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Abstract

It is well-known that if two complex polynomials P and Q share two values

without counting multiplicities, then they are the same. Such problem is called the

value sharing problem. In this dissertation, we study the value sharing problem for

algebraic and holomorphic curves, as well as give its applications. We first improve

the previous result of Ru-Xu [XR07] on value sharing for algebraic mappings from a

compact Riemann surface into the n-dimensional projective space that agree on the

pre-image for given hyperplanes located in general position, by using a new auxiliary

function. Second, we study the value sharing problem for holomorphic mappings

from punctured compact Riemann surfaces into the n-dimensional projective space.

We also work on p-adic holomorphic curves which is similar to the algebraic curves.

In the last chapter, we apply our results to the study of minimal surfaces, namely,

the uniqueness theorem for Gauss maps of two minimal surfaces in the n-dimensional

Euclidean space. The article which contains the majority results of this thesis has

been accepted by the International Journal of Mathematics (see [RU17]).
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Chapter 1

Introduction

It is well-known that for any non-constant complex (or any algebraically closed field of

characteristic zero) polynomials P and Q, if there are two distinct complex values aj ∈

C, j = 1, 2, such that P (z) = aj if and only if Q(z) = aj (we say that P and Q share

the values aj), then P = Q (see Theorem 2.1 for the proof). For rational functions on

C, one can prove (see Theorem 2.6) that if two non-constant rational functions share

four distinct values in C ∪ {∞}, then they must be the same. Note that rational

functions on C can be regarded as holomorphic (algebraic) maps from P1(C) →

P1(C). A. Sauer [Sau01], A. Scheizer [Sch10], and E. Ballico [Bal05] etc. studied

the value sharing problems for holomorphic (algebraic) maps from a general compact

Riemann surface S into P1(C). Ru and Xu [XR07] later extended their results to

holomorphic maps from S into Pn(C). In the transcendental case, Nevanlinna, in

1929, as an application of his celebrated Second Main Theorem, proved his famous

five point-theorem: If two non-constant meromorphic functions f and g defined on C

share five distinct values in C∪{∞}, then f ≡ g. Later, H. Fujimoto [Fuj75] extended

the result to holomorphic maps from C into Pn(C). Values sharing problems were
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also studied for p-adic meromorphic functions and p-adic holomorphic maps (see

[AS71],[Ru01b], and [Ru01a]), as well as the Gauss maps of minimal surfaces (see

[Fuj93a], [PR16], and [JR07]). The purpose of this thesis is to improve previous

mentioned results, as well as derive new results, by using a new auxiliary function

used in [CY09], [HLS12]. The layout of this dissertation is as follows:

In Chapter 2, we review relevant theorems and show well-known uniqueness

results, in particular the uniqueness results for polynomials, and for holomorphic

maps from compact Riemann surfaces into 1-dimensional projective space, which

inspired the development of this research study.

In Chapter 3, we prove our main theorem on the holomorphic mappings from

compact Riemann surfaces into the n-dimensional projective space, which generalizes

the result of Ru and Xu (see [XR07]).

Theorem 1.1. Let S be a compact Riemann surface of genus g, and let H1, . . . , Hq

be hyperplanes in Pn(C), located in general position. Let f1 : S → Pn(C) and f2 :

S → Pn(C) be two linearly non-degenerate holomorphic maps. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that i 6= j, f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 <

· · · < ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

Then

(a) If g = 0, i.e, S = P1(C), and

q ≥ 1
2
(2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2, then f1 ≡ f2.

(b) If g = 1 and q > 1
2
(2k + n + 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2, then

f1 ≡ f2.

2



(c) For a general genus g > 1, if q − (n + 1) − 2kn
q−2k+2kn

q − (n+1)(g−1)
q

> 0 then

f1 ≡ f2.

In Chapter 4, we first work on value sharing for holomorphic maps from punctured

(compact) Riemann surfaces into Pn(C). This includes C = P1(C) - {one point},

which results recover all the known results for holomorphic maps from C to Pn(C).

We then discuss the value sharing problem for holomorphic maps from non-compact

Riemann surfaces Y into Pn(C) in three cases. The first case is that we assume that

the open Riemann surface Y is parabolic. The second case is that Y is the unit-disc

with the maps being admissible. Notice that Nevanlinna theory still works for

holomorphic maps on the unit-disc, under the assumption that the map is admissible.

For the maps on the unit-disc which is not admissible, we still have the result for

maps with mild growth condition with respect to a complete metric due to the work

of Fujimoto (see [Fuj86]). We consider here a more general case that Y is (instead of

the unit-disc) an open Riemann surface with a complete metric.

In Chapter 5, we work on value sharing problem for p-adic holomorphic maps,

which improves the result of Ru (see [Ru01c]).

In Chapter 6, as an application of above results, we consider the uniqueness

problem of the Gauss map of minimal surfaces in Rm due to the fact that generalized

Gauss map of any minimal surfaces is holomorphic. We first discuss the case of

two complete minimal surfaces with finite total Gauss curvature, and then derive

the results of Park-Ru (see [PR16]) on the general case by applying our results on

uniqueness of holomorphic maps from an open Riemann surface with a complete

metric into Pn(C).
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Chapter 2

Uniqueness Results for Mappings

into P1(C)

2.1 Uniqueness Results for Polynomials

Theorem 2.1 ([AS71], p.418). Let P and Q be two non-constant complex (or any

algebraically closed field of characteristic zero) polynomials. Assume that there are

two distinct complex values aj ∈ C, j = 1, 2 such that P (z) = aj if and only if

Q(z) = aj without counting multiplicities (we say that P and Q share the values aj).

Then P ≡ Q.

Proof. Without loss of generality, we assume that the two values are 0 and 1. Then

P (z) = 0 if and only if Q(z) = 0 and P (z) = 1 if and only if Q(z) = 1. Suppose

that n = degP ≥ degQ > 0 and P 6≡ Q. Now P divides P ′(P − Q) since every

zero of P is a zero of P − Q. Also P − 1 divides P ′(P − Q), and thus, since P and

P − 1 are relatively prime, P (P − 1) divides P ′(P −Q). But degP (P − 1) = 2n and

degP ′(P −Q) ≤ 2n− 1, which is contradiction. So P −Q ≡ 0.
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Rational functions. Questions were raised by A.K. Pizer [Piz73] about the rational

functions sharing three values on the sphere which was, unfortunately, not true. Here

is an example: the functions

f(z) :=
(z + 1)3(z − 1)

(z + i)3(z − i)
, g(z) :=

(z + 1)(z − 1)3

(z + i)(z − i)3
,

share the values 0, 1,∞ on the sphere. The following statement however is true: if

p, q are non-constant rational functions that share four distinct values aj, j = 1, . . . , 4,

in C ∪ {∞}, then p ≡ q. The proof is done by using the Riemann-Hurwitz theorem

(See Theorem 2.6).

2.2 Riemann Hurwitz Theorem and the Second

Main Theorem

We first recall and prove the well-known Riemann-Hurwitz theorem. Let f : S → S ′

be a holomorphic map with S and S ′ being two compact Riemann surfaces. We call

νf (p) the multiplicity of f at p ∈ S if there are local coordinates z for S at p ∈ S

and w for S ′ at f(p) respectively such that w = zνf (p).

We now have the following Riemann-Hurwitz Theorem.

Theorem 2.2 ([GH94], p.216). Let f : S → P1(C) be a non-constant holomorphic
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map, where S is a compact Riemann surface. Then

2g − 2 = −2 deg(f) + rf (S),

where rf (S) :=
∑

p∈S(νf (p)− 1) and g is the genus of S.

For the proof of Riemann-Hurwitz theorem, we need the following classical

Gauss-Bonnet theorem.

Theorem 2.3 ([GH94], p.216). Let S be a compact Riemann surface of genus g, then

deg(KS) = 2g − 2, where KS is the canonical bundle on S and g is the genus of S.

We also need

Theorem 2.4. Let L be a holomorphic line bundle over a compact Riemann surface

S and h be pseudo-metric and assume that there exists a non-trivial meromorphic

section σ of L. Then

−
∫
S
ddc log h = deg(σ = 0) − deg(σ = +∞) + n(h) = deg(L) + n(h = 0), or we

can write,

−
∫
S

ddc[log h] = deg(L),

where
∫
S
ddc[log h] =

∫
S
ddc log h + n(h = 0) and n(h = 0) is the number of zeros of

the metric h, counting multiplicities.

Proof of Theorem 2.2. Take wFS as the Fubini-Study form on P1(C). Then f ∗wFS is

a pseudo-positive (1, 1)-form on S whose zeros set is the ramification divisor (denoted

by ram(f)), which induces a pseudo-metric on K∗S (the holomorphic tangent bundle

of S). Write f ∗wFS = h
√
−1

2π
dz ∧ dz̄, then by Theorem 2.3 and Theorem 2.4,
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∫
S

[ddc log h] = − deg(K∗S) = 2g − 2

i.e., ∫
S

ddc log h+ deg(ram(f)) = 2g − 2.

Now

wFS =
1

(1 + |w|2)2

√
−1

2π
dw ∧ dw̄ = ddc log(1 + |w|2),

for affine coordinate (w, 1) ∈ P1(C). Thus Ric(wFS) = −2wFS. Hence

−2 deg f = −2

∫
S

f ∗wFS =

∫
S

f ∗Ric(wFS) =

∫
S

Ric(f ∗wFS)

=

∫
S

ddc log h = 2g − 2− deg(ram(f))

= 2g − 2− rf (S).

This finishes the proof of Riemann-Hurwitz theorem.

As a consequence of the Riemann-Hurwitz’s theorem, we have the Second Main

Theorem for holomorphic maps.

Theorem 2.5 ([JR07], Theorem 2.1). Let f : S → P1(C) be a non-constant

holomorphic map, where S is a compact Riemann surface with genus g, and let

a1, . . . , aq ∈ P1(C) be distinct points. Let E = f−1{a1, . . . , aq} ⊂ S. Then

(q − 2) deg(f) ≤ |E|+ 2(g − 1),

where |E| is the cardinality of E.

7



Proof. For E = f−1({a1, . . . , aq}), define the ramification

r(E) :=
∑
p∈E

(ν(p)− 1).

Then, from the definition of the degree, we have q deg(f) = |E|+ r(E). By applying

Theorem 2.2, we have r(E) ≤ 2 deg(f) + 2(g − 1), where g is the genus of S. Hence

(q − 2) deg(f) ≤ |E|+ 2(g − 1). This proves the theorem.

2.3 Uniqueness Results for Holomorphic

Mappings from Compact Riemann Surface

into P1(C)

Theorem 2.6 ([Sau01], Proposition 2.2). Assume that f1, f2 are two non-constant

complex rational functions that share four distinct values aj, j = 1, . . . , 4, in C∪{∞}

without counting multiplicities, then f1 ≡ f2.

Proof. By Theorem 2.5, for i = 1, 2

(q − 2) deg fi ≤ |E|+ (2g − 2).

Now suppose that f1 6≡ f2 and let E := f−1
1 {a1, . . . , a4} ≡ f−1

2 {a1, . . . , a4} and

Ẽ := (f1 − f2)−1({0}) (note E ⊂ Ẽ). Using above with q = 4 and genus g = 0, we

get

2(deg f1 + deg f2) ≤ 2(|E| − 2) ≤ 2(|Ẽ| − 2) ≤ 2 deg(f1 − f2)− 4,

8



and so 2(deg f1 + deg f2) ≤ 2(deg f1 + deg f2)− 4. This gives a contradiction.

A. Sauer [Sau01] extended the above results to holomorphic maps on compact

Riemann surfaces as follows.

Theorem 2.7 ([Sau01], Corollary 2.5). Let S be a compact Riemann surface of genus

g, and let f1, f2 : S → P1(C) be two different non-constant holomorphic maps. If f1, f2

share q distinct values a1, . . . , aq ∈ P1(C), then we have the following conclusions.

(i) If g = 0, then q < 4.

(ii) If g ≥ 1, then q ≤ 2 + 2
√
g.

Proof. Let E := f−1
1 {a1, . . . , aq}. Similar to the above, we can get, by applying

Second Main Theorem (Theorem 2.5) for i = 1, 2,

(q − 2) deg(fi) ≤ |E|+ (2g − 2).

Assume that deg(f2) ≤ deg(f1) = d and by noticing that E ⊂ (f1 − f2)−1{0}, we get

|E| ≤ 2d. This concludes,

q ≤ 4 +
(2g − 2)

d
.

This proves the case for (i).

Now assume that g ≥ 1, we further notice that q ≤ |E| ≤ 2d, we get

q(q − 4) ≤ 2(2g − 2)

which implies that q ≤ 2 + 2
√
g. This proves the theorem.

9



Chapter 3

Uniqueness Results for

Holomorphic Mappings into Pn(C)

3.1 Theory of Algebraic Curves in Pn(C)

To extend the results to holomorphic maps f : S → Pn(C), we need the theory of

algebraic curves in the projective spaces in chapter 2 of the book of Griffiths-Harris

[GH94].

Let S be a compact Riemann surface of genus g. Let f : S → Pn(C) be a

linearly non-degenerate holomorphic map, i.e. its image is not contained in any

proper subspace of Pn(C). We define the kth associate curve of f as fk : S →

P(∧k+1Cn+1) given by fk(z) = P(Fk), where f is given locally by the vector valued

function f(z) = (f0(z), ..., fn(z)) ∈ Cn+1 − {0} (called a reduced representation of

f), and Fk = f ∧ f ′ ∧ · · · ∧ f (k). Let ωk = ddc log ‖Z‖2 be the Fubini-Study form on

10



P(∧k+1Cn+1) where dc =
√
−1

4π
(∂̄ − ∂). Then

fk
∗
ωk = ddc log ‖Fk‖2 =

√
−1

2π

‖Fk−1‖2‖Fk+1‖2

‖Fk‖4
dz ∧ dz̄.

The ramification index βk(z0) of fk at z0 is the unique integer such that fk∗ωk =

|z − z0|2β(z0)h(z)
√
−1
2
dz ∧ dz̄ with |h(z0)| > 0. It is easy to see ([GH94], P. 266) that

if we locally write representation of f as

f(z) = (1 + · · · , z1+ν1 + · · · , z2+ν1+ν2 + · · · ..., zn+ν1+···+νn + · · · ),

then βk(z0) = νk+1. Alternatively, if we write locally

f(z) = (1 + · · · , zδ1 + · · · , zδ2 + · · · , . . . , zδn + · · · )

with 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δn, then

βk(z0) = δk+1 − δk − 1. (3.1)

Let βk =
∑

p∈S βk(p) and let di = deg(f i). Then we have the following Plücker

formula.

Theorem 3.1 ([GH94], p. 270). dk−1−2dk +dk+1 = 2g−2−βk where dk = deg(fk).

Using the fact that (assuming that d−1 = 0 and noticing that dn = 0)

n−1∑
k=0

(n− k)(dk−1 − 2dk + dk+1) = −(n+ 1)d0

11



it gives the so-called the Brill-Segre formula (which generalizes the Riemann-Hurwitz

theorem) as below.

Theorem 3.2. n(n+ 1)(g − 1) = −(n+ 1) deg(f) +
∑n−1

k=0(n− k)βk.

Definition 3.3. Let H1, . . . , Hq be hyperplanes in Pn(C) defined by the linear forms

Lj, 1 ≤ j ≤ q. H1, . . . , Hq are said to be in general position if for any injective map

µ : {0, 1, . . . , n} → {1, 2, . . . , q}, Lµ(0), . . . , Lµ(n) are linearly independent.

Theorem 2.5 can be extended as follows, which is called the Second Main Theorem

for holomorphic maps (simple version).

Theorem 3.4 ([JR07], Theorem 2.2). Let S be a compact Rieamnn surface of genus

g. Let f : S → Pn(C) be a linearly non-degenerate holomorphic map. Let H1, . . . , Hq

be the hyperplanes in Pn(C), located in general position. Let E = ∪qj=1f
−1(Hj). Then

(q − (n+ 1)) deg(f) ≤ 1

2
n(n+ 1){2(g(S)− 1) + |E|}.

Proof. Let Lj, 1 ≤ j ≤ q, be the linear forms defining Hj. Take a local representation

f = (f0, . . . , fn) of f , where f0, . . . , fn are holomorphic and have no common zero.

Denote by lj := Lj(f). For each point P ∈ E, denote by νlj(P ) the vanishing order

of lj at P . Choose {LP,i1 , . . . , LP,in} ⊂ {L1, . . . , Lq} such that

νlP,i1 (P ) ≥ νlP,i2 (P ) ≥ · · · ≥ νlP,in+1
(P ) = 0.

12



Since Lj, 1 ≤ j ≤ q, are in general position, νlP,j(P ) = 0 if j 6= i1, . . . , in. We also

have, because LP,i1 , . . . , LP,in+1 are linearly independent, f = P[lP,i1 : · · · : lP,in+1 ].

Thus from (3.1)

βk(P ) = νlP,in−k (P )− νlP,in−(k−1)
(P )− 1,

or
n−1∑
k=0

(n− k)βk(P ) =
n∑
t=1

νlP,it (P )− 1

2
n(n+ 1) =

q∑
j=1

νlj(P )− 1

2
n(n+ 1),

where the last identity holds because νlP,j(P ) = 0 for j 6= i1, . . . , in. Applying

Theorem 3.2, gives

q∑
j=1

∑
P∈E

νlj(P ) ≤
n−1∑
k=0

(n− k)βk +
1

2
n(n+ 1)|E|

= n(n+ 1)(g − 1) + (n+ 1) deg(f) +
1

2
n(n+ 1)|E|.

Using the fact that, for each j,
∑

P∈E νlj(P ) = deg(f), we get

(q − (n+ 1)) deg(f) ≤ 1

2
n(n+ 1){2(g − 1) + |E|}

which proves the theorem.

The following statement concerning the truncations is a more general and much

useful.

Theorem 3.5 ([JR07], Theorem 2.4). Let S be a compact complex Riemann surface

of genus g. Let f : S → Pn(C) be a linearly non-degenerate holomorphic map. Let

H1, . . . , Hq be the hyperplanes in Pn(C), located in general position and let L1, . . . , Lq

13



be the corresponding linear forms. Then, for any finite subset E (can be empty) of S,

we have

(q − (n+ 1)) deg(f) ≤
q∑
j=1

∑
P 6∈E

min{n, νP (Lj(f))}+
1

2
n(n+ 1){2(g − 1) + |E|},

where νP (Lj(f)) is the vanishing order of Lj(f) at the point P .

Proof. For each P ∈ S, there exist a distinct subset {LP,i1 , ..., LP,in} ⊂ {L1, ..., Lq}

such that

νP (lP,i1) ≥ νP (lP,i2) ≥ ... ≥ νP (lP,n)

where lj = Lj(f). Since Lj, j = 1, . . . , n are in general position, νP (lP,j) = 0 for all

j 6= i1, ..., in.

Thus, for P ∈ E,

n−1∑
k=0

(n− k)βk(P ) =
n∑
t=1

νP (lP,it)−
1

2
n(n+ 1) =

q∑
j=1

νP (lP,j)−
1

2
n(n+ 1). (3.2)

Now, for P /∈ E, if we let IP = {lP,ij : νP (lP,ij) > 0, 1 ≤ j ≤ n} and use (3.1), then

n−1∑
k=1

(n− k)βk(P ) =
n∑
t=0

(νP (lP,it)− t)

≥
∑
lij∈IP

max{0, νP (lP,ij)− n}

=
∑
lij∈IP

(
νP (lP,ij)−min{n, νP (lP,ij)}

)
=

n+1∑
j=1

(
νP (lP,ij)−min{n, νP (lP,ij)}

)
.
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Combining the above equation with (3.2) ,

n−1∑
k=0

(n− k)βk(P ) ≥
n−1∑
k=0

∑
P∈E

(n− k)βk(P ) +
n−1∑
k=0

∑
P /∈E

(n− k)βk(P )

≥
q∑
j=1

∑
P∈S

νP (lP,j)−
q∑
j=1

∑
P /∈E

min{n, νP (lP,ij)} −
n(n+ 1)

2
|E|

= q deg(f)−
q∑
j=1

∑
P /∈E

min{n, νP (lP,ij)} −
n(n+ 1)

2
|E|,

where we used the fact that
∑

P∈S(νP (lp,j)) = deg f for all j. By using Brill-Segre

formula (Theorem 3.2),

n(n+ 1)(g − 1) + (n+ 1) deg f ≥ q deg f −
q∑
j=1

∑
P /∈E

min{n, νP (lP,ij)}+
n(n+ 1)

2
|E|.

So we get

(q − (n+ 1)) deg f ≤
q∑
j=1

∑
P /∈E

min{n, νP (lP,ij)}+
1

2
n(n+ 1){2(g − 1) + |E|}.

This proves the theorem.

3.2 Preliminary Results on Uniqueness Theorem

for Algebraic Curves into the Projective

Spaces

The first result in this direction is due to Ru-Xu [XR07].
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Theorem 3.6 ([XR07], Main Theorem). Let S be a compact Riemann surface of

genus g, and let f1, f2 : S → Pn(C) be two linearly non-degenerate holomorphic maps.

Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position. Assume that

(i) f−1
1 (Hj) = f−1

2 (Hj) for j = 1, . . . , q,

(ii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

Then we have the following conclusions.

(a) If g = 0 and q ≥ (n+ 1)2, then f1 ≡ f2.

(b) For g ≥ 1, if q > 1
2
(n+ 1)2 +

√
(n+ 1)4 + 4n2(n+ 1)(2g − 2), then f1 ≡ f2.

Proof. Lemma 3.1 in [XR07] implies that there exists a hyperplane

Hc = {c0x0 + · · ·+ cnxn = 0}

such that f−1
1 (Hc ∩ Hj) = ∅ and f−1

2 (Hc ∩ Hj) = ∅. We fix such Hc. Let Hj =

{aj0x0 + · · ·+ ajnxn = 0} and define, for i = 1, 2,

Fij =
aj0fi0 + · · ·+ ajnfin
c0fi0 + · · ·+ cnfin

,

where (fi0, . . . , fin) is a (local) reduced representation of fi for i = 1, 2. Assume that

f1 6≡ f2, then there exists 1 ≤ j0 ≤ q such that F1j0 6≡ F2j0 .

Consider the auxiliary function

Φ = F1j0 − F2j0 6≡ 0. (3.3)

16



We apply the Second Main Theorem (Theorem 3.4) with E = ∪qj=1f
−1
1 (Hj), we get

(q − (n+ 1))(deg(f1) + deg(f2)) ≤ n(n+ 1)(2g − 2 + |E|).

Notice that E ⊂ Φ−1{0}, so |E| ≤ #Φ−1{0} ≤ deg(f1) + deg(f2). Thus we get

(q − (n+ 1)2)(deg(f1) + deg(f2)) ≤ n(n+ 1)(2g − 2). (3.4)

In the case when g = 0, we get

(q − (n+ 1)2))(deg(f1) + deg(f2)) < 0

which proves the case (a). For the case (b) when g ≥ 1, we further notice that, using

the condition that the given hyperplanes are in general position, q ≤ n#Φ−1{0} ≤

n deg Φ ≤ n(deg(f1) + deg(f2)), i.e.

q ≤ n(deg(f1) + deg(f2)). (3.5)

Thus, by combining (3.4) and (3.5),

q(q − (n+ 1)2) ≤ n2(n+ 1)(2g − 2)

which implies that q ≤ 1
2

(
(n+ 1)2 +

√
(n+ 1)4 + 4n2(n+ 1)(2g − 2)

)
. This derives

a contradiction which proves Theorem 3.6.

Remark: For the case n = 1, this theorem recovers the theorem of Schweizer (see

[Sch05]).
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Under the assumptions in Theorem 3.6 above, if we assume, in addition that, for

every i 6= j, f−1
1 (Hi) ∩ f−1

1 (Hj) = ∅, then we have the following theorem.

Theorem 3.7. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position.

Let S be a compact Riemann surface of genus g. Let f1 : S → Pn(C) and f2 : S →

Pn(C) be two linearly non-degenerate holomorphic maps. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) For every i 6= j, f−1
1 (Hi) ∩ f−1

1 (Hj) = ∅,

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

Then we have the following conclusions.

(a) If g = 0 and q ≥ 3n+ 1, then f1 ≡ f2.

(b) For g ≥ 1, if q > 1
2

(
(3n+ 1) +

√
(3n+ 1)2 + 4n(n+ 1)(2g − 2)

)
,

then f1 ≡ f2.

The proof is similar to the above by using the same auxiliary function given in (3.3),

except we now use Truncated Second Main Theorem (Theorem 3.5).

Proof. As above, there exists a hyperplane

Hc = {c0x0 + · · ·+ cnxn = 0}

such that f−1
1 (Hc ∩ Hj) = ∅ and f−1

2 (Hc ∩ Hj) = ∅. We fix such Hc. Let Hj =

{aj0x0 + · · ·+ ajnxn = 0} and define

F1j =
aj0f10 + · · ·+ ajnf1n

c0f10 + · · ·+ cnf1n

,
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and

F2j =
aj0f20 + · · ·+ ajnf2n

c0f20 + · · ·+ cnf2n

.

Assume that f1 6≡ f2, then Φ := F1j0 − F2j0 6≡ 0 for some 1 ≤ j0 ≤ q.

Let Ef1,j = f−1
1 (Hj) and Ef2,j = f−1

2 (Hj).

Then, by the assumption (i), Ej := Ef1,j = Ef2,j and assumption (ii), we have, for

every i 6= j,

Ef1,i ∩ Ef1,j = ∅.

Apply the Truncated Second Main Theorem (Theorem 3.5) with E = ∅, we get, for

i = 1, 2

(q − (n+ 1)) deg(fi) ≤
q∑
j=1

∑
P∈S

min{n, νP (Lj(fi))}+ n(n+ 1)(g − 1)}

≤ n#Φ−1({0}) + n(n+ 1)(g − 1)

≤ n(deg f1 + deg f2) + n(n+ 1)(g − 1).

Thus by summing it up, we get

(q − (3n+ 1))(deg(f1) + deg(f2)) ≤ n(n+ 1)(2g − 2). (3.6)

If g = 0, then we get

q − (3n+ 1) < 0,

which proves the case (a). For the case when g ≥ 1, noticing that, for every i 6=

j, f−1
1 (Hi) ∩ f−1

1 (Hj) = ∅, we have q ≤ deg(f1) + deg(f2). Hence (3.6) gives

(q − (3n+ 1))q ≤ n(n+ 1)(2g − 2)
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which implies that

q ≤ 1

2

(
(3n+ 1) +

√
(3n+ 1)2 + 4n(n+ 1)(2g − 2)

)
.

This proves the part (b).

3.3 Main Results

Instead of using Φ in (3.3), we use a new and more precise auxiliary function

introduced in [HLS12] (see also [CY09]) to improve the above theorems and obtain

the following more general theorem.

Theorem 3.8. Let S be a compact Riemann surface of genus g, and let H1, . . . , Hq

be hyperplanes in Pn(C), located in general position. Let f1 : S → Pn(C) and f2 :

S → Pn(C) be two linearly non-degenerate holomorphic maps. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that i 6= j, f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 <

· · · < ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

Then

(a) If g = 0, i.e, S = P1(C) and

q ≥ 1
2
(2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2, then f1 ≡ f2.

(b) If g = 1 and q > 1
2
(2k + n + 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2, then

f1 ≡ f2.

(c) For general genus g > 1, if q−(n+1)− 2kn
q−2k+2kn

q− (n+1)(g−1)
q

> 0 then f1 ≡ f2.
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Remark:

(1) If k = n, then (ii) is automatically true if H1, . . . , Hq are in general position.

So it recovers Theorem 3.6.

(2) If we take k = 1, then we are in the situation of Theorem 3.7, and we actually

improved the Theorem 3.7 from q ≥ 3n+ 1 to 2n+ 2.

Proof of Theorem 3.8. As above, assume that f1 6≡ f2, instead of Φ in (3.3), we

construct a new auxiliary function. First, by Lemma 3.1 in [XR07], there exists a

hyperplane

Hc = {c0x0 + · · ·+ cnxn = 0}

such that f−1
1 (Hc ∩ Hj) = ∅ and f−1

2 (Hc ∩ Hj) = ∅. We fix such Hc. Assume that

q ≥ 2n and let Hj = {aj0x0 + · · · + ajnxn = 0}, j = 1, . . . , q. Define, for i = 1, 2,

Fi,j =
aj0fi0+···+ajnfin
c0fi0+···+cnfin , where (fi0, . . . , fin) is a (local) reduced representation of fi for

i = 1, 2. In order to re-arrange the hyperplanes H1, . . . , Hq into several groups, we

define equivalence relation on {1, . . . , q} as i ∼ j if and only if

F1,i

F2,i

− F1,j

F2,j

≡ 0.

Group 1:

F1,1

F2,1

≡ · · · ≡ F1,k1

F2,k1

6≡ F1,k1+1

F2,k1+1

Group 2:

F1,k1+1

F2,k1+1

≡ · · · ≡ F1,k2

F2,k2

6≡ F1,k2+1

F2,k2+1

· · ·
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Group s:

F1,ks−1+1

F2,ks−1+1

≡ · · · ≡ F1,ks

F2,ks

where ks = q. The assumption of “in general position” implies that the number of

each group cannot exceed n. For each 1 ≤ i ≤ q, we set σ(i) = i+ n if i+ n ≤ q and

σ(i) = i + n − q if i + n > q. Then obviously σ is bijective and |σ(i) − i| ≥ n since

q ≥ 2n so i and σ(i) belong to the different groups. Put

χi = F1,iF2,σ(i) − F1,σ(i)F2,i

and consider the new auxiliary function

χ :=

q∏
i=1

χi. (3.7)

Lemma 3.9 ([Lü12], Theorem 1.5) (See also [CY09] and [HLS12]). Let H1, . . . , Hq be

hyperplanes in Pn(C), located in general position with q ≥ 2n. Let M be an Riemann

surface (not necessarily compact). Let f1 : M → Pn(C) and f2 : M → Pn(C) be two

different linearly non-degenerate holomorphic maps. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that i 6= j, f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 <

· · · < ik+1 ≤ q),

(iii) f1 = f2 on
⋃q
j=1 f

−1
1 (Hj).

Then the following holds on the domain of each holomorphic local coordinate z of M :

νχ(z) ≥
(
q − 2k + 2kn

2kn

) q∑
j=1

(
νnLj(f1)(z) + νnLj(f2)(z)

)
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where νnLj(f1)(z) = min{n, νLj(f1)(z)}.

Proof. If z 6∈
⋃q
j=1 f

−1
1 (Hj), then νLj(f1)(z) = 0, so this lemma is obviously true.

Thus, we only need to consider the case when z ∈
⋃q
j=1 f

−1
1 (Hj). Define

I = {i : Lj(f1)(z) = 0, 1 ≤ i ≤ q}

and denote by #(I) the number of elements of I. Then #(I) ≤ k by the assumption

(ii). If i ∈ I, then z is the zero of Lj(f1), and hence z is a zero of χi with multiplicity

at least min{νLj(f1)(z), νLj(f2)(z)}. Since I = {i : Lj(f1)(z) = 0, 1 ≤ i ≤ q}, we have

σ−1(I) = {i : σ(i) ∈ I}. If l ∈ {1, 2, . . . , q} \ (I ∪ σ−1(I)), then z is a zero of χl with

multiplicity at least 1 by the assumption (iii), and so νχl ≥ 1. Therefore, we can write

νχ(z) ≥
∑
i∈I

min{νLj(f1)(z), νLj(f2)(z)}+
∑
i∈σ(i)

min{νLj(f1)(z), νLj(f2)(z)}+
∑

j 6=i,σ(i)

νχl

≥ 2
∑

i∈I,σ(i)

min{νLj(f1)(z), νLj(f2)(z)}+
∑

j 6=i,σ(i)

1

≥ 2
∑

i∈I,σ(i)

min{νLj(f1)(z), νLj(f2)(z)}+ q −#(I ∪ σ−1(I)).

By assumption (iii) and #I ≤ k,

νχ(z) ≥ 2
∑

i∈I,σ(i)

min{νLj(f1)(z), νLj(f2)(z)}+ q − 2k.

Using min{a, b} ≥ min{a, n}+ min{b, n} − n for any a, b ∈ Z+,

νχ(z) ≥ 2
∑

i∈I,σ(i)

{min{n, νLj(f1)(z)}+ min{n, νLj(f2)(z)} − n}+ q − 2k.
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By using the fact that min{n, νLj(f1)(z)} = ν
(n)
Lj(f1)(z) and k ≥ #(I) again,

νχ(z) ≥ 2
∑

i∈I,σ(i)

min{n, νLj(f1)(z)}+ min{n, νLj(f2)(z)} − nmin{1, νLj(f1)(z)}

+q − 2k

≥ 2
∑

i∈I,σ(i)

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)− nν(1)

Lj(f1)(z)}+ q − 2k

≥ 2
∑

i∈I,σ(i)

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)− nν(1)

Lj(f1)(z)}

+
q − 2k

2k
{ν(1)

Lj(f1)(z) + ν
(1)
Lj(f2)(z)}.

Since n
∑
ν

(1)
Lj(f1)(z) ≥

∑
ν

(n)
Lj(f1)(z), we can get

νχ(z) ≥ 2
∑

i∈I,σ(i)

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)− nν(1)

Lj(f1)(z)}

+
q − 2k

2k
{ν(1)

Lj(f1)(z) + ν
(1)
Lj(f2)(z)} − nν(1)

Lj(f2)(z)

≥ 2
∑

i∈I,σ(i)

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)}

+
{q − 2k

2k
− n

} 1

n

∑
i∈I,σ(i)

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)}

≥
{q − 2k + 2kn

2kn

} q∑
i=1

{ν(n)
Lj(f1)(z) + ν

(n)
Lj(f2)(z)}.

This finishes the proof.

We now continue to prove Theorem 3.8. Let Lj be the linear forms defining the

hyperplanes Hj for j = 1, . . . , q. Applying Theorem 3.5 with E = ∅, we get,

(q − (n+ 1)) deg(f1) ≤
q∑
j=1

∑
z∈S

νnLj(f1)(z) + n(n+ 1)(g − 1).
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This is same for f2,

(q − (n+ 1)) deg(f2) ≤
q∑
j=1

∑
z∈S

νnLj(f2)(z) + n(n+ 1)(g − 1).

Adding the above two inequalities,

(q− (n+ 1))(deg(f1) + deg(f2)) ≤
q∑
j=1

∑
z∈S

(
νnLj(f1)(z) + νnLj(f2)(z)

)
+n(n+ 1)(2g− 2).

This, together with the Lemma 3.9, implies

(q − (n+ 1))(deg(f1) + deg(f2))

<
2kn

q + 2kn− 2k

∑
z∈S

ν0
χ(z) + n(n+ 1)(2g − 2)

≤ 2kn

q − 2k + 2kn
#χ−1{0}+ n(n+ 1)(2g − 2)

≤ 2knq

q − 2k + 2kn
(deg(f1) + deg(f2)) + n(n+ 1)(2g − 2).

When g = 0, it gives

{
(q − (n+ 1))

(
q − 2k + 2kn

2kn

)
− q
}

(deg f1 + deg f2)

≤
(
q − 2k + 2kn

2kn

)
(−2n(n+ 1)).

Thus, {
(q − (n+ 1))− 2knq

q − 2k + 2kn

}
(deg f1 + deg f2) ≤ −2n(n+ 1).

Thus, we get

(q − (n+ 1))− 2knq

q − 2k + 2kn
< 0
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which implies that

q <
1

2
{2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2}.

This proves the case (a). The case g = 1 is similar. We can get

q ≤ 1

2
{2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2}.

In the general case of genus g, assume that deg(f2) ≤ deg(f1) = d. Then from above,

(q − (n+ 1))d ≤ 2kn

q − 2k + 2kn
qd+ n(n+ 1)(g − 1)

or

(q − (n+ 1)− 2kn

q − 2k + 2kn
q ≤ n(n+ 1)(g − 1)

d
.

On the other hand, using f−1
1 (∩k+1

i=1Hji) = ∅, we get

q ≤ k(deg(f1) + deg(f2)). (3.8)

So we get

q − (n+ 1)− 2kn

q − 2k + 2kn
q ≤ kn(n+ 1)(g − 1)

q
.

This proves the main theorem.
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Chapter 4

Uniqueness Results for

Holomorphic Mappings from

Punctured Compact Riemann

Surfaces into Pn(C)

4.1 Value Sharing for Holomorphic Mappings

Around an Essential Singularity

While Nevanlinna obtained his famous five-sharing-points theorem, he also obtained

the similar result for meromorphic functions around an essential singularity (see

[Nev25]): Let f1, f2 be two meromorphic functions on a punctured disc 4∗(r0) =

{z | 0 < |z| < r0}, where r0 is a positive number with 0 as their essential singularity.

Assume that f1, f2 share five distinct complex values (including ∞) without counting
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multiplicities, then f1 ≡ f2. Before extending the result to holomorphic maps into

Pn(C), we need to introduce a few notions of the Nevanlinna Theory.

Definition 4.1. Let f be a meromorphic function on ∆(R), where 0 ≤ R ≤ ∞ and

let r < R. Denote the number of poles of f on the closed disc ∆(R) by nf (r,∞),

counting multiplicity. We then define the counting function Nf (r,∞) to be

Nf (r,∞) =

∫ r

0

nf (t,∞)− nf (0,∞)

t
dt+ nf (0,∞) log r,

here nf (0,∞) is the multiplicity if f has a pole z = 0. For each complex number a,

we then define the counting function Nf (r, a) to be

Nf (r, a) = N 1
f−a

(r,∞).

Definition 4.2. The Nevanlinna’s proximity function mf (r,∞) is defined by

mf (r,∞) =
1

2π

∫ 2π

0

log+ |f(reiθ)|dθ,

where log+ x = max{0, log x}. For any complex number a, the proximity function

mf (r, a) of f with respect to a is then defined by

mf (r, a) = m 1
f−a

(r,∞).

Definition 4.3. The Nevanlinna’s characteristic function of f is defined by

Tf (r) = mf (r,∞) +Nf (r,∞).
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Here, Tf (r) measures the growth of f .

Introduction to Nevanlinna’s theory can be found in [CY13], [Hay64], and [Nev70]

in detail.

The logarithmic derivative lemma holds for meromorphic functions on C − 4r0

for r0 > 0 in the following form.

Proposition 4.4 ([Siu15] Proposition 6.2). Let r1 > r0 > 0 and F be a meromorphic

function on C−4r0. Then

∫ 2π

0

log+

∣∣∣∣F ′(reiθ)F (reiθ)

∣∣∣∣ dθ2π
= O(log TF (r, r1) + log r) ‖

for r > r1, where ‖ means that the inequality holds outside a subset E of R∩{r > r1}

with finite Lebesgue measure.

Using this Proposition and by the same proof as in H. Cartan’s Second Main

Theorem (see [Ru01a] and [NO90]), we can prove the following result.

Theorem 4.5 (Second Main Theorem for Holomorphic Mappings on

C − 4r0). Let r1 > r0 > 0 and f : C − 4r0 → Pn(C) be a linearly non-degenerate

holomorphic map. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position.

Then we have

(q − (n+ 1))Tf (r, r1) ≤
q∑
j=1

N
(n)
f (r, r1, Hj) +O(log Tf (r, r1) + log r) ‖

for r > r1.
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Lemma 4.6 ([Siu15], Lemma 5.12). Let f : C − 4r0 → Pn(C) be holomorphic. If

Tf (r, r1) = O(log r), then f can be extended to a holomorphic map from C∪{∞}−4r0

to Pn(C).

Theorem 4.7. Let f1, f2 : 4∗(r0) → Pn(C) be two linearly non-degenerate

holomorphic maps, where 4∗(r0) = {z | 0 < |z| < r0} with r0 being a positive

number. Assume that 0 is an essential singularity for both f1 and f2. Let H1, . . . , Hq

be hyperplanes in Pn(C), located in general position. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 < · · · <

ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

If q > n+ 1 + 2knq
q−2k+2kn

(in particular, if q > (n+ 1)(k + 1)), then f1 ≡ f2.

Proof. Assume that f1 6≡ f2 and let χ be defined in (3.7). We let ζ := 1
z
, then

f1(ζ), f2(ζ) are holomorphic mappings on C −41/r0 . By applying Theorem 4.5, we

get, for i = 1, 2,

(q − (n+ 1))Tfi(r, r1) ≤
q∑
j=1

N
(n)
fi

(r, r1, Hj) +O(log Tfi(r, r1) + log r) ‖.

Thus, by combining Lemma 3.9 and the First Main Theorem,

(q − (n+ 1))(Tf1(r, r1) + Tf2(r, r1))

≤
q∑
j=1

(N
(n)
f1

(r, r1, Hj) +N
(n)
f2

(r, r1, Hj)) +O(max
1≤i≤2

log Tfi(r, r1) + log r) ‖
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≤
(

2kn

q − 2k + 2kn

)
Nχ(r, r1, 0) +O(max

1≤i≤2
log Tfi(r, r1) + log r) ‖

≤
(

2knq

q − 2k + 2kn

)
(Tf1(r, r1) + Tf2(r, r1)) +O(max

1≤i≤2
log Tfi(r, r1) + log r) ‖.

Hence, by the assumption and Lemma 4.6, we get a contradiction. This proves the

theorem.

4.2 Value Sharing for Holomorphic Mappings

from Punctured (compact) Riemann Surfaces

into Pn(C)

The most famous result on value-sharing is of course Nevanlinna’s five points theorem

for meromorphic functions on the complex plane. A true generalization of this result

to Riemann surfaces would, for example, be a statement about meromorphic functions

on a punctured compact Riemann surface. The goal of this section is thus to apply the

theory developed above on the value sharing for holomorphic mappings on compact

Riemann surface to holomorphic mappings on the punctured (compact) Riemann

surfaces.

Theorem 4.8. Let S be a compact Riemann surface of genus g, and let R = S −

{P1, . . . , Pl}. Let f1, f2 : R → Pn(C) be two linearly non-degenerate holomorphic

maps. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position. Assume

that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,
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(ii) Let k ≤ n be a positive integer such that f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 < · · · <

ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

Then the following conclusions are true:

(a) If χ(R) := 2− 2g − l > 0, and q − (n+ 1)− 2knq
q−2k+2kn

> 0, then f1 ≡ f2.

(b) If χ(R) := 2− 2g − l ≤ 0, and

q − (n+ 1)− 2knq

q − 2k + 2kn
− kn(n+ 1){2(g − 1) + l}

q
> 0,

then f1 ≡ f2.

Proof. Assume that f1 6≡ f2. We consider the following two cases.

Case 1: We consider the case that at least one of the mappings, say f1, has

an essential singularity at one of the points Pi, say P0. By Big Picard Theorem,

in every neighborhood of Pi, f1 can omit at most (n + 1) hyperplanes among H1,

. . . , Hq. Then there are at most n + 1 hyperplanes f2 omits, and thus there exists

another n + 1 hyperplanes f2(∆(ε) − P0) does not omit for ∀ε > 0. If P0 is not the

essential singularity of f2, then f2(P0) will be contained in these n + 1 hyperplanes

which contradicts with the fact that these n+ 1 hyperplanes are in general position.

Therefore, if f1 and f2 on ∆∗(P0) = ∆−{P0} share more than 2n+ 1 hyperplanes in

general position then P0 is also an essential singularity of f2. Note that in both cases

(a) and (b), q − (n+ 1)− 2knq
q−2k+2kn

> 0, i.e.

q >
1

2
(2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2).
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Hence f1 ≡ f2 by Theorem 4.7.

Case 2: Now suppose that none of the points Pi is an essential singularity. Then

both f1 and f2 extend to holomorphic mappings from S into Pn(C). Then we are

in the familiar situation as before: Assume f1 6≡ f2 and applying Theorem 3.5 with

E = {P1, . . . , Pl} and Lemma 3.9 to get

(q − (n+ 1))(deg(f1) + deg(f2)) (4.1)

≤ 2kn

q − 2k + 2kn
q(deg(f1) + deg(f2)) + n(n+ 1){2(g − 1) + l}.

In the case (a) that 2(g − 1) + l < 0, it gives q − (n + 1) − 2knq
q−2k+2kn

< 0, which

leads a contradiction. In the case (b) that 2(g − 1) + l ≥ 0, using the fact that

q ≤ k(deg(f1) + deg(f2)) see (3.8), this implies that

q − (n+ 1)− 2knq

q − 2k + 2kn
≤ kn(n+ 1){2(g − 1) + l}

q

which again gives a contradiction.

Applying Theorem 4.8 (a) with R = P1(C)−{∞} (i.e. S = P1(C) with g = 0 and

l = 1), we recover the following result of [HLS12] which extends the classical result

of Nevanlinna (for n = 1) (see [Nev26]) and H. Fujimoto (for n > 1) (see [Fuj75]).

Corollary 4.9 ([HLS12], Theorem 1). Let f1, f2 : C → Pn(C) be two linearly

non-degenerate holomorphic maps. Let H1, . . . , Hq be hyperplanes in Pn(C), located

in general position. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 < · · · <
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ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

If q − (n+ 1)− 2knq
q−2k+2kn

> 0 (in particular, if q > (n+ 1)(k + 1)), then f1 ≡ f2.

4.3 Value Sharing for Holomorphic Mappings

from non-Compact Riemann Surfaces into

Pn(C)

In this section, we study the value sharing problem for holomorphic mappings on

open Riemann surfaces. It is known that Nevanlinna theory can be extended to

holomorphic mappings on parabolic (open) Riemann surfaces (see [PS14]), or the

unit-disc with the maps being admissible, i.e grow fast enough. The theory also was

extended by Fujimoto [Fuj86] to holomorphic mappings on the unit-disc (or a general

open Riemann surface with a complete metric) which may not be admissible, but still

satisfy a (mild) growth condition. We discuss each case.

The parabolic (open) Riemann surface case. A Riemann surface Y is parabolic

if any bounded subharmonic function defined on Y is constant. This is a large class

of surfaces, including e.g. Y = S\Λ, where S is a compact Riemann surface of

arbitrary genus and Λ ⊂ S is any closed polar set. It is well-known (see [AS60])

that a Riemann surface Y is parabolic if and only if it admits a smooth exhaustion

function σ : Y → [1,∞[ such that:

• σ is strictly subharmonic in the complement of a compact set,

• τ := log σ is harmonic in the complement of a compact set of Y . Moreover, we
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impose the normalization ∫
Y

ddcτ = 1,

where the operator dc is defined as follows dc :=
√
−1

4π
(∂̄ − ∂).

In Nevanlinna theory for parabolic (non-compact) Riemann surfaces, the growth

of the Euler characteristic of the balls B(r) := {σ < r} will appear. We introduce the

following notion.

Definition 4.10 ([PS14], Definition 1.2). Let (Y, σ) be a parabolic Riemann surface,

together with an exhaustion function σ as above. For each t ≥ 1 such that the

set S(t) := {σ = t} is non-singular, we denote χσ(t) the Euler characteristic of the

domain B(t), and let

Xσ(r) :=

∫ r

1

|χσ(t)|dt
t

be the (weighted) mean Euler characteristic of the ball of radius r.

If Y = C, then Xσ(r) is bounded by log r. The same type of bound is verified

if Y is the complement of a finite number of points in C. If Y = C\E, where E is

a closed polar set of infinite cardinality, then things are more subtle, depending on

the density of the distribution of the points of E in the complex plane. However,

an immediate observation is that the surface Y has finite Euler characteristic if and

only if Xσ(r) = O(log r). To state the logarithmic derivative lemma in the parabolic

context, we first recall that the tangent bundle TY of a non-compact parabolic surface

admits a trivializing global holomorphic section v ∈ H0(Y, TY ) cf. [PS14] (actually,

any such Riemann surface admits a submersion into C). We will now suppose that as

part of the data we are given a vector field ξ ∈ H0(Y, TY ) which is nowhere vanishing
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hence it trivializes the tangent bundle of our surface Y . We denote by f ′ the section

df(ξ) of the tangent bundle f ∗TX (for a holomorphic map f : Y → X, where X is

any complex manifold). For example, if Y = C, then we can take ξ = ∂
∂z

. We recall

the following version of the classical logarithmic derivative lemma (see [PS14]).

Lemma 4.11 ([PS14], Theorem 3.7). Let f : Y → P1(C) be a holomorphic map

defined on a parabolic Riemann surface Y . The following inequality holds

mf ′/f (r) ≤ C(log Tf (r) + log r) + Xσ(r) ‖.

Using this we can prove the following analogy of H. Cartan’s Second Main

Theorem, for example, see Wong-Stoll [WS94], Theorem 6.3 (note that ricτ (r) =

Xσ(r) in our case).

Theorem 4.12 (Second Main Theorem for Parabolic Open Riemann

Surfaces). Let f : (Y, σ) → Pn(C) be a linearly non-degenerate holomorphic map.

Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position. Then we have

(q − (n+ 1))Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj) +O(log Tf (r) + log r) +

n(n+ 1)

2
Xσ(r) ‖.

Theorem 4.13. Let f1, f2 : (Y, σ) → Pn(C) be two linearly non-degenerate

holomorphic maps. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general

position. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,
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(ii) Let k ≤ n be a positive integer such that f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 < · · · <

ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

We further assume that

ρ := lim sup
r→∞

Xσ(r)

Tf1(r) + Tf2(r)
< +∞.

Assume that

q − (n+ 1)− 2knq

q − 2k + 2kn
− n(n+ 1)ρ > 0,

then f1 ≡ f2.

Proof. The argument is similar. Assume that f1 6≡ f2. By using Theorem 4.12 and

Lemma 3.9 we get

(q − (n+ 1))(Tf1(r) + Tf2(r)) (4.2)

≤ 2kn

q − 2k + 2kn
Nχ(r, 0) +O(max

1≤i≤2
log Tfi(r) + log r) + n(n+ 1)Xσ(r) ‖

≤ 2knq

q − 2k + 2kn
(Tf1(r) + Tf2(r)) +O(max

1≤i≤2
log Tfi(r) + log r) + n(n+ 1)Xσ(r) ‖.

Hence we get

q − (n+ 1)− 2knq

q − 2k + 2kn
≤ n(n+ 1)ρ.

This proves the Theorem.

The unit disc case. Nevanlinna theory also works for meromorphic functions, or

more generally holomorphic maps, on the unit-disc, as long as they are admissible,
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i.e grow fast enough. However, slow growing maps on the unit disc exhibit a different

behavior. For them, an essential part of the remainder in the Second Main Theorem

is no longer small enough. In this section, we consider a wider range of holomorphic

maps on the unit-disk. Before doing this, we first state the value sharing results for

admissible mappings on the unit-disc (see, for example,[Fan99]). We first recall the

Second Main Theorem.

Theorem 4.14 (Second Main Theorem for the Unit Disc). Let f be a

meromorphic function on the unit disc 4(1) with limr→1− Tf (r) = ∞ and a1, . . . , aq

distinct points in C ∪ {∞}. Then,

(q − 2)Tf (r) ≤
q∑
j=1

N
(1)
f (r, aj) +O

(
log

1

1− r

)
‖,

where ‖ means the inequality holds for all r ∈ (0, 1) except for a set E with
∫
E

dr
1−r <

∞.

This theorem can be easily extended to holomorphic maps from 4(1) into Pn(C),

similar to the Cartan’s Second Main Theorem (see [Car33]). We’ll omit the statement

here.

Definition 4.15. The holomorphic map f : 4(1) → Pn(C) is said to be admissible

if

lim sup
r→1−

Tf (r)

log 1
1−r

=∞.

Similar to the proof of Corollary 4.9, but instead of using H. Cartan’s Second Main

Theorem (see [Ru01a]) for unit-disc, we can prove the following result for admissible
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mappings.

Theorem 4.16. Let f1, f2 : 4(1) → Pn(C) be admissible linearly non-degenerate

holomorphic maps. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general

position. Assume that

(i) f−1
1 (Hi) = f−1

2 (Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that f−1
1 (∩k+1

i=1Hji) = ∅ (1 ≤ i1 < · · · <

ik+1 ≤ q),

(iii) f1 = f2 on ∪qj=1f
−1
1 (Hj).

If q > 1
2
(2k + n + 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2) (in particular, if q >

(n+ 1)(k + 1)), then f1 ≡ f2.

Open Riemann surfaces with a complete metric. Nevanlinna theory was also

extended by Fujimoto [Fuj86] to holomorphic maps on the unit-disc (or a general

open Riemann surface with a complete metric) which may not be admissible, but still

satisfy a (mild) growth condition. To deal with the general case, we put our set up

in a more general context. We consider (instead of the unit-disc) an open Riemann

surface M with the pseudo-metric ds2. Here by a pseudo-metric, we mean it can be

locally represented by ds2 = λ(z)|dz|2 such that λ > 0 outside a finite set of points

on M , so we can define the divisor of ds2 as νds2 = νλ. We define the Ricci form by

Ric[ds2] := ddc[log λ] as a current (Note that in Fujimoto’s book [Fuj93b], the Ricci

form is Ric[ds2] := −ddc[log λ]). Let f : M → Pn(C) be a holomorphic map. For

ρ ≥ 0 we say that f satisfies the condition (Cρ) if there exists a compact set K such

that

Ric[ds2] ≺ ρΩf
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on M −K, where Ωf is the pull-back by f of the Fubini-Study form Ω = ddc log ‖w‖2

on Pn(C). Here for two currents Ω1,Ω2 on some open set U in M and a positive

constant c, by the notation

Ω1 ≺c Ω2

we mean that there is a divisor υ and a bounded continuous real-valued function k

on M with mild singularities on U such that υ(z) > c for each z ∈ Supp(υ) and

Ω1 + [υ] = Ω2 + ddc[log |k|2]

on U . For brevity, by Ω1 ≺ Ω2, we mean Ω1 ≺c Ω2 for some constant c.

Theorem 4.17. Let H1, . . . , Hq be hyperplanes in Pn(C), located in general position.

Let M be an open Riemann surface with a complete continuous pseudo-metric ds2.

Let f, g : M → Pn(C) be two linearly non-degenerate holomorphic maps satisfying the

condition (Cρ). Assume that

(i) f−1(Hi) = g−1(Hi) for i = 1, . . . , q,

(ii) Let k ≤ n be a positive integer such that f−1(∩k+1
i=1Hji) = ∅ (1 ≤ i1 < · · · <

ik+1 ≤ q),

(iii) f = g on ∪qj=1f
−1(Hj).

If

q > (n+ 1) +
2knq

q − 2k + 2kn
+

1

2
n(n+ 1)ρ,

then f ≡ g.

To prove our theorem, we need the following result from Fujimoto (see [Fuj93b]).
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Lemma 4.18 ([Fuj93b], Theorem 4.2.6). Let M be a open Riemann surface with a

complete continuous pseudo-metric ds2 and let dτ 2 be a continuous pseudo-metric on

M whose curvature is strictly negative outside a compact set K. Assume that there

exists a constant p with 0 < p < 1 such that

Ric[ds2] ≺1−p p(Ric[dτ 2])

on M − K. Then M is of finite type, namely, M is biholomorphic to a compact

Riemann surface with finitely many points removed.

Note that the Ric[ds2] defined in Fujimoto’s book [Fuj93b] is different from the

definition here by a negative sign.

Proof of Theorem 4.17. Let f, g : M → Pn(C) be two linearly non-degenerate

holomorphic maps with (local) reduced representations F = (f0, · · · , fn) and G =

(g0, · · · , gn), respectively. Assume that

S := q − (n+ 1)− (n2 + 2n− 1)
2q

N
− 2knq

q − 2k + 2kn
.

We can choose N big enough such that S > 0 and

q − (n+ 1)− n(n+1)ρ
2
− 2knq

q−2k+2kn

n2 + 2n− 1 + ρ
∑n

p=0(n− p)2
>

2q

N
>

q − (n+ 1)− n(n+1)ρ
2
− 2knq

q−2k+2kn

1 + n2 + 2n− 1 + ρ
∑n

p=0(n− p)2
.

Let

l :=

(
n(n+ 1)ρ

2
+

n−1∑
p=0

(n− p)2 2qρ

N

)
/S. (4.3)
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Then we have

1− 2q

NS
< l < 1. (4.4)

Denote by

φFk (Hj) =
|Fk(Hj)|2

|Fk|2
, φGk (Hj) =

|Gk(Hj)|2

|Gk|2
.

For an arbitrary holomorphic coordinate z, we set

h1 := c

[
|F |q−(n+1)−(n2+2n−1) 2q

N |Fn|1+ 2q
N

∏n−1
p=1 |Fp|

4q
N∏q

j=1 |F (Hj)|
∏n−1

p=0

∏q
j=1(N − log φFp (Hj))

]2βn

,

h2 := c

[
|G|q−(n+1)−(n2+2n−1) 2q

N |Gn|1+ 2q
N

∏n−1
p=1 |Gp|

4q
N∏q

j=1 |G(Hj)|
∏n−1

p=0

∏q
j=1(N − log φGp (Hj))

]2βn

,

where β−1
n = n(n+1)

2
+ 2q

N

∑n−1
p=0 (n − p)2. Let dτ 2 = η(z)|dz|2 be the pseudo-metric

given by

η(z) :=

(
|χ(z)|

|F (z)|q|G(z)|q

) 2knβn
q−2k+2kn √

h1(z)h2(z),

where χ is the auxiliary function given in (3.7). Note that if choose another local

coordinate u instead of z, then each Fk (as well as Gk) is multiplied by

∣∣∣∣dzdu
∣∣∣∣p(p+1)/2

so η(z) is multiplied by

∣∣∣∣dzdu
∣∣∣∣. Hence dτ 2 is well-defined on M − K independently

of the choice of holomorphic local coordinate z. From Proposition 1 and Lemma 4

in [PR16], we know that dτ 2 is continuous pseudo-metric on M whose curvature is

strictly negative outside a compact set K. Let

ψFj,p =
∑

l 6=i1,··· ,ip

aj,lW (fl, fi1 , · · · , fip)
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and

ψGj,p =
∑

l 6=i1,··· ,ip

aj,lW (gl, gi1 , · · · , gip).

By the assumption that f and g are linearly non-degenerate, ψFj,p and ψGj,p do not

vanish identically, and thus have only isolated zeros since they are both holomorphic.

Note that, from definition,

|ψFj,p| < |Fp(Hj)| and |ψGj,p| < |Gp(Hj)|.

Denote by C := sup0<x≤1 x
2/N(N − log x). Since 0 < φFp (Hj) ≤ 1 for all p and j,

1

N − log φFp (Hj)
≥ 1

C
φFp (Hj)

2/N =
1

C

|Fp(Hj)|4/N

|Fp|4/N
≥ 1

C

|ψFj,p|4/N

|Fp|4/N
.

Similarly,

1

N − log φGp (Hj)
≥ 1

C

|ψGj,p|4/N

|Gp|4/N
.

Hence if we let

ξ :=

(∏q
j=1

∏n−1
p=0

(
|ψFj,pψGj,p|

)4/N∏n−1
p=0

∏q
j=1(N − log φGp (Hj))∏n−1

p=0 (|Fp||Gp|)4/N

)βn

,

then ξ is a well-defined bounded function on M − K which does not depend on a

choice of a holomorphic local coordinate z. From the definition of ξ and η, we see

that

(ξη)1/βn = (|F ||G|)Sφ1,

where

φ1 :=
|χ|

2kn
q−2k+2kn |FnGn|1+ 2q

N

∏n−1
p=0

∏q
j=1 |ψFj,pψGj,p|4/N∏q

j=1 |F (Hj)G(Hj)|
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and S = q − (n+ 1)− (n2 + 2n− 1)2q
N
− 2knq

q−2k+2kn
> 0. The above gives

|FG|ρφρ/S1 = (ξη)
ρ

Sβn .

Notice that φ1 is holomorphic outside K, so by the Poincare-Lelong formula,

1

2
ρ(Ωf + Ωg) +

ρ

S
[φ1 = 0] =

ρ

Sβn
ddc[log η] +

ρ

Sβn
ddc[log ξ]. (4.5)

This gives 1
2
ρ(Ωf + Ωg) ≺ l(Ric[dτ 2]) where l = ρ

Sβn
(which is the same as in (4.3))

and dτ 2 = η(z)|dz|2. On the other hand, from our assumption, Ric[ds2] ≺ ρΩf

and Ric[ds2] ≺ ρΩg and so Ric[ds2] ≺ 1
2
ρ(Ωf + Ωg). Hence, from (4.5), Ric[ds2] ≺

l(Ric[dτ 2]). As we can make 1− l small by letting N big enough (see (4.4)), this gives

Ric[ds2] ≺1−l lRic[dτ 2]. Hence, by Lemma 4.18 since l < 1, M is biholomorphic to

a compact Riemann surface with finitely many points removed, and the problem is

reduced to Theorem 4.8. The Theorem is thus proved by applying Theorem 4.8.
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Chapter 5

Uniqueness Results for p-adic

Holomorphic Mappings into Pn(Cp)

5.1 Non-Archimedean Value Distribution Theory

In this section, we consider the value-sharing problem for p-adic holomorphic maps.

The reason we put this chapter is that the p-adic holomorphic curves have many

similarities with the holomorphic maps defined on a compact Riemann surface of

genus g = 0. In particular, we notice that the error term (g(S)− 1) appeared in the

Second Main Theorem for holomorphic maps (see Theorem 3.4) serves the same role

as the term −n(n+1)
2

log r in the Second Main Theorem for p-adic holomorphic maps

(see Theorem 5.7), which are both negative when g(S) = 0. So we shall see that the

statements of value sharing for p-adic holomorphic maps are similar to the statements

of value sharing for holomorphic maps from the compact Riemann surface of genus

zero. This is the main motivation that we include this chapter in this thesis.
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We recall some definitions (see [Ru01b]). Let p be a prime number, and let | |p

be the standard p-adic valuation on Q normalized so that |p|p = p−1. Let Qp be the

completion of Q with respect to the norm | |p, and let Cp be the completion of the

algebraic closure of Qp. Note that it is a theorem that Cp is algebraically closed. For

the simplicity, we denote the p-adic norm | |p on Cp by | |. We also note that the

result also works for a general complete, algebraic closed non-Archimedean field of

characteristic zero.

It is known that an infinite sum converges in a non-Archimedean norm if and

only if its general term approaches zero. So an expression of the form h(z) =∑∞
n=0 anz

n, an ∈ Cp is well defined whenever |anzn| → 0, as n→∞. Such functions

are called p-adic analytic functions. Let h(z) be p-adic analytic function on |z| < R.

Define, for each 0 < r < R, Mh(r) = max|z|=r |h(z)|.

Lemma 5.1 ([AS71], Lemma). The following statements hold:

(1) Mh(r) = maxn≥0 |an|rn,

(2) The maximum on the right of (1) attained for a unique value of n except for

a discrete sequence of values {rν} in the open interval (0, R),

(3) If r 6∈ {rν} and |z| = r < R, then |h(z)| = Mh(r),

(4) If h is a non-constant p-adic entire function, then Mh(r)→∞ as r →∞,

(5) Mh′(r) ≤Mh(r)/r (r > 0) (so logMh′(r) ≤ logMh(r))− log r),

(6) For two analytic functions f, g, Mfg(r) = Mf (r)Mg(r).

Let B(r) be the open disc which is defined by B(r) = {z| |z| < r}, and we use

B[r] to denote the closed disc.
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We also define ν(r, h) = maxn≥0{n | |an|rn = |h|r}, ν(r, h) is called the central

index.

We have the following Poisson-Jensen Formula in [CY97].

Theorem 5.2 ([CY97], Theorem 3.1). The central index ν(r, h) increases as r −→ ρ,

where ρ is defined in open subset B(r) = {z : |z| < r} for 0 < r < ρ, and satisfies the

formula

log |h|r = log |aν(0,h)|+
∫ r

0

ν(t, h)− ν(0, h)

t
dt+ ν(0, h)log r

where ν(0, h) = limr→0+ ν(r, h).

We also have the following Weierstrass preparation theorem in [CY97].

Theorem 5.3 ([CY97], Theorem 2.2). There exists a unique monic polynomial P of

degree ν(r, h) and a p-adic analytic function g on B[r] such that h = gP , where g does

not have any zero inside B[r], and P has exactly ν(r, h) zeros, counting multiplicities.

Let nh(r, 0) denote the number of zeros of h in B[r], counting multiplicity. Define

the valence function of h by

Nh(r, 0) =

∫ r

0

nh(t, 0)− nh(0, 0)

t
dt+ nh(0, 0) log r.

Weierstrass Preparation Theorem shows that

nh(r, 0) = ν(r, h),
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and the Poisson-Jensen Formula implies that

Nh(r, 0) = log |h|r − log |anh(0,0)|.

Let f : Cp → Pn(Cp) be a p-adic holomorphic map. Let f̃ = (f0, . . . , fn), be

a reduced representative of f , where f0, . . . , fn are p-adic entire functions on Cp

and have no common zeros. The Nevanlinna-Cartan characteristics function Tf (r) is

defined by

Tf (r) = log ||f ||r

where

||f ||r = max{|f0|r, . . . , |fn|r}.

Let Q be a homogeneous polynomial (form) in n+ 1 variables with coefficients in

Cp. We consider the p-adic entire function Q ◦ f = Q(f0, . . . , fn) on Cp. Let nf (r,Q)

be the number of zeros of Q ◦ f in the disk {z | |z|p < r} counting multiplicity. Set

Nf (r,Q) =

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt+ nf (0, Q) log r,

mf (r,Q) = log
||f ||dr
|Q ◦ f |r

if Q ◦ f 6≡ 0.

Forms Q1, . . . , Qq, where q > n, are said to be admissible if no set of n+ 1 forms

in this system has common zeros in Cn+1 − {0}.

We have the following First Main Theorem in [Ru01b].
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Theorem 5.4 ([Ru01b], p.1267). Let f : Cp → Pn(Cp) be a p-adic holomorphic map,

and let Q be homogeneous forms of degree d. If Q(f) 6≡ 0, then for every real number

r with 0 < r <∞

mf (r,Q) +Nf (r,Q) = dTf (r) +O(1),

where O(1) is a constant independent of r.

Proof. By definition, we have

mf (r,Q) +Nf (r,Q) = log
||f ||dr
|Q ◦ f |r

+

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt+ nf (0, Q) log r

= log ||f ||dr − log |Q ◦ f |r +

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt

+nf (0, Q) log r

= d log ||f ||r − log |Q ◦ f |r +

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt

+nf (0, Q) log r

= dTf (r)− log |Q ◦ f |r +

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt

+nf (0, Q) log r.

By Poisson-Jensen Formula, (Theorem 5.2),

∫ r

0

nf (t, Q)− nf (0, Q)

t
dt+ nf (0, Q) log r − log |Q ◦ f |r = O(1)

Therefore, mf (r,Q) +Nf (r,Q) = dTf (r) +O(1), which proves the theorem.
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Definition 5.5. Let f1(z), . . . , fn(z) be p-adic entire functions on Cp. Let

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 . . . fn

f 1
0 f 1

1 . . . f 1
n

...
...

. . .
...

f
(n)
0 f

(n)
1 . . . f

(n)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The determinantW is called the Wronskian of f1, f2, . . . , fn, which is normally written

as W := W (f0, . . . , fn).

Theorem 5.6. Properties of the Wronski determinants:

(a) W (f0, . . . , fn) 6≡ 0 if and only if (f0, . . . , fn) are linearly independent.

(b) If (g0, . . . , gn) = (f0, . . . , fn)B, where B is a constant (n+ 1)× (n+ 1) matrix,

then W (g0, . . . , gn) = detB ×W (f0, . . . , fn).

(c) W (gf0, . . . , gfn) = gn+1W (f0, . . . , fn) for every function g.

(d) L(f0, . . . , fn) := W (f0, . . . , fn)/(f0, . . . fn).

(e) L(gf0, . . . , gfn) = L(f0, . . . , fn).

We also have p-adic Second Main Theorem as follows.

Theorem 5.7 ([TT14], p.95). Let f be a linearly non-degenerate p-adic holomorphic

map from Cp into Pn(Cp) and H1, ..., Hq be hyperplanes in Pn(Cp) in general position.

Then

(q − n− 1)Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)−

n(n+ 1)

2
log r +O(1),

for all r ≥ 1.
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Proof. Let L1, . . . , Lq be the linear forms defining H1, . . . , Hq. For any fixed r > 1,

we take µ(r, 0), · · · , µ(r, n) ⊂ {1, . . . , q} such that

0 < |Lµ(r,0)(f)|r ≤ · · · ≤ |Lµ(r,n)(f)|r ≤ |Lj(f)|r,

for f ∈ {1, . . . , q}\{µ(r, 0), . . . , µ(r, n)}. By the assumption that H1, ..., Hq are in

general position, Lµ(r,0), . . . , Lµ(r,n) are linearly independent, we can write fi =∑n
j=0 ãijLµ(r,j). Thus we get

‖f‖r ≤ C max
0≤j≤n

|Lµ(r,j)|r.

Hence

‖f‖r
|Lj(f)|r

≤ C,

for any j ∈ {1, . . . , q}\{µ(r, 0), . . . , µ(r, n)}. Thus

q∏
j=1

||f‖r‖Lj‖
|Lj(f)|r

≤ C
n∏
i=0

||f‖r‖Lµ(r,i)‖
|Lµ(r,i)(f)|r

.

Then by the Wronskian determinant of f0, . . . , fn, we have

q∑
j=1

mf (r,Hj) =
n∑
i=0

log
||f‖r‖Lµ(r,i)‖
|Lµ(r,i)(f)|r

= log
|W |r

|Lµ(r,i)(f)|r
+ log

‖f‖r
|W |r

+O(1)

= (n+ 1)Tf (r)−NW (r, 0) + log
|W |r

|Lµ(r,i)(f)|r
+O(1).

Here, by the property of the Wronskian and property (5) in the Lemma 5.1 above,
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we have

log
|W |r

|Lµ(r,i)(f)|r
= log

|W (Lµ(r,0)(f), . . . , Lµ(r,n)(f))|r
|Lµ(r,i)(f)|r

+O(1) ≤ −n(n+ 1)

2
log r.

Thus we have

q∑
j=1

mf (r,Hj) ≤ (n+ 1)Tf (r)−NW (r, 0)− n(n+ 1)

2
log r +O(1)

or by the Theorem 5.4

(q − n− 1)Tf (r) ≤
q∑
j=1

Nf (r,Hj)−NW (r, 0)− n(n+ 1)

2
log r +O(1).

It is easy to prove that

q∑
j=1

Nf (r,Hj)−NW (r, 0) ≤
q∑
j=1

N
(n)
f (r,Hj).

This proves the Theorem.

5.2 Preliminary Results on Uniqueness Theorem

for p-adic Holomorphic Mappings into Pn(Cp)

We first discuss the result of Ru [Ru01c].

Theorem 5.8 ([Ru01c], Theorem 2.2). Let f, g : Cp → Pn(Cp) be two p-adic linearly

non-degenerate holomorphic maps. Let H1, . . . , H3n+1 be hyperplanes in Pn(Cp)

located in general position. Assume that
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(i) f−1(Hj) = g−1(Hj), 1 ≤ j ≤ 3n+ 1,

(ii) For each i 6= j, f−1(Hi) ∩ f−1(Hj) = ∅.

If f(z) = g(z) for every point z ∈ ∪qj=1f
−1(Hj), then f ≡ g.

Remark:

(1) This Theorem can be compared with Theorem 3.7. In particular, the role of

−n(n+1)
2

log r (being negative) in this theorem is similar to the role of (2g−2) appeared

in Theorem 3.7 which is negative in the case g = 0.

(2) Recently, Qiming Yan, in [Yan11], and Tan and Trinh, in [TT14], improved Ru’s

result from 3n+ 1 to 2n+ 2.

Proof. Similar to the proof of Theorem 3.7 in the case genus = 0, assume that

f1 6≡ f2, then Φ := F1j0 − F2j0 6≡ 0 for some 1 ≤ j0 ≤ q.

By Theorem 5.7, we get for all r ≥ 1

(q − n− 1)Tf (r) ≤
q∑
j=1

N
(n)
f (r,Hj)−

n(n+ 1)

2
log r +O(1)

≤ n

q∑
j=1

N̄f (r,Hj)−
n(n+ 1)

2
log r +O(1).

Same for g,

(q − n− 1)Tg(r) ≤ n

q∑
j=1

N̄g(r,Hj)−
n(n+ 1)

2
log r +O(1).

By summing up of both sides of the above inequality for all r ≥ 1,

(q − (n+ 1))(Tf (r) + Tg(r)) ≤ 2n(NΦ(r, 0))− n(n+ 1) log r +O(1).

53



Hence

(q − (n+ 1))(Tf (r) + Tg(r)) ≤ 2n(Tf (r) + Tg(r))− n(n+ 1) log r +O(1).

This gives a contradiction.

Theorem 5.9 ([TT14], Theorem 1.3). Let f and g be non-Archimedean linearly

non-degenerate holomorphic maps from an algebraically closed field κ of characteristic

p ≥ 0 into Pn(κ) defined by the representations f = (f1, . . . , fn) and g = (g1, . . . , gn),

respectively. Let Hj(ω0, . . . , ωn), Lj(ω0, . . . , ωn) (j = 1, . . . , 2n + 2) be homogeneous

linear polynomials such that {Hj}2n+2
j=1 and {Lj}2n+2

j=1 are in general position. Assume

that

(i) f−1(Hj) = g−1(Lj), for all 1 ≤ j ≤ 2n+ 2,

(ii) f−1(Hi) ∩ f−1(Hj) = ∅ for all 1 ≤ i < j ≤ 2n+ 2, and

(iii) (f,Hi)
(g,Li)

≡ (f,Hj)

(g,Lj)
on ∪2n+2

k=1 f
−1(Hk) for all k 6= i, j and 1 ≤ i < j ≤ 2n+ 2.

Then, (f,H1)
(g,L1)

≡ · · · ≡ (f,H2n+2)
(g,L2n+2)

≡ c, where c is a nonzero constant in κ.

5.3 New Results

We improve the above results as follows (Compare to Theorem 3.8. above).

Theorem 5.10. Let f, g : Cp → Pn(Cp) be two p-adic linearly non-degenerated

holomorphic maps. Let H1, . . . , Hq be hyperplanes in Pn(Cp) located in general

position. Assume that

(i) f−1(Hi) = g−1(Hi) for i = 1, . . . , q,
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(ii) Let k ≤ n be a positive integer such that i 6= j, f−1(∩k+1
i=1Hji) = ∅ (1 ≤ i1 <

· · · < ik+1 ≤ q),

(iii) f = g on ∪qj=1f
−1(Hj).

If q ≥ 1
2
(2k + n+ 1 +

√
8kn2 + 4k2 + 4kn− 4k + (n+ 1)2, then f ≡ g.

Proof. Assume that f 6≡ g. Similar to the proof of Theorem 3.7 in the genus zero

case, by applying Theorem 5.7 and Lemma 3.9, we get

(q − (n+ 1))(Tf (r) + Tg(r))

≤
q∑
j=1

(N
(n)
f (r,Hj) +N (n)

g (r,Hj))− n(n+ 1) log r +O(1)

≤
(

2kn

q − 2k + 2kn

)
Nχ(r, 0)− n(n+ 1) log r

≤
(

2knq

q − 2k + 2kn

)
(Tf (r) + Tg(r))− n(n+ 1) log r +O(1)

which gives a contradiction.
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Chapter 6

Uniqueness Results for Gauss Map

of Minimal Surfaces

6.1 Theory of Minimal Surfaces and Gauss Maps

Let x = (x1, x2, x3) : M → R3 be an oriented surface immersed in R3. By definition,

the classical Gauss map g : M → S2 is the map which maps each point p ∈M to the

point in S2 corresponding to the unit normal vector of M at p. On the other hand,

S2 is canonically identified with the extended complex plane C ∪ {∞} or P1(C) by

the stereographic projection. We may consider the Gauss map g as a map of M into

P1(C).
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x(u, v)

R3

p = x(u, v)

N : Unit Normal Vector

∂x
∂u

∂x
∂v

Translation

TpM

g
(u, v)

M

x

g = f3

f1−
√

(−1)f2

N

C̄

Stereorgraphic Projection

Figure 6.1: The Classical Gauss Map

Using system of isothermal coordinates (u, v) and by letting z = u +
√
−1v,

we can regard M as a Riemann surface. Furthermore, if M is minimal then g is a

holomorphic map. This gives us a great link to study surfaces between geometry and

Nevanlinna Theory.

We begin by recalling some notions concerning a surface x = (x1, . . . , xm) : M →

Rm immersed in Rm, which means that M is a connected, oriented real 2-dimensional

differentiable manifold and x is a differentiable map of M into Rm which has maximal

rank everywhere.
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For a point p ∈M , take a system of local coordinates (u1, u2) around p which are

positively oriented. The vectors ∂x
∂u1

∣∣
p

and ∂x
∂u2

∣∣
p

are tangent to M at p and linearly

independent because x is an immersion. This shows that the tangent plane of M at

p is given by

Tp(M) :=
{
λ
∂x

∂u1

∣∣∣
p

+ µ
∂x

∂u2

∣∣∣
p
;λ, µ ∈ R

}
and the space of all vectors which are normal to M at p, say the normal space of M

at p, is given by

Np(M) :=
{
N ;

(
N,

∂x

∂u1

∣∣∣
p

)
=

(
N,

∂x

∂u2

∣∣∣
p

)
= 0
}
,

where (X, Y ) denotes inner product of vectors X and Y . The metric ds2 on M

induced from the standard metric on Rm, called the the first fundamental form on

M , is given by

ds2 := |dx|2 = (dx, dx)

=

(
∂x

∂u1

du1 +
∂x

∂u2

du2,
∂x

∂u1

du1 +
∂x

∂u2

du2

)
= g11du

2
1 + 2g12du1du2 + g22du

2
2,

where

gij :=

(
∂x

∂ui
,
∂x

∂uj

)
1 ≤ i, j ≤ 2.

We now recall the notion of isothermal coordinates for a surface with a metric ds2.

A system of local coordinates (u1, u2) on an open set U in M is called an isothermal
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if

ds2 = λ2(du2
1 + du2

2),

for some positive C∞ function λ on U , i.e. g11 = g22, g12 = 0.

Theorem 6.1 ([Fuj93b], Theorem 1.1.9). For every surface M there is a family of

isothermal local coordinates whose domains cover the totality of M .

Proposition 6.2 ([Fuj93b], Proposition 1.1.12). For an oriented surface M with a

metric ds2, if we take two systems of positively oriented isothermal local coordinates

(u, v) and (x, y), then w := u +
√
−1v is a holomorphic function in z := x +

√
−1y

on the common domain of definition.

Let x : M → Rm be an oriented surface with a Riemannian metric ds2. With

each positive isothermal local coordinate (u, v), we associate the complex function

z := u +
√
−1v. By Proposition 6.2, the surface M has a complex structure so that

these complex-valued functions define holomorphic local coordinates on M , and so

M may be considered as a Riemann surface. From now on, we always regard M as a

Riemann surface.

Theorem 6.3 ([Fuj93b], Theorem 1.1.15). Let x = (x1, . . . , xm) : M → Rm be a

surface immersed in Rm, which is considered as a Riemann surface as above. Then,

M is minimal if and only if each xi is a harmonic function on M , namely,

∆zxi ≡
( ∂2

∂u2
+

∂2

∂v2

)
xi = 0 (1 ≤ i ≤ m)

for every holomorphic local coordinate z = u+
√
−1v.
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We next explain the generalized Gauss map of a surface x = (x1, . . . , xm) : M →

Rm immersed in Rm.

Firstly, consider the set of all oriented 2-planes in Rm which contain the origin

and denote it by G2,Rm . To clarify the set G2,Rm , we regard it as a subset of the

(m−1)-dimensional complex projective space Pm−1(C) as follows. To each P ∈ G2,Rm ,

taking a positively oriented basis {X, Y } of P such that

|X| = |Y |, (X, Y ) = 0, (6.1)

we assign the point Φ(P ) = π(X −
√
−1Y ), where π denotes the canonical projection

of Cm − {0} onto Pm−1(C), namely, the map which maps each p = (w1, . . . , wm) 6=

(0, . . . , 0) to the equivalence class

[w1 : · · · : wm] := {(cw1, . . . , cwm); c ∈ C− {0}}.

On the other hand, Φ(P ) is contained in the quadric

Qm−2(C) := {[w1 : · · · : wm];w2
1 + · · ·+ w2

m = 0} (⊂ Pm−1(C)).

In fact, for a positive basis {X, Y } satisfying (6.1) we have

(X −
√
−1Y,X −

√
−1Y ) = (X,X)− 2

√
−1(X, Y )− (Y, Y ) = 0.

Conversely, take an arbitrary point Q ∈ Qm−2(C). If we choose some W ∈ Cm − {0}

with π(W ) = Q and write W = X −
√
−1Y with real vectors X and Y , then X and

Y satisfy the condition (6.1) and Φ maps the oriented 2-plane P with positive basis
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{X, Y } to the point Q. This shows that Φ is injective.

Now, consider a surface x = (x1, . . . , xm) : M → Rm immersed in Rm. For each

point p ∈ M , the oriented tangent plane Tp(M) is canonically identified with an

element of G2,Rm after the parallel translation which maps p to the origin.

Definition 6.4. The generalized Gauss map of a surface M is defined as the map of

M into Qm−2(C) which maps each point p ∈M to Φ(Tp(M)).

x(u, v)

Rm
p = x(u, v)

∂x
∂u

∂x
∂v

TpM

∂x
∂u
−
√
−1∂x

∂vCm\{0}

G

(u, v)

M

x

G =
(
∂x1
∂z
, . . . , ∂xm

∂z

)Pm−1(C)

π

Figure 6.2: The Generalized Gauss Map

Usually, the Gauss map is defined as the conjugate of the Gauss map defined as

above.

61



For a system of positively oriented isothermal local coordinates (u, v) the vectors

X =
∂x

∂u
, Y =

∂x

∂v

give a positive basis of Tp(M) satisfying the condition (6.1) because of the isothermal

condition. Therefore, the Gauss map of M is locally given by

G = π(X −
√
−1Y ) =

[
∂x1

∂z
:
∂x2

∂z
: · · · : ∂xm

∂z

]
,

where z = u+
√
−1v.

We have the following proposition for any surfaces to be minimal.

Proposition 6.5 ([HO80] Theorem 1.1). A surface x : M → Rm is minimal if and

only if the Gauss map G : M → Pm−1(C) is holomorphic.

Proof. Assume that M is minimal. We then have

∂

∂z̄

(
∂x

∂z

)
=

∂

∂z̄

(
1

2

(
∂x

∂u
− i∂x

∂v

))
=

1

2

(
1

2

(
∂

∂u

(
∂x

∂u
− i∂x

∂v

)
+ i

∂

∂v

(
∂x

∂u
− i∂x

∂v

)))
=

1

4

(
∂2x

∂u2
− i∂x

∂u

∂x

∂v
+ i

∂x

∂u

∂x

∂v
+
∂2x

∂v2

)
=

1

4

(
∂2x

∂u2
+
∂2x

∂v2

)
=

1

4
∆x

= 0.
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This shows that ∂x
∂z

satisfies Cauchy-Riemann’s equation. Hence, the Gauss map G

is holomorphic.

Conversely, assume that G is holomorphic. The problem is local. For a

holomorphic local coordinate z we set fi = ∂xi
∂z

(1 ≤ i ≤ m). After a suitable

change of indices, we may assume that fm has no zero. Since fi/fm are holomorphic,

we have

1

4
∆xi =

∂2xi
∂z∂z̃

=
∂

∂z̃

(
fi
fm
fm

)
=

∂

∂z̃

(
fi
fm

)
fm +

fi
fm

∂fm
∂z̃

= fi
1

fm

∂fm
∂z̃

for i = 1, 2, . . . ,m. Write

1

fm

∂fm
∂z̃

= h1 +
√
−1h2

with real-valued functions h1, h2 and take the real parts of both sides of the above

equation to see

∆x = 2

(
∂x

∂u
h1 +

∂x

∂v
h2

)
∈ Tp(M).

From property of Laplace operator which is (∆x,X) = 0 for each x ∈ Tp(M), we

obtain (∆x,∆x) = 0 and so ∆x = 0. This implies that M is a minimal surface by

virtue of Theorem 6.3.

Since we will work on complete minimal surfaces, we shall explain what the

”completeness” means here.

Definition 6.6. A divergent curve on a Riemannian manifold M is a differentiable

map γ : [0, 1)→M such that for every compact subset K ⊂M there exist a t0 ∈ (0, 1)
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with γ(t) /∈ K for all t > t0. That is, γ leaves every compact subset of M .

Definition 6.7. A Riemannian manifold M is said to be complete if every divergent

curve γ : [0, 1)→M has unbounded length.

We recall the following three results obtained from Chern and Ossermann paper

[CO67].

Theorem 6.8 ([CO67], Theorem 1). Let x : M → Rm be a complete regular minimal

surface. Then the following conditions are equivalent:

(a) x : M → Rm has finite total curvature C(M),

(b) There is an integer d such that G(M) intersects at most d times any hyperplane

which does not contain it (the number d is called the degree of G),

(c) The Gauss map is algebraic,

(d) M is conformally equivalent to a compact surface M̄ punctured at a finite

number of points P1, . . . , Pr.

Theorem 6.9 ([CO67], Theorem 2). If x : M → Rm is a complete regular surface with

r boundary components, then C(S) ≤ 2π(χ− r), where χ is the Euler characteristic.

Theorem 6.10 ([CO67], Theorem 3). The total curvature of a complete regular

surface in Rm is either −∞ or −2πd, where d is the integer in statement (b) of

Theorem 6.8
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6.2 Preliminary Results on Uniqueness Theorem

for Gauss Map of Complete Minimal Surfaces

in Rm with finite total curvature

Theorem 6.11 ([JR07], Theorem 4.1). Consider two complete minimal surfaces

M, M̃ immersed in Rm with finite total Gauss curvatures. Let G, G̃ be the generalized

Gauss map of M, M̃ respectively. Suppose that there is a conformal diffeomorphism

Φ between M and M̃ and let G1 := G,G2 := G̃ ◦ Φ. Assume that G1, G2 are linearly

non-degenerate. Let H1, . . . , Hq be the hyperplanes in Pm−1(C) in general position.

Assume that

(i) G−1
1 (Hj) = G−1

2 (Hj) for j = 1, . . . , q,

(ii) For every i 6= j, G−1
1 (Hi) ∩G−1

1 (Hj) = ∅,

(iii) G1 = G2 on ∪qj=1G
−1
1 (Hj).

If q ≥ 1
2
(m2 + 5m− 4) then G1 ≡ G2.

Proof. Assume that G1 6≡ G2. Since the minimal surface x : M → Rm has finite total

curvature C(M), by Theorem 6.8, M is conformally equivalent to a compact surface

M̄ punctured at a finite number of points P1, . . . , Pr and the generalized Gauss map

G extends holomorphically to G : M̄ → Pm−1(C).

By Theorem 6.9 and Theorem 6.10,

−2π deg(G1) = C(S)

≤ 2π(χ− r)

= 2π(2− 2g − r − r)
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= 2π(2− 2g − 2r).

As before, we can find (c1, . . . , cm) ∈ Cm such that, if we let Hc = {c1x1 + · · · +

cmxm = 0}, then G−1
1 (Hc)∩G−1

1 (Hj) = ∅ and G−1
2 (Hc)∩G−1

2 (Hj) = ∅ for j = 1, . . . , q.

We fix such Hc and let Φ =
Lj0 (G1)

Lc(G1)
− Lj0 (G2)

Lc(G2)
6≡ 0. Let EG1 = ∪qj=1G

−1
1 (Hj). By the

Theorem 3.5 with E = {P1, . . . , Pr}, we get

(q −m) deg(G1) ≤
q∑
j=1

∑
P 6∈E

min{m− 1, υP (Lj(G1))}

+
1

2
m(m− 1){2(g − 1) + r}

≤ (m− 1)|EG1|+
1

2
m(m− 1){deg(G1)− r}}

< (m− 1)|EG1|+
1

2
m(m− 1) deg(G1).

The above inequality also holds for G2. Therefore, for i = 1, 2,(
q − 1

2
m(m+ 1)

)
deg(Gi) < (m− 1)|EGi |. By the assumptions,

|EG1 | = |EG2| ≤ |{Φ = 0}| ≤ deg(G1) + deg(G2).

Hence

(
q − 1

2
m(m+ 1)

)
(deg(G1) + deg(G2)) < 2(m− 1)(deg(G1) + deg(G2)).

Therefore

q <
1

2
m(m+ 1) + 2(m− 1) =

1

2
(m2 + 5m− 4)

which gives a contradiction. This finishes the proof.
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6.3 New Results

Theorem 6.12. Consider two complete minimal surfaces M, M̃ immersed in Rm

with finite total Gauss curvatures. Let G, G̃ be the generalized Gauss map of M, M̃

respectively. Suppose that there is a conformal diffeomorphism Φ between M and M̃

and let G1 := G,G2 := G̃ ◦ Φ. Assume that G1, G2 are linearly non-degenerate. Let

H1, . . . , Hq be the hyperplanes in Pm−1(C) in general position. Assume that

(i) G−1
1 (Hj) = G−1

2 (Hj) for j = 1, . . . , q,

(ii) Let k ≤ m − 1 be a positive integer such that i 6= j, G−1
1 (∩k+1

i=1Hji) = ∅

(1 ≤ i1 < · · · < ik+1 ≤ q),

(iii) G1 = G2 on ∪qj=1G
−1
1 (Hj).

If

q −m− 2k(m− 1)q

q − 4k + 2km
− 1

2
m(m− 1) ≥ 0,

then G1 ≡ G2.

Proof. Assume that G1 6≡ G2. Since the minimal surface x : M → Rm has finite total

curvature C(M), by Theorem 6.8, M is conformally equivalent to a compact surface

M̄ punctured at a finite number of points P1, . . . , Pl and the generalized Gauss map

Gi extends holomorphically to Gi : M̄ → Pm−1(C) for i = 1, 2. So we are in the

similar situation in the case 2 of the proof of Theorem 4.8. Similar to (4.1) with

n = m− 1, we get

(q −m)(deg(G1) + deg(G2))

≤ 2k(m− 1)q

q − 4k + 2km
(deg(G1) + deg(G2)) +m(m− 1){2(g − 1) + l}.
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Now by Theorem 6.9 and Theorem 6.10, for i = 1, 2,

−2π deg(Gi) = C(S) ≤ 2π(χ− l) = 2π(2− 2g − l − l) = 2π(2− 2g − 2l).

Hence,

(q −m)(deg(G1) + deg(G2)) ≤ 2k(m− 1)q

q − 4k + 2km
(deg(G1) + deg(G2))

+
1

2
m(m− 1)(deg(G1) + deg(G2))−m(m− 1)l.

Hence,

q −m− 2k(m− 1)q

q − 4k + 2km
− 1

2
m(m− 1) < 0.

which gives a contradiction. This finishes the proof.

Finally, we show that the results of Park-Ru on the general case (without the

assumption that M has finite total curvature) (see [PR16]) can be derived by applying

Theorem 4.17.

Theorem 6.13 ([PR16], Main Theorem). Consider two complete minimal surfaces

M, M̃ immersed in Rm. Let G, G̃ be the generalized Gauss map of M, M̃ respectively.

Suppose that there is a conformal diffeomorphism Φ between M and M̃ and let G1 :=

G,G2 := G̃ ◦ Φ. Assume that G1, G2 are linearly non-degenerate. Let H1, . . . , Hq be

hyperplanes in Pm−1(C) in general position. Assume that

(i) G−1
1 (Hj) = G−1

2 (Hj) for j = 1, . . . , q,

(ii) Let k ≤ m − 1 be a positive integer such that i 6= j, G−1
1 (∩k+1

i=1Hji) = ∅

(1 ≤ i1 < · · · < ik+1 ≤ q),
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(iii) G1 = G2 on ∪qj=1G
−1
1 (Hj).

If

q >
(m2 +m+ 4k) +

√
(m2 +m+ 4)2 + 16km(m+ 1)(m− 2)

4
,

then G1 ≡ G2.

Proof. By considering a universal cover, we can, without loss of generality, assume

that M is either C or the unit-disc. In the case M is C, then Corollary 4.9 can be

applied. In the case when M = 4(1), we notice that the metric on M is induced by

‖G(z)‖2|dz|2, so we can take ρ = 1. Thus the theorem is derived by using Theorem

4.17 with n = m− 1 and ρ = 1.
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holomorphes données. Mathematica, 7(5):31, 1933.

[CO67] S. S. Chern and Robert Osserman. Complete minimal surfaces in

Euclideann-space. Journal d’Analyse Mathématique, 19(1):15–34, 1967.
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[Lü12] F. Lü. The uniqueness problem for meromorphic mappings with truncated

multiplicities. Kodai Mathematical Journal, 35(3):485–499, 2012.

[Nev25] R. Nevanlinna. Un thorme d’unicité relatif aux fonctions uniformes dans le
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