a metric of positive holomorphic sectional curvature

on a compact fibration. The results and proofs of this chapter generally follow the

results and proofs in [Che89], but differ in certain key aspects.

In Chapter 6, we give a few examples to show that the results proved in Chapter 5

and [Che89] for definite holomorphic sectional curvature do not extend to the case of

semi-definite holomorphic sectional curvature. These examples show that the warped

product metric might not be helpful to obtain semi-definite holomorphic sectional

curvature on the total space, even when the warp factor is not constant. However, it

is not known whether there exist other metrics for which we can extend the results

3



CHAPTER 1. INTRODUCTION

of Chapter 5 to semi-definite cases.

4



Chapter 2

Definitions

2.1 Fibrations

In this dissertation, we will call a holomorphic map π : M → N between two

complex manifolds M and N a fibration if π has maximal rank everywhere, i.e., is a

submersion, and is surjective. We refer to a fibration with compact domain M as a

compact fibration.

Loosely speaking, fibrations are generalizations of fiber bundles. Unlike a fiber

bundle, the fibers of a fibration need not be isomorphic to each other.

2.2 Hermitian metric

Let M be an m-dimensional manifold with local coordinates (z1, . . . , zm). A

Hermitian metric g : TM × TM → C on M is a Hermitian inner product on the

tangent space TpM at each point p ∈M , varying smoothly with respect to the points

in M . In a neighborhood U of a point p ∈M , the metric g may be locally represented

5



2.4 HOLOMORPHIC SECTIONAL CURVATURE

as

g =
m∑

i,j=1

gij̄dzi ⊗ dz̄j,

where (gij̄) is a Hermitian matrix with gij ∈ C∞(U,C) for all i, j = 1, . . . ,m. Under

the usual abuse of terminology, we will alternatively refer to the associated (1,1)-form

ω =
√
−1
2

∑m
i,j=1 gij̄dzi ∧ dz̄j as the metric on M . The metric is called Kähler if ω is

d-closed. It is called Hodge if it is Kähler and the cohomology class of ω is rational.

2.3 Components of curvature tensor

The components Rij̄kl̄ of the curvature tensor R associated with the metric

connection are locally given by the formula

Rij̄kl̄ = −
∂2gij̄
∂zk∂z̄l

+
m∑

p,q=1

gpq̄
∂gip̄
∂zk

∂gqj̄
∂z̄l

, (2.1)

for i, j, k, l = 1, . . . ,m.

2.4 Holomorphic sectional curvature

If ξ =
∑m

i=1 ξi
∂
∂zi

is a non-zero complex tangent vector at p ∈ M , then the

holomorphic sectional curvature K(ξ)(p) is given by

K(ξ)(p) =

(
2

m∑
i,j,k,l=1

Rij̄kl̄(p)ξiξ̄jξkξ̄l

)
/

(
m∑

i,j,k,l=1

gij̄(p)gkl̄(p)ξiξ̄jξkξ̄l

)
. (2.2)

Note that the holomorphic sectional curvature of ξ is clearly invariant under

multiplication of ξ with a real non-zero scalar, and it thus suffices to consider unit
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2.5 PINCHING

tangent vectors, for which the value of the denominator is 1.

It is a basic fact that the holomorphic sectional curvature of a Kähler metric

completely determines the curvature tensor Rij̄kl̄ ([KN96, Proposition 7.1, p. 166]).

We shall use the abbreviation HSC for “holomorphic sectional curvature” in the

remaining part of the dissertation.

2.5 Pinching

2.5.1 Positive HSC

For a constant c+ ∈ (0, 1], we say that the positive HSC is c+-pinched if

(1 ≥)
infξK(ξ)

supξK(ξ)
= c+,

where the infimum and supremum are taken over all non-zero (or unit) tangent vectors

across the entire manifold.

2.5.2 Negative HSC

For a constant c− ∈ [−1, 0), we say that the negative HSC is c−-pinched if

(−1 ≤) −
supξK(ξ)

infξK(ξ)
= c−,

where the infimum and supremum are taken over all non-zero (or unit) tangent vectors

across the entire manifold.

In the case of a compact manifold, the infimum and supremum become a minimum

and maximum, respectively, due to compactness.
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2.6 RICCI CURVATURE AND SCALAR CURVATURE

2.6 Ricci curvature and scalar curvature

For a Kähler metric, the Ricci curvature Rij̄ can be defined as the following trace

of the curvature tensor:

Rij̄ =
∑
k,l

gkl̄Rij̄kl̄.

Positivity or negativity properties of the HSC of a Kähler metric do not necessarily

transfer to the Ricci curvature of the same metric. Nevertheless, there is a beautiful

integral formula due to Berger (see Lemma 3.4) which expresses the scalar curvature

τ of a Kähler metric as an integral of the HSC, while the standard definition is as the

trace of the Ricci curvature:

τ =
∑
i,j

gij̄Rij̄ =
∑
i,j,k,l

gij̄gkl̄Rij̄kl̄.

We would like to cite some of the recent advances here, regarding the following

conjecture on the projective manifolds.

Conjecture 2.1. Let M be a projective manifold with a Kähler metric of negative

HSC. Then its canonical line bundle KM is ample.

Heier-Lu-Wong proved the above conjecture for a smooth projective threefold

in [HLW10, Theorem 1.1]. Wu-Yau proved the conjecture for a higher dimensional

projective manifold in [WY16a, Theorem 2]. Later, Tosatti-Yang ([TY16]) proved the

conjecture for a compact Kähler manifold. Diverio-Trapani ([DT16]) and Wu-Yau

([WY16b]) subsequently proved it for a compact Kähler manifold of quasi-negative

HSC.
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Chapter 3

HSC Pinching of Hirzebruch

Surfaces

The main result of this chapter is that, for each n ∈ {1, 2, 3, . . .}, there exists a

Hodge metric on the n-th Hirzebruch surface whose positive HSC is 1
(1+2n)2 -pinched.

The type of metric under consideration was first studied by Hitchin in this context.

In order to address the case n = 0, we prove a general result on the pinching of the

HSC of the product metric on the product of two Hermitian manifolds M and N of

positive HSC.

3.1 Introduction

It is a well-known fact that the Fubini-Study metric on a complex projective

space of arbitrary dimension has constant HSC equal to 4. However, in general, few

examples are known of compact complex manifolds which carry a Hermitian metric

of positive HSC, let alone a Hermitian metric with positively pinched HSC. A notable

9



3.1 INTRODUCTION

exception form the irreducible Hermitian symmetric spaces of compact type, whose

pinching constants for the HSC are listed in [Che77, Table I] (see also the references

in that paper). In particular, the geometry and curvature of fibrations and even fiber

bundles are poorly understood in this respect.

In this chapter, we are primarily interested in the Hirzebruch surfaces Fn =

P(OP1(n) ⊕ OP1), n ∈ {0, 1, 2, . . .}. It was proven by Hitchin in [Hit75] that they

do carry a natural metric of positive HSC, but his proof does not yield any pinching

constants. Even this nonquantitative positivity result may be considered to be

somewhat surprising, as the Fn do not carry metrics of positive Ricci curvature,

except when n = 0, or n = 1. Our main result is the following pinching theorem for

the metrics on Fn considered in [Hit75].

Theorem 3.1. Let Fn, n ∈ {1, 2, 3, . . .}, be the n-th Hirzebruch surface. Then there

exists a Hodge metric on Fn whose positive HSC is 1
(1+2n)2 -pinched.

We also prove that the numerical values of the pinching constants are optimal

in the families of metrics studied by Hitchin. This does however leave open the

question if there are other types of metrics on Hirzebruch surfaces with better

pinching constants. Recall that an upper bound on the possible value of such pinching

constants was given in the paper [BG65], where it was proven that a complete Kähler

manifold whose positive HSC is c-pinched with c > 4
5

is homotopic to a complex

projective space.

The proofs work by way of explicit computations, using in particular the method

of Lagrange multipliers.

Since we could not find a reference for it, we also include the following pinching

theorem for products M×N of Hermitian manifolds endowed with the product metric.

10



3.1 INTRODUCTION

If M = N = P1, then this theorem addresses the case of the 0-th Hirzebruch surface

P1 × P1, which was not handled in Theorem 3.1. In this case, cM = cN = cP1 = 1,

k = 4, and cM cN
cM+cN

= 1
2
.

Theorem 3.2. Let M and N be Hermitian manifolds whose positive HSCs are cM -

and cN -pinched respectively and satisfy

kcM ≤ KM ≤ k and kcN ≤ KN ≤ k

for a constant k > 0. Then the HSC, denoted by K, of the product metric on M ×N

satisfies

k
cMcN
cM + cN

≤ K ≤ k

and is cM cN
cM+cN

-pinched.

Recall that the Hopf Conjecture states that the product of two real two-spheres

does not admit a Riemannian metric of positive sectional curvature, so even the case

of products as in Theorem 3.2 is not trivial with respect to sectional curvatures.

This chapter is organized as follows. In Section 3.2, we will prove Theorem 3.1

and also derive a corollary giving lower and upper bounds for the scalar curvature

of the metrics under investigation. In Section 3.3, we will give an interpretation of

the results of our computations in terms of the geometry of Hirzebruch surfaces. In

Section 3.4, we will prove Theorem 3.2.

11



3.2 PROOF OF THEOREM 3.1

3.2 Proof of Theorem 3.1

Following Hitchin’s idea from [Hit75], we recall that on the n-th Hirzebruch surface

Fn, there are natural Hermitian metrics defined as follows. Note that these metrics

are clearly Kähler and, when the value of the parameter s is rational, even Hodge.

If z1 is an inhomogeneous coordinate on an open subset of the base space P1, then

a point

w ∈ OP1(n)⊕OP1

can be represented by coordinates (w1, w2) in the fiber direction as

w =
(
z1, w1(dz1)−n/2, w2

)
,

where (dz1)−1 is to be understood as a section of TP1 = OP1(2). After the

projectivization, each fiber carries the inhomogeneous coordinate z2 = w2/w1. For a

positive real number s, the metric

ωs =

√
−1

2
∂∂̄
(

log(1 + z1z̄1) + s log
(
(1 + z1z̄1)n + z2z̄2

))

is globally well-defined on Fn. It is this metric for which we compute the HSC

pinching. We also find the choice of s with the optimal value of the pinching constant

in the family of metrics parametrized by s.

Remark 3.3. In [Hit75], the curvature tensor is expressed in terms of a local unitary

frame field. In this chapter, we prefer to work in terms of the frame field
{

∂
∂z1
, ∂
∂z2

}
with respect to the coordinates discussed above, as it seems to lend itself better to our

method.

12



3.2 PROOF OF THEOREM 3.1

3.2.1 The case n ≥ 2

As observed in [Hit75], the fact that SU(2) acts transitively on P1 as isometries

of the Fubini-Study metric and that this action lifts to OP1(n)⊕OP1 , implies that we

can restrict ourselves to computing the curvature along one fiber, say the one given

by z1 = 0. The metric tensor associated to ωs along this fiber is

(gij̄) =

 1+z2z̄2+sn
1+z2z̄2

0

0 s
(1+z2z̄2)2

 .

From this, we see that an orthonormal basis for T(0,z2)Fn is given by the two vectors

√
1 + z2z̄2

1 + z2z̄2 + ns
· ∂
∂z1

and
1 + z2z̄2√

s
· ∂
∂z2

.

Therefore, an arbitrary unit tangent vector ξ ∈ T(0,z2)Fn can be written as

ξ = c1

√
1 + z2z̄2

1 + z2z̄2 + ns
· ∂
∂z1

+ c2
1 + z2z̄2√

s
· ∂
∂z2

,

where c1, c2 ∈ C are such that |c1|2 + |c2|2 = 1. Let ξ1 := c1

√
1+z2z̄2

1+z2z̄2+ns
and ξ2 :=

c2
1+z2z̄2√

s
. Based on the formula (2.1) in Chapter 2, the components of the curvature

tensor are

R11̄11̄ =
2
(
− n2sz2z̄2 + (1 + z2z̄2)2 + n(s+ sz2z̄2)

)
(1 + z2z̄2)2

,

R11̄22̄ =
ns(1 + ns− z2

2 z̄
2
2)

(1 + z2z̄2)3(1 + ns+ z2z̄2)
,

R22̄22̄ =
2s

(1 + z2z̄2)4
,

13



3.2 PROOF OF THEOREM 3.1

while the other terms (except those obtained from symmetry) are zero. Substituting

the components and values of ξ1 and ξ2 into the definition (2.2) of HSC in the direction

of ξ gives us

K(ξ) = 2
2∑

i,j,k,l=1

Rij̄kl̄ξiξ̄jξkξ̄l

= 2R11̄11̄ξ1ξ̄1ξ1ξ̄1 + 8R11̄22̄ξ1ξ̄1ξ2ξ̄2 + 2R22̄22̄ξ2ξ̄2ξ2ξ̄2

=
4
(
(1 + z2z̄2)2 + ns(1 + z2z̄2 − nz2z̄2)

)
(1 + z2z̄2 + ns)2

|c1|4

+
8n(1 + ns− z2

2 z̄
2
2)

(1 + z2z̄2 + ns)2
|c1|2|c2|2 +

4

s
|c2|4.

Since the above expression only depends on the modulus squared of z2, we let r :=

z2z̄2. Also, we let a := |c1|2 and b := |c2|2, satisfying a+b = 1 and a, b ∈ [0, 1]. Hence,

for fixed values of r and s, the HSC takes the form of a degree two homogeneous

polynomial in a and b with real coefficients:

Kr,s(a, b) =
4
(
(1 + r)2 + ns(1 + r − nr)

)
(1 + r + ns)2

a2 +
8n(1 + ns− r2)

(1 + r + ns)2
ab+

4

s
b2. (3.1)

We write α :=
4((1+r)2+ns(1+r−nr))

(1+r+ns)2 , β := 8n(1+ns−r2)
(1+r+ns)2 , and γ := 4

s
for the coefficients.

In order to find the pinching constant for the metric ωs, we need to minimize and

maximize

Kr,s(a, b) = αa2 + βab+ γb2

for fixed s, subject to the constraint a + b − 1 = 0. To do so, we first also fix r and

14



3.2 PROOF OF THEOREM 3.1

set up the Lagrange Multiplier equations:

∂

∂a
Kr,s(a, b) = λ,

∂

∂b
Kr,s(a, b) = λ, a+ b− 1 = 0.

Solving this system of equations for a, b yields a unique stationary solution

a0 =
2γ − β

2(γ − β + α)
=

(1 + r)(1 + ns)

1 + s− (−1 + n)ns2 + r(1 + s+ 2ns)
,

b0 =
2α− β

2(γ − β + α)
=

s(−1 + n− r − nr − ns+ n2s)

−1− r − s− rs− 2nrs− ns2 + n2s2
.

Substituting these values into equation (3.1) gives us

Kr,s(a0, b0)

= 4 · 3r2(1 + ns) + 3r(1 + ns)2 − r3(−1 + n2s)− (1 + ns)2(−1− ns+ n2s)

(1 + r + ns)2
(
1 + s− (−1 + n)ns2 + r(1 + s+ 2ns)

) .

We shall now find lower and upper bounds for the HSC in the following three cases:

1. For a = a0 and b = b0: For a fixed value of s, define fs : [0,∞)→ R as

fs(r) := Kr,s(a0, b0).

A computation yields that f ′s(r) = 0 if and only if r = −1 /∈ (0,∞) (which we

may disregard) or

r = r0 :=
(n− 1)(1 + ns)

1 + n
,

which is in (0,∞) under the assumption n ≥ 2. Note

fs(r0) =
4− s(n− 1)2

1 + ns
.
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3.2 PROOF OF THEOREM 3.1

At the endpoints of the interval [0,∞), we see that

fs(0) =
4(1 + ns− n2s)

1 + s− (n− 1)ns2
, and lim

r→∞
fs(r) =

4− 4n2s

1 + s+ 2ns
.

The latter expression makes it clear that we need to choose s < 1
n2 in order to

obtain positive HSC. Furthermore, for s < 1
n2 ,

4(1 + ns− n2s)

1 + s− (n− 1)ns2
− 4− 4n2s

1 + s+ 2ns
=

4s(3n− s(2n3 − 3n2)− s2(n4 − n3))

(1 + s+ 2ns)
(

1 + s
(
1− s(n2 − n)

)) > 0,

and

4− s(n− 1)2

1 + ns
− 4(1 + ns− n2s)

1 + s− (n− 1)ns2
= −

s(n− 1)2
(
3 + s(n− 1)

)(
− 1 + s(n− 1)

)
(1 + ns)

> 0.

Thus,

4− s(n− 1)2

1 + ns
>

4(1 + ns− n2s)

1 + s− (n− 1)ns2
>

4− 4n2s

1 + s+ 2ns
.

2. For a = 0 and b = 1: The HSC value is Kr,s(0, 1) = 4
s
, which is independent of

r.

3. For a = 1 and b = 0: The HSC value is

hs(r) := Kr,s(1, 0) =
4((1 + r)2 + ns(1 + r − nr))

(1 + r + ns)2
.

In the interval (0,∞), we have that h′s(r) = 0 if and only if

r = r0 =
(n− 1)(1 + ns)

1 + n

(
∈ (0,∞) when n ≥ 2

)
,
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3.2 PROOF OF THEOREM 3.1

with

hs(r0) =
4− s(n− 1)2

1 + ns
.

Note that this is the same r0 as above, although we see no clear geometric reason

for this coincidence. At the endpoints, we have

hs(0) =
4

1 + ns
, and lim

r→∞
hs(r) = 4.

Clearly, we have

4 >
4

1 + ns
>

4− s(n− 1)2

1 + ns
.

Combining the three cases above, we have for n ≥ 2:

4

s
> 4 >

4

1 + ns
>

4− s(n− 1)2

1 + ns
>

4(1 + ns− n2s)

1 + s− (n− 1)ns2
>

4− 4n2s

1 + s+ 2ns
.

Hence, the smallest and largest values attained by the HSC are

lim
r→∞

fs(r) =
4− 4n2s

1 + s+ 2ns
and

4

s
,

respectively.

Finally, in order to find the value of s with the best pinching constant (see 2.5.1

for the definition of pinching constant), we define a function

p :

(
0,

1

n2

)
→ (0, 1), p(s) :=

minξKs(ξ)

maxξKs(ξ)
=

4−4n2s
1+s+2ns

4
s

=
s(1− n2s)

1 + s+ 2ns
,

where the minimum and maximum are taken over all non-zero (or unit) tangent

vectors across the entire manifold and the index s indicates that the HSC is computed
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3.2 PROOF OF THEOREM 3.1

with respect to the metric with the parameter value s. This is the function which

we want to maximize. We see that p′(s) = 0 if and only if s = − 1
n
/∈
(
0, 1

n2

)
or

s = 1
2n2+n

∈
(
0, 1

n2

)
. Elementary calculus tells us that p has a global maximum at

1
2n2+n

. Hence, with s = 1
2n2+n

, we get the optimal pinching of

p

(
1

2n2 + n

)
=

1

(1 + 2n)2
.

3.2.2 The case n = 1

In the case when n = 1, the functions fs and hs have their stationary points at

the boundary point r = 0. However, our reasoning still goes through almost verbatim

and yields the expected pinching constant 1
9

for s = 1
3
.

3.2.3 A remark on scalar curvature

The following formula due to [Ber66, Lemme 7.4] expresses the scalar curvature

of a Kähler manifold as an integral of the HSC.

Lemma 3.4. Let M be an m-dimensional Kähler manifold. Then the scalar curvature

τ satisfies at every point P ∈M :

τ(P ) =
m(m+ 1)

4 vol(S2m−1
P )

∫
ξ∈S2m−1

P

K(ξ)dξ,

where S2m−1
P denotes the unit sphere inside the tangent space TPM with respect to the

metric, and dξ is the measure on S2m−1
P induced by the metric.

This lemma yields the following corollary.
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3.3 GEOMETRIC INTERPRETATION OF OUR COMPUTATIONS

Corollary 3.5. Let τs denote the scalar curvature of Fn, n ∈ {1, 2, 3, . . .}, pertaining

to the metric ωs. Then

3

2
min
ξ
Ks(ξ) =

3

2
· 4− 4n2s

1 + s+ 2ns
≤ τs ≤

3

2
· 4

s
=

3

2
max
ξ
Ks(ξ).

In particular, for our optimal choice of s = 1
2n2+n

, we have

6n(n+ 1)

2n2 + 3n+ 1
≤ τ ≤ 12n2 + 6n.

Proof. The proof is immediate from Lemma 3.4 and the bounds for the HSC: Replace

the integrandKs(ξ) by the minimum and maximum, respectively, which we computed,

move the constant in front of the integral, cancel vol(S2m−1
P ), and let m = 2.

Finally, since the scalar curvature is additive in products equipped with the

product metric, and since the scalar curvature of P1 with the Fubini-Study metric

is constant and equal to 2, it is immediately clear that the scalar curvature of

F0 = P1 × P1 is constant and equal to 4.

3.3 Geometric interpretation of our computations

The Hirzebruch surfaces have a beautiful geometric structure, which is very nicely

explained in [GH94, pp. 517–520]. In particular, on the n-th Hirzebruch surface, there

is a unique non-singular rational curve E “at infinity” which has self-intersection

number −n. In terms of our coordinates (z1, z2), the curve E is given by z2 = ∞.

The fact that

min
ξ
Ks(ξ) = lim

r→∞
fs(r)
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3.4 PROOF OF THEOREM 3.2

means that the smallest value of the HSC for each ωs is attained at a tangent vector

attached to a point of E. Note that because of the transitivity of the SU(2) action,

this is then true for all points of E. Since the largest value 4
s

is attained inside every

tangent space of Fn, every point P ∈ E has the property that the tangent space to Fn

at P contains a vector giving the lowest possible HSC and a vector giving the highest

possible HSC. In other words, for Hirzebruch surfaces, the notion of the “pinching

constant” and the “pointwise pinching constant” are one and the same.

We can still say more about the vectors yielding the extreme values. If we consider

a0 and b0 as functions of r and set s = 1
2n2+n

, then

lim
r→∞

a0 =
1 + ns

1 + s+ 2ns
=

2n

2n+ 1
, and lim

r→∞
b0 =

s(1 + n)

1 + s+ 2ns
=

1 + n

1 + 3n+ 2n2
.

For large values of n, the first value is a little less than 1, and the second value is

a little larger than 0. This means that the direction of the tangent vector giving

the smallest value of the HSC is close, but not equal, to the direction of the tangent

space of E, which we think of as the “horizontal” direction. Moreover, the direction

of the tangent vector giving the largest value of the HSC is exactly “vertical” and

thus almost, but not exactly, perpendicular to the direction giving the smallest value.

3.4 Proof of Theorem 3.2

The proof of Theorem 3.2 consists of computing the HSC of the product metric

on the product Mm × Nn, m,n ∈ {1, 2, 3, . . .}, of two Hermitian manifolds with

local coordinates (z1, . . . , zm) and (zm+1, . . . , zm+n) around points p ∈M and q ∈ N ,

respectively. Let g =
∑m

i,j=1 gij̄ dzi⊗dz̄j, and h =
∑m+n

i,j=m+1 hij̄ dzi⊗dz̄j be Hermitian
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3.4 PROOF OF THEOREM 3.2

metrics on M and N , respectively, with positive HSC. Then

m∑
i,j=1

gij̄ dzi ⊗ dz̄j +
m+n∑

i,j=m+1

hij̄ dzi ⊗ dz̄j

gives the product metric in a neighborhood of (p, q) ∈ M × N . Since the gij̄’s are

functions of only z1, . . . , zm and the hij̄’s are functions of only zm+1, . . . , zm+n, we

obtain

Rij̄kl̄ =



− ∂2gij̄
∂zk∂z̄l

+
∑m

a,b=1 g
ab̄ ∂giā

∂zk

∂gbj̄
∂z̄l
, 1 ≤ i, j, k, l ≤ m

− ∂2hij̄
∂zk∂z̄l

+
∑m+n

a,b=m+1 h
ab̄ ∂hiā

∂zk

∂hbj̄
∂z̄l

, m+ 1 ≤ i, j, k, l ≤ m+ n

0, otherwise.

Let ξ =
∑m+n

i=1 ξi
∂
∂zi

be a unit tangent vector in T(p,q)(M ×N). Then the HSC on

M ×N along ξ is

K(ξ) = 2
m∑

i,j,k,l=1

(
−

∂2gij̄
∂zk∂z̄l

+
m∑

a,b=1

gab̄
∂giā
∂zk

∂gbj̄
∂z̄l

)
ξiξ̄jξkξ̄l

+ 2
m+n∑

i,j,k,l=m+1

(
−

∂2hij̄
∂zk∂z̄l

+
m+n∑

a,b=m+1

hab̄
∂hiā
∂zk

∂hbj̄
∂z̄l

)
ξiξ̄jξkξ̄l.

The two sums on the right hand side above are the numerators of the HSCs on M

and N with respect to the tangent vectors (ξ1, . . . , ξm) ∈ TpM and (ξm+1, . . . , ξm+n) ∈

21



3.4 PROOF OF THEOREM 3.2

TqN , respectively, both of which are positive. Thus,

K(ξ) > 0.

In order to find the pinching constant, we need to take into consideration the

(non-zero) norms of (ξ1, . . . , ξm) ∈ TpM and (ξm+1, . . . , ξm+n) ∈ TqN with respect to

the respective metrics in the two spaces, as follows:

K(ξ) =
m∑

i,k,j,l=1

2Rij̄kl̄ ξiξ̄jξkξ̄l +
m+n∑

i,k,j,l=m+1

2Rij̄kl̄ ξiξ̄jξkξ̄l

=

∑m
i,k,j,l=1 2Rij̄kl̄ ξiξ̄jξkξ̄l∑m
i,j,k,l=1 gij̄gkl̄ ξiξ̄jξkξ̄l

·
m∑

i,j,k,l=1

gij̄gkl̄ ξiξ̄jξkξ̄l

+

∑m+n
i,k,j,l=m+1 2Rij̄kl̄ ξξ̄jξkξ̄l∑m+n
i,j,k,l=m+1 hij̄hkl̄ ξiξ̄jξkξ̄l

·
m+n∑

i,j,k,l=m+1

hij̄hkl̄ ξiξ̄jξkξ̄l

= KM · y2 +KN · (1− y)2,

where KM is the HSC of M along (ξ1, . . . , ξm), KN the HSC of N along

(ξm+1, . . . , ξm+n) and y =
∑m

i,j gij̄ ξiξ̄j.

Since ξ is a unit tangent vector in T(p,q)(M × N), i.e.,
∑m

i,j=1 gij̄ ξiξ̄j +∑m+n
i,j=m+1 hij̄ ξiξ̄j = 1, we have

m+n∑
i,j=m+1

hij̄ ξiξ̄j = 1−
m∑

i,j=1

gij̄ ξiξ̄j = 1− y.

Furthermore, the assumption

kcM ≤ KM ≤ k and kcN ≤ KN ≤ k
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3.4 PROOF OF THEOREM 3.2

provides the following inequality:

F (y) := kcMy
2 + kcN(1− y)2 ≤ KMy

2 +KN(1− y)2 ≤ ky2 + k(1− y)2 =: F̃ (y).

Finally, elementary calculus yields

min
0≤y≤1

F (y) = k
cMcN
cM + cN

and

max
0≤y≤1

F̃ (y) = k.

In particular,

k
cMcN
cM + cN

≤ K(ξ) ≤ k,

and the pinching constant for the HSC on the product space is obtained as

cM×N =
infξK(ξ)

supξK(ξ)
=

cMcN
cM + cN

.
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Chapter 4

Pinching for Isotrivial Families of

Curves Over a Curve in Negative

Curvature

A family of smooth curves f : F → C over a smooth curve C is called isotrivial

if for any two points a, b ∈ C, the fibers Fa and Fb are isomorphic to each other, i.e.,

Fa ∼= Fb ∼= F for a smooth curve F .

The main result of this chapter is on the negative HSC of isotrivial families of

curves over a curve, where the base and the fiber have genus greater than or equal to

2. This result is analogous to Theorem 3.1 on the Hirzebruch surfaces, but it is even

better in terms of the pinching constant, as it is independent of the geometry of the

family. The precise statement of the theorem is as follows:

Theorem 4.1. Let f : F → C be an isotrivial family of smooth curves over a smooth

curve C, such that all the fibers are isomorphic to a smooth curve F . Let the genus
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CHAPTER 4. PINCHING FOR ISOTRIVIAL FAMILIES OF CURVES OVER A
CURVE IN NEGATIVE CURVATURE

of both F and C be greater than or equal to 2. Then there exists a Hermitian metric

on F whose HSC is negative and is −1
2
-pinched.

There are two crucial points in the proof of Theorem 4.1. One of them requires the

existence of a Hermitian metric of negative HSC on the product of two smooth curves

of genus greater than or equal to 2. For the second point, we need the existence of a

metric of negative HSC on a space if its covering space carries a metric of negative

HSC. Both of these requirements are fulfilled, not only in the 1-dimensional case, but

also for the higher dimensional manifolds as shown in Theorem 4.2 and Theorem 4.3,

respectively.

Theorem 4.2. Let M and N be Hermitian manifolds whose negative HSCs are cM

and cN -pinched, respectively, and satisfy

−k ≤ KM ≤ kcM < 0 and − k ≤ KN ≤ kcN < 0

for a constant k > 0. Then the HSC, denoted by K, of the product metric on M ×N

satisfies

−k ≤ K ≤ k
cMcN
cM + cN

< 0,

and is cM cN
cM+cN

-pinched. Moreover, the HSC of the product metric on M × N is

semi-negative if the HSC of M or N (or both) is semi-negative.

Clearly, Theorem 4.2 is the negative curvature analog of Theorem 3.2. Moreover,

we can prove Theorem 4.2 in the same manner as we proved Theorem 3.2, i.e., by

direct computation.

A curve of genus greater than or equal to 2 has constant negative HSC, i.e., the

pinching constant is equal to −1. Therefore, the pinching constant −1
2

in Theorem
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4.1 COVERING SPACE

4.1 agrees with the formula of the pinching constant in Theorem 4.2.

Theorem 4.3. Let M and M̃ be Hermitian manifolds and f : M̃ → M be a finite

covering map of degree d. Then M̃ carries a Hermitian metric of (semi-)negative

HSC if and only if M carries a Hermitian metric of (semi-)negative HSC.

Before proceeding towards the proofs of Theorem 4.3 and Theorem 4.1, we would

like to recall a few concepts as mentioned in the following two sections.

4.1 Covering space

Let M and M̃ be complex manifolds with a holomorphic map π : M̃ → M .

Suppose that for every point p ∈M , there exists an open neighborhood U of p in M ,

such that the inverse image of U via π is a disjoint union of d open sets in M̃ , i.e.,

π−1(U) =
d⊔
i=1

Vi,

where Vi are open sets in M̃ such that U is biholomorphic to Vi for each i = 1, . . . , d.

Then M̃ is called a finite covering space of M , and π is called the corresponding

covering map of degree d. M̃ is called an infinite covering space of M if

π−1(U) =
∞⊔
i=1

Vi.

In this case, the degree of π is infinite.

If M̃ is simply connected, then it is called the universal cover of M . The adjective

“universal” is used to emphasize the fact that if π′ : M ′ → M is another cover of
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4.2 LEVEL STRUCTURES AND FINITE BASE CHANGE FOR AN
ISOTRIVIAL FAMILY OF CURVES

M , then there exists a (essentially unique) holomorphic map f : M̃ → M ′ such that

π′ ◦ f = π, i.e., the following diagram commutes:

4.2 Level structures and finite base change for an

isotrivial family of curves

Let C be a curve of genus g. A level n structure on C is defined to be a symplectic

basis {α1, . . . , αg, β1, . . . , βg} for the homology group H1(C,Z/n), where symplectic

means that the intersection pairing on H1(C,Z/n) has the following matrix form:

 0 Ig

−Ig 0

 .

In other words, there is a symplectic isomorphism: (Z/n)2g → H1(C,Z/n).

The moduli space of curves of genus g, with level n structure, is denoted byMg(n).

If g ≥ 2 and n ≥ 3, thenMg(n) is a fine moduli space, i.e., it is a universal parameter

space for families of curves of genus g with a level n structure.

Let f : F → C be an isotrivial family of smooth curves over a smooth curve C,

such that the base C and the fiber F have genus greater than or equal to 2. Also
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4.3 PROOF OF THEOREM 4.3

let π : C̃ → C be a finite covering of C, such that the local system H1(Fc,Z/n)c∈C

becomes trivial on C̃. Then, using the facts that F is isotrivial, and Mg(n) is fine,

the classifying map C̃ → Mg(n) is constant. Therefore, the pull back of f to C̃ is

trivial, i.e., there exists a biholomorphic map φ : F × C̃ → F ×C C̃ such that the

following diagram commutes:

where π1 and π2 are the projection maps onto the first and second components,

respectively. In other words, an isotrivial family of smooth curves over a smooth

curve splits by a finite base change, if the base and the fiber have genus greater than

or equal to 2.

One may refer to [HM98, Chapters 1 and 2] for a detailed explanation of the

moduli spaces of curves with level structures.

4.3 Proof of Theorem 4.3

Let U ⊂ M be a small open neighborhood of a point p ∈ M . Then, there exist

open sets V1, V2, . . . , Vd in M̃ such that f−1(U) = V1 t V2 t . . .t Vd. Suppose qi ∈ Vi,

i = 1, 2, . . . , d, such that f−1(p) = {q1, q2, . . . , qd}. The mappings fi := f |Vi are

biholomorphisms between Vi and U for all i = 1, 2, . . . , d. Therefore, for a Hermitian
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4.4 PROOF OF THEOREM 4.1

metric G in M , the pullback metric (fi)
∗(G) defined by

(fi)
∗(G)(qi)(X, Y ) = G(p)

(
(fi)∗X, (fi)∗Y

)
, X, Y ∈ TqiVi,

is a Hermitian metric on Vi, i.e., fi’s are isometries with respect to the metrics G and

(fi)
∗(G). Thus, the HSC at p with respect to G is same as the HSC at qi with respect

to (fi)
∗(G).

For the other direction, we notice that f−1
i : U → Vi are also biholomorphisms for

all i = 1, 2, . . . , d. If H is a Hermitian metric on M̃ , then using the same argument

as above, we obtain a Hermitian metric (f−1
i )∗(H|Vi) on U , such that f−1

i ’s are also

isometries with respect to the metrics H|Vi and (f−1
i )∗(H|Vi). Therefore, the HSC at

qi with respect to H|Vi is same as the HSC at p with respect to (f−1
i )∗(H|Vi). We

define a metric Ĥ on U by taking the average of all these pullback metrics:

Ĥ =
1

d

d∑
i=1

(f−1
i )∗(H|Vi).

If the HSC at qi with respect to H|Vi is (semi-) negative, then the HSC at p with

respect to (f−1
i )∗(H|Vi) is also (semi-) negative. Then, the HSC at p with respect to

Ĥ is (semi-) negative because of a repetitive application of [Wu73, Theorem 1]. We

may refer to Ĥ as the pushforward metric of H via the covering map f .

4.4 Proof of Theorem 4.1

For the isotrivial family of curves f : F → C, it is given that the base C and the

fiber F have genus greater than or equal to 2. Section 4.2 implies the existence of a
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4.4 PROOF OF THEOREM 4.1

finite cover π : C̃ → C of C and a biholomorphic map φ : F × C̃ → F ×C C̃ such

that the following diagram commutes

where π1 and π2 are the projection maps onto the first and second components,

respectively.

Let d be the degree of the covering map π. If g(C) and g(C̃) denote the genus of

C and C̃, respectively, then according to the Riemann-Hurwitz formula,

g(C̃) =
b

2
+ d
(
g(C)− 1

)
+ 1,

where b is the total branching order of π (which in this case is zero, since we are

considering an unramified covering space). It is clear from the Riemann-Hurwitz

formula that the genus of C being greater than or equal to 2 implies that the genus

of the covering space C̃ is also greater than or equal to 2. Moreover, the fact that

both F and C̃ are curves of genus greater than or equal to 2 implies that there exist

Hermitian metrics (Poincaré metric) on F and C̃ of constant negative HSC. Therefore

using Theorem 4.2, F × C̃ has a Hermitian metric (product metric) of negative HSC.

Finally, Theorem 4.3 provides a metric of negative HSC on F by pushing forward the

product metric on F × C̃ to F via π1 ◦ φ.
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4.4 PROOF OF THEOREM 4.1

4.4.1 Pinching

Let p ∈ F and U be a neighborhood of p such that (π1 ◦ φ)−1(p) = {q1, . . . , qd}

and (π1 ◦ φ)−1(U) =
⊔d
i=1 Vi, where qi ∈ Vi and Vi’s are pairwise disjoint open sets in

F × C̃. The map φi := (π1 ◦ φ)|Vi is a biholomorphism for each i = 1, . . . , d. Let H

denotes the product metric on F × C̃ which is obtained from the Poincaré metric on

F and C̃. Then
(
φ−1
i

)∗
(H|Vi) is a Hermitian metric on U for each i = 1, . . . , d. Since

the isometry group of the Poincare disk acts transitively on it, any two points on

a hyperbolic Riemann surface have isometric neighborhoods. This implies that the

Hermitian metrics
(
φ−1
i

)∗
(H|Vi) and

(
φ−1
j

)∗
(H|Vj), defined on U , are isometric for all

i, j = 1, . . . , d. Therefore, the pushforward metric of H is given by

(π1 ◦ φ)∗H =
1

d

d∑
i=1

(
φ−1
i

)∗
(H|Vi) =

(
φ−1
i

)∗
(H|Vi)

for all i = 1, . . . , d. This implies that π1 ◦ φ is an isometry, and the HSC of F with

respect to (π1 ◦ φ)∗H is same as the HSC of F × C̃ with respect to H.

The HSC of F and C̃ with respect to the Poincaré metric is −1 which is same as

the pinching constants for the two curves. Using the formula for the pinching constant

in Theorem 4.2, the HSC of F × C̃ and hence of F is −1
2
-pinched with respect to H

and (π1 ◦ φ)∗H, respectively.
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Chapter 5

Hermitian Metrics of Positive HSC

on Fibrations

We saw in Chapter 3 and Chapter 4 that the signs of the HSCs on the base and

fibers of the Hirzebruch surfaces and isotrivial families of curves carry over to the

HSC on the entire manifold. Moreover, Cheung proved in [Che89, Theorem 1] that

negative HSCs on the base and fibers of a compact fibration also carry over to the

HSC on the entire fibration. We shall see in this chapter that the analogous result for

a compact fibration in the case of positive HSC also holds true. The following is the

main result of this chapter, which could perhaps also be considered to be the main

theorem of this dissertation.

Theorem 5.1. Let π : X → Y be a compact fibration. Assume that Y has a

Hermitian metric of positive HSC, and there exists a smooth family of Hermitian

metrics on the fibers which all have positive HSC. Then there exists a Hermitian

metric on X with positive HSC everywhere.
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CHAPTER 5. HERMITIAN METRICS OF POSITIVE HSC ON FIBRATIONS

Note that the case of projectivized vector bundles was treated in [AHZ16].

We need the following two lemmas for the proof of Theorem 5.1. Overall, we follow

the results and proofs in [Che89], although due to the different natures of positive

and negative HSC, certain key aspects had to be treated differently.

Lemma 5.2. Let M be an n-dimensional Hermitian manifold, and G be a Hermitian

metric on M . Let Rij̄kl̄ be the components of the curvature tensor with respect to

G for i, j, k, l = 1, . . . , n. Suppose the following is true at a point p ∈ M for some

positive constants K0, K1, K2, and a natural number s < n:

1.
s∑

i,j,k,l=1

Rij̄kl̄(p) ξiξjξkξl ≥ K0

s∑
i,j=1

ξiξiξjξj

for all ξi ∈ C, i = 1, 2, . . . , s.

2.

|Rij̄kl̄(p)| < K1

whenever min(i, j, k, l) ≤ s.

3.
n∑

α,β,γ,δ=s+1

Rαβ̄γδ̄(p) ξαξβξγξδ ≥ K2

n∑
α,β=s+1

ξαξαξβξβ

for any ξα ∈ C, α = s+ 1, s+ 2, . . . , n.

Then there exists a positive constant K depending only on K0/K1 such that if

K2/K1 ≥ K, then G has positive HSC at the point p.

Lemma 5.3. Let M be an n-dimensional complex manifold with two Hermitian

metrics G and H defined on it. Suppose that the metric H has positive HSC at a

point p ∈M . Then G+ λH also has positive HSC at p for λ large enough.
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5.1 PROOF OF LEMMA 5.2

5.1 Proof of Lemma 5.2

Suppose the Hermitian metric G on M is given by

G =
n∑

i,j=1

gij̄ dzi ⊗ dzj.

Since we are only interested in the sign of the HSC, it suffices to check the

numerator of (2.2) for positive sign at p in the direction of ξ = (ξ1, . . . , ξn) with

respect to the Hermitian metric G. Applying the hypothesis of the lemma, we obtain

n∑
i,j,k,l=1

Rij̄kl̄(p) ξiξjξkξl ≥K0

s∑
i,j=1

ξiξiξjξj − 4K1

n∑
α,β,γ=s+1

s∑
i=1

|ξi||ξα||ξβ||ξγ|

− 6K1

n∑
α,β=s+1

s∑
i,j=1

|ξi||ξj||ξα||ξβ|

− 4K1

n∑
α=s+1

s∑
i,j,k=1

|ξi||ξj||ξk||ξα|+K2

n∑
α,β=s+1

ξαξαξβξβ

(5.1)

for any choice of ξ = (ξ1, . . . , ξn) ∈ Cn. The coefficients 4, 6, 4 in the above expression

are obtained from summing of the indices. For any choice of positive numbers a, b, c, d,

we have:

|ξi||ξα||ξβ||ξγ| ≤ a2|ξi|4 +
1

a2
|ξα|4 + |ξβ|2|ξγ|2,

|ξi||ξj||ξα||ξβ| ≤ b2|ξi|2|ξj|2 +
1

b2
|ξα|2|ξβ|2,

|ξi||ξj||ξk||ξα| ≤ c2|ξi|2|ξj|2 +
d2

c2
|ξk|4 +

1

c2d2
|ξα|4.

(5.2)
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5.1 PROOF OF LEMMA 5.2

Substituting the inequalities from (5.2) in (5.1), we obtain

n∑
i,j,k,l=1

Rij̄kl̄(p) ξiξjξkξl

≥ K0

s∑
i,j=1

|ξi|2|ξj|2 − 4K1

n∑
α,β,γ=s+1

s∑
i=1

(
a2|ξi|4 +

1

a2
|ξα|4 + |ξβ|2|ξγ|2

)

− 6K1

n∑
α,β=s+1

s∑
i,j=1

(
b2|ξi|2|ξj|2 +

1

b2
|ξα|2|ξβ|2

)
− 4K1

n∑
α=s+1

s∑
i,j,k=1

(
c2|ξi|2|ξj|2

+
d2

c2
|ξk|4 +

1

c2d2
|ξα|4

)
+K2

n∑
α,β=s+1

|ξα|2|ξβ|2

= K0

s∑
i,j=1

|ξi|2|ξj|2 −K1

(
4a2(n− s)3

s∑
i=1

|ξi|4 +
4

a2
s(n− s)2

n∑
α=s+1

|ξα|4

+ 4s(n− s)
n∑

α,β=s+1

|ξα|2|ξβ|2 + 6b2(n− s)2

s∑
i,j=1

|ξi|2|ξj|2 +
6

b2
s2

n∑
α,β=s+1

|ξα|2|ξβ|2

+ 4c2s(n− s)
s∑

i,j=1

|ξi|2|ξj|2 +
4d2

c2
s2(n− s)

s∑
i=1

|ξi|4 +
4

c2d2
s3

n∑
α=s+1

|ξα|4
)

+K2

n∑
α,β=s+1

|ξα|2|ξβ|2.

Using
∑s

i=1 |ξi|4 ≤
∑s

i,j=1 |ξi|2|ξj|2 and
∑n

α=s+1 |ξα|4 ≤
∑n

α,β=s+1 |ξα|2|ξβ|2, we obtain

n∑
i,j,k,l=1

Rij̄kl̄(p) ξiξjξkξl ≥ K0

s∑
i,j=1

|ξi|2|ξj|2 −K1

((
4a2(n− s)3 + 6b2(n− s)2

+ 4c2s(n− s) +
4d2

c2
s2(n− s)

) s∑
i,j=1

|ξi|2|ξj|2

+

(
4

a2
s(n− s)2 + 4s(n− s) +

6

b2
s2 +

4

c2d2
s3

) n∑
α,β=s+1

|ξα|2|ξβ|2
)

+K2

n∑
α,β=s+1

|ξα|2|ξβ|2.
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5.2 PROOF OF LEMMA 5.3

We may choose a, b, c, d such that

4a2(n− s)3 + 6b2(n− s)2 + 4c2s(n− s) +
4d2

c2
s2(n− s) ≤ 1

2

K0

K1

.

Let K = 4
a2 s(n− s)2 + 4s(n− s) + 6

b2
s2 + 4

c2d2 s
3. Note that since the choice of a, b, c, d

is based on K0/K1, therefore K too depends only on K0/K1. Then for such a choice

of a, b, c and d,

n∑
i,j,k,l=1

Rij̄kl̄(p) ξiξjξkξl ≥K0

s∑
i,j=1

|ξi|2|ξj|2 −K1

(
K0

2K1

s∑
i,j=1

|ξi|2|ξj|2 +K
n∑

α,β=s+1

|ξα|2|ξβ|2
)

+K2

n∑
α,β=s+1

|ξα|2|ξβ|2

=
K0

2

s∑
i,j=1

|ξi|2|ξj|2 +
(
K2 −K1K

) n∑
α,β=s+1

|ξα|2|ξβ|2.

If K2 − K1K ≥ 0, i.e., K ≤ K2/K1, then clearly 2
∑n

i,j,k,l=1 Rij̄kl̄(p) ξiξjξkξl is

positive, which is the numerator of the HSC in the direction of a tangent vector

(ξ1, . . . , ξn) as given in (2.2). Since the denominator of (2.2) is always positive, we

conclude that the HSC at p with respect to G is positive in the direction of (ξ1, . . . , ξn),

if the above condition is satisfied
(
i.e., K ≤ K2/K1

)
.

5.2 Proof of Lemma 5.3

For the given point p ∈ M and a unit tangent vector t at p, we choose local

coordinates (z1, . . . , zn) at p which satisfy the conditions in [Wu73, Lemma 3] with

respect to H, i.e.,

1. z1(p) = . . . = zn(p) = 0.
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5.2 PROOF OF LEMMA 5.3

2. If H =
∑n

i,j=1 hij̄ dzi ⊗ dzj, then hij̄(p) = δij̄ and

∂hij̄
∂zn

(p) =
∂hij̄
∂zn

(p) = 0,

for 1 ≤ i, j ≤ n.

3. t = ∂
∂zn

(p).

Let M ′ = {z1 = . . . = zn−1 = 0} be a 1-dimensional complex submanifold of M

tangent to t. The Gaussian curvature of M ′ at p, with respect to the induced metric

H ′
(

= H|M ′ = hnn̄ dzn⊗dzn
)
, equals the HSC at p with respect to H in the direction

of t, denoted by K(H, t)(p) ([Wu73, Lemma 4]). Moreover, if G =
∑n

i,j=1 gij̄ dzi⊗dzj,

then the induced metric of G on M ′ is given by G′ = G|M ′ = gnn̄dzn ⊗ dzn. Let us

denote g = gnn̄, h = hnn̄, and z = zn. Then, G′ + λH ′ = (g + λh) dz ⊗ dz is the

induced metric of G+λH on M ′. The HSC at p with respect to G′+λH ′ is given by

K
(
G′ + λH ′

)
(p) =

2(
g(p) + λh(p)

)3

(
−
(
g(p) + λh(p)

)( ∂2g

∂z∂z
(p) + λ

∂2h

∂z∂z
(p)

)

+

(
∂g

∂z
(p) + λ

∂h

∂z
(p)

)(
∂g

∂z
(p) + λ

∂h

∂z
(p)

))

=
2(

g(p) + λh(p)
)3

(
− g(p)

∂2g

∂z∂z
(p) +

∂g

∂z
(p)

∂g

∂z
(p)

− λ2h(p)
∂2h

∂z∂z
(p) + λ2∂h

∂z
(p)

∂h

∂z
(p)− λh(p)

∂2g

∂z∂z
(p)

− λg(p)
∂2h

∂z∂z
(p) + λ

∂g

∂z
(p)

∂h

∂z
(p) + λ

∂h

∂z
(p)

∂g

∂z
(p)

)
,
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5.2 PROOF OF LEMMA 5.3

which simplifies to

K
(
G′ + λH ′

)
(p)

=
1(

g(p) + λh(p)
)3

(
g(p)3K(G′)(p) + λ2h(p)3K(H ′)(p) + 2λ

(
− h(p)

∂2g

∂z∂z
(p)

− g(p)
∂2h

∂z∂z
(p) +

∂g

∂z
(p)

∂h

∂z
(p) +

∂h

∂z
(p)

∂g

∂z
(p)

))
,

(5.3)

where K(G′)(p) and K(H ′)(p) are the HSCs at p with respect to G′ and H ′,

respectively. The choice of M ′ was such that K(H ′)(p) = K(H, t)(p). Moreover,

the decreasing property of HSC on submanifolds implies that K
(
G + λH, t

)
(p) ≥

K
(
G′+λH ′

)
(p), where K(G+λH, t)(p) denotes the HSC at p with respect to G+λH

in the direction of t. Therefore, (5.3) implies

K
(
G+ λH, t

)
(p)

≥ K
(
G′ + λH ′

)
(p)

=
1(

g(p) + λh(p)
)3

(
g(p)3K(G′)(p) + λ2h(p)3K(H, t)(p) + 2λ

(
− h(p)

∂2g

∂z∂z
(p)

− g(p)
∂2h

∂z∂z
(p) +

∂g

∂z
(p)

∂h

∂z
(p) +

∂h

∂z
(p)

∂g

∂z
(p)

))
.

(5.4)

If λ is large enough, then the sign of the expression on the right hand side is

determined by the sign of K(H, t)(p), which is positive by assumption. Hence, the

HSC at p with respect to G + λH is positive in the direction of t for a sufficiently

large value of λ, say λt, i.e.,

K(G+ λtH, t)(p) > 0.
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It is clear from (5.4) that for any λ > λt, K(G+ λH, t)(p) is still positive. We want

a λ which works for all tangent vectors at p. Any tangent vector at p is a scalar

multiple of some unit tangent vector at p (with respect to H). Therefore, it is enough

to consider λt for t ∈ S1
(
TpM

)
= {t ∈ TpM : H(t, t) = 1}. Since S1

(
TpM

)
is

compact, we conclude that there exists a λ which works for all t, i.e., K(G+λH, t)(p)

is positive for any choice of tangent vector t at p. Thus, the HSC at p with respect

to G+ λH is positive in all the directions.

Remark 5.4. The right hand side of the inequality (5.4) is O(λ−1). Thus, the formula

(2.2) of HSC implies that

2
∑n

i,j,k,l=1 Rij̄kl̄(p) ξiξ̄jξkξ̄l∑n
i,j,k,l=1

(
gij̄(p) + λhij̄(p)

)(
gkl̄(p) + λhkl̄(p)

)
ξiξ̄jξkξ̄l

≥ O(λ−1),

which further implies that

n∑
i,j,k,l=1

Rij̄kl̄(p)ξiξjξkξl ≥ O(λ)
n∑

i,j=1

ξiξiξjξj. (5.5)

5.3 Proof of Theorem 5.1

Suppose {Gt} is a smooth family of Hermitian metrics with positive HSC on each

fiber, and ϕt is the Hermitian form associated to the metric Gt. Fix a Hermitian

metric G̃ on X. For two vector fields Z1 and Z2 on X of type (1, 0) and (0, 1),

respectively, we define a (1,1)-form Φ̃ at a point p ∈ π−1(t) as follows:

Φ̃(Z1, Z2)(p) ≡ ϕt
(
projG̃Z1(p), projG̃Z2(p)

)
,
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5.3 PROOF OF THEOREM 5.1

where projG̃ is the projection onto the fiber direction with respect to the metric G̃.

Then clearly Φ̃ is a C∞, Hermitian (1,1)-form defined on X, and Φ̃ restricted to each

fiber is equal to ϕt which is positive definite.

Suppose ωY is the associated (1,1)-form of the Hermitian metric on Y with positive

HSC. Then for a sufficiently large value of µ, Φ̃ + µπ∗(ωY ) is a positive definite

Hermitian (1,1)-form defined on X. We fix one such µ0, and consider the Hermitian

metric on X with the associated (1,1)-form given by Φ = Φ̃+µ0π
∗(ωY ). As mentioned

in the definition of a Hermitian metric in Section 2.2, we shall refer to the associated

(1,1)-form of a Hermitian metric as the Hermitian metric itself. We want to show

that the Hermitian metric on X defined by Ψλ = Φ + λπ∗(ωY ) has positive HSC on

X if λ is chosen large enough.

Let p be a point in X which lies in the fiber X0 = π−1(t), t ∈ Y . Since π is of

maximal rank everywhere, locally there is a neighborhood U of p such that U = W×V ,

where V is a neighborhood of π(p) in Y , and W is a neighborhood of p in the fiber

X0. We may assume V and W are coordinate neighborhoods with local coordinates

(zs+1, . . . , zn) in V and (z1, . . . , zs) in W . Then, (z1, . . . , zn) is a coordinate system

around p in U . For computational purpose, we will choose (zs+1, . . . , zn) such that

∂
∂zs+1

, . . . , ∂
∂zn

are orthonormal at π(p) with respect to the metric ωY . Let

Φ =

√
−1

2

n∑
i,j=1

gij̄(z1, . . . , zn) dzi ∧ dzj,

and

ωY =

√
−1

2

n∑
α,β=s+1

g̃αβ̄(zs+1, . . . , zn) dzα ∧ dzβ, with g̃αβ̄(p) = δαβ̄.
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Then the Hermitian metric Ψλ is given by

√
−1

2

n∑
i,j=1

hij̄ dzi ∧ dzj

=

√
−1

2

( s∑
i,j=1

gij̄ dzi ∧ dzj +
s∑
i=1

n∑
β=s+1

giβ̄ dzi ∧ dzβ +
n∑

α=s+1

s∑
j=1

gαj̄ dzα ∧ dzj

+
n∑

α,β=s+1

(
gαβ̄ + (λ+ µ0)g̃αβ̄

)
dzα ∧ dzβ

)
.

Since we are considering large values of λ, and λ+ µ0 is just another large constant,

we can replace λ+µ0 with λ in the rest of the proof, i.e., the above expression changes

to

√
−1

2

n∑
i,j=1

hij̄ dzi ∧ dzj

=

√
−1

2

( s∑
i,j=1

gij̄ dzi ∧ dzj +
s∑
i=1

n∑
β=s+1

giβ̄ dzi ∧ dzβ +
n∑

α=s+1

s∑
j=1

gαj̄ dzα ∧ dzj

+
n∑

α,β=s+1

(
gαβ̄ + λg̃αβ̄

)
dzα ∧ dzβ

)
.

Let A be the s× s matrix with coefficients gab̄(p) for 1 ≤ a, b ≤ s, and Aab be the

(a, b)th cofactor of the matrix A. Then, using the following formula to compute the

determinant of a block matrix:

det

P Q

R S

 = det(P ) det(S −RP−1Q),

we obtain the following expressions for inverse elements, with the assumption that
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1 ≤ a, b ≤ s, and s+ 1 ≤ χ, η ≤ n,

hab̄(p) =
λn−s detAab +O(λn−s−1)

λn−s detA+O(λn−s−1)
,

hχχ̄(p) =
λn−s−1 detA+O(λn−s−2)

λn−s detA+O(λn−s−1)
,

haη̄(p) = hχb̄(p) = O(λ−1), and hχη̄(p) = O(λ−2), χ 6= η.

(5.6)

Now, we check the conditions of Lemma 5.2:

1. For 1 ≤ i, j, k, l ≤ s, the formula (2.1) implies that the components of curvature

tensor are given by

Rij̄kl̄(p) = −
∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

hab̄(p)
∂giā
∂zk

(p)
∂gbj̄
∂zl

(p)

+
∑

∼(u,v≤s)

huv̄(p)
∂giū
∂zk

(p)
∂gvj̄
∂zl

(p).

Dependence of the inverse elements on λ, as given in (5.6), reduces the above

expression to

Rij̄kl̄(p) =−
∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

hab̄(p)
∂giā
∂zk

(p)
∂gbj̄
∂zl

(p) +O(λ−1).

For large λ, we note that limλ→∞ h
ab̄(p) = detAab

detA
is the inverse element of the

(a, b)th coefficient of metric tensor associated to ϕt (p ∈ π−1(t)). Therefore,

lim
λ→∞

Rij̄kl̄(p) = lim
λ→∞

(
−

∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

hab̄(p)
∂giā
∂zk

(p)
∂gbj̄
∂zl

(p) +O(λ−1)

)

=−
∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

detAab
detA

∂giā
∂zk

(p)
∂gbj̄
∂zl

(p).
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The expression

2
s∑

i,j,k,l=1

(
−

∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

detAab
detA

∂giā
∂zk

(p)
∂gbj̄
∂zl

(p)

)
ξiξjξkξl

is the numerator of the HSC of ϕt on the fiber π−1(t) which, by assumption, is

bounded below by a positive constant. Thus, for a sufficiently large choice of

λ, the expression

s∑
i,j,k,l=1

Rij̄kl̄ξiξjξkξl

=
s∑

i,j,k,l=1

(
−

∂2gij̄
∂zk∂zl

(p) +
s∑

a,b=1

hab̄(p)
∂giā
∂zk

(p)
∂gbj̄
∂zl

(p) +O(λ−1)

)
ξiξjξkξl

is bounded below by a positive constant. This proves that the first condition of

Lemma 5.2 is satisfied for λ sufficiently large.

2. If min(i, j, k, l) ≤ s, then the dependence of inverse elements on λ, as described

in (5.6), and the fact that g̃αβ̄’s are functions of zs+1, . . . , zn only, imply that

the formula (2.1) gives |Rij̄kl̄(p)| ≤ O(1) when min(i, j, k, l) ≤ s. Therefore, the

second condition of Lemma 5.2 is also satisfied when λ is large enough.

3. s+ 1 ≤ i, j, k, l ≤ n:

In this case, we consider a hypersurface M ′ around p defined by {z1 = . . . =

zs = 0}. Let G′ be the induced metric of Φ on M ′, and G̃′ be the induced metric

of π∗(ωY ) on M ′ so that

G′ + λG̃′ =
n∑

α,β=s+1

(
gαβ̄ + λg̃αβ̄

)
dzα ⊗ dzβ
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is the induced metric of Ψλ on M ′. Clearly, G̃′ has positive HSC at p ∈ M ′.

Lemma 5.3 implies that G′ + λG̃′ also has positive HSC at p for a sufficiently

large choice of λ. Therefore, the numerator of (2.2) is positive with respect

to G′ + λG̃′, i.e., if R′αβγδ denote the components of the curvature tensor (for

α, β, γ, δ = s+ 1, . . . , n) with respect to the induced metric G′ + λG̃′, then

n∑
α,β,γ,δ=s+1

R′αβ̄γδ̄(p)ξαξβξγξδ > 0.

The decreasing property of HSC on submanifolds implies that

K
(

Ψλ, (0, . . . , 0, ξs+1, . . . , ξn)
)

(p) ≥K
(

Ψλ|M ′ , (ξs+1, . . . , ξn)
)

(p)

=K
(
G′ + λG̃′, (ξs+1, . . . , ξn)

)
(p),

i.e.,
2
∑n

α,β,γ,δ=s+1Rαβ̄γδ̄(p) ξαξβξγξδ∑n
α,β,γ,δ=s+1

(
gαβ̄(p) + λg̃αβ̄(p)

)(
gγδ̄(p) + λg̃γδ̄(p)

)
ξαξβξγξδ

≥
2
∑n

α,β,γ,δ=s+1R
′
αβ̄γδ̄

(p) ξαξβξγξδ∑n
α,β,γ,δ=s+1

(
gαβ̄(p) + λg̃αβ̄(p)

)(
gγδ̄(p) + λg̃γδ̄(p)

)
ξαξβξγξδ

,

which implies

n∑
α,β,γ,δ=s+1

Rαβ̄γδ̄(p) ξαξβξγξδ ≥
n∑

α,β,γ,δ=s+1

R′αβ̄γδ̄(p) ξαξβξγξδ. (5.7)

The expression on the right hand side of the above inequality is positive for λ

sufficiently large. Therefore, the expression on the left hand side is also positive.

This proves the third and last condition of Lemma 5.2 for λ sufficiently large.

According to (5.5) in Remark 5.4, the right hand side of the inequality (5.7),
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and consequently the left hand side of the inequality, satisfy a stronger positivity

statement, namely

n∑
α,β,γ,δ=s+1

Rαβ̄γδ̄(p) ξαξβξγξδ ≥ O(λ)
n∑

α,β=s+1

ξαξαξβξβ.

Therefore, the inequality K2/K1 ≥ K in the statement of Lemma 5.2 is satisfied

for λ large enough, and hence, the lemma implies that Ψλ has positive HSC at p for

λ sufficiently large.

Let Up,λ be a neighborhood of p in which the HSC with respect to Ψλ is positive

everywhere, i.e., the HSC at every point q ∈ Up,λ is positive in all directions. Then

[Wu73, Lemma 4] implies that the HSC at q in a direction t ∈ TqX (with respect to

Ψλ) is equal to the Gaussian curvature at q with respect to the induced metric of Ψλ

on a 1-dimensional submanifold tangent to t. Dependence of the Gaussian curvature

on λ (in (5.4)) implies that if K(Ψλ, t)(q) > 0, then K(Ψλ′ , t)(q) > 0 for any λ′ > λ.

Therefore, using the compactness property of X, we conclude that there exists a

sufficiently large value of λ such that the HSC of X with respect to Ψλ is positive

everywhere.
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Chapter 6

Counterexamples In The

Semi-Definite HSC Case

This chapter shows, with the help of some examples, that variations of results

proved in Chapter 5 might not be valid in the case of semi-definite HSC. In particular,

the examples mentioned in this chapter are direct counterexamples to Lemma 5.2 in

the respective semi-definite cases.

For all the examples in this chapter, we define X = D1 × D2 to be the bi-disk

and Y = D2. Let (z1, z2) be the coordinate system in X. The holomorphic map

π : X → Y is given by the projection onto the second coordinate, i.e., (z1, z2) 7→ z2.

Clearly, π is of maximal rank everywhere. In Chapter 5, the warp factor λ (or s in

Chapter 3) was chosen to be a constant. However, in this chapter, the warp factor λ

will depend smoothly on the base space Y , whereby we show that the counterexamples

cannot be ruled out simply by allowing λ to be non-constant.

We would like to remark here that the counterexamples given in this chapter

only demonstrate the “non-existence of a warped metric” with semi-negative HSC.
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6.1 NEGATIVE HSC ON THE BASE AND SEMI-NEGATIVE HSC ALONG THE
FIBERS

Whether it is possible to obtain a metric of semi-definite HSC in the given setup,

using some other method, is still an open question.

6.1 Negative HSC on the base and semi-negative

HSC along the fibers

The Hermitian metric ωY = (1+z2z2) dz2⊗dz2 on Y has negative HSC everywhere

on Y , and the following tensor on X

Φ = e−2z2z2
(
1 + (z1z1)2e−4z2z2

)
dz1 ⊗ dz1

yields a Hermitian metric of semi-negative HSC when restricted to any of the fibers

π−1(z2), z2 ∈ Y . Clearly, Φ varies smoothly with respect to the base points in Y . For

an arbitrary smooth real-valued positive function λ(z2) on Y , we would like to show

that the Hermitian metric

G = Φ + λπ∗(ωY )

= e−2z2z2
(
1 + (z1z1)2e−4z2z2

)
dz1 ⊗ dz1 + λ(1 + z2z2) dz2 ⊗ dz2

does not give semi-negative HSC everywhere on X.

The metric tensor associated to G is given by

g11̄ g12̄

g21̄ g22̄

 =

e−2z2z2
(
1 + (z1z1)2e−4z2z2

)
0

0 λ(1 + z2z2)

 ,

where g11̄ = e−2z2z2
(
1 + (z1z1)2e−4z2z2

)
, g22̄ = λ(1 + z2z2), g12̄ = g21̄ = 0, are smooth
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functions defined on X. The inverse of the above matrix is given by

g11̄ g12̄

g21̄ g22̄

 =

g−1
11̄

0

0 g−1
22̄

 =

 e2z2z2

1+(z1z1)2e−4z2z2
0

0 1
λ(1+z2z2)

 .

All the derivatives of g12̄ and g21̄ are clearly zero. Moreover, since g22̄ does not

depend on z1, the derivatives of g22̄ with respect to z1 and z1 are also zero. Therefore,

following are the only non-zero derivatives of gij̄, i, j = 1, 2:

∂g11̄

∂z1

= 2z1z
2
1e
−6z2z2 ,

∂g11̄

∂z2

= −2z2e
−2z2z2

(
1 + 3(z1z1)2e−4z2z2

)
,

∂g11̄

∂z1

= 2z2
1z1e

−6z2z2 ,
∂g11̄

∂z2

= −2z2e
−2z2z2

(
1 + 3(z1z1)2e−4z2z2

)
,

∂2g11̄

∂z1∂z1

= 4z1z1e
−6z2z2 ,

∂2g11̄

∂z1∂z2

= − 12z1z
2
1z2e

−6z2z2 ,

∂2g11̄

∂z2∂z1

= − 12z2
1z1z2e

−6z2z2 ,

∂2g11̄

∂z2∂z2

= − 2e−2z2z2

(
1− 2z2z2 + 3(1− 6z2z2)(z1z1)2e−4z2z2

)
,

∂g22̄

∂z2

= λz2 + (1 + z2z2)
∂λ

∂z2

,
∂g22̄

∂z2

= λz2 + (1 + z2z2)
∂λ

∂z2

,

∂2g22̄

∂z2∂z2

= λ+ z2
∂λ

∂z2

+ z2
∂λ

∂z2

+ (1 + z2z2)
∂2λ

∂z2∂z2

.

Using the formula (2.1), the components of the curvature tensor with respect to

48



6.1 NEGATIVE HSC ON THE BASE AND SEMI-NEGATIVE HSC ALONG THE
FIBERS

G are obtained as follows:

R11̄11̄ = − 4z1z1e
−6z2z2

1 + (z1z1)2e−4z2z2
,

R11̄12̄ =
8z1z

2
1z2e

−6z2z2

1 + (z1z1)2e−4z2z2
,

R11̄21̄ =
8z2

1z1z2e
−6z2z2

1 + (z1z1)2e−4z2z2
,

R11̄22̄ =
2e−2z2z2

(
1 +

(
4 + 3(z1z1)2e−4z2z2 − 8z2z2

)
(z1z1)2e−4z2z2

)
1 + (z1z1)2e−4z2z2

,

and

R22̄22̄ = − λ

1 + z2z2

+ (1 + z2z2)

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)
.

Using (2.2), the HSC of X at a point (z1, z2) with respect to G in the direction of

a unit tangent vector ξ = (ξ1, ξ2) is given by

K(ξ) = R11̄11̄ ξ1ξ1ξ1ξ1 +R11̄12̄ ξ1ξ1ξ1ξ2 +R11̄21̄ ξ1ξ1ξ2ξ1

+R11̄22̄ ξ1ξ1ξ2ξ2 +R22̄22̄ ξ2ξ2ξ2ξ2

= − 4z1z1e
−6z2z2

1 + (z1z1)2e−4z2z2
ξ1ξ1ξ1ξ1 +

8z1z
2
1z2e

−6z2z2

1 + (z1z1)2e−4z2z2
ξ1ξ1ξ1ξ2

+
8z2

1z1z2e
−6z2z2

1 + (z1z1)2e−4z2z2
ξ1ξ1ξ2ξ1

+
2e−2z2z2

(
1 +

(
4 + 3(z1z1)2e−4z2z2 − 8z2z2

)
(z1z1)2e−4z2z2

)
1 + (z1z1)2e−4z2z2

ξ1ξ1ξ2ξ2

−

(
λ

1 + z2z2

− (1 + z2z2)

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

))
ξ2ξ2ξ2ξ2.

Now, we shall compute K(ξ) at the point (0, 0) ∈ X. A unit tangent vector (ξ1, ξ2)

at (0,0) satisfies

g11̄(0, 0)ξ1ξ1 + g22̄(0, 0)ξ2ξ2 = 1
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⇒ ξ1ξ1 + λξ2ξ2 = 1

⇒ ξ1ξ1 = 1− λξ2ξ2.

Using the above relation between ξ1ξ1 and ξ2ξ2, we obtain the HSC at the origin

as follows:

K(0,0)(ξ) = 2 ξ1ξ1ξ2ξ2 −
(
λ(0) +

∂2λ

∂z2∂z2

(0)− 1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2ξ2ξ2

=

(
2 ξ1ξ1 −

(
λ(0) +

∂2λ

∂z2∂z2

(0)− 1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2

)
ξ2ξ2

=

(
2−

(
3λ(0) +

∂2λ

∂z2∂z2

(0)− 1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2

)
ξ2ξ2.

For any value of λ and its derivatives at z2 = 0, there exists a non-zero ξ2 with

ξ2ξ2 small enough such that

ξ2ξ2 < 2

(
3λ(0) +

∂2λ

∂z2∂z2

(0)− 1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)−1

,

i.e.,

2−
(

3λ(0) +
∂2λ

∂z2∂z2

(0)− 1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2 > 0.

Therefore, for any value of λ and its derivatives at z2 = 0, there exists a unit tangent

vector ξ = (ξ1, ξ2) such that the HSC at (0,0) with respect to G in the direction of ξ

is positive.
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6.2 Positive HSC on the base and semi-positive

HSC along the fibers

The Hermitian metric ωY = 1
1+z2z2

dz2 ⊗ dz2 on Y has positive HSC everywhere

on Y , and the following tensor on X

Φ =
e2z2z2

1 + (z1z1)2e4z2z2
dz1 ⊗ dz1

yields a Hermitian metric of semi-positive HSC when restricted to any of the fibers

π−1(z2), z2 ∈ Y . Clearly, Φ varies smoothly with respect to the base points in Y . For

an arbitrary smooth real-valued positive function λ(z2) on Y , we would like to show

that the Hermitian metric

G = Φ + λπ∗(ωY )

=
e2z2z2

1 + (z1z1)2e4z2z2
dz1 ⊗ dz1 +

λ

1 + z2z2

dz2 ⊗ dz2

does not give semi-positive HSC everywhere on X.

The metric tensor associated to G is given by

g11̄ g12̄

g21̄ g22̄

 =

 e2z2z2

1+(z1z1)2e4z2z2
0

0 λ
1+z2z2

 ,

where g11̄ = e2z2z2

1+(z1z1)2e4z2z2
, g22̄ = λ

1+z2z2
, g12̄ = g21̄ = 0, are smooth functions defined
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on X. The inverse of the above matrix is given by

g11̄ g12̄

g21̄ g22̄

 =

g−1
11̄

0

0 g−1
22̄

 =

1+(z1z1)2e4z2z2

e2z2z2
0

0 1+z2z2

λ

 .

As in the previous section, the following are the only non-zero derivatives of

gij̄, i, j = 1, 2:

∂g11̄

∂z1

= − 2z1z
2
1e

6z2z2(
1 + (z1z1)2e4z2z2

)2 ,

∂g11̄

∂z1

= − 2z2
1z1e

6z2z2(
1 + (z1z1)2e4z2z2

)2 ,

∂g11̄

∂z2

=
2z2e

2z2z2
(
1− (z1z1)2e4z2z2

)(
1 + (z1z1)2e4z2z2

)2 ,

∂g11̄

∂z2

=
2z2e

2z2z2
(
1− (z1z1)2e4z2z2

)(
1 + (z1z1)2e4z2z2

)2 ,

∂2g11̄

∂z1∂z1

= −
4z1z1e

6z2z2
(
1− (z1z1)2e4z2z2

)(
1 + (z1z1)2e4z2z2

)3 ,

∂2g11̄

∂z1∂z2

= −
4z1z

2
1z2e

6z2z2
(
3− (z1z1)2e4z2z2

)(
1 + (z1z1)2e4z2z2

)3 ,

∂2g11̄

∂z2∂z1

= −
4z2

1z1z2e
6z2z2

(
3− (z1z1)2e4z2z2

)(
1 + (z1z1)2e4z2z2

)3 ,

∂2g11̄

∂z2∂z2

=
2e2z2z2

(
1 + 2z2z2

(
1− 6(z1z1)2e4z2z2

)
−
(
1− 2z2z2

)
(z1z1)4e8z2z2

)
(
1 + (z1z1)2e4z2z2

)3 ,

∂g22̄

∂z2

= − λz2

(1 + z2z2)2
+

1

1 + z2z2

∂λ

∂z2

,

∂g22̄

∂z2

= − λz2

(1 + z2z2)2
+

1

1 + z2z2

∂λ

∂z2

,

∂2g22̄

∂z2∂z2

= − (1− z2z2)λ

(1 + z2z2)3
− z2

(1 + z2z2)2

∂λ

∂z2

− z2

(1 + z2z2)2

∂λ

∂z2

+
1

1 + z2z2

∂2λ

∂z2∂z2

.
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The components of the curvature tensor with respect to G are obtained as follows:

R11̄11̄ =
4z1z1e

6z2z2(
1 + (z1z1)2e4z2z2

)3 ,

R11̄12̄ =
8z1z

2
1z2e

6z2z2(
1 + (z1z1)2e4z2z2

)3 ,

R11̄21̄ =
8z2

1z1z2e
6z2z2(

1 + (z1z1)2e4z2z2
)3 ,

R11̄22̄ = −
2e2z2z2

(
1−

(
8z2z2 + (z1z1)2e4z2z2

)
(z1z1)2e4z2z2

)
(
1 + (z1z1)2e4z2z2

)3 ,

R22̄22̄ =
λ

(1 + z2z2)3
+

1

1 + z2z2

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)
.

The HSC of X at a point (z1, z2) with respect to G in the direction of a unit

tangent vector ξ = (ξ1, ξ2) is given by

K(ξ) = R11̄11̄ ξ1ξ1ξ1ξ1 +R11̄12̄ ξ1ξ1ξ1ξ2 +R11̄21̄ ξ1ξ1ξ2ξ1

+R11̄22̄ ξ1ξ1ξ2ξ2 +R22̄22̄ ξ2ξ2ξ2ξ2

=
4z1z1e

6z2z2(
1 + (z1z1)2e4z2z2

)3 ξ1ξ1ξ1ξ1 +
8z1z

2
1z2e

6z2z2(
1 + (z1z1)2e4z2z2

)3 ξ1ξ1ξ1ξ2

+
8z2

1z1z2e
6z2z2(

1 + (z1z1)2e4z2z2
)3 ξ1ξ1ξ2ξ1

−
2e2z2z2

(
1−

(
8z2z2 + (z1z1)2e4z2z2

)
(z1z1)2e4z2z2

)
(
1 + (z1z1)2e4z2z2

)3 ξ1ξ1ξ2ξ2

+

(
λ

(1 + z2z2)3
+

1

1 + z2z2

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

))
ξ2ξ2ξ2ξ2.

A unit tangent vector (ξ1, ξ2) at (0,0) satisfies

ξ1ξ1 = 1− λξ2ξ2,
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6.3 ZERO HSC ON THE BASE AND FIBERS

just like in Section 6.1. Then the HSC at the origin is given by

K(0,0)(ξ) = − 2 ξ1ξ1ξ2ξ2 +

(
λ(0)− ∂2λ

∂z2∂z2

(0) +
1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2ξ2ξ2

= −

(
2 ξ1ξ1 −

(
λ(0)− ∂2λ

∂z2∂z2

(0) +
1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2

)
ξ2ξ2

= −

(
2−

(
3λ(0)− ∂2λ

∂z2∂z2

(0) +
1

λ(0)

∂λ

∂z2

(0)
∂λ

∂z2

(0)

)
ξ2ξ2

)
ξ2ξ2.

A similar argument as in Section 6.1 implies that for any value of λ and its

derivatives at z2 = 0, we can find a unit tangent vector ξ = (ξ1, ξ2) at the origin such

that K(0,0)(ξ) is negative.

6.3 Zero HSC on the base and fibers

The base space Y has the flat metric ωY = dz2⊗ dz2, and the following tensor on

X

Φ = e2z2z2 dz1 ⊗ dz1

yields a Hermitian metric of zero HSC when restricted to any of the fibers

π−1(z2), z2 ∈ Y . Clearly, Φ varies smoothly with respect to the base points in Y . For

an arbitrary smooth real-valued positive function λ(z2) on Y , we would like to show

that the Hermitian metric

G = Φ + λπ∗(ωY )

= e2z2z2 dz1 ⊗ dz1 + λ dz2 ⊗ dz2

does not give zero HSC everywhere on X.

54
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The metric tensor associated to G is given by

g11̄ g12̄

g21̄ g22̄

 =

e2z2z2 0

0 λ

 ,

where g11̄ = e2z2z2 , g22̄ = λ, g12̄ = g21̄ = 0, are smooth functions defined on X. The

inverse of the above matrix is given by

g11̄ g12̄

g21̄ g22̄

 =

g−1
11̄

0

0 g−1
22̄

 =

e−2z2z2 0

0 1
λ

 .

The only non-zero derivatives in this case are the derivatives of g11̄ and g22̄ with

respect to z2 and z2, because both g11̄ and g22̄ depend only on z2. These derivatives

are given as follows:

∂g11̄

∂z2

= 2z2e
2z2z2 ,

∂g11̄

∂z2

= 2z2e
2z2z2 ,

∂2g11̄

∂z2∂z2

= 2e2z2z2 + 4z2z2e
2z2z2 ,

∂g22̄

∂z2

=
∂λ

∂z2

,
∂g22̄

∂z2

=
∂λ

∂z2

,
∂2g22̄

∂z2∂z2

= − ∂2λ

∂z2∂z2

.

The following are the only non-zero components of curvature tensor with respect

to G:

R11̄22̄ = −2e2z2z2 ,

R22̄22̄ = − ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

.

The HSC of X at a point (z1, z2) with respect to G in the direction of a unit
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tangent vector ξ = (ξ1, ξ2) is given by

K(ξ) = R11̄22̄ ξ1ξ1ξ2ξ2 +R22̄22̄ ξ2ξ2ξ2ξ2

= − 2e2z2z2 ξ1ξ1ξ2ξ2 +

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)
ξ2ξ2ξ2ξ2.

As in previous sections, a unit tangent vector (ξ1, ξ2) at (0,0) satisfies

ξ1ξ1 = 1− λξ2ξ2.

Therefore, the HSC at the origin is given by

K(0,0)(ξ) = − 2 ξ1ξ1ξ2ξ2 +

(
− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)
ξ2ξ2ξ2ξ2

=

(
− 2 +

(
2λ− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)
ξ2ξ2

)
ξ2ξ2,

which is clearly not zero for all possible values of ξ2. In particular, any value of ξ2

such that

ξ2ξ2 < 2

(
2λ− ∂2λ

∂z2∂z2

+
1

λ

∂λ

∂z2

∂λ

∂z2

)−1

,

implies that K(0,0)(ξ) is negative.
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de la IIIe Réunion du Groupement des Mathématiciens d’Expression Latine

(Namur, 1965), pages 35–55. Librairie Universitaire, Louvain, 1966.

[BG65] Richard L. Bishop and Samuel I. Goldberg. On the topology of positively
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