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Abstract

In this dissertation, we first discuss some of the important results in Nevanlinna
Theory and Diophantine Approximation Theory. Next, a result by the author and
Min Ru [LR14] is presented. In chapter 3, we extend the Second Main Theorem to the
case of holomorphic curves into algebraic varieties intersecting numerically equivalent
ample divisors. In chapter 4, we improve Ru’s defect relation (see [Rul6a]) and the
height inequality (see [Rul6b]) in the case when X is a normal projective surface and
D;, 1 < j <gq, are big and asymptotically free divisors without irreducible common
components on X. Lastly, the author and Gordon Heier study a hyperbolicity-type

problem involving projections from P"*2 to P".
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Chapter 1

Introduction

Nevanlinna theory began with the study of the distribution of values of meromorphic
functions. In 1929, Nevanlinna extended the classical little Picard’s theorem by
introducing the defect (see chapter 2). Right after Nevanlinna, Cartan extended
Nevanlinna’s result to holomorphic curves in projective spaces and Bloch considered
holomorphic curves in Abelian varieties. In 1941, Ahlfors, following Weyl’s work,
gave a geometric approach to the theory of holomorphic curves in projective spaces.
In 1953, Stoll generalized the work of Weyl-Ahlfors to the case of several complex
variables. In 1970, Griffiths proved the Second Main Theorem for equi-dimensional
holomorphic mappings. The result gave a new insight to the theory in terms of Chern
invariant. In 1996, Siu and Yeung settled Lang’s conjecture for abelian varieties and

made significant progress towards solving Griffiths” conjecture.

Diophantine problems also have a long history. In the first half of the 20th



century, Thue and Siegel first obtained important finiteness statements. In 1955,
Roth proved the celebrated Roth’s theorem. Around 1970 Schmidt extended Roth’s
result for simultaneous approximation to algebraic numbers. In 1983, Faltings solved
Mordell’s conjecture: a smooth algebraic curve of genus g > 2 defined over Q has
only finitely many rational points. Vojta derived an alternative proof of Faltings’
theorem by Diphantine approximation. In the same year, Faltings extended the

theory of Diophantine approximation to Abelian varieties.

There exists a very striking connection between Nevanlinna theory and Diophan-
tine approximation, as discovered by Vojta, Osgood and others. Roughly speaking,
the study of holomorphic maps intersecting divisors corresponds to the study of in-
tegral points of the complement of the divisors. Vojta even compiled a “dictionary”
translating from one to the other. This relation has been proved beneficial for both

subjects, as progress in one can provide inspiration for progress in the other.

In recent years, there has been some significant progress in the study of qualita-
tive and quantitative aspects of geometric and arithmetic properties of the comple-
ment of divisor in an algebraic projective variety. In 2004, Ru established a defect
relation for algebraically nondegenerate holomorphic curves in projective space inter-
secting curvilinear hypersurfaces which settled a long-standing conjecture of Shiff-
man. In 2009, he further extended the result to holomorphic curves in complex
projective varieties. In the same year, based on the result achieved by Corvaja-
Zannier, Levin obtained the sharp qualitative result in the surface case. In 2014,

also motivated by Corvaja-Zannier, Ru and I study the Second Main Theorem in



the case when divisors are numerically equivalent to an ample divisor (see chapter
3). In 2015, Ru introduced a new notion of Nevanlinna constant which gives an
upper bound of the defect. In chapter 4, we will follow Ru’s method to derive the

quantitative result in the surface case which implies the sharp qualitative result.

To our knowledge, many theorems on integral points apply to V only if D splits
into several components, where V' C P" is an affine variety and D is its divisor
at infinity. Only few results on integral points are known without such type of
hypotheses. An example is provided by the deep theorem of Faltings on sets of
integral points on abelian varieties in the complement of an ample effective divisor.
Another classic example proved by Siu and Yeung [SY96] is described as follows:

If the degree of a generic (irreducible, smooth) curve C in P? is big enough, then

P2\C is hyperbolic, i.e., every holomorphic map f : C — P? is constant.

Following an idea of Faltings, Zannier [Zan05] studied the projection from a
hypersurface X in P**! to P". Roughly speaking, he used the total ramification locus
to control the integral points away from the ramification locus D of the projection.
In this spirit, Gordon Heier and I study a generic projection from the intersection
of two generic hypersurfaces in P"*2 to P" (see chapter 5). We derived the result
that the Zariski closure of any set of S-integral points in P" \ D has dimension
< max{0,n — dydy + 2}, where dy, dy are degrees of these two hypersurfaces. Note

that, as a consequence, if didy > n + 2, then any set of S-integral points is finite.

Our proof essentially follows Zannier’s approach, which is to reduce the problem

to a clever application of the finiteness theorem of Siegel-Mahler for solutions of the



S-unit equation. The key difference however is that in Zannier’s codimension one
case, the divisor D can be conveniently described by a discriminant. In our case,
iterated resultants are required and certain excess vanishing has to be removed in

order to identify D.



Chapter 2

Definitions and background

materials

In this chapter, the definitions of the counting function, the characteristic function,
the proximity function and the defect are given in a geometric way and basic proper-
ties are also provided. Let X be a complex projective variety. For a Cartier divisor

D on X, the Weil function for D is given by

Ap(z) = —log|lsp(z)] , (2.1)

where sp is the canonical section of the line bundle Ox (D), i.e., (sp) = D, and
| - || is any continuous metric on Ox (D). The Weil function is well defined, up to a
bounded term, independently of the choices of the metric. In the case when X = P

and D = {Q = 0} C P™ where @ is a homogeneous polynomial of degree d, Ap can



be chosen as, for x = [xg: -+ : z,] € P"\suppD,

(maxo<i<y |2:]?) - |Q]]

|Q(=)] ’

where ||@Q]] is the maximum of the norm of the coefficients of Q.

Ap(z) = log

Let f : C — X be a holomorphic map whose image is not contained in the

support of D. The proximity function of f with respect to D is defined by

27 ] de
myr.D) = [ An(rre)5] 2.2
0 T
The counting function of f is defined by
" t,D
N;(r, D) = / wdt, (2.3)
1

where n(t, D) is the number of zeros of po f inside {|z| < t}, counting multiplicities,
and p is a local defining function of D (note that n(t, D) is independent of the choice

of p). We define the characteristic function by

Tootr) = [ 7 [ Feom) (2.4

1
where O(D) is the line bundle associated to D and B(t) is an open disk whose radius
is t and center is at origin. The first relation between those functions we defined
above is called the First Main Theorem which is a consequence of the Green-Jensen

formula.

Theorem 2.0.1 (Green-Jensen Formula). Let o be a function of class C? on B(r)

or a subharmonic function on B(r). Then

/1r % /B(t)[ddca] _ 1 /027r a(reV™)do + 0(1), 2.5)

™
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where [dd°a] = dd°a + Singa(r), Sing.(r) = limeo f; % fs (2.0 @, S(Z,€) is the
union of small circles around singularities in B and Z is the set of singularities of

Q.

Proof. By Stokes” theorem and d° = 5= (r& ® df + 2.2 ® dr),

/dt/ ddo :/ / d°a — lim ﬂ/ d°a
=01 t Js(ze

dt 0 1 0 0 ,
/ / < 8_ df + ;@ ® dt) a(te™) — Sing,(r)
ndt[?

6
27r 815 a(te™)df — Sing, (1)

1 27r )
= a(re’a)de — Sing,(r) + O(1).
e

Based on the Green-Jensen formula, we have

dt dt
/ Fler(D / £*(dd log ||s]))
1 B(t) 1 B(t)

dt
- - [T argliser
1t JBw

. Lo -
= SlnglogHSOfH(t) — %/0 log HS 9) f(reﬁe)Hde + 0(1)

ince lim,_, og|z]* =1, Singee (5o = r, D). Therefore, we have the
Si li 8B(e)dcl > =1, Singjog|(sof||(t) = Ny (r, D). Theref h h

First Main Theorem.
Trp(r) =mys(r,D) + Ns(r,D) + O(1) . (2.6)

Remark 2.0.2. The First Main Theorem is an alternative way to define the char-

acteristic function.



If X = P™ with homogeneous coordinates [zg,... ,z,] and D = {agzo + ... +
anz, = 0}, the Weil function Ap(z) = log % In particular, when D =

{z0 = 0}, we simply write Ty(r) := Ty p(r). We call Ty(r) Cartan’s characteristic

function. By Green-Jensen’s formula, we have

1 2 —
1) = 5 [ 1o s e’ ) .

where f = [fo:---: fu] and fo, ..., f, are entire functions without common zeros.

To serve our purpose later, we discuss the characteristic function for f : C — X
with respect to a subspace V' C H°(X, D) with dimV > 2 where D is base-point
free. Let ® : X — P™ be the canonical rational map associated with V' where
m+1=dimV. Let ® = [¢pg : ... : ¢n] where {¢g,... ,¢n} is a basis of V.
Extend {¢o,... ,dm} to {¢o,... ,d} such that {¢o,... ¢} is a basis of H*(X, D),
where [ = dim H°(X, D) — 1 . Since |D| is base-point free, we can take a reduced
representation for ¢po f : C — P!, say ¢ o f = [ho,... , ], where ¢ = [¢g : ... : ¢
Take an entire function g on C such that {hy/g,... ,hn/g} has no common zeros.
Then [ho/g, ... , hm/g] is a reduced representation of ®o f. We now compare Tpor(r)
with T p(r). Notice that

27 de
_ ) —16N| 77
Tuws(r) = [ oz ma |(h/a) e I
= [T tog max (e N (r0)
0 0<i<m o VY

where the second identity holds due to Green-Jensen’s formula. On the other hand,
by definition,

2
Ty0(0) = Tous(r) = [ logmas (e ) .
0 >

0< ™
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Hence,

2
do
Tues(r) = [ oz s re’ ™) |52 = N,(,0)

< T p(r)— Ny(r,0) < Ty p(r). (2.7)
We have the following basic properties of these functions.

Lemma 2.0.3 ([Voj07], Theorem 8.8). Weil functions \p for Cartier divisors D on

a complex projective variety X satisfy the following properties.
14 proj Yy Y g prop

(a) Additivity: If Ay and Ay are Weil functions for Cartier divisors Dy and Dy on

X, respectively, then \y + o extends uniquely to a Weil function for Dy + Ds.

(b) Functoriality: If A\ is a Weil function for a Cartier divisor D on X, and if
¢ : X' — X is a morphism such that ¢(X') € suppD, then x — X ¢(x)) is a Weil

function for the Cartier divisor ¢*D on X'.

(c) Normalization: If X = P", and if D = {xy = 0} C X 1is the hyperplane at
infinity, then the function

max{|zol, ..., |za|}

\l’o|

Ap([zo : -+t ay)) :=log

1s a Weil function for D.

(d) Uniqueness: If both Ay and Ay are Weil functions for a Cartier divisor D on
X, then )\1 = /\2 + O(l)

(e) Boundedness from below: If D is an effective divisor and X is a Weil function

for D, then X\ is bounded from below.



(f) Principal divisors: If D is a principal divisor (f), then —log|f| is a Weil

function for D.

Proposition 2.0.4. Let f: C — X be a holomorphic map. The proximity function

and the counting function of f have the following properties.
(a) Additivity: If Dy and Dy are two divisors on X, then

va(T, D1 + DQ) = mf(r, D1> + mf(r, Dg) + O(l)

Nf(?”, D1 + D2> = Nf(?”, D1> + Nf(?“, Dg) + 0(1)

(b) Functoriality: If ¢ : X — X' is a morphism and D' is a divisor on X' whose

support does not contain the image of ¢ o f, then

me(r,¢*D") = mgop(r, D') + O(1)

Nf(?“, ¢*D/) = N¢Of(r, D/) + 0(1)

(c) Effective divisors: If D is effective, then m¢(r, D) and N¢(r, D) are bounded
below. In each of the above cases, the implied constant in O(1) depends on the

varieties, divisors, and morphisms, but not on f and r.

Lemma 2.0.5 ([Voj87] Ch.10, Prop.3.2). Let Ai,...,\, be Weil functions for
Cartier divisors D1, ..., D,, respectively, on a projective variety X. Assume that
the D; are of the form D; = Do+ E;, where Dy is a fized Cartier divisor and E; are

effective for all i. Assume also that

suppEy N - N suppE,, = 0.

10



Then the function

AMz) = min{\;(z) : © & suppE;}

is defined everywhere on X\suppDy, and is a Weil function for Dy.

The divisors Dy, ..., D, on X are said to be in [-subgeneral position on X if for

any subset of [ + 1 elements {i,...,4;} C {1,...,q},
suppD;, N - -+ NsuppD;, = 0.

When [ = dim X, then we say that the divisors Dy, ..., D, are in general position on

X.

The central problem in Nevanlinna theory (or the theory of holomorphic curves)
is to study whether a holomorphic mapping f : C — X\D is degenerate (i.e., f(C)
is contained in a proper subvariety of X), for a given projective variety X and an

effective divisor D on X. A more general quantitative problem is to control the

D
defect 6¢(D) for f : C — X, where §¢(D) := ligl&f%

Theorem, d;(D) = 1. However, if (D) < 1, then f : C — X\ D must be degenerate.

. By the First Main

For example, when X = P! and D = Z?Zl(aj) for distinct points as,...,a, € P!,
Nevanlinna, in 1929, proved d;(D) < %. It gives a quantitative extension of the
classical result of Little Picard that every holomorphic mapping f : C — P\ {three
distinct points} must be constant. In 1933, H. Cartan extended Nevanlinna’s defect
relation to d;(D) < ”TH for any linearly nondegenerate holomorphic mappings f :

C — P™ where D = 23:1 H;, and Hy,..., H, are hyperplanes in general position.
The following version generalized Cartan’s result (see [Ru97], [Vojo7]).

11



Theorem 2.0.6. Let f = [fo:...: fin] : C — P™ be a holomorphic map whose image
is not contained in a proper linear subspace. Let Hy, ... , H, be arbitrary hyperplanes

in P™. Then, for every e >0,

/0 T 37 0, (e T D < (14 L) L

: ™
JjeJ
where the mazimum is taken over all subsets J of {1,...,q} such that {H;,j € J}

are in general position and ||g, throughout the dissertation, means the inequality

holds for all r € (0,00) except for a set E with finite Lebesque measure.

Motivated by the recent breakthrough in Diophantine approximation by
Corvaja-Zannier, and Evertse-Ferretti, my advisor Min Ru extended Cartan’s re-

sult to the case of hypersurfaces.

Theorem 2.0.7 ([Ru04], Main Theorem). Let f : C — P" be an algebraic non-
degenerate holomorphic map. Let Dy,..., D, be hypersurfaces in P" of degree d;,

located in general position. Then, for every e > 0,

Zdj—lmf(r, Dj) < (n+1+Ts(r) ||g. (2.8)

In 2009, he further extended the result to any complex projective variety.

Theorem 2.0.8 ([Ru09], The main result). Let X C P™ be a complex projective
variety. Let Dy, ..., D, be hypersurfaces in P of degree d;, located in general position
on X. Let f: C — X be an algebraically non-degenerate holomorphic map. Then,

for every e > 0,

q
> ditmy(r,D;) < (dim X + 1+ ) Ty(r) || . (2.9)
j=1

12



Remark 2.0.9. The theorem was proved by Min Ru in the case X is smooth. Vojta
pointed out (see page 185, [Voj07]) that the same proof goes through when X is not

smooth.

According to the definition of the defect, the inequality (2.9) can be written as
follows:

q
> 6p(Dj) < dim X + 1.
j=1

The notions of the Weil function and the height function on the arithmetic
(Diophantine approximation) side are defined in a similar way (see, for example,
[Lan87] or [Voj07]). Let k be a number field and let Oy, denote the ring of integers of
k. As usual, we have a set M, of places of k consisting of one place for each nonzero
prime ideal in Oy, one place for each real embedding o : £k — R, and one place for
each pair of conjugate embeddings 0,5 : k — C. k, denotes the completion of k with
respect to v € M. We normalize our absolute values so that ||p||, = p~kvQul/[k:Q
if v corresponds to the prime ideal above the prime p € Q, ||z||, = |o(z)|/* if v
corresponds to the real embedding o, and ||z||, = |o(z)[*"@ if v corresponds to the
pair of conjugate embeddings o, : Kk — C. Let X be a projective variety defined
over a number field k. For every Cartier divisor D on X and every place v € M, we
can associate a local Weil function Ap, : X\suppD — R (see, for example, [Lan87]
or [Voj07]), where suppD is the support of the divisor D. When D is effective, the
Weil function Ap, gives a measurement of the v-adic distance of a point to D. If

X =P" and D C P" is a hypersurface defined by a homogeneous polynomial @) of

13



degree d, then

max{||zolly, .., lzall}

1Q(zo0, - .-, 2]l

Apo([zo i+ xy]) = log

Let S be a finite set of places in M} containing the archimedean places. Let R C
X(k)\D. Then R is defined to be a (D, S)-integral set of points if there exists a
global Weil function Ap, and all embeddings k — k,, such that for all v € M\ S,
the inequality Ap,(P) < 0 for all P in R. The height hy(z, D) for points x € X (k)

is defined as

It is independent of, up to O(1), the choice of Weil functions. In particular, when

X =P", D = {2 = 0}, we simply write hg(z) := hy(z, D).

Let S C Mj, be a finite set of places containing all archimedean ones. We define,

for x € X (k)\suppD,

ms(z, D) = Apu(r), Ns(z,D)=> Ap.(z).

veS vgS

Similarly, those functions have following properties.

Proposition 2.0.10 ([Voj87], Theorem 9.8). Let X be a projective variety over a

number field k. Then the following properties hold.
(a) Additivity:

ms(x, D1 + Dg) = mg(l’, Dl) + m3($, DQ) + O(l)

NS($, Dl + Dg) = NS($, Dl) =+ NS(.I', Dg) + O(l)

14



(b) Functoriality: If ¢ : X — X' is a morphism and D' is a divisor on X' whose

support does not contain the image of ¢ o f, then

ms(x,¢"D') = ms(¢(z), D) + O(1)

Ns(z,¢"D") = Ns(p(x), D) + O(1).

(c) Effective divisors: If D is effective, then mg(x, D) and Ng(x, D) are bounded
below. In each of the above cases, the implied constant in O(1) depends on the

varieties and divisors but not on x.

When working with the proximity function and the height function, the divisor

D is almost always assumed to be effective.

The following (generalized) version of Schmidt’s Subspace Theorem from [Voj97]

is corresponding to Theorem 2.0.6.

Theorem 2.0.11. Let k be a number field and S C My be a finite set containing
all archimedean places. Let Hy,...,H, be hyperplanes in P" defined over k and
AHys .- Am, be Weil functions corresponding to Hy,... ,H,. Then there exists a
finite union of hyperplanes Z, depending only on Hy, ... ,H, (and not k,S), such
that for any € > 0,

v; mlaxiezl A, o(P) < (n+ 1+ e)hg(P),
holds for all but finitely many P € P"(k)\Z, where the mazimum is taken over subsets

I C{1,...,q} such that the linear forms defining H;,i € I, are linearly independent.

15



Remark 2.0.12. The corresponding statements of Theorem 2.0.8 on the arithmetic

side can be found in [EF08].

16



Chapter 3

Holomorphic curves intersecting
numerically equivalent ample

divisors

In this chapter (also see [LR14]), we reformulate Theorem 2.0.8 and extend it to the

same result for divisors which are numerically equivalent to an ample divisor on X.

3.1 Motivation

The idea follows the breakthrough method introduced by Corvaja and Zannier, where
they used Schmidt’s subspace theorem to give a new proof of Siegel’s celebrated

theorem that any affine algebraic curve defined over a number field with positive

17



genus or at least three points at infinity has only finitely many S-integral points. In
their paper [CZ04a], they applied the method to study integral points on a surface
where the divisors are not necessarily linearly equivalent. Later, Levin significantly
improved their results and obtained the sharp result in the surface case, as well as
extended the results to higher dimensions. However, all results they obtained are of a
qualitative nature. One of the main results in [CZ04a| is stated as follows: Let X be
a geometrically irreducible nonsingular algebraic surface and Dy, ... , D, be distinct
irreducible divisors located in general position on X, i.e., no three of them share a
common point, all defined over a number field, such that X := X\{D; + ...+ D,}
is affine. Assume that there exist positive integers nq, ... ,n, such that (n;D;.n;D;)
is a positive constant (independent of 7, j for all pairs 1 < 7,7 < q). If ¢ > 4, then
the S-integral points of X are degenerate, i.e., there is a curve on X containing all
the S-integral points in X. In their paper, they made a remark (see the last three
lines on page 706, [CZ04a]) that one may prove that the condition that (n;D;.n;D;)
is constant amounts to the n;D;;1 < ¢ < ¢, being numerically equivalent. This
is indeed an easy consequence of the Hodge Index Theorem, as is verified in this
chapter. Nevertheless, it gives a strong motivation to study Schmidt’s subspace
theorem and the Second Main Type Theorem in Nevanlinna theory for numerically

equivalent divisors.

On the other hand, on the quantitative side, Evertse and Ferretti, by using a
different method, established a Schmidt’s subspace-type theorem for the complement
of divisors in an arbitrary projective variety X C PV, where the divisors are coming

from hypersurfaces in PV. By a slight reformulation, one actually only needs to

18



assume that the divisors are linearly equivalent on X to a fixed ample divisor. The
discussion above thus naturally leads to the question whether the result still holds
for divisors which are only numerically equivalent. Such result on the arithmetic
side was just established by Levin in his recent paper [Lev14]. The extension of
Evertse and Ferretti’s result to numerically equivalent divisors immediately implies
the (main) result of Corvaja and Zannier in [CZ04a]. The counter-part of Corvaja-
Zannier in Nevanlinna theory is due to Liu and Ru. The purpose of this section is

to give a quantitative extension of Liu and Ru’s result [LiuRu05].

3.2 Preparation

We recall some notations and results in algebraic geometry. Let X be a projective
variety. Two divisors Dy and Dy are said to be linearly equivalent on X, denoted
by Dy ~ Ds, if D; — Dy = (f) for some meromorphic function f on X. This is
the same as saying there is a sheaf isomorphism Ox(D;) = Ox(Ds), 1 — f. Two
divisors D; and D, are said to be numerically equivalent on X, denoted by Dy = D,
if D;.C' = D,.C for all irreducible curves C' on X. Obviously, linear equivalence

implies numerical equivalence.

We need the following result.

Theorem 3.2.1 (Hodge Index Theorem). Let X be a smooth complex projective
surface. Let h € Hﬁg’l(X) with h* > 0 . Then the cup product form is negative

definite on b C Hy' (X).

19



Corollary 3.2.2. Let X be a smooth complex projective surface. Let Dy, Dy be two
distinct effective divisors. Assume that Dy.Dy = D? = D3 > 0. Then Dy and D,

are numerically equivalent.

Proof. Let h = [D;]. Then h? = D? > 0. Moreover, Dy.(D; — Dy) = D?—D;.Dy =0
and (Dy — Dy)?> = D? — 2D,.Dy + D3 = 0. So the above Hodge Index Theorem
implies that [D; — Dy] =0 € Hﬂlgl(X ) which means that Dy and Dy are numerically

equivalent. O

3.3 Main Theorem A

We first give a slight reformulation of Theorem 2.0.8.

Theorem 3.3.1 ([LR14], Theorem B). Let X be a complex projective variety of
dimension n > 1 but not necessarily smooth. Let Dy, ..., D, be effective divisors on
X, located in general position. Suppose that there exists an ample Cartier divisor A
on X and positive integers d; such that D; ~ d;A (i.e., D; is linearly equivalent to
djA) forj=1,...,q. Let f : C — X be an algebraically non-degenerate holomorphic

map. Then, for every e > 0,
q
> ditmyp(r,Dy) < (n+ 1+ €)Tpa(r)|e. (3.1)
j=1

Proof. Let N be a positive integer such that NA is very ample and N is divisible
by d; for j =1,...,q. Let ¢ : X — P™ be the canonical embedding of X into P™

associated to N A, where m = dim H°(X, Ox(NA))—1. Then ¥ D; = ¢*H; for some
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hyperplanes H; in P*. From the assumption that Dy,..., D, are in general position
on X, Hy,..., H, are in general position on X C P (or more precisely on the image
of X under ¢). Moreover from the functoriality and additivity of Weil functions, for

P e X\SuppD;, we have

Amwuwwzgxmv»+oux

N
Mgus(r, Hy) = g (r,D;) + O(1),

J

Also, from the functoriality of height (characteristic) functions, we have
NTya(r) = Trna(r) = Toor(r) + O(1),
where Tyor(7) := Tyor,0pm(1)(1). Applying Theorem 2.0.8 to the map ¢ o f and the

hyperplanes H; for j =1,...,¢q, we have

q
> Miop(r, Hj) < (n+ 1+ €)Toop(r) |5
j=1

The result then follows by substituting the identities above (we note that here the
exceptional set F' might change, nevertheless it is still of finite Lebesgue measure).

O

Main Theorem A. Let X be a smooth complex projective variety of dimension
n > 1 but not necessarily smooth. Let Dy, ... , D, be effective divisors on X, located
i general position. Suppose that there exists an ample Cartier divisor A on X and
positive integers d; such that D; = d;A for 5 = 1,...,q. Let f : C — X be an

algebraically non-degenerate holomorphic map. Then, for every e > 0,

Zdj—lmf(r, D) < (n+1+)Tra(r) ||e (3.2)
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To prove the theorem, the following result in algebraic geometry, due to Mat-

susaka, plays an important role.

Theorem 3.3.2 ([Mat58]). Let A be an ample Cartier divisor on a projective variety
X. Then there exists a positive integer Ny such that for all N > Ny, and any Cartier

divisor D with D = NA, D is very ample.

Lemma 3.3.3 ([Voj87], Proposition 1.2.9). Let A be an ample Cartier divisor on a
projective variety X. Let f : C — X be a holomorphic map. Then, for any ¢ > 0

and any effective divisor D with D = A,
Typ(r) < (1+€)Tpa(r) + O(1),

where O(1) is a constant which is independent of f and r.

Proof of Main Theorem A. By replacing D; with diij with d = lem{d,,...,d,},
A by dA, and using the additivity of Weil functions and heights (up to bounded
functions), we see that it suffices to prove the case where we can assume that d; =
dy=---=d,=1,ie,D; =Afor j =1,...,q. For the given € > 0, let Ny be the

integer in Theorem 3.3.2 for our given A. Take N with

€
Ny < —N.
0 4(]

By the choice of Ny, we have that NA — (N — Ny)D; is very ample for j =1,...,q.
Since the divisors Dy, ..., D, are in general position and NA — (N — Ny)D; is very
ample for all j, there exist effective divisors £} such that (N — Ny)D; + E; is linearly

equivalent to NA for all 1 < j < ¢, and the divisors (N — Ny)D; + E; ..., (N —
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No)D,+ E, are in general position. Applying Theorem 3.3.1 to the linearly equivalent
divisors (N — No)D; + E; (which are all linearly equivalent to NA), j =1,...,¢q, we
get

€
me (N = No)D; + E;) < (n+1+5) Tywa(r) I,

Using additivity and that the Weil functions Ag, are bounded from below outside

of the support of E; and Ty na(r) = NTy 4(r), we obtain

i <1 - %) my(r, D;) < (n +1+ %) T a(r) | &,

J=1

ie.,
€
D;) D;) ( 1 —> T .
me (r, me (r, 1) Tra(r) [l
Note that in the above 1nequahty, the exceptional set ' might change, nevertheless

it is still of finite Lebesgue measure. On the other hand, by Lemma 3.3.3 with e = 1

and the First Main Theorem, we get
mf(r, Dj) < Tf,Dj (7’) + O(l) < 2Tf7A(7“) -+ 0(1)

Thus, by the choice of N that Ny < 4—€qN , we obtain

q
2q N,
>yl D) < 2Ty a(r) + (0 14+ 5) Tpalr) < (n+ 1+ T1a(r) o
This finishes the proof of Main Theorem A. n

Corollary 3.3.4. Let X be a smooth complex projective surface but not necessar-
ily smooth and Dy, ..., D, be distinct irreducible ample divisors located in general

position on X (i.e. no three of them share a common point). Assume that there
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exist positive integers ny,...,n, such that (n;D;).(n;D;) is a positive constant (i.e
independent of i,7 for all pairs 1 < i,j < q). Let f : C — X be an algebraically

non-degenerate holomorphic map. Then, for every e > 0,

q
anmf(T',Dj 3—|—6 ( Zn]TDJ7f > HE
j=1

In particular, with the same assumptions about the divisors Dy, ..., Dy, if ¢ > 4,

then every holomorphic map f: C — X\ U‘j-zl D; must be algebraically degenerate.

Proof. From Corollary 3.2.2, we know that n;D;,1 < j < g, are numerically equiva-
lent. Therefore applying the Main Theorem A to the divisors n;D;, together with the
additivity property of Weil functions and heights (up to bounded functions), gives

anmfrD)S (3+e) ( Zn]TfD ) |-

7j=1
Now assume that f: C — X\ U;]‘:1 D; and that f is algebraically non-degenerate.
Since n;D; and D; share the same support and the image of f omits the support of

D;, we have Ny(r,nD;) = 0, thus from the First Main Theorem,
my(r,n;D;) = Tpn,p, (r) + O(1).

Thus, we get

q q
> niTrp,(r)+0(1) = Y nymy(r,D;)
j=1 j=1
34e (<
q (Z anf,Dj(r)> 12

J=1

IN

which is a contradiction when g > 4. O
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Chapter 4

Quantitative results on projective

surfaces

In this section, we improve the defect relation (see Theorem 4.2.5) and the height
inequality (see Theorem 4.2.12) in the case when X is a normal projective surface
and D;, 1 < j < g, are big and asymptotically free divisors without irreducible
common components on X. As a consequence, we recover a sharp qualitative result

due to Levin (see [Lial5]).

4.1 Levin’s result

First, we recall some definitions and lemmas from Levin’s paper [Lev09].

Definition 4.1.1 ([Lev09], Definition 9.6). Suppose that X is a projective variety of
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dimension n. Let D = Dy + Dy +---+ D, be a divisor on X with D; being effective.
D is said to have equidegree with respect to Dy, Do, ..., D, if D;. D" ! = %D” for

1<1<q.

Lemma 4.1.2 ([Lev09], Lemma 9.7). Let X be a projective variety of dimension n.
If D;,1 < 5 <gq, are big and nef, then there exist positive real numbers r; such that

D= 23:1 r;D; has equidegree with respect to r1Dy, ... ,14Dy.
Proof. We follow the simplified proof given by Autissier [Aut09]. Let
A= {(t1,...,ty) eRL [ty +---+t, =1}

Define a map g : A — A by letting, for t = (¢4,...,t,) € A,

_ (1) o(t)
g<t)_(( = t;Dj)LD; (3 t‘D~)"—1.Dq>’

j=1tit; j=1""3

-1

q

1

where ¢(t) := (Z 5T tij)"l.D) . By Brouwer’s fixed point theorem, there
i=1 Jj= t

exists a point x = (r1,...,7,) such that g(z) = z, i.e., ¢(x) = X7_, r;D;)"".(r: D)

for i = 1,...,¢. This implies, by summing all ¢, that gé(x) = (D ¢_, r;D;)™. Thus

j=1
1 q n q n—1
- (Z Tij) = ¢(z) = (r: D). (Z 7"ij> :
T \= j=1
which proves the lemma. O

Lemma 4.1.2 tells us that we can always make the given big and nef divisors to
be of equidegree without changing their supports since the divisors r;D; and D; are

of the same supports. This means the notion of equidegree, rather than the condition
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of linear equivalence for the divisors D = Dy +---+D,, would be a correct (or proper)
notion in the study of degeneracy of holomorphic mappings f : C — X\D. In the
surface case, we denote by (D;.D;) the intersection number of D; and D;. We also

denoted (D.D) by D?. We recall definitions and results from Levin [Lev09].

Definition 4.1.3. Let X be a projective variety, and let D be an effective Cartier
divisor on X, both defined over a number field k. Let L be a number field with
L D k, and S be a finite set of places of L containing the archimedean places. We

define the Diophantine exceptional set of X'\ D with respect to L and S to be

Excpiorns(X\D) = U dims (R

where the union runs over all sets R of L-rational (D,S)-integral points on X and
dims(R) denotes the union of the positive-dimensional irreducible components of
the Zariski-closure of R. We define the absolute Diophantine exceptional set of X\ D
to be

EICDW(X\D U EICD%OLS(X\D)

LDE,S

with L ranging over all number fields containing £ and & ranging over all sets of

places of L as above.
These definitions depend only on X'\ D and not on the choices of X and D.

Definition 4.1.4. Let X be a complex variety. We define the holomorphic excep-
tional set Fxcyo(X) of X to be the union of all images of non-constant holomorphic

maps f:C — X.
Conjecturally, it is expected that Fzcp;o(X\D) = Excp(X\D) .
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Definition 4.1.5. Let X be a projective variety defined over a number field k. Let
D be an effective Cartier divisor on X. Then we define X\D to be Mordellic if
Excpio(X\D) is empty. We define X\ D to be quasi-Mordellic if Excp;,(X\D) is

not Zariski-dense in X.

Definition 4.1.6. Let X be a complex variety. We define X to be Brody hyperbolic
if Excpo(X) is empty. We define X to be quasi-Brody hyperbolic if Excyy(X) is not

Zariski-dense in X.

Remark 4.1.7. Note that X being quasi-Brody hyperbolic is a stronger condition
than the non-existence of algebraically non-degenerate holomorphic maps f : C — X.
Similarly, X'\ D being quasi-Mordellic is stronger than the non-existence of Zariski-

dense sets of D-integral points on X.

Theorem 4.1.8 ([Lev09], Theorem 11.5A). Let X be a smooth projective surface.
Let D = Dy + Dy +---+ D, be a divisor on X with D; being effective. Suppose that

D; have no irreducible components in common, and are in m-subgeneral position.
(a) If D; is big for all i and q > 4[(m + 1)/2], then X\D is quasi-Mordellic.
(b) If D; is ample for all i and either m is even and q > 2m or m is odd and

q > 2m+ 1, then X\D is Mordellic.

Theorem 4.1.9 ([Lev09], Theorem 11.5B). Let X be a smooth projective surface.
Let D = Dy + Dy +---+ D, be a divisor on X with D; being effective. Suppose that
D; have no irreducible components in common, and are in m-subgeneral position.

(a) If D; is big for all i and ¢ > 4[(m + 1)/2], then X\D is quasi-Brody hyperbolic.
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(b) If D; is ample for all i and either m is even and q¢ > 2m or m is odd and

q > 2m + 1, then X\D is Brody-hyperbolic.

4.2 Ru’s master result

Encouraged by Corvaja and Zannier, Ru defined so called p-growth divisors. He (see
[Rul6a]) also introduced the notion of Nevanlinna constant, denoted by Nev(D), for
an effective Cartier divisor D on a normal projective variety X. He then derived
a new defect relation §7(D) < Nev(D) for any algebraically non-degenerate holo-
morphic mapping f : C — X. Let X be a normal projective variety and D be an
effective Cartier divisor on X. Note that the condition of normality of X is assumed
so that ordgD (called the coefficient of D in E) is defined for any prime divisor F
and any effective Cartier divisor D on X (see [Laz04], Remark 1.1.4). For any section
s € H°(X, D), we use ordg s or ordg(s) to denote the coefficients of (s) in F, where

(s) is the divisor on X associated to s.

Definition 4.2.1. Let X be a normal complex projective variety, and D be an

effective Cartier divisor on X. The divisor D is said to have pu-growth with respect
to V C H°(X,0O(D)) with dimV > 2, such that for all P € suppD, there exists a

basis B of V' with

ZordE(s) > pordg D,

for all irreducible component E of D passing through P.
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The Nevanlinna constant of D, denoted by Nev(D), is given by

Nev(D) := i%f < inf dim VN> : (4.1)

{en,VN}  UN

where the infimum “i%f” is taken over all positive integers N and the infimum

13 2

inf
{un,Vn}

Vy € H°(X, ND) is a linear subspace with dim Vy > 2 such that, for all P € suppD,

is taken over all pairs {un, Vy}, where puy is a positive real number and

there exists a basis B of Vy with
ZordE(s) > pyordg(ND)
seB
for every irreducible component E of D passing through P. If R ND) < 1 for all

positive integers N, we define Nev(D) = +o0.

Theorem 4.2.2 ([Rul6al, Proposition 3.1). Let X be a normal complex projective
variety and D be an effective Cartier divisor on X. Assume that there exists a
positive number u > 0 and a linear subspace V. C H°(X,O(D)) with dimV > 2,

such that for all P € suppD, there exists a basis B of V with

Zord]g(s) > pordg D,

for all irreducible component E of D passing through P. Let f : C — X be an

algebraically non-degenerate holomorphic map. Then, for every e > 0,

dimV

ms(r:D) < (P2 4 ) Ty00) [

In order to prove the theorem, the following proposition is important.
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Proposition 4.2.3. Let ¢ : X' — X be a proper birational morphism of normal
projective varieties, and let D be a Cartier divisor on X whose support doesn’t contain
&(X'). If D has p-growth with respect to a subspace V. C H°(X,O(D)), then ¢*D

also has p-growth with respect to the corresponding subspace of the same dimension.

Proof of Theorem 4.2.2. Let ® : X — P™ be the canonical rational map associated

to V where V C H(X,O(D)) with dmV =m +1 > 1.

We may assume that ® is a morphism. Indeed, let X’ be a desingularization of
closure of the graph of ®. Replace X with X’ and D with its pull-back. By previous
Proposition 4.2.3, the pull-back still has p-growth with respect to the corresponding
vector space of the same dimension. Moreover, by functoriality of Weil functions,

the corresponding Weil function and the height function remain.

Let o be the set of all prime divisors occurring in D, so we can write

Let

E::{UCUO|ﬂE7é®}.

Eeo
For each o € ¥, write

D = Do,l + D0,27

where

Doy =Y ordg(D)E, D,y:=)» ordg(D)E.

Eeco Edo
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Pick a Weil function for each divisor D, D, 1, D,2. We first claim that there
exists a constant C, depending only on X and D, such that minges Ap,, < C for all
x € X. Indeed, the definition of the set 3 implies that

() suppDo2 = 0,
oeS
since, for all € X, the set 0 := {E € oglx € E} is an element of ¥, and then

x & suppD, 5. Our claim then follows from Lemma 2.0.5 since X is a finite set.

Now for each o € X, since D has p-growth with respect to V, let B, be a basis

of V that satisfies

> " ordg(s) > pordp(D)

at some (and hence all) points P € Nge,E. Since ¥ is finite, {B,|c € ¥} is a
finite collection of bases of V. Thus, the distinct hyperplanes in P™ corresponding
to elements of the union U,ex B, is finite, say they are H;, ..., H,. Choose a Weil

function Ay, for each H;, 1 < j <gq.

For an arbitrary x € X, from the claim above, pick o € 3 (depends on x) such
that

)\DU,Q (x) S C?

where C'is the constant which occurs in the claim. Let J C {1,... , ¢} be the subset
for which {H;,j € J} are hyperplanes corresponding to the elements of B,. Then

Proposition 4.2.3 implies that

> ordg @ H; > pordg D,

jeJ
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for all £ € o; and therefore, by the “boundedness from below” property of the Weil
functions for effective divisors,
) (ordp @ Hj)Ap(x) > pordp D)Ap(z) + O(1), (4.2)
jeJ
for all £ € 0. Now, since

D =) (ordg D)E + Dy,

Eco

we have, by using the lemma 2.0.3,
Ap(x) = Ap,, (%) + Ap,,(x) = > _(ordp D)Ag(x) + O(1).
Eeo
Therefore, together with inequality (4.2), we have

D A (@(x) = D) (ordp @ Hj)Ap(x) + O(1)

jedJ jeJ Eco

> Y (ordg D)Ag(z) + O(1)

Eeco
> pAp(z) +O(1).
Note that, since {H;, j € J} are the hyperplanes corresponding to subsets of B,, we
see that {H;,j € J} are in general position. Thus, for any = € X,
1
Ap(z) < = (m?xz A, (®(x)) + 0(1)> , (4.3)
H jeJ
where J varies over all subsets of {1,...,q} corresponding to the elements of
{H,...,H,} that lie in general position. Note that, although O(1) that appears
above depends on the choices of B, (thus depends on o), it is a constant independent

of x since X is a finite set (so there are only finitely many choices of o).
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Now for any algebraically non-degenerate holomorphic map f : C — X, applying

(4.3) with z = f(2), and then integrating over |z| = r, we obtain, by the definition

of mg(r, D),
1 [ e db
my(r,D) < — maxZ)\Hj((Cbof)(re ))— + O(1),
wJo J Y 2
where J varies over all subsets of {1,... , ¢} corresponding to subsets of { Hy, ... , H,}

that lie in general position. Applying Theorem 2.0.6, for any € > 0

dimV + ¢
my(r, D) < Tﬂbof(?") e

By the inequality (2.7), we know that Tgor(r) < Ty p(r). Thus,

which proves the theorem. O

Remark 4.2.4. From this theorem, larger p implies the smaller (better) defect.

As a consequence of theorem 4.2.3, we have

Theorem 4.2.5 ([Rul6al, Main Theorem). (a) Let X be a complex normal projective

variety and D be an effective Cartier divisor on X. Then, for every e > 0,
my(r, D) < (Nev(D) + €) Typ(r) e
holds for any algebraically non-degenerate holomorphic mapping f : C — X.

(b) If X is a complex projective variety but not normal, and D is an effective

Cartier divisor on X. Let m : X — X be the normalization of X. Then, for every
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e >0,

my(r, D) < (New(n*D) + €) Ty.p(r) |z

holds for any algebraically non-degenerate holomorphic mapping f : C — X.

The above theorem gives the following defect relation.

Corollary 4.2.6 (Defect relation). Let D be an effective Cartier divisor on a normal

complex projective variety X. Then
d¢(D) < Neuw(D)
holds for any algebraically non-degenerate holomorphic map f: C — X.

Corollary 4.2.7. Let X = P" and D = H, + --- + H,, where Hy,... ,H, are
hyperplanes in P™ in general position. Then

1
Neo(D) < "2
q

Proof. We take N = 1 and consider V; := H°(P", O(D)) = H°(P", Opn(q)). Then
the dim V; = (”Zq). For each P € SuppD, since Hy, ..., H, are in general position,
PeH,NH,; ---NH; with {ip,41,... .4} C{1,2,... ,¢} and [+1 <n. W.lo.g., we
can just assume H;, = {2 = 0}, H;, = {z1 =0},..., H;, = {z = 0} by taking proper
coordinates for P". Now we take the basis B = {2{°2}' ... 2 |ig 4+ 41 + - + i, = q}
for Vi = H°(P", Opn(q)). Then, for each irreducible component E of D containing
P, say E = {zj, = 0} with 1 < j, < [, we have ordg{z; = 0} = 0 for j # jo,

ordg{zj, = 0} =1 and thus ordg D = 1. Therefore,

. 1 _ , q (qtn q .
Sordes =3 i =y Dot i) = () = iy

seB i i
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where the sum is taken for all i = (i, ... ,4,) with ig + ...+ 4, = ¢. Thus we can

take u = nLH dim V4, and hence,

dim V;
<

1
Nev(D) < _nt

H q

]

Corollary 4.2.8. Let X = P" and Dy, ..., D, be hypersurfaces in P™ of degree d;,

located in general position on X. Then

n-+1
.

New(D) <

Proof. Let D; ~ A and D; = {Q; = 0}, where @Q; is a homogeneous polyno-
mial of degree d := degA for i« = 1,...,q. Let P € suppD. The condition
that Dy,...,D, are in general position implies that P € Ni_,{y; = 0} for some
Yiseoosm € {Q1,...,Qq} and I < n. We can assume that [ = n since we can
add more polynomials. Choose a positive integer N which is divisible by ¢d and

N = & Let Vi :== H(P", Opn (N D)) = H(P",Opn(Ngd)) =2 HO(P", Opn(N)),

n

i=(i1,...,i,) be a n-tube with lexicographical order and o (i) := > 7, i; < &, we

obtain a filtration on Vj given by

W; = Z ’ﬁl - ’YZ"VN—da(e)-

e=(e1,...,en)>1

Note that Wy = Vy and W; D Wy for i > i. Choose a basis sq, Sa, ... , S,,, Where

N+n
n

m = ( ), for Vi with respect to the above filtration. With this choice of the basis,

we compute the Nevanlinna constant. We recall the following lemma.

36



Lemma 4.2.9 ([Ru04], Lemma 3.3). Fiz any N > n(d —1) and any i = (iy,...,1,)

with do(i) < N —n(d —1). Then

Wi
A; := dim =d",
Wy
where W; D Wy with 1 is next to 1.
Let, for p = 1,...,m, s, = iRyttt for some M € VN_do(i) based on

its place in the filtration. For any irreducible component E in D with P € E, we
may assume that E is contained {v;, = 0} for some 1 < j, < n. Then, for N is big

enough, we have,

m
E ordgs, > g Ayjij, | ordg D
p=1 it tin<d—n

= Z ijo d"” OI‘dE D

i1+ tin < —n

= Z ijo d" OI‘dE D

io+it+tin=15 —n

_ nil 3 znjz d" ordy D

i1t tip="20—n 7=0

d® N
B n+1 Z d ordp D
i1+otin=2—n

d" (NJd\ N N
_ SordpD = [~ + O(N") ) ordy D
<n)d0rE (d(n+1)!+0( ))OrE

_ Nn n—1
= <F+O(N )) ordg D
- 9 (N— + O(N"1)> ordg(ND).

n+1\ n
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Hence, from the definition of Nev(D), we have

: _ N™ O Nn—l 1
Nev(D) < liminf N,(Li m Vy = lim inf Nj_ ( ) _nt .
Notoo 745 (57 FO(N"1))  Notoo 745 (57 + O(N™1)) q
This concludes the proof of the Corollary. O

Furthermore, Ru obtained the following result.

Theorem 4.2.10 ([Rul6a], Theorem 5.6). Let X be a complex normal projective
variety of dimension > 2, and Dy, ..., Dy be effective and big Cartier divisors in
l-subgeneral position on X. Let r; > 0 be real numbers such that D := Y"1 r;D;
is equidegree (such numbers exist due to Lemma 4.1.2). We further assume that the

linear system |ND;| (i =1,...,q) is base-point free for N > Ny. Let f: C — X be

an algebraically non-degenerate holomorphic map. Then, for g > 0 small enough,
20dim X :
Zr]mf r, Dj) ( . ) (Z roijj(r)> IR
j=1

On the arithmetic side, the counterpart of Theorem 4.2.5 in Diophantine ap-

proximation is stated as follows.

Theorem 4.2.11 ([Rul6b], Main Theorem). (a) Let k be a number field and M, be
the set of places of k. Let S C My, be a finite set of places containing all archimedean
ones. Let X be a normal projective variety and D be an effective Cartier divisor on
X, both defined over k (we further assume that all irreducible components of D are

Cartier divisors). Then, for every e > 0, the inequality
mg(z, D) < (Nev(D) + €) h(z, D) (4.4)
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holds for all x € X (k) outside a Zariski closed subset Z of X.

(b) Suppose that the projective variety X is not normal. Let T : X — X be the

normalization of X. Then, for every ¢ > 0, the inequality
mg(z, D) < (Nev(n*D) + €) h(z, D) (4.5)

holds for all x € X (k) outside a Zariski closed subset Z of X.

As a consequence, the counterpart of Theorem 4.2.10 in Diophantine approxi-

mation is stated as follows.

Theorem 4.2.12 ([Rul6b], Theorem 4.1). Let k be a number field and S C My, be a
finite set containing all archimedean places. Let X be a normal projective variety with
dim X > 2, Dy,..., D, be effective and big Cartier divisors in l-subgeneral position
on X, both defined over k. Let r; > 0 be real numbers such that D := 22:1 riD; is
equidegree (such numbers ezist due to Lemma 4.1.2). We further assume that the
linear system |NDy| (i = 1,...,q) is base-point free for N > Ny. Let Ap,.(z),1 <
J < q, be the Weil function associated to D; for v € S. Then, for e > 0 small

enough,

quzrjxpj,v(x) < <% —~ 60> (Zi; rjh(a:,Dj)> ,

j=1 ves

holds for all x € X outside a Zariski closed subset Z of X.

39



4.3 The statement of Main Theorem B and Main

Theorem C

The purpose of this section is to improve Theorem 4.2.12 in the case when dim X = 2
with an additional condition that the divisors Dy, ..., D, have no common irreducible

components. The precise statement is as follows.

Main Theorem B (Complex Part). Let X be a normal complex projective surface.
Let Dy, ..., Dy, be effective, big Cartier divisors on X, and the linear system |ND;|
(i = 1,...,q) be base-point free for N > Ny. Assume that Dy,...,D, have no
irreducible components in common, and are in l-subgeneral position. We further
assume that D := Z?Zl r;D; is equidegree for some positive real numbers r; (such

r; always exist by Lemma 4.1.2). Let f : C — X be holomorphic and algebraically

non-degenerate. Then

S (. D) < 4[(”_1)/)2] (Z TjTﬁDj(r)) s,

j=1 ¢(1+a j=1
A _ minsi<e(r7 D7) denotes th test integer less th It
where o = W’ [.’L’] enotes & g’r@a est 1n 6967“ eSS an or equa 0 X.

Note that our techniques used to prove the above theorem are similar to Ru’s
method (see [Rul6a]). The main contribution is to use the joint filtrations lemma
due to Corvaja and Zannier (see [CZ04a], Lemma 3.2) to lower the upper bound
of the defect, under the additional assumption that D, ..., D, have no irreducible
components in common. Furthermore, we give the explicit computation of the e

which appeared in Theorem 4.2.5. Note that our result also holds for any dimension
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of X. The reason we only focus on the case when dim X = 2 is the following sharp

Corollary of our Main Theorem B, which is due to Levin [Lev09].

Corollary 4.3.1 ([Lev09], Theorem 11.5B). Let X be a smooth projective surface
and Dy, D,, ..., D, be effective and big divisors on X. Assume that D, ..., D, have
no irreducible components in common, and are in general position. If ¢ > 4, then

every holomorphic mapping f : C — X\ U?Zl D; must be algebraically degenerate.

Proof. According to the proof of Theorem 11.5(a) in [Lev09], we can reduce it to the
case when |D;| is base-point free (in particular, D;,1 < ¢ < ¢, are nef), and D; is
big for all 7. If f is not algebraically degenerate, then the above Main Theorem B
implies that d7(D) < 1, where D = Dy + Dy + --- + D,. On the other hand, from
the first main theorem, we have d¢(D) = 1. This gives a contradiction. Therefore, f

must be algebraically degenerate. O

Our theorem on the arithmetic side which improves Theorem 4.2.12 is as follows.

Main Theorem C (Arithmetic Part). Let k be a number field and S C M, be a finite
set containing all archimedean places. Let X be a normal projective surface, and let
Dy, ...,D, be effective and big Cartier divisors on X, all defined over k. Assume
that the linear system |ND;| (i = 1,...,q) is base-point free for N > Ny. Assume
that Dy, ..., D, have no irreducible components in common, and are in [-subgeneral
position. We further assume that D := Y1, r;D; is equidegree for some positive real

numbers r; (such r; always exist by Lemma 4.1.2). Let Ap, . (x),1 < j < q, be the
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Weil function associated to D; for v € S. Then

: A1+ 1)/2] [ <
ZZTMDJ-,U(@") < “dita) (;Tjh(%Dj)> ,

j=1 ves
holds for all x € X outside a Zariski closed subset Z of X, where a =

minlgqu(T]Q.D]z)
384q D2

ZUEMk /\Djvv (.T) :

. [x] denotes the greatest integer less than or equal to x, and h(x, D;) =

The above theorem gives the following Corollary.

Corollary 4.3.2 ([Lev09], Theorem 11.5A). Let k be a number field and S C My, be
a finite set containing all archimedean places. Let X be a smooth projective surface,
and Dy, ..., D, be effective and big Cartier divisors on X, both defined over a number
field k. Assume that Dy, ..., D, have no irreducible components in common, and are
in general position. If ¢ > 4, then any set of (D, S)-integral points of X\D is

contained in a proper subvariety of X.

The proof of the result in the arithmetic case is similar to the complex case (see

[Rul6b]), so the rest of the section will only focus on the complex part.

4.4 More Lemmas

We also need the following results in algebraic geometry. Let X be a projective
surface. Let D be a divisor on X. Let O(D) be the invertible sheaf associated to the
divisor D on X. For i = 0,1,2, let h*(D) = dim H'(X,O(D)) (we sometimes also

just write H (X, O(D)) as H(X, D) for simplicity).
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Lemma 4.4.1 ([Laz04], Corollary 1.4.41). Let X be a projective surface. Suppose

that D is nef divisor on a projective surface on X. Then

D*N?
2

W(ND) = +O(N).

In particular, D? is positive if and only if D is big.

Lemma 4.4.2 ([Aut09], lemma 4.2). Let X be a projective surface. Let F be a big
and base point free Cartier divisor and D be a Cartier divisor such that D — F s
also nef. Let § > 0 be a positive real number. Then for any positive integer N,k
with 1 < k < BN, we have

D*N? F*?

R(ND — kF) > — (D.F)Nk + > min{k*, N*} + O(N)

where O(N) depends on 5.

Proof. We separate two cases.

Case k < N. By Riemann-Roch,

1
X(X,ND —kF) = §(ND—I<;F)2
D2N2 F2 2

- = — NKk(D.F) + i

Since D and D — F are nef, h'(X, ND — kF) = O(N?7) for all i > 1. Thus, we

derive the result.
Case k > N. Let N <1¢ < BN. We have the following short exact sequence.
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where Z = div(s) for some generic s € I'(X, F'). The short exact sequence implies
R (X,ND — (i +1)F) > h%(X,ND — iF) — h°(Z,(ND — iF)|z).
Since h'(Z, (ND —iF)|z) < h°(Z,ND|z) = (D.F)N + O(1), we have

k—1
R(X,ND — kF) > Rh°(X,ND — NF) — Z RY(Z,(ND —iF)|y)
i=N

D? 1
> 7N2 — (D.F)Nk + §F2N2 + O(N).

The lower bound of h°(X, ND — NF) comes from the first case. Combining these

two cases, we proved the lemma. O
Lemma 4.4.3. Let D and F be the same as above on a projective surface X. We
further assume that (DD—;) > 1. Then

ZhO(ND —kF) > (4(32]?) + 25D2> NRY(ND) + O(N?) .

Proof. Using Lemma 4.4.2 with g = D> > %, we get, by noticing that

min{k?, N?} > min{k? N?/4},

i W (ND — kF)

k=1
[BN] 2 T2 2 2
D2N F N
> Z( 5 —(D.F)Nk+7min{k2,z}) + O(N?)
k=1
[N/2]-1 [6N]
(D2)2N3 (D2)2N3 F2 ; 2 ) .
> —~—— (D.F)—+—— — —
> o - PgpEet 2 T N oW
k=1 [N/2]
_ <D2)2 3 F2 3 F2 3 F2 3 2
= S(D‘F)N + g N+ BN = N+ O(N?)
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(D P28 1)\ D? )
= (4(D.F) (g E)> 5 N+ o)

D? F2 \ D2
> — N3+ O(N?
= (4(D.F)+24D2) VT HOW)

_ (4(D2 o+ P )Nh“(ND)+O(N2).

D.F 242

4.5 Proof of Main Theorem B

The following joint filtrations lemma is crucial to the proof of our Main Theorem B.

Lemma 4.5.1 ([CZ04a], Lemma 3.2). Let V' be a vector space of finite dimension d
over a field k. Let V=W, DWy D W3 D ...D Wy andV = W7 D W5 D W5 D
... D Wy, be two filtrations on V. Then there exist a basis of V' that contains a basis

of each W and W; .

Proof of Main Theorem B. The proof uses Theorem 4.2.5, so we need to compute the
Nevanlinna constant. By taking N > Ny, we can assume that D;, 1 < j < g, are base-
point free. By the assumption that D has equidegree with respect to r1 Dy, ..., 7,D,,

we have, with D := Z?:l r;Dj,
Loy
(TZDZD> = -D".
q

To simplify the notation, we write

; 22
o i Pz D)) (4.6)
384qD?
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Choose positive rational numbers a;,1 < j < ¢, such that

Oy (ming<j<,rj) . q(1 4+ 2a)
=] < == 1, ———== 4.7
|a.7 r]| — 2 74[<l + 1)/2] ’ ( )
and, fori =1,...,q,
(aZDZD’) 1
where D' := 7%  a;D; and d;, 35 will be chosen below (see (4.17) and (4.13)). Note

that with our choice of ¢y and |a; —r;| < 5, we have

D"? > -D? and D*>-D"” (4.9)

N
| =

Now, for P € suppD, let D} = Z{i:PesuppDi} a;D;. Since Dq,...,D, are in -
subgeneral position and any two of Dy, ..., D, have no common components, we can
write

Djp := Dpy + Dpy

where D}, and Djp, are each a sum of no more than [(I 4+ 1)/2] terms of the a;D;,
and D, and D}, have no irreducible components in common. Let d be the product
of the denominators of ay,...,a, and consider Vi := H(X, NdD'). Note that D’
is only a Q-divisor, so we need to multiply d to D’ to make dD’ to be an (integral)

divisor. We consider the following two filtrations of Viy:
W, := H(X, NdD' — mdD%,), W, = H°(X,NdD' — mdDp,), m=0,1,....

Using the filtration lemma above, we obtain a basis B that contains a basis for each

W, and W) Let E be an irreducible component of D which contains P. Then
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E is contained either in dD%, or dDp,, but not both. Without loss of generality,
we assume that E is an irreducible component of dDp,, and thus ordg(dD’) =
ordg(dD’p,;). We also note that ordg s > mordg(dDp,) for any s € H*(X, NdD' —

mdD’,) (regarded as a subspace of H(X, NdD')). Hence

1 1
_ dps= d
ordg(NdD") ;or Be ordg(NdD}p,) sEZBOI B

1 o0
> < > m(h*(NdD' — mdD},) — h°(NdD' — (m + 1)dD},))
1 oo
= ¥ > h(NdD' — kdDf,y).
k=1
Noticing W > 1, by Lemma 4.4.3, we get
> h(NdD' - kdD,)
k=1
(dD%1)2 0
’ N (NdD' N?
= (4 dD'. dD}Dl 24(de)2 PANAD') + O(N7)
p* | D
= N (NdD' N?).
(4 D'.Dlp,) T up? W(NAD') + O(N)
Therefore,

/2

;Zord s > D" + D h°(NdD') + O(N) (4.10)
ordp(NdD') &7 = \ 4(D'.Df,y) 24D’2 ' '

We now estimate each term which appeared above. Since D) is a sum of no more

than [(I 4+ 1)/2] terms of the a;D; and, by using (4.8),

(D'.Dip;) < (I +1)/2] max; pep, {(D".(a;D;))}
D2 — D’?

< [(H—l)/?](é%—ég). (4.11)
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Also notice that, using (4.6), (4.7) and (4.9),
1
/ , 1 —_— 1 . . . .
(Dpy-Dpy) 2 1r£1i1£q(aiDi.aiDi) > 1 lrgllgq(rle.rlD,)
(4.12)
= 96¢(D.D)a > 24¢q(D".D")ax

Combining (4.10), (4.11), and (4.12), we get

1
ord(NdD) ; ordg s

q d2D/2 )
> (4[<Z+1>/2]<1+q62>”0‘> g VT HOW)

q
SRS (1 T,
q(1+ 3a)

= 01D/ = 2 p%(NdD') + O(N) ,

+ 4a) h°(NdD') + O(N)

where the last equality holds when choosing

8y = A= (4.13)

Hence, from the definition of Nevanlinna’s constant (see (4.1)), we obtain
4/(1+1)/2
Nev(dD') < M
q(1+ 3a)

4[(1+1) /2]
q(143a)(14+2a)?

Zajdmf(r, D;) < <%) (Z a;dTy(r, D; )) e -

Jj=1

Applying Main Theorem 4.2.5 with € = we get

By canceling d on both sides, we have

> aymy(r,Dy) < (%) (Z%‘Tf(ﬁ Dj)) e - (4.14)

J=1 J=1
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We now use this result to derive our desired result. Note that (4.7) gives us

q q q
o
> rmy(r, D) <Y amy(r, Dy) + 51 (min Tj) > my(r, D) (4.15)
j=1 R

=1

and

q q
(51 . 1 + 20(
> oy, ) < 3oy, + 5 (i ) 20 § Ty, (). (4.16)
i=1 ==

Jj=1 =1

Using (4.14), (4.15), (4.16), together with the First Main Theorem, it gives
q

ermf(r D

j=1

4 +1)/2] : (min r;

Ao (DT | + ZTf 5,0) ) =
4(+1)/2]
g(1+2a)

IN

mlnrj)(Sl q(1 —|—2a) 1
1—|—2a (Z T, (r 2 4[(+1)/2] ;Tf’Dj(T))

01
tg ZTij(Ta Dj)|le

( 5(11:1242 ) Zq:TJTfD I

( (l1++1a/2>z Tro () s,

IN

with

51 = min {1, AU+ 1)/2] a } . (4.17)

q (14 a)(1+ 2«)

This finishes the proof of Main Theorem B.
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4.6 Appendix to chapter 4

4.6.1 Motivation of choice of  in the Lemma 4.4.3

(D.D)
2(D.F)

The motivation of choosing 8 := in the proof of Lemma 4.4.3 is as follows.

In order to derive a lower bound for

3 m (h°(X,ND —mF) — h°(X,ND — (m + 1)F)),

m=1

the first step is to estimate M.

Lemma 4.6.1 ([Lev09], Lemma 11.4). Let X be a smooth projective surface. Let D
be a nef divisor on X. Let ' be an effective divisor on X such that either F is linearly
equivalent to an irreducible curve or C.F < 0 for every irreducible component C of
F. Then for all m,N > 0, either h°(X,ND — mF) = 0 or h%(X,ND — mF) —

W(X,ND — (m+1)F) < (ND — mE).F.

Since h°(X, ND) = N?D?/2 4+ O(N), we have

i (R°(X,ND —mF) — h°(X,ND — (m+ 1)F)) = h°(X,ND).

m=1

On the other hand, by the above lemma and also by the lemma 9.12 in [Lev09],

if F'is linear equivalent to an irreducible curve, then

RY(X,ND —mF)—h°(X,ND — (m +1)F) < ((ND — mF).F).

Therefore, by assumption that D is big and nef, we can solve for M such that
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the above equality holds.

N2D?

+O(N) = h°(X,ND)

RO (X,ND —mF)—h°(X,ND — (m+1)F)

x

3
]
[e=)

WE

<N N(D.F)—m(F.F) < iw: ND.F = (M +1)N(D.F).

3
]
o

Therefore, we have the lower bound of M, M > (2D(§1)w];[ + O(1). In our case

(Lemma 4.4.3), M = [N/2]. Thus [BN] > (2[();}]; + O(1), and therefore, we choose

._ (D.D)
f= 2(D.F)"

4.6.2 Alternative method to derive similar estimate as

Lemma 4.4.3

Let A= (F.F),B=(D.F),C = (D.D). By using the Lemma 4.6.1 again,

R (X,ND)—-h°(X,ND - F) < NB

R (X,ND — F)—h°(X,ND —2F) < NB - A

W(X,ND — (k—1)F) — h%(X,ND — kF) < NB — (k — 1)A.

By summing of above equations, we have

k—1
h'(X,ND) = h’(X,ND — kF) <kNB =) iA.

1=0
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Therefore,

WO(X,ND — kF) > h%(X,ND) — kNB + wfx
N?D? 24 kA
= —kNB+kT—%+O(N). (4.18)

: : ; 2 N21 k2A _ kA
Comparing with Lemma 4.4.2, the term min{k®, N*?} is replaced by %5 — %=, After
summing them up, we can get rid of the second term (%) because it belongs to
O(N?). Thus, the result is the same as choosing k? in Autissier’s lemma. The

precise process is as follows.

Since M > g—g, we have

iw: k(h°(X,ND — kF) = h’(X,ND — (k+ 1)F)

B +
D.D) 1 (F-F>(D~D)2) (D-D) s o o(n?).

(D.F) 24 (D.F)? 2
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Chapter 5

Integral points on the
complements of ramification

divisors and resultants

5.1 Introduction

The main result of this chapter is an estimate of the dimension of the Zariski closure of
a set of S-integral points on P"\ D where D is the branch locus of a generic projection
from the intersection of two generic hypersurfaces in P"*2 to P". As a consequence, a
finiteness theorem for integral points on P\ D is obtained. The theorem generalizes
the theorem and techniques of Zannier (see [Zan05]) in the codimension one case of

the projection from a single hypersurface.
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There are two frequently used ways to derive a statement of hyperbolicity when
removing a divisor D from P". One approach is to assume that D has a sufficiently
large number of components, which is the case treated so far in this thesis. The
other approach is to assume that D is an irreducible divisor, but is of sufficiently
large degree. In the latter case, based on earlier work of Faltings, Zannier used an
innovative approach to study the situation where D arises as the ramification divisor
of the projection from a hypersurface X in P"™! to P*. The result in Zannier’s paper
uses the total ramification points to control the integral points away from the branch
locus D in P" defined by a discriminant form A = 0. His result can essentially be

formulated as follows.

Theorem 5.1.1 ([Zan05], Theorem 2.1). Let D C P be the branch locus of a
projection from a generic hypersurface X in P to P*. Assume that the degree

of X is at least n + 2. Then any set of S-integral points on P™ \ D is finite.

5.2 Definitions, notations and background

Let X and Y be two hypersurfaces in P"*? defined respectively by two
generic homogeneous polynomials f(Xo,...,X,,Y,Z) and ¢g(Xo,...,X,,Y,Z2) €
k[Xo, X1,...,Y, Z], where k is a number field. Let II be a projection from P"*2 to P"
and L be the light source passing through the points [0,0,...,0,1] and [0,0,... ,1,0]
with LN X NY = 0. By choosing a screen H; = P*"*! containing P and a point

¢; € L which does not lie on the screen, we can decompose the projection II into
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two projections II; and II; such that II = II; o I1;, where II; is the projection from
P"2\ ¢; to H; with respect to the light source ¢; and II} is the projection from H; \ r;
to P" with respect to the light source r;, where r; is the intersection of H; and L.
We define D C P™ to be the branch locus of the original projection of Z2 = A NY
under II and T; C P™ to be the total ramification locus of the projection of II;(Z)

under II). We will make generic such choices for ¢ =1,... ,n+ 1.

The notion of the resultant is the key ingredient in dealing with the relation
between projections and the intersection of two hypersurfaces. The resultant is
defined as the determinant of the Sylvester matrix of two polynomials in one variable
and the resultant is zero if and only if the two polynomials have a common root in
an algebraically closed field containing the coefficients. Therefore, if we normalize
¢ = [0,...,0,1], we have II;(Z) = {Resz(f,g9) = 0}, where Resz(f,g) means
that f and g are considered as one variable polynomials in Z, making Resz(f,g) a

polynomial in Xy, ..., X,,Y. We can represent Resz(f,g) as follows.
Resz(f,9) = Fo(Xo,..., X)) Y% 4 F(X,,...,X,)Yhd! (5.1)
+ o+ Fya,(Xo, ..o, X0,

where Fj, are homogeneous polynomials of degree b.

Similar to the codimension one case of Zannier, p € D if and only if there are
< dydy — 1 distinct points of Z on the fiber which is span{p,L}. Note that T, is

defined in P" by F} = Fy, = ... = Fy4, = 0.

Property 5.2.1. Let Q be an effective divisor on P" defined by a form I €

k[Xo,...,X,]. Let ¥ be a set of S-integral points for the affine variety P™ \ €.
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Then there exists a finite set of places 8" D S of k such that each point of ¥ has

projective coordinates [zo : ... : z,] with z; € O%, and I(zo, ... ,2,) € OF,.

Proof. Let 0 be the degree of I. We may assume that the coefficients of I are in
Os. The rational functions Q; := X?/I(Xo,...,X,) for i = 0,1,... ,n are regular
on P* \ 2. Therefore, (by definition of S) there exists a non-zero ¢ € Og such that
the values c¢Q;(p) are in Og for all p € X. By finiteness of class-number we may

enlarge S to a finite set S’ such that Og is a unique factorization domain. Then

we may write p = (xo, ... ,x,) where the projective coordinates z; = z;(p) are co-
prime S’-integers. Since I(zo,. .. ,,) divides cx? in Og for all i, we can conclude
I(xg,... ,x,) divides ¢ in Og. Enlarging further &’ makes ¢ € O%,, from where we
get the conclusion. O

5.3 Main Theorem D

Main Theorem D. Let X and Y be two generic hypersurfaces in P"2. In the
above-described geometric setting, the Zariski closure of any set of S-integral points

in P\ D has dimension at most diim T; + 1 (which is independent of i ).

Remark 5.3.1. The significance of the word generic in the above theorem is that
Lemma 5.3.5 holds. Moreover, it assures that any choice of min{n + 1, d;ds} of the
coefficient polynomials Fi, Fy, ... , Fy 4, form a regular sequence, which results in the

following Corollary.
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Corollary 5.3.2. The Zariski closure of any set of S-integral points in P™ \ D has

dimension < max{0,n + 2 — dydy}.

Remark 5.3.3. In order to get the qualitative statement of hyperbolicity, we need
the bound in Corollary 5.3.2 to be 0, as this implies that any set of S-integral points
is finite. An important observation here is that the dimension drops quadratically,

which means hyperbolicity is obtained rather quickly.

Next, note that

[T (branch locus of IT; on I1;(Z)) = II; o II;((branch locus of IT on Z) U V;)

={A=0}U{hi =0} ={A-hi =0},

where V; is a hypersurface on Z which we can think of as a “fake” branch locus and
h; is a homogeneous polynomial defining IT; o II;(V;) on P". Therefore, we have the

following lemma.
Lemma 5.3.4. The discriminant A of the projection 11 is a common factor of the
defining functions of 11, o I1;({ branch locus of 11} U'V;) for alli =1,... ,n+ 1.
The following is the key lemma to prove Main Theorem D.
Lemma 5.3.5. In the above setup, there exist 1I;, I1;, i =1,... ,n+1, such that for

all P € P" \ D there exists j € {1,2,... ,n+ 1} with h;(P) # 0.

Proof. Since the hypersurfaces X and ) are assumed to be generic, the proof of this

lemma comes down to a dimension count. Consider a given point P € P*\ D. If
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h;(P)=0forallj=1,... ,n+1, thenforall j = 1,... ,n+1 there exists a secant line
L; of Z going through ¢; which is contained in the projective plane PL. The degrees
of freedom in choosing such an (n+ 1)-tuple of lines is 2n+ 1. On the other hand, by
the definition of the secant variety, we have Sec(Z) C Grp(1,n+ 2) = Gre(2,n 4+ 3)
and dim Sec(Z) = 2n. Considering Sec(Z)"*! C Grp(1,n + 2)"! and letting £ be

the set of (n + 1)-tuples of lines as above, we compare dimensions as follows:

dim Grp(1,n + 2)"*
= 2(n+1)?=2n"+4n+2
> 2P +dn+1=(n+1)-2n+2n+1

= dim Sec(Z)"™ + dim L.

Thus, for appropriate generic choices, there will be an index j € {1,2,... ,n + 1}

Remark 5.3.6. By Lemma 5.3.5, we can decompose the set X of S-integral points
as szluzg...uzn+1, where E,L = {P € E’hl(P) :0,h2<P) :0, ,hifl(P) =

Proof of Main Theorem D. Let X be a set of S-integral points in P*\ D. Let P € .
We write P = [xg,...,2,| with z; € Os. Since the decomposition ¥ = ¥; U
Yo ...UX,41 is a finite union, we may suppose w.l.o.g. that P € ¥;. By the above
lemma and remark, we may change the coordinates such that the projection II;
has screen Hy = {X,4+2 = 0} and light source [0,0,...,1] and II} has light source

[0,0,...,1,0]. First, we assume that F' is monic with respect to Y (see following
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remark) and normalize equation (5.1) by writing Y — (1/(d1dz))F; in place of Y,
implying F; = 0, which is equivalent to replacing Y by Y — (1/(d1ds))F}; in f and g

at the beginning. By repeating the resultant,

W (P)A(P) = Resy (ResZu, ). o Ress (. g>) (P)

= H (ozi — Oéj)2, (52)

1<i<j<did2

where o; = ;(Xo, ..., X,) is a root of the equation (5.1) of Y.

By the propositions (5.2.1), (5.3.5) and carefully enlarging the set S with respect
to h; (see the remark) and A, we may assume that h;(P), A(P) € O%. This implies
each difference in (5.2) a;; = oy — a; € Of. By alternating the indices, we obtain

the identities:

Qi + oy + oy = 0. (53)

Now, by the well-known result of Siegel and Mahler the equation z+y+2z = 0 has
only finitely many non-proportional solutions (z,y, 2) € (O%)3. Applying this to (5.3)
with {i, 7,1} = {1,2,1} and then with {4, 7,1} = {1, ,1}, we have a3 + agy + ay3 = 0
and ay; + oy + oy = 0. By the first equation, the values of ay; /a2 lie in a finite set
independent of P. By the second equation, the same holds for «j;/ay;. Therefore, the
values of ai/aq2 = (aji/an) - (a1 /on2) lie in a finite set independent of P. Putting

v = o, we summarize these observations as follows:

a; — ap = ¢y, (5.4)

59



where the c¢j lie in a finite set independent of P, and v, which may depend on P,
lies in O%. We split ¥ into finitely many subsets so that the c;; is fixed for P in a
fixed subset of ;. By arguing separately with each subset, we may assume that the

¢j1 are independent of P. From (5.4) and taking [ =1,
a; = 0 + Cj17- (55)

By the assumption F} = 0, it implies
(dldg)al + E le’}/ = E Q,; = 0.
j i

We have a; = ¢y, where ¢ is a fixed number only depended on the subset we are
working with, not the point P. By (5.5), a; = ¢;y. Recalling that Fy(xo,... ,z,) is

the b-th symmetric function of the «;, Vieta’s formulas yield
Fy(xo, ... ,x,) =Y, b=2,3,... ,dids, (5.6)

where the [,, b =2,3,... ,ddy, do not depend on P.

Now, consider the variety W defined in P"*! by the equations
Fy(Xo,..., X)) =LY" b=2,3,...  didy. Note that dim W < dim T; + 1. By (5.6),

Y1 lies in the projection of W, whose dimension is < dim W < dim T + 1. O]

Remark 5.3.7. We follow Zannier’s paper to briefly describe the case that F' and

G have as their resultant a non-monic homogeneous polynomial.

F(Xo,.... X, Y) = Fy(Xo, ..., X)) Y4 F(Xo, ..., X)) Y o 4 Fy(Xo, ..., X,).
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Again, we assume P € P" \ D such that hy(P) # 0 where D is now defined by the

discriminant

A= F2 H (o — )2,

1<i<j<d

where the «; are the roots. As in the above proof, we may assume «; € k for
the integral points in question, writing a; = p;/d; with p;, 0; co-prime elements in
O%. Then F(Xo,...,X,,Y) is divisible in Og[Y] by [L(6:;Y — ), where 8y, ... ,0q
divides Fy(zo, ... ,z,) in Og. Therefore, A(P) is divisible in Og by H#j(éjui —0ift5)
according to definition where all the factors are in O% if P € P*\ D. As in the proof
of (5.3), the philosophy is to find the identity in order to apply Siegel and Mahler
theorem which is the cornerstone of the entire argument. Let z;; = d;1; — 0;p0; and
consider the identity x1;x9; —x1;T9; — x12%;; = 0. Then z1;29;/x1;22; has only finitely

many values independently of P. Define

0. = a1 — Oy T1iT2; . (Oél — ai)(ag — Odj) . DZ
Qg — Qy Tz (0 — o) an —aj) 0

Since there are only finitely many possibilities, the above relation allows us to
write down ¢; in terms of ay and «s as in the previous proof. Then the integral

points lie on a suitable subvariety.
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