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Abstract

In this dissertation, we first discuss some of the important results in Nevanlinna

Theory and Diophantine Approximation Theory. Next, a result by the author and

Min Ru [LR14] is presented. In chapter 3, we extend the Second Main Theorem to the

case of holomorphic curves into algebraic varieties intersecting numerically equivalent

ample divisors. In chapter 4, we improve Ru’s defect relation (see [Ru16a]) and the

height inequality (see [Ru16b]) in the case when X is a normal projective surface and

Dj, 1 ≤ j ≤ q, are big and asymptotically free divisors without irreducible common

components on X. Lastly, the author and Gordon Heier study a hyperbolicity-type

problem involving projections from Pn+2 to Pn.

v



Contents

1 Introduction 1

2 Definitions and background materials 5

3 Holomorphic curves intersecting numerically equivalent ample di-
visors 17

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Main Theorem A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Quantitative results on projective surfaces 25

4.1 Levin’s result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Ru’s master result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 The statement of Main Theorem B and Main Theorem C . . . . . . . 40

4.4 More Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Proof of Main Theorem B . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Appendix to chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.6.1 Motivation of choice of β in the Lemma 4.4.3 . . . . . . . . . 50

4.6.2 Alternative method to derive similar estimate as Lemma 4.4.3 51

vi



5 Integral points on the complements of ramification divisors and re-
sultants 53

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Definitions, notations and background . . . . . . . . . . . . . . . . . 54

5.3 Main Theorem D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 62

vii



Chapter 1

Introduction

Nevanlinna theory began with the study of the distribution of values of meromorphic

functions. In 1929, Nevanlinna extended the classical little Picard’s theorem by

introducing the defect (see chapter 2). Right after Nevanlinna, Cartan extended

Nevanlinna’s result to holomorphic curves in projective spaces and Bloch considered

holomorphic curves in Abelian varieties. In 1941, Ahlfors, following Weyl’s work,

gave a geometric approach to the theory of holomorphic curves in projective spaces.

In 1953, Stoll generalized the work of Weyl-Ahlfors to the case of several complex

variables. In 1970, Griffiths proved the Second Main Theorem for equi-dimensional

holomorphic mappings. The result gave a new insight to the theory in terms of Chern

invariant. In 1996, Siu and Yeung settled Lang’s conjecture for abelian varieties and

made significant progress towards solving Griffiths’ conjecture.

Diophantine problems also have a long history. In the first half of the 20th
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century, Thue and Siegel first obtained important finiteness statements. In 1955,

Roth proved the celebrated Roth’s theorem. Around 1970 Schmidt extended Roth’s

result for simultaneous approximation to algebraic numbers. In 1983, Faltings solved

Mordell’s conjecture: a smooth algebraic curve of genus g ≥ 2 defined over Q has

only finitely many rational points. Vojta derived an alternative proof of Faltings’

theorem by Diphantine approximation. In the same year, Faltings extended the

theory of Diophantine approximation to Abelian varieties.

There exists a very striking connection between Nevanlinna theory and Diophan-

tine approximation, as discovered by Vojta, Osgood and others. Roughly speaking,

the study of holomorphic maps intersecting divisors corresponds to the study of in-

tegral points of the complement of the divisors. Vojta even compiled a “dictionary”

translating from one to the other. This relation has been proved beneficial for both

subjects, as progress in one can provide inspiration for progress in the other.

In recent years, there has been some significant progress in the study of qualita-

tive and quantitative aspects of geometric and arithmetic properties of the comple-

ment of divisor in an algebraic projective variety. In 2004, Ru established a defect

relation for algebraically nondegenerate holomorphic curves in projective space inter-

secting curvilinear hypersurfaces which settled a long-standing conjecture of Shiff-

man. In 2009, he further extended the result to holomorphic curves in complex

projective varieties. In the same year, based on the result achieved by Corvaja-

Zannier, Levin obtained the sharp qualitative result in the surface case. In 2014,

also motivated by Corvaja-Zannier, Ru and I study the Second Main Theorem in
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the case when divisors are numerically equivalent to an ample divisor (see chapter

3). In 2015, Ru introduced a new notion of Nevanlinna constant which gives an

upper bound of the defect. In chapter 4, we will follow Ru’s method to derive the

quantitative result in the surface case which implies the sharp qualitative result.

To our knowledge, many theorems on integral points apply to V only if D splits

into several components, where V ⊂ Pn is an affine variety and D is its divisor

at infinity. Only few results on integral points are known without such type of

hypotheses. An example is provided by the deep theorem of Faltings on sets of

integral points on abelian varieties in the complement of an ample effective divisor.

Another classic example proved by Siu and Yeung [SY96] is described as follows:

If the degree of a generic (irreducible, smooth) curve C in P2 is big enough, then

P2\C is hyperbolic, i.e., every holomorphic map f : C→ P2 is constant.

Following an idea of Faltings, Zannier [Zan05] studied the projection from a

hypersurface X in Pn+1 to Pn. Roughly speaking, he used the total ramification locus

to control the integral points away from the ramification locus D of the projection.

In this spirit, Gordon Heier and I study a generic projection from the intersection

of two generic hypersurfaces in Pn+2 to Pn (see chapter 5). We derived the result

that the Zariski closure of any set of S-integral points in Pn \ D has dimension

≤ max{0, n − d1d2 + 2}, where d1, d2 are degrees of these two hypersurfaces. Note

that, as a consequence, if d1d2 ≥ n+ 2, then any set of S-integral points is finite.

Our proof essentially follows Zannier’s approach, which is to reduce the problem

to a clever application of the finiteness theorem of Siegel-Mahler for solutions of the
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S-unit equation. The key difference however is that in Zannier’s codimension one

case, the divisor D can be conveniently described by a discriminant. In our case,

iterated resultants are required and certain excess vanishing has to be removed in

order to identify D.
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Chapter 2

Definitions and background

materials

In this chapter, the definitions of the counting function, the characteristic function,

the proximity function and the defect are given in a geometric way and basic proper-

ties are also provided. Let X be a complex projective variety. For a Cartier divisor

D on X, the Weil function for D is given by

λD(x) = − log ‖sD(x)‖ , (2.1)

where sD is the canonical section of the line bundle OX(D), i.e., (sD) = D, and

‖ · ‖ is any continuous metric on OX(D). The Weil function is well defined, up to a

bounded term, independently of the choices of the metric. In the case when X = Pn

and D = {Q = 0} ⊂ Pn where Q is a homogeneous polynomial of degree d, λD can
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be chosen as, for x = [x0 : · · · : xn] ∈ Pn\suppD,

λD(x) = log
(max0≤i≤n |xi|d) · ‖Q‖

|Q(x)|
,

where ‖Q‖ is the maximum of the norm of the coefficients of Q.

Let f : C → X be a holomorphic map whose image is not contained in the

support of D. The proximity function of f with respect to D is defined by

mf (r,D) =

∫ 2π

0

λD(f(reiθ))
dθ

2π
. (2.2)

The counting function of f is defined by

Nf (r,D) =

∫ r

1

nf (t,D)

t
dt , (2.3)

where nf (t,D) is the number of zeros of ρ◦f inside {|z| < t}, counting multiplicities,

and ρ is a local defining function of D (note that nf (t,D) is independent of the choice

of ρ). We define the characteristic function by

Tf,D(r) =

∫ r

1

dt

t

∫
B(t)

f ∗(c1(O(D))), (2.4)

where O(D) is the line bundle associated to D and B(t) is an open disk whose radius

is t and center is at origin. The first relation between those functions we defined

above is called the First Main Theorem which is a consequence of the Green-Jensen

formula.

Theorem 2.0.1 (Green-Jensen Formula). Let α be a function of class C2 on B̄(r)

or a subharmonic function on B̄(r). Then∫ r

1

dt

t

∫
B(t)

[ddcα] =
1

2π

∫ 2π

0

α(re
√
−1θ)dθ +O(1), (2.5)
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where [ddcα] = ddcα + Singα(r), Singα(r) = limε→0

∫ r
1
dt
t

∫
S(Z,ε)

dcα, S(Z, ε) is the

union of small circles around singularities in B̄ and Z is the set of singularities of

α.

Proof. By Stokes’ theorem and dc = 1
2π

(r ∂
∂r
⊗ dθ + 1

r
∂
∂θ
⊗ dr),∫ r

1

dt

t

∫
B(t)

ddcα =

∫ r

1

dt

t

∫
∂B(t)

dcα− lim
ε→0

∫ r

1

dt

t

∫
S(Z,ε)

dcα

=

∫ r

1

dt

t

∫ 2π

0

1

2π

(
t
∂

∂t
⊗ dθ +

1

t

∂

∂θ
⊗ dt

)
α(teiθ)− Singα(r)

=
1

2π

∫ r

1

dt

t

∫ 2π

0

t
∂

∂t
α(teiθ)dθ − Singα(r)

=
1

2π

∫ 2π

0

α(reiθ)dθ − Singα(r) +O(1).

Based on the Green-Jensen formula, we have∫ r

1

dt

t

∫
B(t)

f ∗(c1(L)) = −
∫ r

1

dt

t

∫
B(t)

f ∗(ddc log ||s||)

= −
∫ r

1

dt

t

∫
B(t)

ddc log ||s ◦ f ||

= Singlog ||s◦f ||(t)−
1

2π

∫ 2π

0

log ||s ◦ f(re
√
−1θ)||dθ +O(1).

Since limε→0

∫
∂B(ε)

dc log |z|2 = 1, Singlog ||s◦f ||(t) = Nf (r,D). Therefore, we have the

First Main Theorem.

Tf,D(r) = mf (r,D) +Nf (r,D) +O(1) . (2.6)

Remark 2.0.2. The First Main Theorem is an alternative way to define the char-

acteristic function.
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If X = Pn with homogeneous coordinates [z0, . . . , zn] and D = {a0z0 + . . . +

anzn = 0}, the Weil function λD(x) = log max |zi|max |ai|
|a0z0+...+anzn| . In particular, when D =

{z0 = 0}, we simply write Tf (r) := Tf,D(r). We call Tf (r) Cartan’s characteristic

function. By Green-Jensen’s formula, we have

Tf (r) =
1

2π

∫ 2π

0

log max
0≤i≤n

|fi(re
√
−1θ)|dθ,

where f = [f0 : · · · : fn] and f0, . . . , fn are entire functions without common zeros.

To serve our purpose later, we discuss the characteristic function for f : C→ X

with respect to a subspace V ⊂ H0(X,D) with dimV ≥ 2 where D is base-point

free. Let Φ : X → Pm be the canonical rational map associated with V where

m + 1 = dimV . Let Φ = [φ0 : . . . : φm] where {φ0, . . . , φm} is a basis of V .

Extend {φ0, . . . , φm} to {φ0, . . . , φl} such that {φ0, . . . , φl} is a basis of H0(X,D),

where l = dimH0(X,D) − 1 . Since |D| is base-point free, we can take a reduced

representation for φ ◦ f : C → Pl, say φ ◦ f = [h0, . . . , hl], where φ = [φ0 : . . . : φl].

Take an entire function g on C such that {h0/g, . . . , hm/g} has no common zeros.

Then [h0/g, . . . , hm/g] is a reduced representation of Φ◦f . We now compare TΦ◦f (r)

with Tf,D(r). Notice that

TΦ◦f (r) =

∫ 2π

0

log max
0≤i≤m

|(hi/g)(re
√
−1θ)|dθ

2π

=

∫ 2π

0

log max
0≤i≤m

|hi(re
√
−1θ)|dθ

2π
−Ng(r, 0),

where the second identity holds due to Green-Jensen’s formula. On the other hand,

by definition,

Tf,D(r) = Tφ◦f (r) =

∫ 2π

0

log max
0≤i≤l

|hi(re
√
−1θ)|dθ

2π
.
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Hence,

TΦ◦f (r) =

∫ 2π

0

log max
0≤i≤m

|hi(re
√
−1θ)|dθ

2π
−Ng(r, 0)

≤ Tf,D(r)−Ng(r, 0) ≤ Tf,D(r). (2.7)

We have the following basic properties of these functions.

Lemma 2.0.3 ([Voj07], Theorem 8.8). Weil functions λD for Cartier divisors D on

a complex projective variety X satisfy the following properties.

(a) Additivity: If λ1 and λ2 are Weil functions for Cartier divisors D1 and D2 on

X, respectively, then λ1 + λ2 extends uniquely to a Weil function for D1 +D2.

(b) Functoriality: If λ is a Weil function for a Cartier divisor D on X, and if

φ : X ′ → X is a morphism such that φ(X ′) * suppD, then x 7→ λ(φ(x)) is a Weil

function for the Cartier divisor φ∗D on X ′.

(c) Normalization: If X = Pn, and if D = {x0 = 0} ⊂ X is the hyperplane at

infinity, then the function

λD([x0 : · · · : xn]) := log
max{|x0|, . . . , |xn|}

|x0|

is a Weil function for D.

(d) Uniqueness: If both λ1 and λ2 are Weil functions for a Cartier divisor D on

X, then λ1 = λ2 +O(1).

(e) Boundedness from below: If D is an effective divisor and λ is a Weil function

for D, then λ is bounded from below.
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(f) Principal divisors: If D is a principal divisor (f), then − log |f | is a Weil

function for D.

Proposition 2.0.4. Let f : C→ X be a holomorphic map. The proximity function

and the counting function of f have the following properties.

(a) Additivity: If D1 and D2 are two divisors on X, then

mf (r,D1 +D2) = mf (r,D1) +mf (r,D2) +O(1)

Nf (r,D1 +D2) = Nf (r,D1) +Nf (r,D2) +O(1).

(b) Functoriality: If φ : X → X ′ is a morphism and D′ is a divisor on X ′ whose

support does not contain the image of φ ◦ f , then

mf (r, φ
∗D′) = mφ◦f (r,D

′) +O(1)

Nf (r, φ
∗D′) = Nφ◦f (r,D

′) +O(1).

(c) Effective divisors: If D is effective, then mf (r,D) and Nf (r,D) are bounded

below. In each of the above cases, the implied constant in O(1) depends on the

varieties, divisors, and morphisms, but not on f and r.

Lemma 2.0.5 ([Voj87] Ch.10, Prop.3.2). Let λ1, . . . , λn be Weil functions for

Cartier divisors D1, . . . , Dn, respectively, on a projective variety X. Assume that

the Di are of the form Di = D0 +Ei, where D0 is a fixed Cartier divisor and Ei are

effective for all i. Assume also that

suppE1 ∩ · · · ∩ suppEn = ∅.
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Then the function

λ(x) = min{λi(x) : x 6∈ suppEi}

is defined everywhere on X\suppD0, and is a Weil function for D0.

The divisors D1, . . . , Dq on X are said to be in l-subgeneral position on X if for

any subset of l + 1 elements {i0, . . . , il} ⊂ {1, . . . , q},

suppDi0 ∩ · · · ∩ suppDil = ∅.

When l = dimX, then we say that the divisors D1, . . . , Dq are in general position on

X.

The central problem in Nevanlinna theory (or the theory of holomorphic curves)

is to study whether a holomorphic mapping f : C → X\D is degenerate (i.e., f(C)

is contained in a proper subvariety of X), for a given projective variety X and an

effective divisor D on X. A more general quantitative problem is to control the

defect δf (D) for f : C → X, where δf (D) := lim inf
r→+∞

mf (r,D)

Tf,D(r)
. By the First Main

Theorem, δf (D) = 1. However, if δf (D) < 1, then f : C→ X\D must be degenerate.

For example, when X = P1 and D =
∑q

j=1(aj) for distinct points a1, . . . , aq ∈ P1,

Nevanlinna, in 1929, proved δf (D) ≤ 2
q
. It gives a quantitative extension of the

classical result of Little Picard that every holomorphic mapping f : C → P1\{three

distinct points} must be constant. In 1933, H. Cartan extended Nevanlinna’s defect

relation to δf (D) ≤ n+1
q

for any linearly nondegenerate holomorphic mappings f :

C→ Pn where D =
∑q

j=1Hj, and H1, . . . , Hq are hyperplanes in general position.

The following version generalized Cartan’s result (see [Ru97], [Voj97]).

11



Theorem 2.0.6. Let f = [f0 : . . . : fm] : C→ Pm be a holomorphic map whose image

is not contained in a proper linear subspace. Let H1, . . . , Hq be arbitrary hyperplanes

in Pm. Then, for every ε > 0,∫ 2π

0

max
J

∑
j∈J

λHj(f(re
√
−1θ))

dθ

2π
≤ (m+ 1 + ε)Tf (r) ||E,

where the maximum is taken over all subsets J of {1, . . . , q} such that {Hj, j ∈ J}

are in general position and ‖E, throughout the dissertation, means the inequality

holds for all r ∈ (0,∞) except for a set E with finite Lebesgue measure.

Motivated by the recent breakthrough in Diophantine approximation by

Corvaja-Zannier, and Evertse-Ferretti, my advisor Min Ru extended Cartan’s re-

sult to the case of hypersurfaces.

Theorem 2.0.7 ([Ru04], Main Theorem). Let f : C → Pn be an algebraic non-

degenerate holomorphic map. Let D1, . . . , Dq be hypersurfaces in Pn of degree di,

located in general position. Then, for every ε > 0,

q∑
j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ε)Tf (r) ||E. (2.8)

In 2009, he further extended the result to any complex projective variety.

Theorem 2.0.8 ([Ru09], The main result). Let X ⊂ Pn be a complex projective

variety. Let D1, . . . , Dq be hypersurfaces in Pn of degree di, located in general position

on X. Let f : C → X be an algebraically non-degenerate holomorphic map. Then,

for every ε > 0,

q∑
j=1

d−1
j mf (r,Dj) ≤ (dimX + 1 + ε)Tf (r) ||E. (2.9)
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Remark 2.0.9. The theorem was proved by Min Ru in the case X is smooth. Vojta

pointed out (see page 185, [Voj07]) that the same proof goes through when X is not

smooth.

According to the definition of the defect, the inequality (2.9) can be written as

follows:
q∑
j=1

δf (Dj) ≤ dimX + 1.

The notions of the Weil function and the height function on the arithmetic

(Diophantine approximation) side are defined in a similar way (see, for example,

[Lan87] or [Voj07]). Let k be a number field and let Ok denote the ring of integers of

k. As usual, we have a set Mk of places of k consisting of one place for each nonzero

prime ideal in Ok, one place for each real embedding σ : k → R, and one place for

each pair of conjugate embeddings σ, σ̄ : k → C. kυ denotes the completion of k with

respect to υ ∈ Mk. We normalize our absolute values so that ‖p‖υ = p−[kυ :Qυ ]/[k:Q]

if υ corresponds to the prime ideal above the prime p ∈ Q, ‖x‖υ = |σ(x)|1/[k:Q] if υ

corresponds to the real embedding σ, and ‖x‖υ = |σ(x)|2/[k:Q] if υ corresponds to the

pair of conjugate embeddings σ, σ̄ : k → C. Let X be a projective variety defined

over a number field k. For every Cartier divisor D on X and every place υ ∈Mk, we

can associate a local Weil function λD,υ : X\suppD → R (see, for example, [Lan87]

or [Voj07]), where suppD is the support of the divisor D. When D is effective, the

Weil function λD,υ gives a measurement of the υ-adic distance of a point to D. If

X = Pn and D ⊂ Pn is a hypersurface defined by a homogeneous polynomial Q of

13



degree d, then

λD,υ([x0 : · · · : xn]) := log
max{‖x0‖dυ, . . . , ‖xn‖dυ}
‖Q(x0, . . . , xn)‖υ

.

Let S be a finite set of places in Mk containing the archimedean places. Let R ⊂

X(k̄)\D. Then R is defined to be a (D,S)-integral set of points if there exists a

global Weil function λD,υ and all embeddings k̄ → k̄υ, such that for all υ ∈ Mk\S,

the inequality λD,υ(P ) ≤ 0 for all P in R. The height hk(x,D) for points x ∈ X(k)

is defined as

hk(x,D) =
∑
υ∈Mk

λD,υ(x).

It is independent of, up to O(1), the choice of Weil functions. In particular, when

X = Pn, D = {z0 = 0}, we simply write hk(x) := hk(x,D).

Let S ⊂Mk be a finite set of places containing all archimedean ones. We define,

for x ∈ X(k)\suppD,

mS(x,D) =
∑
υ∈S

λD,υ(x), NS(x,D) =
∑
υ 6∈S

λD,υ(x).

Similarly, those functions have following properties.

Proposition 2.0.10 ([Voj87], Theorem 9.8). Let X be a projective variety over a

number field k. Then the following properties hold.

(a) Additivity:

mS(x,D1 +D2) = mS(x,D1) +mS(x,D2) +O(1)

NS(x,D1 +D2) = NS(x,D1) +NS(x,D2) +O(1).

14



(b) Functoriality: If φ : X → X ′ is a morphism and D′ is a divisor on X ′ whose

support does not contain the image of φ ◦ f , then

mS(x, φ∗D′) = mS(φ(x), D′) +O(1)

NS(x, φ∗D′) = NS(φ(x), D′) +O(1).

(c) Effective divisors: If D is effective, then mS(x,D) and NS(x,D) are bounded

below. In each of the above cases, the implied constant in O(1) depends on the

varieties and divisors but not on x.

When working with the proximity function and the height function, the divisor

D is almost always assumed to be effective.

The following (generalized) version of Schmidt’s Subspace Theorem from [Voj97]

is corresponding to Theorem 2.0.6.

Theorem 2.0.11. Let k be a number field and S ⊂ Mk be a finite set containing

all archimedean places. Let H1, . . . , Hq be hyperplanes in Pn defined over k̄ and

λH1 , . . . , λHq be Weil functions corresponding to H1, . . . , Hq. Then there exists a

finite union of hyperplanes Z, depending only on H1, . . . , Hq (and not k, S), such

that for any ε > 0,

∑
υ∈S

max
I

∑
i∈I

λHi,υ(P ) ≤ (n+ 1 + ε)hk(P ),

holds for all but finitely many P ∈ Pn(k)\Z, where the maximum is taken over subsets

I ⊂ {1, . . . , q} such that the linear forms defining Hi, i ∈ I, are linearly independent.

15



Remark 2.0.12. The corresponding statements of Theorem 2.0.8 on the arithmetic

side can be found in [EF08].
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Chapter 3

Holomorphic curves intersecting

numerically equivalent ample

divisors

In this chapter (also see [LR14]), we reformulate Theorem 2.0.8 and extend it to the

same result for divisors which are numerically equivalent to an ample divisor on X.

3.1 Motivation

The idea follows the breakthrough method introduced by Corvaja and Zannier, where

they used Schmidt’s subspace theorem to give a new proof of Siegel’s celebrated

theorem that any affine algebraic curve defined over a number field with positive
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genus or at least three points at infinity has only finitely many S-integral points. In

their paper [CZ04a], they applied the method to study integral points on a surface

where the divisors are not necessarily linearly equivalent. Later, Levin significantly

improved their results and obtained the sharp result in the surface case, as well as

extended the results to higher dimensions. However, all results they obtained are of a

qualitative nature. One of the main results in [CZ04a] is stated as follows: Let X be

a geometrically irreducible nonsingular algebraic surface and D1, . . . , Dq be distinct

irreducible divisors located in general position on X, i.e., no three of them share a

common point, all defined over a number field, such that X̃ := X\{D1 + . . . + Dq}

is affine. Assume that there exist positive integers n1, . . . , nq such that (niDi.njDj)

is a positive constant (independent of i, j for all pairs 1 ≤ i, j ≤ q). If q ≥ 4, then

the S-integral points of X̃ are degenerate, i.e., there is a curve on X containing all

the S-integral points in X̃. In their paper, they made a remark (see the last three

lines on page 706, [CZ04a]) that one may prove that the condition that (niDi.njDj)

is constant amounts to the niDi, 1 ≤ i ≤ q, being numerically equivalent. This

is indeed an easy consequence of the Hodge Index Theorem, as is verified in this

chapter. Nevertheless, it gives a strong motivation to study Schmidt’s subspace

theorem and the Second Main Type Theorem in Nevanlinna theory for numerically

equivalent divisors.

On the other hand, on the quantitative side, Evertse and Ferretti, by using a

different method, established a Schmidt’s subspace-type theorem for the complement

of divisors in an arbitrary projective variety X ⊂ PN , where the divisors are coming

from hypersurfaces in PN . By a slight reformulation, one actually only needs to
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assume that the divisors are linearly equivalent on X to a fixed ample divisor. The

discussion above thus naturally leads to the question whether the result still holds

for divisors which are only numerically equivalent. Such result on the arithmetic

side was just established by Levin in his recent paper [Lev14]. The extension of

Evertse and Ferretti’s result to numerically equivalent divisors immediately implies

the (main) result of Corvaja and Zannier in [CZ04a]. The counter-part of Corvaja-

Zannier in Nevanlinna theory is due to Liu and Ru. The purpose of this section is

to give a quantitative extension of Liu and Ru’s result [LiuRu05].

3.2 Preparation

We recall some notations and results in algebraic geometry. Let X be a projective

variety. Two divisors D1 and D2 are said to be linearly equivalent on X, denoted

by D1 ∼ D2, if D1 − D2 = (f) for some meromorphic function f on X. This is

the same as saying there is a sheaf isomorphism OX(D1) ∼= OX(D2), 1 → f . Two

divisors D1 and D2 are said to be numerically equivalent on X, denoted by D1 ≡ D2,

if D1.C = D2.C for all irreducible curves C on X. Obviously, linear equivalence

implies numerical equivalence.

We need the following result.

Theorem 3.2.1 (Hodge Index Theorem). Let X be a smooth complex projective

surface. Let h ∈ H1,1
R (X) with h2 > 0 . Then the cup product form is negative

definite on h⊥ ⊂ H1,1
R (X).
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Corollary 3.2.2. Let X be a smooth complex projective surface. Let D1, D2 be two

distinct effective divisors. Assume that D1.D2 = D2
1 = D2

2 > 0. Then D1 and D2

are numerically equivalent.

Proof. Let h = [D1]. Then h2 = D2
1 > 0. Moreover, D1.(D1−D2) = D2

1−D1.D2 = 0

and (D1 − D2)2 = D2
1 − 2D1.D2 + D2

2 = 0. So the above Hodge Index Theorem

implies that [D1 −D2] = 0 ∈ H1,1
R (X) which means that D1 and D2 are numerically

equivalent.

3.3 Main Theorem A

We first give a slight reformulation of Theorem 2.0.8.

Theorem 3.3.1 ([LR14], Theorem B). Let X be a complex projective variety of

dimension n ≥ 1 but not necessarily smooth. Let D1, . . . , Dq be effective divisors on

X, located in general position. Suppose that there exists an ample Cartier divisor A

on X and positive integers dj such that Dj ∼ djA (i.e., Dj is linearly equivalent to

djA) for j = 1, . . . , q. Let f : C→ X be an algebraically non-degenerate holomorphic

map. Then, for every ε > 0,

q∑
j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ε)Tf,A(r)||E. (3.1)

Proof. Let N be a positive integer such that NA is very ample and N is divisible

by dj for j = 1, . . . , q. Let φ : X → Pm be the canonical embedding of X into Pm

associated to NA, where m = dimH0(X,OX(NA))−1. Then N
dj
Dj = φ∗Hj for some
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hyperplanes Hj in Pm. From the assumption that D1, . . . , Dq are in general position

on X, H1, . . . , Hq are in general position on X ⊂ Pm (or more precisely on the image

of X under φ). Moreover from the functoriality and additivity of Weil functions, for

P ∈ X\SuppDj, we have

λHj(φ(P )) =
N

dj
λDj(r) +O(1),

so

mφ◦f (r,Hj) =
N

dj
mf (r,Dj) +O(1).

Also, from the functoriality of height (characteristic) functions, we have

NTf,A(r) = Tf,NA(r) = Tφ◦f (r) +O(1),

where Tφ◦f (r) := Tφ◦f,OPm (1)(r). Applying Theorem 2.0.8 to the map φ ◦ f and the

hyperplanes Hj for j = 1, . . . , q, we have
q∑
j=1

mφ◦f (r,Hj) ≤ (n+ 1 + ε)Tφ◦f (r) ‖E.

The result then follows by substituting the identities above (we note that here the

exceptional set E might change, nevertheless it is still of finite Lebesgue measure).

Main Theorem A. Let X be a smooth complex projective variety of dimension

n ≥ 1 but not necessarily smooth. Let D1, . . . , Dq be effective divisors on X, located

in general position. Suppose that there exists an ample Cartier divisor A on X and

positive integers dj such that Dj ≡ djA for j = 1, . . . , q. Let f : C → X be an

algebraically non-degenerate holomorphic map. Then, for every ε > 0,
q∑
j=1

d−1
j mf (r,Dj) ≤ (n+ 1 + ε)Tf,A(r) ||E. (3.2)
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To prove the theorem, the following result in algebraic geometry, due to Mat-

susaka, plays an important role.

Theorem 3.3.2 ([Mat58]). Let A be an ample Cartier divisor on a projective variety

X. Then there exists a positive integer N0 such that for all N ≥ N0, and any Cartier

divisor D with D ≡ NA, D is very ample.

Lemma 3.3.3 ([Voj87], Proposition 1.2.9). Let A be an ample Cartier divisor on a

projective variety X. Let f : C → X be a holomorphic map. Then, for any ε > 0

and any effective divisor D with D ≡ A,

Tf,D(r) ≤ (1 + ε)Tf,A(r) +O(1),

where O(1) is a constant which is independent of f and r.

Proof of Main Theorem A. By replacing Dj with d
dj
Dj with d = lcm{d1, . . . , dq},

A by dA, and using the additivity of Weil functions and heights (up to bounded

functions), we see that it suffices to prove the case where we can assume that d1 =

d2 = · · · = dq = 1, i.e., Dj ≡ A for j = 1, . . . , q. For the given ε > 0, let N0 be the

integer in Theorem 3.3.2 for our given A. Take N with

N0 <
ε

4q
N.

By the choice of N0, we have that NA− (N −N0)Dj is very ample for j = 1, . . . , q.

Since the divisors D1, . . . , Dq are in general position and NA− (N −N0)Dj is very

ample for all j, there exist effective divisors Ej such that (N −N0)Dj +Ej is linearly

equivalent to NA for all 1 ≤ j ≤ q, and the divisors (N − N0)D1 + E1 , ..., (N −
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N0)Dq+Eq are in general position. Applying Theorem 3.3.1 to the linearly equivalent

divisors (N −N0)Dj +Ej (which are all linearly equivalent to NA), j = 1, . . . , q, we

get
q∑
j=1

mf (r, (N −N0)Dj + Ej) ≤
(
n+ 1 +

ε

2

)
Tf,NA(r) ‖E.

Using additivity and that the Weil functions λEj are bounded from below outside

of the support of Ej and Tf,NA(r) = NTf,A(r), we obtain

q∑
j=1

(
1− N0

N

)
mf (r,Dj) ≤

(
n+ 1 +

ε

2

)
Tf,A(r) ‖E,

i.e.,
q∑
j=1

mf (r,Dj) ≤
N0

N

q∑
j=1

mf (r,Dj) +
(
n+ 1 +

ε

2

)
Tf,A(r) ‖E.

Note that in the above inequality, the exceptional set E might change, nevertheless

it is still of finite Lebesgue measure. On the other hand, by Lemma 3.3.3 with ε = 1

and the First Main Theorem, we get

mf (r,Dj) ≤ Tf,Dj(r) +O(1) ≤ 2Tf,A(r) +O(1).

Thus, by the choice of N that N0 <
ε

4q
N , we obtain

q∑
j=1

mf (r,Dj) ≤
2qN0

N
Tf,A(r) +

(
n+ 1 +

ε

2

)
Tf,A(r) ≤ (n+ 1 + ε)Tf,A(r) ‖E.

This finishes the proof of Main Theorem A.

Corollary 3.3.4. Let X be a smooth complex projective surface but not necessar-

ily smooth and D1, . . . , Dq be distinct irreducible ample divisors located in general

position on X (i.e. no three of them share a common point). Assume that there
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exist positive integers n1, . . . , nq such that (niDi).(njDj) is a positive constant (i.e

independent of i, j for all pairs 1 ≤ i, j ≤ q). Let f : C → X be an algebraically

non-degenerate holomorphic map. Then, for every ε > 0,

q∑
j=1

njmf (r,Dj) ≤ (3 + ε)

(
1

q

q∑
j=1

njTDj ,f (r)

)
‖E.

In particular, with the same assumptions about the divisors D1, . . . , Dq, if q ≥ 4,

then every holomorphic map f : C→ X\ ∪qj=1 Dj must be algebraically degenerate.

Proof. From Corollary 3.2.2, we know that njDj, 1 ≤ j ≤ q, are numerically equiva-

lent. Therefore applying the Main Theorem A to the divisors njDj, together with the

additivity property of Weil functions and heights (up to bounded functions), gives

q∑
j=1

njmf (r,Dj) ≤ (3 + ε)

(
1

q

q∑
j=1

njTf,Dj(r)

)
‖E.

Now assume that f : C → X\ ∪qj=1 Dj and that f is algebraically non-degenerate.

Since njDj and Dj share the same support and the image of f omits the support of

Dj, we have Nf (r, nDj) = 0, thus from the First Main Theorem,

mf (r, njDj) = Tf,njDj(r) +O(1).

Thus, we get

q∑
j=1

njTf,Dj(r) +O(1) =

q∑
j=1

njmf (r,Dj)

≤ 3 + ε

q

(
q∑
j=1

njTf,Dj(r)

)
‖E,

which is a contradiction when q ≥ 4.
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Chapter 4

Quantitative results on projective

surfaces

In this section, we improve the defect relation (see Theorem 4.2.5) and the height

inequality (see Theorem 4.2.12) in the case when X is a normal projective surface

and Dj, 1 ≤ j ≤ q, are big and asymptotically free divisors without irreducible

common components on X. As a consequence, we recover a sharp qualitative result

due to Levin (see [Lia15]).

4.1 Levin’s result

First, we recall some definitions and lemmas from Levin’s paper [Lev09].

Definition 4.1.1 ([Lev09], Definition 9.6). Suppose that X is a projective variety of
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dimension n. Let D = D1 +D2 + · · ·+Dq be a divisor on X with Di being effective.

D is said to have equidegree with respect to D1, D2, . . . , Dq if Di.D
n−1 = 1

q
Dn for

1 ≤ i ≤ q.

Lemma 4.1.2 ([Lev09], Lemma 9.7). Let X be a projective variety of dimension n.

If Dj, 1 ≤ j ≤ q, are big and nef, then there exist positive real numbers rj such that

D =
∑q

j=1 rjDj has equidegree with respect to r1D1, . . . , rqDq.

Proof. We follow the simplified proof given by Autissier [Aut09]. Let

4 := {(t1, . . . , tq) ∈ Rq
+ | t1 + · · ·+ tq = 1}.

Define a map g : 4→ 4 by letting, for t = (t1, . . . , tq) ∈ 4,

g(t) =

(
φ(t)

(
∑q

j=1 tjDj)n−1.D1

, · · · , φ(t)

(
∑q

j=1 tjDj)n−1.Dq

)
,

where φ(t) :=

(
q∑
i=1

1

(
∑q

j=1 tjDj)n−1.Di

)−1

. By Brouwer’s fixed point theorem, there

exists a point x = (r1, . . . , rq) such that g(x) = x, i.e., φ(x) = (
∑q

j=1 rjDj)
n−1.(riDi)

for i = 1, . . . , q. This implies, by summing all i, that qφ(x) = (
∑q

j=1 rjDj)
n. Thus

1

q

(
q∑
j=1

rjDj

)n

= φ(x) = (riDi).

(
q∑
j=1

rjDj

)n−1

,

which proves the lemma.

Lemma 4.1.2 tells us that we can always make the given big and nef divisors to

be of equidegree without changing their supports since the divisors rjDj and Dj are

of the same supports. This means the notion of equidegree, rather than the condition
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of linear equivalence for the divisors D = D1+· · ·+Dq, would be a correct (or proper)

notion in the study of degeneracy of holomorphic mappings f : C → X\D. In the

surface case, we denote by (Di.Dj) the intersection number of Di and Dj. We also

denoted (D.D) by D2. We recall definitions and results from Levin [Lev09].

Definition 4.1.3. Let X be a projective variety, and let D be an effective Cartier

divisor on X, both defined over a number field k. Let L be a number field with

L ⊃ k, and S be a finite set of places of L containing the archimedean places. We

define the Diophantine exceptional set of X\D with respect to L and S to be

ExcDio,L,S(X\D) =
⋃
R

dim>0(R̄),

where the union runs over all sets R of L-rational (D,S)-integral points on X and

dim>0(R̄) denotes the union of the positive-dimensional irreducible components of

the Zariski-closure of R. We define the absolute Diophantine exceptional set of X\D

to be

ExcDio(X\D) =
⋃

L⊃k,S

ExcDio,L,S(X\D),

with L ranging over all number fields containing k and S ranging over all sets of

places of L as above.

These definitions depend only on X\D and not on the choices of X and D.

Definition 4.1.4. Let X be a complex variety. We define the holomorphic excep-

tional set Exchol(X) of X to be the union of all images of non-constant holomorphic

maps f : C→ X.

Conjecturally, it is expected that ExcDio(X\D) = Exchol(X\D) .
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Definition 4.1.5. Let X be a projective variety defined over a number field k. Let

D be an effective Cartier divisor on X. Then we define X\D to be Mordellic if

ExcDio(X\D) is empty. We define X\D to be quasi-Mordellic if ExcDio(X\D) is

not Zariski-dense in X.

Definition 4.1.6. Let X be a complex variety. We define X to be Brody hyperbolic

if Exchol(X) is empty. We define X to be quasi-Brody hyperbolic if Exchol(X) is not

Zariski-dense in X.

Remark 4.1.7. Note that X being quasi-Brody hyperbolic is a stronger condition

than the non-existence of algebraically non-degenerate holomorphic maps f : C→ X.

Similarly, X\D being quasi-Mordellic is stronger than the non-existence of Zariski-

dense sets of D-integral points on X.

Theorem 4.1.8 ([Lev09], Theorem 11.5A). Let X be a smooth projective surface.

Let D = D1 +D2 + · · ·+Dq be a divisor on X with Di being effective. Suppose that

Di have no irreducible components in common, and are in m-subgeneral position.

(a) If Di is big for all i and q ≥ 4[(m+ 1)/2], then X\D is quasi-Mordellic.

(b) If Di is ample for all i and either m is even and q > 2m or m is odd and

q > 2m+ 1, then X\D is Mordellic.

Theorem 4.1.9 ([Lev09], Theorem 11.5B). Let X be a smooth projective surface.

Let D = D1 +D2 + · · ·+Dq be a divisor on X with Di being effective. Suppose that

Di have no irreducible components in common, and are in m-subgeneral position.

(a) If Di is big for all i and q ≥ 4[(m+ 1)/2], then X\D is quasi-Brody hyperbolic.
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(b) If Di is ample for all i and either m is even and q > 2m or m is odd and

q > 2m+ 1, then X\D is Brody-hyperbolic.

4.2 Ru’s master result

Encouraged by Corvaja and Zannier, Ru defined so called µ-growth divisors. He (see

[Ru16a]) also introduced the notion of Nevanlinna constant, denoted by Nev(D), for

an effective Cartier divisor D on a normal projective variety X. He then derived

a new defect relation δf (D) ≤ Nev(D) for any algebraically non-degenerate holo-

morphic mapping f : C → X. Let X be a normal projective variety and D be an

effective Cartier divisor on X. Note that the condition of normality of X is assumed

so that ordED (called the coefficient of D in E) is defined for any prime divisor E

and any effective Cartier divisor D on X (see [Laz04], Remark 1.1.4). For any section

s ∈ H0(X,D), we use ordE s or ordE(s) to denote the coefficients of (s) in E, where

(s) is the divisor on X associated to s.

Definition 4.2.1. Let X be a normal complex projective variety, and D be an

effective Cartier divisor on X. The divisor D is said to have µ-growth with respect

to V ⊂ H0(X,O(D)) with dimV ≥ 2, such that for all P ∈ suppD, there exists a

basis B of V with ∑
s∈B

ordE(s) ≥ µ ordE D ,

for all irreducible component E of D passing through P .
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The Nevanlinna constant of D, denoted by Nev(D), is given by

Nev(D) := inf
N

(
inf

{µN ,VN}

dimVN
µN

)
, (4.1)

where the infimum “inf
N

” is taken over all positive integers N and the infimum

“ inf
{µN ,VN}

” is taken over all pairs {µN , VN}, where µN is a positive real number and

VN ⊆ H0(X,ND) is a linear subspace with dimVN ≥ 2 such that, for all P ∈ suppD,

there exists a basis B of VN with

∑
s∈B

ordE(s) ≥ µN ordE(ND) ,

for every irreducible component E of D passing through P . If h0(ND) ≤ 1 for all

positive integers N , we define Nev(D) = +∞.

Theorem 4.2.2 ([Ru16a], Proposition 3.1). Let X be a normal complex projective

variety and D be an effective Cartier divisor on X. Assume that there exists a

positive number µ > 0 and a linear subspace V ⊂ H0(X,O(D)) with dimV ≥ 2,

such that for all P ∈ suppD, there exists a basis B of V with

∑
s∈B

ordE(s) ≥ µ ordE D ,

for all irreducible component E of D passing through P . Let f : C → X be an

algebraically non-degenerate holomorphic map. Then, for every ε > 0,

mf (r,D) ≤
(

dimV

µ
+ ε

)
Tf,D(r) ‖E.

In order to prove the theorem, the following proposition is important.
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Proposition 4.2.3. Let φ : X ′ → X be a proper birational morphism of normal

projective varieties, and let D be a Cartier divisor on X whose support doesn’t contain

φ(X ′). If D has µ-growth with respect to a subspace V ⊂ H0(X,O(D)), then φ∗D

also has µ-growth with respect to the corresponding subspace of the same dimension.

Proof of Theorem 4.2.2. Let Φ : X → Pm be the canonical rational map associated

to V where V ⊂ H0(X,O(D)) with dimV = m+ 1 ≥ 1.

We may assume that Φ is a morphism. Indeed, let X ′ be a desingularization of

closure of the graph of Φ. Replace X with X ′ and D with its pull-back. By previous

Proposition 4.2.3, the pull-back still has µ-growth with respect to the corresponding

vector space of the same dimension. Moreover, by functoriality of Weil functions,

the corresponding Weil function and the height function remain.

Let σ0 be the set of all prime divisors occurring in D, so we can write

D =
∑
E∈σ0

ordE(D)E.

Let

Σ := {σ ⊂ σ0|
⋂
E∈σ

E 6= ∅}.

For each σ ∈ Σ, write

D = Dσ,1 +Dσ,2,

where

Dσ,1 :=
∑
E∈σ

ordE(D)E, Dσ,2 :=
∑
E 6∈σ

ordE(D)E.
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Pick a Weil function for each divisor D,Dσ,1, Dσ,2. We first claim that there

exists a constant C, depending only on X and D, such that minσ∈Σ λDσ,2 ≤ C for all

x ∈ X. Indeed, the definition of the set Σ implies that

⋂
σ∈Σ

suppDσ,2 = ∅,

since, for all x ∈ X, the set σ := {E ∈ σ0|x ∈ E} is an element of Σ, and then

x 6∈ suppDσ,2. Our claim then follows from Lemma 2.0.5 since Σ is a finite set.

Now for each σ ∈ Σ, since D has µ-growth with respect to V , let Bσ be a basis

of V that satisfies ∑
s∈Bσ

ordE(s) ≥ µ ordE(D)

at some (and hence all) points P ∈ ∩E∈σE. Since Σ is finite, {Bσ|σ ∈ Σ} is a

finite collection of bases of V . Thus, the distinct hyperplanes in Pm corresponding

to elements of the union ∪σ∈ΣBσ is finite, say they are H1, . . . , Hq. Choose a Weil

function λHj for each Hj, 1 ≤ j ≤ q.

For an arbitrary x ∈ X, from the claim above, pick σ ∈ Σ (depends on x) such

that

λDσ,2(x) ≤ C,

where C is the constant which occurs in the claim. Let J ⊂ {1, . . . , q} be the subset

for which {Hj, j ∈ J} are hyperplanes corresponding to the elements of Bσ. Then

Proposition 4.2.3 implies that

∑
j∈J

ordE Φ∗Hj ≥ µ ordE D,
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for all E ∈ σ; and therefore, by the “boundedness from below” property of the Weil

functions for effective divisors,

∑
j∈J

(ordE Φ∗Hj)λE(x) ≥ µ(ordE D)λE(x) +O(1), (4.2)

for all E ∈ σ. Now, since

D =
∑
E∈σ

(ordE D)E +Dσ,2,

we have, by using the lemma 2.0.3,

λD(x) = λDσ,1(x) + λDσ,2(x) =
∑
E∈σ

(ordE D)λE(x) +O(1).

Therefore, together with inequality (4.2), we have

∑
j∈J

λHj(Φ(x)) ≥
∑
j∈J

∑
E∈σ

(ordE Φ∗Hj)λE(x) +O(1)

≥ µ
∑
E∈σ

(ordE D)λE(x) +O(1)

≥ µλD(x) +O(1).

Note that, since {Hj, j ∈ J} are the hyperplanes corresponding to subsets of Bσ, we

see that {Hj, j ∈ J} are in general position. Thus, for any x ∈ X,

λD(x) ≤ 1

µ

(
max
J

∑
j∈J

λHj(Φ(x)) +O(1)

)
, (4.3)

where J varies over all subsets of {1, . . . , q} corresponding to the elements of

{H1, . . . , Hq} that lie in general position. Note that, although O(1) that appears

above depends on the choices of Bσ (thus depends on σ), it is a constant independent

of x since Σ is a finite set (so there are only finitely many choices of σ).
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Now for any algebraically non-degenerate holomorphic map f : C→ X, applying

(4.3) with x = f(z), and then integrating over |z| = r, we obtain, by the definition

of mf (r,D),

mf (r,D) ≤ 1

µ

∫ 2π

0

max
J

∑
j∈J

λHj((Φ ◦ f)(reiθ))
dθ

2π
+O(1),

where J varies over all subsets of {1, . . . , q} corresponding to subsets of {H1, . . . , Hq}

that lie in general position. Applying Theorem 2.0.6, for any ε > 0

mf (r,D) ≤ dimV + ε

µ
TΦ◦f (r) ||E.

By the inequality (2.7), we know that TΦ◦f (r) ≤ Tf,D(r). Thus,

mf (r,D) ≤ dimV + ε

µ
Tf,D(r)||E,

which proves the theorem.

Remark 4.2.4. From this theorem, larger µ implies the smaller (better) defect.

As a consequence of theorem 4.2.3, we have

Theorem 4.2.5 ([Ru16a], Main Theorem). (a) Let X be a complex normal projective

variety and D be an effective Cartier divisor on X. Then, for every ε > 0,

mf (r,D) ≤ (Nev(D) + ε)Tf,D(r) ‖E

holds for any algebraically non-degenerate holomorphic mapping f : C→ X.

(b) If X is a complex projective variety but not normal, and D is an effective

Cartier divisor on X. Let π : X̃ → X be the normalization of X. Then, for every
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ε > 0,

mf (r,D) ≤ (Nev(π∗D) + ε)Tf,D(r) ‖E

holds for any algebraically non-degenerate holomorphic mapping f : C→ X.

The above theorem gives the following defect relation.

Corollary 4.2.6 (Defect relation). Let D be an effective Cartier divisor on a normal

complex projective variety X. Then

δf (D) ≤ Nev(D)

holds for any algebraically non-degenerate holomorphic map f : C→ X.

Corollary 4.2.7. Let X = Pn and D = H1 + · · · + Hq, where H1, . . . , Hq are

hyperplanes in Pn in general position. Then

Nev(D) ≤ n+ 1

q
.

Proof. We take N = 1 and consider V1 := H0(Pn,O(D)) ∼= H0(Pn,OPn(q)). Then

the dimV1 =
(
n+q
n

)
. For each P ∈ SuppD, since H1, . . . , Hq are in general position,

P ∈ Hi0 ∩Hi1 · · ·∩Hil with {i0, i1, . . . , il} ⊂ {1, 2, . . . , q} and l+1 ≤ n. W.l.o.g., we

can just assume Hi0 = {z0 = 0}, Hi1 = {z1 = 0}, . . . , Hil = {zl = 0} by taking proper

coordinates for Pn. Now we take the basis B = {zi00 zi11 . . . zinn |i0 + i1 + · · ·+ in = q}

for V1 = H0(Pn,OPn(q)). Then, for each irreducible component E of D containing

P , say E = {zj0 = 0} with 1 ≤ j0 ≤ l, we have ordE{zj = 0} = 0 for j 6= j0,

ordE{zj0 = 0} = 1 and thus ordE D = 1. Therefore,∑
s∈B

ordE s =
∑
i

ij0 =
1

n+ 1

∑
i

(i0 + . . .+ in) =
q

n+ 1

(
q + n

n

)
=

q

n+ 1
dimV1,
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where the sum is taken for all i = (i0, . . . , in) with i0 + . . . + in = q. Thus we can

take µ = q
n+1

dimV1, and hence,

Nev(D) ≤ dimV1

µ
=
n+ 1

q
.

Corollary 4.2.8. Let X = Pn and D1, . . . , Dq be hypersurfaces in Pn of degree di,

located in general position on X. Then

Nev(D) ≤ n+ 1

q
.

Proof. Let Di ∼ A and Di = {Qi = 0}, where Qi is a homogeneous polyno-

mial of degree d := degA for i = 1, . . . , q. Let P ∈ suppD. The condition

that D1, . . . , Dq are in general position implies that P ∈ ∩li=1{γi = 0} for some

γ1, . . . , γl ∈ {Q1, . . . , Qq} and l ≤ n. We can assume that l = n since we can

add more polynomials. Choose a positive integer N which is divisible by qd and

Ñ = N
qd

. Let VÑ := H0(Pn,OPn(ÑD)) ∼= H0(Pn,OPn(Ñqd)) ∼= H0(Pn,OPn(N)),

i = (i1, . . . , in) be a n-tube with lexicographical order and σ(i) :=
∑n

j=1 ij ≤
N
d

, we

obtain a filtration on VÑ given by

Wi =
∑

e=(e1,... ,en)≥i

γe11 . . . γenn VN−dσ(e).

Note that W0 = VN and Wi ⊃ Wi′ for i′ ≥ i. Choose a basis s1, s2, . . . , sm, where

m =
(
N+n
n

)
, for VÑ with respect to the above filtration. With this choice of the basis,

we compute the Nevanlinna constant. We recall the following lemma.
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Lemma 4.2.9 ([Ru04], Lemma 3.3). Fix any N > n(d− 1) and any i = (i1, . . . , in)

with dσ(i) < N − n(d− 1). Then

∆i := dim
Wi

Wi′
= dn,

where Wi ⊃ Wi′ with i′ is next to i.

Let, for µ = 1, . . . ,m, sµ = γi11 γ
i2
2 . . . γinn γ

µ for some γµ ∈ VN−dσ(i) based on

its place in the filtration. For any irreducible component E in D with P ∈ E, we

may assume that E is contained {γj0 = 0} for some 1 ≤ j0 ≤ n. Then, for N is big

enough, we have,

m∑
µ=1

ordE sµ ≥

 ∑
i1+···+in≤Nd −n

∆iij0

 ordE D

=

 ∑
i1+···+in≤Nd −n

ij0

 dn ordE D

=

 ∑
i0+i1+···+in=N

d
−n

ij0

 dn ordE D

=
1

n+ 1

 ∑
i1+···+in=N

d
−n

n∑
τ=0

iτ

 dn ordE D

=
dn

n+ 1

 ∑
i1+···+in=N

d
−n

N

d

 ordE D

=
dn

n+ 1

(
N/d

n

)
N

d
ordE D =

(
Nn+1

d(n+ 1)!
+O(Nn)

)
ordE D

=
Ñq

n+ 1

(
Nn

n!
+O(Nn−1)

)
ordE D

=
q

n+ 1

(
Nn

n!
+O(Nn−1)

)
ordE(ÑD).
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Hence, from the definition of Nev(D), we have

Nev(D) ≤ lim inf
Ñ→+∞

dimVN̄
q

n+1
(N

n

n!
+O(Nn−1))

= lim inf
Ñ→+∞

Nn

n!
+O(Nn−1)

q
n+1

(N
n

n!
+O(Nn−1))

=
n+ 1

q
.

This concludes the proof of the Corollary.

Furthermore, Ru obtained the following result.

Theorem 4.2.10 ([Ru16a], Theorem 5.6). Let X be a complex normal projective

variety of dimension ≥ 2, and D1, . . . , Dq be effective and big Cartier divisors in

l-subgeneral position on X. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi

is equidegree (such numbers exist due to Lemma 4.1.2). We further assume that the

linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. Let f : C → X be

an algebraically non-degenerate holomorphic map. Then, for ε0 > 0 small enough,

q∑
j=1

rjmf (r,Dj) <

(
2l dimX

q
− ε0

)( q∑
j=1

rjTf,Dj(r)

)
‖E .

On the arithmetic side, the counterpart of Theorem 4.2.5 in Diophantine ap-

proximation is stated as follows.

Theorem 4.2.11 ([Ru16b], Main Theorem). (a) Let k be a number field and Mk be

the set of places of k. Let S ⊂Mk be a finite set of places containing all archimedean

ones. Let X be a normal projective variety and D be an effective Cartier divisor on

X, both defined over k (we further assume that all irreducible components of D are

Cartier divisors). Then, for every ε > 0, the inequality

mS(x,D) ≤ (Nev(D) + ε)h(x,D) (4.4)
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holds for all x ∈ X(k) outside a Zariski closed subset Z of X.

(b) Suppose that the projective variety X is not normal. Let π : X̃ → X be the

normalization of X. Then, for every ε > 0, the inequality

mS(x,D) ≤ (Nev(π∗D) + ε)h(x,D) (4.5)

holds for all x ∈ X(k) outside a Zariski closed subset Z of X.

As a consequence, the counterpart of Theorem 4.2.10 in Diophantine approxi-

mation is stated as follows.

Theorem 4.2.12 ([Ru16b], Theorem 4.1). Let k be a number field and S ⊂Mk be a

finite set containing all archimedean places. Let X be a normal projective variety with

dimX ≥ 2, D1, . . . , Dq be effective and big Cartier divisors in l-subgeneral position

on X, both defined over k. Let ri > 0 be real numbers such that D :=
∑q

i=1 riDi is

equidegree (such numbers exist due to Lemma 4.1.2). We further assume that the

linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. Let λDj ,υ(x), 1 ≤

j ≤ q, be the Weil function associated to Dj for υ ∈ S. Then, for ε0 > 0 small

enough,
q∑
j=1

∑
υ∈S

rjλDj ,υ(x) <

(
2l dimX

q
− ε0

)( q∑
j=1

rjh(x,Dj)

)
,

holds for all x ∈ X outside a Zariski closed subset Z of X.
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4.3 The statement of Main Theorem B and Main

Theorem C

The purpose of this section is to improve Theorem 4.2.12 in the case when dimX = 2

with an additional condition that the divisors D1, . . . , Dq have no common irreducible

components. The precise statement is as follows.

Main Theorem B (Complex Part). Let X be a normal complex projective surface.

Let D1, . . . , Dq be effective, big Cartier divisors on X, and the linear system |NDi|

(i = 1, . . . , q) be base-point free for N ≥ N0. Assume that D1, . . . , Dq have no

irreducible components in common, and are in l-subgeneral position. We further

assume that D :=
∑q

j=1 rjDj is equidegree for some positive real numbers rj (such

rj always exist by Lemma 4.1.2). Let f : C → X be holomorphic and algebraically

non-degenerate. Then

q∑
j=1

rjmf (r,Dj) ≤
4[(l + 1)/2]

q(1 + α)

(
q∑
j=1

rjTf,Dj(r)

)
‖E ,

where α =
min1≤j≤q(r

2
jD

2
j )

384qD2 , [x] denotes the greatest integer less than or equal to x.

Note that our techniques used to prove the above theorem are similar to Ru’s

method (see [Ru16a]). The main contribution is to use the joint filtrations lemma

due to Corvaja and Zannier (see [CZ04a], Lemma 3.2) to lower the upper bound

of the defect, under the additional assumption that D1, . . . , Dq have no irreducible

components in common. Furthermore, we give the explicit computation of the ε

which appeared in Theorem 4.2.5. Note that our result also holds for any dimension
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of X. The reason we only focus on the case when dimX = 2 is the following sharp

Corollary of our Main Theorem B, which is due to Levin [Lev09].

Corollary 4.3.1 ([Lev09], Theorem 11.5B). Let X be a smooth projective surface

and D1, D2, . . . , Dq be effective and big divisors on X. Assume that D1, . . . , Dq have

no irreducible components in common, and are in general position. If q ≥ 4, then

every holomorphic mapping f : C→ X\ ∪qj=1 Dj must be algebraically degenerate.

Proof. According to the proof of Theorem 11.5(a) in [Lev09], we can reduce it to the

case when |Di| is base-point free (in particular, Di, 1 ≤ i ≤ q, are nef), and Di is

big for all i. If f is not algebraically degenerate, then the above Main Theorem B

implies that δf (D) < 1, where D = D1 + D2 + · · · + Dq. On the other hand, from

the first main theorem, we have δf (D) = 1. This gives a contradiction. Therefore, f

must be algebraically degenerate.

Our theorem on the arithmetic side which improves Theorem 4.2.12 is as follows.

Main Theorem C (Arithmetic Part). Let k be a number field and S ⊂Mk be a finite

set containing all archimedean places. Let X be a normal projective surface, and let

D1, . . . , Dq be effective and big Cartier divisors on X, all defined over k. Assume

that the linear system |NDi| (i = 1, . . . , q) is base-point free for N ≥ N0. Assume

that D1, . . . , Dq have no irreducible components in common, and are in l-subgeneral

position. We further assume that D :=
∑q

i=1 rjDi is equidegree for some positive real

numbers rj (such rj always exist by Lemma 4.1.2). Let λDj ,υ(x), 1 ≤ j ≤ q, be the
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Weil function associated to Dj for υ ∈ S. Then

q∑
j=1

∑
υ∈S

rjλDj ,υ(x) ≤ 4[(l + 1)/2]

q(1 + α)

(
q∑
j=1

rjh(x,Dj)

)
,

holds for all x ∈ X outside a Zariski closed subset Z of X, where α =

min1≤j≤q(r
2
jD

2
j )

384qD2 , [x] denotes the greatest integer less than or equal to x, and h(x,Dj) =∑
υ∈Mk

λDj ,υ(x).

The above theorem gives the following Corollary.

Corollary 4.3.2 ([Lev09], Theorem 11.5A). Let k be a number field and S ⊂Mk be

a finite set containing all archimedean places. Let X be a smooth projective surface,

and D1, . . . , Dq be effective and big Cartier divisors on X, both defined over a number

field k. Assume that D1, . . . , Dq have no irreducible components in common, and are

in general position. If q ≥ 4, then any set of (D,S)-integral points of X\D is

contained in a proper subvariety of X.

The proof of the result in the arithmetic case is similar to the complex case (see

[Ru16b]), so the rest of the section will only focus on the complex part.

4.4 More Lemmas

We also need the following results in algebraic geometry. Let X be a projective

surface. Let D be a divisor on X. Let O(D) be the invertible sheaf associated to the

divisor D on X. For i = 0, 1, 2, let hi(D) = dimH i(X,O(D)) (we sometimes also

just write H i(X,O(D)) as H i(X,D) for simplicity).
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Lemma 4.4.1 ([Laz04], Corollary 1.4.41). Let X be a projective surface. Suppose

that D is nef divisor on a projective surface on X. Then

h0(ND) =
D2N2

2
+O(N) .

In particular, D2 is positive if and only if D is big.

Lemma 4.4.2 ([Aut09], lemma 4.2). Let X be a projective surface. Let F be a big

and base point free Cartier divisor and D be a Cartier divisor such that D − F is

also nef. Let β > 0 be a positive real number. Then for any positive integer N, k

with 1 ≤ k ≤ βN , we have

h0(ND − kF ) ≥ D2N2

2
− (D.F )Nk +

F 2

2
min{k2, N2}+O(N) ,

where O(N) depends on β.

Proof. We separate two cases.

Case k ≤ N . By Riemann-Roch,

χ(X,ND − kF ) =
1

2
(ND − kF )2

=
D2N2

2
−Nk(D.F ) +

F 2k2

2

Since D and D − F are nef, hi(X,ND − kF ) = O(N2−i) for all i ≥ 1. Thus, we

derive the result.

Case k > N . Let N ≤ i ≤ βN . We have the following short exact sequence.

0→ OX(ND − (i+ 1)F )→ OX(ND − iF )→ OZ(ND − iF )|Z)→ 0,
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where Z = div(s) for some generic s ∈ Γ(X,F ). The short exact sequence implies

h0(X,ND − (i+ 1)F ) ≥ h0(X,ND − iF )− h0(Z, (ND − iF )|Z).

Since h0(Z, (ND − iF )|Z) ≤ h0(Z,ND|Z) = (D.F )N +O(1), we have

h0(X,ND − kF ) ≥ h0(X,ND −NF )−
k−1∑
i=N

h0(Z, (ND − iF )|Z)

≥ D2

2
N2 − (D.F )Nk +

1

2
F 2N2 +O(N).

The lower bound of h0(X,ND − NF ) comes from the first case. Combining these

two cases, we proved the lemma.

Lemma 4.4.3. Let D and F be the same as above on a projective surface X. We

further assume that D2

(D.F )
≥ 1. Then

∞∑
k=1

h0(ND − kF ) ≥
(

D2

4(D.F )
+

F 2

24D2

)
Nh0(ND) +O(N2) .

Proof. Using Lemma 4.4.2 with β = D2

2(D.F )
≥ 1

2
, we get, by noticing that

min{k2, N2} ≥ min{k2, N2/4},

∞∑
k=1

h0(ND − kF )

≥
[βN ]∑
k=1

(
D2N2

2
− (D.F )Nk +

F 2

2
min{k2,

N2

4
}
)

+O(N2)

≥ (D2)2N3

4(D.F )
− (D.F )

(D2)2N3

8(D.F )2
+

[N/2]−1∑
k=1

F 2

2
k2 +

[βN ]∑
[N/2]

F 2

8
N2 +O(N2)

=
(D2)2

8(D.F )
N3 +

F 2

48
N3 +

F 2

8
βN3 − F 2

16
N3 +O(N2)
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=

(
D2

4(D.F )
+
F 2

D2
(
β

4
− 1

12
)

)
D2

2
N3 +O(N2)

≥
(

D2

4(D.F )
+

F 2

24D2

)
D2

2
N3 +O(N2)

=

(
D2

4(D.F )
+

F 2

24D2

)
Nh0(ND) +O(N2).

4.5 Proof of Main Theorem B

The following joint filtrations lemma is crucial to the proof of our Main Theorem B.

Lemma 4.5.1 ([CZ04a], Lemma 3.2). Let V be a vector space of finite dimension d

over a field k. Let V = W1 ⊃ W2 ⊃ W3 ⊃ . . . ⊃ Wh and V = W ∗
1 ⊃ W ∗

2 ⊃ W ∗
3 ⊃

. . . ⊃ W ∗
h∗ be two filtrations on V. Then there exist a basis of V that contains a basis

of each Wj and W ∗
j .

Proof of Main Theorem B. The proof uses Theorem 4.2.5, so we need to compute the

Nevanlinna constant. By takingN ≥ N0, we can assume thatDj, 1 ≤ j ≤ q, are base-

point free. By the assumption that D has equidegree with respect to r1D1, . . . , rqDq,

we have, with D :=
∑q

j=1 rjDj,

(riDi.D) =
1

q
D2.

To simplify the notation, we write

α :=
min1≤j≤q(r

2
jD

2
j )

384qD2
. (4.6)
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Choose positive rational numbers aj, 1 ≤ j ≤ q, such that

|aj − rj| ≤
δ1(min1≤j≤q rj)

2
min

{
1,

q(1 + 2α)

4[(l + 1)/2]

}
, (4.7)

and, for i = 1, . . . , q, ∣∣∣∣(aiDi.D
′)

D′2
− 1

q

∣∣∣∣ < δ2 , (4.8)

where D′ :=
∑q

j=1 ajDj and δ1, δ2 will be chosen below (see (4.17) and (4.13)). Note

that with our choice of δ1 and |aj − rj| ≤ rj
2

, we have

D′
2 ≥ 1

4
D2 and D2 ≥ 1

4
D′

2
. (4.9)

Now, for P ∈ suppD, let D′P :=
∑
{i:P∈suppDi} aiDi. Since D1, . . . , Dq are in l-

subgeneral position and any two of D1, . . . , Dq have no common components, we can

write

D′P := D′P,1 +D′P,2 ,

where D′P,1 and D′P,2 are each a sum of no more than [(l + 1)/2] terms of the aiDi,

and D′P,1 and D′P,2 have no irreducible components in common. Let d be the product

of the denominators of a1, . . . , aq and consider VN := H0(X,NdD′). Note that D′

is only a Q-divisor, so we need to multiply d to D′ to make dD′ to be an (integral)

divisor. We consider the following two filtrations of VN :

Wm := H0(X,NdD′ −mdD′P,1), W ∗
m := H0(X,NdD′ −mdD′P,2), m = 0, 1, . . . .

Using the filtration lemma above, we obtain a basis B that contains a basis for each

Wm and W ∗
m. Let E be an irreducible component of D which contains P . Then
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E is contained either in dD′P,1 or dD′P,2, but not both. Without loss of generality,

we assume that E is an irreducible component of dD′P,1, and thus ordE(dD′) =

ordE(dD′P,1). We also note that ordE s ≥ m ordE(dD′P,1) for any s ∈ H0(X,NdD′ −

mdD′P,1) (regarded as a subspace of H0(X,NdD′)). Hence

1

ordE(NdD′)

∑
s∈B

ordE s =
1

ordE(NdD′P,1)

∑
s∈B

ordE s

≥ 1

N

∞∑
m=0

m(h0(NdD′ −mdD′P,1)− h0(NdD′ − (m+ 1)dD′P,1))

=
1

N

∞∑
k=1

h0(NdD′ − kdD′P,1).

Noticing D′2

(D′.D′P,1)
≥ 1, by Lemma 4.4.3, we get

∞∑
k=1

h0(NdD′ − kdD′P,1)

≥

(
(dD′)2

4(dD′.dD′P,1)
+

(dD′P,1)2

24(dD′)2

)
Nh0(NdD′) +O(N2)

=

(
D′2

4(D′.D′P,1)
+
D′2P,1

24D′2

)
Nh0(NdD′) +O(N2).

Therefore,

1

ordE(NdD′)

∑
s∈B

ordE s ≥

(
D′2

4(D′.D′P,1)
+
D′2P,1

24D′2

)
h0(NdD′) +O(N). (4.10)

We now estimate each term which appeared above. Since D′P,1 is a sum of no more

than [(l + 1)/2] terms of the aiDi and, by using (4.8),

(D′.D′P,1)

D′2
≤ [(l + 1)/2] maxi,P∈Di {(D′.(aiDi))}

D′2
≤ [(l + 1)/2](

1

q
+ δ2). (4.11)
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Also notice that, using (4.6), (4.7) and (4.9),

(D′P,1.D
′
P,1) ≥ min

1≤i≤q
(aiDi.aiDi) ≥

1

4
min

1≤i≤q
(riDi.riDi)

= 96q(D.D)α ≥ 24q(D′.D′)α .

(4.12)

Combining (4.10), (4.11), and (4.12), we get

1

ordE(NdD′)

∑
s∈B

ordE s

≥
(

q

4[(l + 1)/2](1 + qδ2)
+ qα

)
d2D′2

2
N2 +O(N)

≥ q

4[(l + 1)/2]

(
1

1 + qδ2

+ 4α

)
h0(NdD′) +O(N)

=
q(1 + 3α)

4[(l + 1)/2]
h0(NdD′) +O(N) ,

where the last equality holds when choosing

δ2 =
α

q(1− α)
. (4.13)

Hence, from the definition of Nevanlinna’s constant (see (4.1)), we obtain

Nev(dD′) ≤ 4[(l + 1)/2]

q(1 + 3α)
.

Applying Main Theorem 4.2.5 with ε = 4[(l+1)/2]α
q(1+3α)(1+2α)

, we get

q∑
j=1

ajdmf (r,Dj) ≤
(

4[(l + 1)/2]

q(1 + 2α)

)( q∑
j=1

ajdTf (r,Dj)

)
‖E .

By canceling d on both sides, we have

q∑
j=1

ajmf (r,Dj) ≤
(

4[(l + 1)/2]

q(1 + 2α)

)( q∑
j=1

ajTf (r,Dj)

)
‖E . (4.14)
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We now use this result to derive our desired result. Note that (4.7) gives us

q∑
j=1

rjmf (r,Dj) ≤
q∑
j=1

ajmf (r,Dj) +
δ1

2

(
min

1≤j≤q
rj

) q∑
j=1

mf (r,Dj) (4.15)

and

q∑
j=1

ajTf,Dj(r) ≤
q∑
j=1

rjTf,Dj(r) +
δ1

2

(
min

1≤j≤q
rj

)
q(1 + 2α)

4[(l + 1)/2]

q∑
j=1

Tf,Dj(r). (4.16)

Using (4.14), (4.15), (4.16), together with the First Main Theorem, it gives

q∑
j=1

rjmf (r,Dj)

≤ 4[(l + 1)/2]

q(1 + 2α)

(
q∑
j=1

ajTf,Dj(r)

)
+

(min rj)δ1

2

(
q∑
j=1

Tf,Dj(r)

)
‖E

≤ 4[(l + 1)/2]

q(1 + 2α)

(
q∑
j=1

rjTf,Dj(r) +
(min rj)δ1

2

q(1 + 2α)

4[(l + 1)/2]

q∑
j=1

Tf,Dj(r)

)

+
δ1

2

q∑
j=1

rjTf (r,Dj)‖E

≤
(

4[(l + 1)/2]

q(1 + 2α)
+ δ1

) q∑
j=1

rjTf,Dj(r) ‖E

≤
(

4[(l + 1)/2]

q(1 + α)

) q∑
j=1

rjTf,Dj(r) ‖E ,

with

δ1 = min

{
1,

4[(l + 1)/2]

q

α

(1 + α)(1 + 2α)

}
. (4.17)

This finishes the proof of Main Theorem B.
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4.6 Appendix to chapter 4

4.6.1 Motivation of choice of β in the Lemma 4.4.3

The motivation of choosing β := (D.D)
2(D.F )

in the proof of Lemma 4.4.3 is as follows.

In order to derive a lower bound for

M∑
m=1

m
(
h0(X,ND −mF )− h0(X,ND − (m+ 1)F )

)
,

the first step is to estimate M .

Lemma 4.6.1 ([Lev09], Lemma 11.4). Let X be a smooth projective surface. Let D

be a nef divisor on X. Let F be an effective divisor on X such that either F is linearly

equivalent to an irreducible curve or C.F ≤ 0 for every irreducible component C of

F . Then for all m,N ≥ 0, either h0(X,ND − mF ) = 0 or h0(X,ND − mF ) −

h0(X,ND − (m+ 1)F ) ≤ (ND −mE).F .

Since h0(X,ND) = N2D2/2 +O(N), we have

M∑
m=1

(
h0(X,ND −mF )− h0(X,ND − (m+ 1)F )

)
= h0(X,ND).

On the other hand, by the above lemma and also by the lemma 9.12 in [Lev09],

if F is linear equivalent to an irreducible curve, then

h0(X,ND −mF )− h0(X,ND − (m+ 1)F ) ≤ ((ND −mF ).F ).

Therefore, by assumption that D is big and nef, we can solve for M such that
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the above equality holds.

N2D2

2
+O(N) = h0(X,ND)

=
M∑
m=0

h0(X,ND −mF )− h0(X,ND − (m+ 1)F )

≤
M∑
m=0

N(D.F )−m(F.F ) ≤
M∑
m=0

ND.F = (M + 1)N(D.F ).

Therefore, we have the lower bound of M , M ≥ (D.D)N
2(D.F )

+ O(1). In our case

(Lemma 4.4.3), M = [βN/2]. Thus [βN ] ≥ (D.D)N
2(D.F )

+O(1), and therefore, we choose

β := (D.D)
2(D.F )

.

4.6.2 Alternative method to derive similar estimate as

Lemma 4.4.3

Let A = (F.F ), B = (D.F ), C = (D.D). By using the Lemma 4.6.1 again,

h0(X,ND)− h0(X,ND − F ) ≤ NB

h0(X,ND − F )− h0(X,ND − 2F ) ≤ NB − A
...

h0(X,ND − (k − 1)F )− h0(X,ND − kF ) ≤ NB − (k − 1)A.

By summing of above equations, we have

h0(X,ND)− h0(X,ND − kF ) ≤ kNB −
k−1∑
i=0

iA.
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Therefore,

h0(X,ND − kF ) ≥ h0(X,ND)− kNB +
(k − 1)k

2
A

=
N2D2

2
− kNB +

k2A

2
− kA

2
+O(N). (4.18)

Comparing with Lemma 4.4.2, the term min{k2, N2} is replaced by k2A
2
− kA

2
. After

summing them up, we can get rid of the second term (kA
2

) because it belongs to

O(N2). Thus, the result is the same as choosing k2 in Autissier’s lemma. The

precise process is as follows.

Since M ≥ CN
2B

, we have

M∑
k=1

k
(
h0(X,ND − kF )− h0(X,ND − (k + 1)F

)
=

M∑
k=0

h0(X,ND − kF ) ≥
CN
2B∑
k=0

h0(X,ND − kF )

≥
CN
2B∑
k=0

N2D2

2
−

CN
2B∑
k=0

kNB +

CN
2B∑
k=0

k2A

2
−

CN
2B∑
k=0

kA

2

=
C2N3

4B
−
(

1

2

)(
CN

2B

)(
CN

2B
+ 1

)
NB +(

A

12

)(
CN

2B

)(
CN

2B
+ 1

)(
CN

B
+ 1

)
+O(N2)

=

(
C

4B
+

1

24

(
A

B

)(
C

B

)2
)
CN3

2
+O(N2)

=

(
(D.D)

4(D.F )
+

1

24

(F.F )(D.D)2

(D.F )3

)
(D.D)

2
N3 +O(N2).
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Chapter 5

Integral points on the

complements of ramification

divisors and resultants

5.1 Introduction

The main result of this chapter is an estimate of the dimension of the Zariski closure of

a set of S-integral points on Pn\D where D is the branch locus of a generic projection

from the intersection of two generic hypersurfaces in Pn+2 to Pn. As a consequence, a

finiteness theorem for integral points on Pn \D is obtained. The theorem generalizes

the theorem and techniques of Zannier (see [Zan05]) in the codimension one case of

the projection from a single hypersurface.
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There are two frequently used ways to derive a statement of hyperbolicity when

removing a divisor D from Pn. One approach is to assume that D has a sufficiently

large number of components, which is the case treated so far in this thesis. The

other approach is to assume that D is an irreducible divisor, but is of sufficiently

large degree. In the latter case, based on earlier work of Faltings, Zannier used an

innovative approach to study the situation where D arises as the ramification divisor

of the projection from a hypersurface X in Pn+1 to Pn. The result in Zannier’s paper

uses the total ramification points to control the integral points away from the branch

locus D in Pn defined by a discriminant form ∆ = 0. His result can essentially be

formulated as follows.

Theorem 5.1.1 ([Zan05], Theorem 2.1). Let D ⊂ Pn be the branch locus of a

projection from a generic hypersurface X in Pn+1 to Pn. Assume that the degree

of X is at least n+ 2. Then any set of S-integral points on Pn \ D is finite.

5.2 Definitions, notations and background

Let X and Y be two hypersurfaces in Pn+2 defined respectively by two

generic homogeneous polynomials f(X0, . . . , Xn, Y, Z) and g(X0, . . . , Xn, Y, Z) ∈

k[X0, X1, . . . , Y, Z], where k is a number field. Let Π be a projection from Pn+2 to Pn

and L be the light source passing through the points [0, 0, . . . , 0, 1] and [0, 0, . . . , 1, 0]

with L ∩ X ∩ Y = ∅. By choosing a screen Hi ≡ Pn+1 containing Pn and a point

qi ∈ L which does not lie on the screen, we can decompose the projection Π into
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two projections Πi and Π′i such that Π = Π′i ◦ Πi, where Πi is the projection from

Pn+2 \qi to Hi with respect to the light source qi and Π′i is the projection from Hi \ri

to Pn with respect to the light source ri, where ri is the intersection of Hi and L.

We define D ⊂ Pn to be the branch locus of the original projection of Z = X ∩ Y

under Π and Ti ⊂ Pn to be the total ramification locus of the projection of Πi(Z)

under Π′i. We will make generic such choices for i = 1, . . . , n+ 1.

The notion of the resultant is the key ingredient in dealing with the relation

between projections and the intersection of two hypersurfaces. The resultant is

defined as the determinant of the Sylvester matrix of two polynomials in one variable

and the resultant is zero if and only if the two polynomials have a common root in

an algebraically closed field containing the coefficients. Therefore, if we normalize

qi = [0, . . . , 0, 1], we have Πi(Z) = {ResZ(f, g) = 0}, where ResZ(f, g) means

that f and g are considered as one variable polynomials in Z, making ResZ(f, g) a

polynomial in X0, . . . , Xn, Y . We can represent ResZ(f, g) as follows.

ResZ(f, g) = F0(X0, . . . , Xn)Y d1d2 + F1(X0, . . . , Xn)Y d1d2−1 (5.1)

+ . . .+ Fd1d2(X0, . . . , Xn),

where Fb are homogeneous polynomials of degree b.

Similar to the codimension one case of Zannier, p ∈ D if and only if there are

≤ d1d2 − 1 distinct points of Z on the fiber which is span{p,L}. Note that Ti is

defined in Pn by F1 = F2 = . . . = Fd1d2 = 0.

Property 5.2.1. Let Ω be an effective divisor on Pn defined by a form I ∈

k[X0, . . . , Xn]. Let Σ be a set of S-integral points for the affine variety Pn \ Ω.
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Then there exists a finite set of places S ′ ⊃ S of k such that each point of Σ has

projective coordinates [x0 : . . . : xn] with xi ∈ O∗S′ and I(x0, . . . , xn) ∈ O∗S′ .

Proof. Let δ be the degree of I. We may assume that the coefficients of I are in

OS . The rational functions Qi := Xδ
i /I(X0, . . . , Xn) for i = 0, 1, . . . , n are regular

on Pn \ Ω. Therefore, (by definition of S) there exists a non-zero c ∈ OS such that

the values cQi(p) are in OS for all p ∈ Σ. By finiteness of class-number we may

enlarge S to a finite set S ′ such that OS′ is a unique factorization domain. Then

we may write p = (x0, . . . , xn) where the projective coordinates xi = xi(p) are co-

prime S ′-integers. Since I(x0, . . . , xn) divides cxδi in OS′ for all i, we can conclude

I(x0, . . . , xn) divides c in OS′ . Enlarging further S ′ makes c ∈ O∗S′ , from where we

get the conclusion.

5.3 Main Theorem D

Main Theorem D. Let X and Y be two generic hypersurfaces in Pn+2. In the

above-described geometric setting, the Zariski closure of any set of S-integral points

in Pn \ D has dimension at most dim Ti + 1 (which is independent of i).

Remark 5.3.1. The significance of the word generic in the above theorem is that

Lemma 5.3.5 holds. Moreover, it assures that any choice of min{n + 1, d1d2} of the

coefficient polynomials F1, F2, . . . , Fd1d2 form a regular sequence, which results in the

following Corollary.
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Corollary 5.3.2. The Zariski closure of any set of S-integral points in Pn \ D has

dimension ≤ max{0, n+ 2− d1d2}.

Remark 5.3.3. In order to get the qualitative statement of hyperbolicity, we need

the bound in Corollary 5.3.2 to be 0, as this implies that any set of S-integral points

is finite. An important observation here is that the dimension drops quadratically,

which means hyperbolicity is obtained rather quickly.

Next, note that

Π′i(branch locus of Π′i on Πi(Z)) = Π′i ◦ Πi((branch locus of Π on Z) ∪ Vi)

= {∆ = 0} ∪ {hi = 0} = {∆ · hi = 0},

where Vi is a hypersurface on Z which we can think of as a “fake” branch locus and

hi is a homogeneous polynomial defining Π′i ◦ Πi(Vi) on Pn. Therefore, we have the

following lemma.

Lemma 5.3.4. The discriminant ∆ of the projection Π is a common factor of the

defining functions of Π′i ◦ Πi({branch locus of Π} ∪ Vi) for all i = 1, . . . , n+ 1.

The following is the key lemma to prove Main Theorem D.

Lemma 5.3.5. In the above setup, there exist Π′i, Πi, i = 1, . . . , n+ 1, such that for

all P ∈ Pn \ D there exists j ∈ {1, 2, . . . , n+ 1} with hj(P ) 6= 0.

Proof. Since the hypersurfaces X and Y are assumed to be generic, the proof of this

lemma comes down to a dimension count. Consider a given point P ∈ Pn \ D. If
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hj(P ) = 0 for all j = 1, . . . , n+1, then for all j = 1, . . . , n+1 there exists a secant line

Lj of Z going through qj which is contained in the projective plane PL. The degrees

of freedom in choosing such an (n+1)-tuple of lines is 2n+1. On the other hand, by

the definition of the secant variety, we have Sec(Z) ⊂ GrP(1, n+ 2) = GrC(2, n+ 3)

and dim Sec(Z) = 2n. Considering Sec(Z)n+1 ⊂ GrP(1, n + 2)n+1 and letting L be

the set of (n+ 1)-tuples of lines as above, we compare dimensions as follows:

dimGrP(1, n+ 2)n+1

= 2(n+ 1)2 = 2n2 + 4n+ 2

> 2n2 + 4n+ 1 = (n+ 1) · 2n+ 2n+ 1

= dim Sec(Z)n+1 + dimL.

Thus, for appropriate generic choices, there will be an index j ∈ {1, 2, . . . , n + 1}

with hj(P ) 6= 0.

Remark 5.3.6. By Lemma 5.3.5, we can decompose the set Σ of S-integral points

as Σ = Σ1 ∪Σ2 . . .∪Σn+1, where Σi = {P ∈ Σ|h1(P ) = 0, h2(P ) = 0, . . . , hi−1(P ) =

0, hi(P ) 6= 0}.

Proof of Main Theorem D. Let Σ be a set of S-integral points in Pn \D. Let P ∈ Σ.

We write P = [x0, . . . , xn] with xi ∈ OS . Since the decomposition Σ = Σ1 ∪

Σ2 . . . ∪ Σn+1 is a finite union, we may suppose w.l.o.g. that P ∈ Σ1. By the above

lemma and remark, we may change the coordinates such that the projection Π1

has screen H1 = {Xn+2 = 0} and light source [0, 0, . . . , 1] and Π′1 has light source

[0, 0, . . . , 1, 0]. First, we assume that F is monic with respect to Y (see following
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remark) and normalize equation (5.1) by writing Y − (1/(d1d2))F1 in place of Y ,

implying F1 = 0, which is equivalent to replacing Y by Y − (1/(d1d2))F1 in f and g

at the beginning. By repeating the resultant,

h1(P )∆(P ) = ResY

(
ResZ(f, g),

∂

∂Y
ResZ(f, g)

)
(P )

=
∏

1≤i<j≤d1d2

(αi − αj)2, (5.2)

where αi = αi(X0, . . . , Xn) is a root of the equation (5.1) of Y .

By the propositions (5.2.1), (5.3.5) and carefully enlarging the set S with respect

to hi (see the remark) and ∆, we may assume that hi(P ),∆(P ) ∈ O∗S . This implies

each difference in (5.2) αij ≡ αi − αj ∈ O∗S . By alternating the indices, we obtain

the identities:

αij + αjl + αli = 0. (5.3)

Now, by the well-known result of Siegel and Mahler the equation x+y+z = 0 has

only finitely many non-proportional solutions (x, y, z) ∈ (O∗S)3. Applying this to (5.3)

with {i, j, l} = {1, 2, l} and then with {i, j, l} = {1, j, l}, we have α12 + α2l + αl1 = 0

and α1j +αjl +αl1 = 0. By the first equation, the values of αl1/α12 lie in a finite set

independent of P . By the second equation, the same holds for αjl/αl1. Therefore, the

values of αjl/α12 = (αjl/αl1) · (αl1/α12) lie in a finite set independent of P . Putting

γ = α12, we summarize these observations as follows:

αj − αl = cjlγ, (5.4)
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where the cjl lie in a finite set independent of P , and γ, which may depend on P ,

lies in O∗S . We split Σ1 into finitely many subsets so that the cjl is fixed for P in a

fixed subset of Σ1. By arguing separately with each subset, we may assume that the

cj1 are independent of P . From (5.4) and taking l = 1,

αj = α1 + cj1γ. (5.5)

By the assumption F1 = 0, it implies

(d1d2)α1 +
∑
j

cj1γ =
∑
i

αi = 0.

We have α1 = cγ, where c is a fixed number only depended on the subset we are

working with, not the point P . By (5.5), αj = cjγ. Recalling that Fb(x0, . . . , xn) is

the b-th symmetric function of the αj, Vieta’s formulas yield

Fb(x0, . . . , xn) = lbγ
b, b = 2, 3, . . . , d1d2, (5.6)

where the lb, b = 2, 3, . . . , d1d2, do not depend on P .

Now, consider the variety W defined in Pn+1 by the equations

Fb(X0, . . . , Xn) = lbY
b, b = 2, 3, . . . , d1d2. Note that dimW ≤ dim T1 + 1. By (5.6),

Σ1 lies in the projection of W , whose dimension is ≤ dimW ≤ dim T1 + 1.

Remark 5.3.7. We follow Zannier’s paper to briefly describe the case that F and

G have as their resultant a non-monic homogeneous polynomial.

F̃ (X0, . . . , Xn, Y ) := F0(X0, . . . , Xn)Y d+F1(X0, . . . , Xn)Y d−1+· · ·+Fd(X0, . . . , Xn).
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Again, we assume P ∈ Pn \ D such that h1(P ) 6= 0 where D is now defined by the

discriminant

∆ ≡ F 2d−2
0

∏
1≤i<j≤d

(αi − αj)2,

where the αi are the roots. As in the above proof, we may assume αi ∈ k for

the integral points in question, writing αi = µi/δi with µi, δi co-prime elements in

O∗S . Then F̃ (X0, . . . , Xn, Y ) is divisible in OS [Y ] by
∏

i(δiY − µi), where δ1, . . . , δd

divides F0(x0, . . . , xn) in OS . Therefore, ∆(P ) is divisible in OS by
∏

i 6=j(δjµi−δiµj)

according to definition where all the factors are in O∗S if P ∈ Pn \D. As in the proof

of (5.3), the philosophy is to find the identity in order to apply Siegel and Mahler

theorem which is the cornerstone of the entire argument. Let xij ≡ δjµi − δiµj and

consider the identity x1ix2j−x1jx2i−x12xij = 0. Then x1ix2j/x1jx2i has only finitely

many values independently of P . Define

�i ≡
α1 − αi
α2 − αi

⇒ x1ix2j

x1jx2i

=
(α1 − αi)(α2 − αj)
(α2 − αi)(α1 − αj)

=
�i

�j

.

Since there are only finitely many possibilities, the above relation allows us to

write down αi in terms of α1 and α2 as in the previous proof. Then the integral

points lie on a suitable subvariety.
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