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Abstract

Parametric estimation techniques are commonly used, in academia and industry,

to estimate the drift and diffusion of Stochastic Differential Equations (SDE). Their

major limitation is that they require a functional form for the drift and diffusion

terms to be implemented. Such assumptions increase the risk of misspecification.

Non-parametric methods on the other hand allow the estimation of both components

without a priori assumptions. In this study, we first use a non-parametric technique

based on eigenvalues and eigenfunctions to study the reconstruction of the drift

and diffusion. In a second part with another non-parametric method, based on

conditional expectation, we study the estimation errors generated by the space-time

discretization necessary for the estimation. The work on these two non-parametric

estimations constitute the two parts of this thesis. In the first part, we motivate

the use of non-parametric techniques to model time series data in real applications,

explain the spectral reconstruction, and propose a methodology to extend its use

to processes commonly used in finance. A real world application on intraday data

is presented. In the latter, the components of a SDE driving the crude oil price

are reconstructed for the following two periods: 2010-2013 and 2015-2016. A mean

reverting process is identified for the first period whereas a random walk hypothesis

failed to be rejected for the second period. The reconstruction is sensitive to the

sample size and the discretization. Estimating drift and diffusion from discretely

sampled data is fraught with the potential for errors from space-time discretization.

Therefore, in the second part of this thesis we study in the L2 sense the impact

of the space-time discretization on the estimation errors of conditional expectation
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based estimators. We concentrate this analysis on the case of Ornstein-Uhlenbeck

process. We found that for time series data observed at fixed interval, the choice of

an optimal space discretization influences the rate at which the errors decay. When

the sample size is known, an upper bound for the errors is obtained analytically and

verified using numerical simulations. We also propose upper bounds for the case of

unknown sample size.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The increasing availability of financial time series data has motivated the use of vari-

ous stochastic modeling techniques to understand the dynamics of financial markets.

A good example of this growing accessibility is the fact that popular web browsers

such as Yahoo and Google now offer, in addition to corporate news headlines, free

historical data to model various asset prices, back testing investments strategies, or

trigger entry and exit signals in trading systems. In quantitative finance, Stochastic

Differential equations (henceforth SDE) has been introduced as a continuous time

1



1.1. MOTIVATION

model of financial observables; such as assets and commodities prices, rates [8,9,17,

28–30, 59, 71]; as well as unobservable quantities such as derivative securities prices,

risk, creditworthiness, and others [14, 16, 23, 36, 37, 39, 44, 45, 48]. The identification

from time series data of the basic components a SDE, its drift and diffusion terms,

is a critical and necessary step toward practical financial applications. In the litera-

ture, one could find numerous studies on this topic, [1, 4–7, 18–20, 42, 51, 52, 74, 75].

In statistics, there are two standard ways to estimate coefficients or functions: using

a parametric or a non-parametric approach [3,11,38]. Both of these statistical meth-

ods can be challenging for different reasons. One of them could be related to the

sample size available for the estimation. On one hand, parametric methods can be

implemented with less data but require some assumptions on the process [11,38,40].

On the other hand, non-parametric techniques generally do not impose conditions

on the process but work best with a large number of data points [3]. The sample

size could influence the choice of the type of estimation used by researchers. Another

reason is the sampling frequency of the data. Financial data could be nowadays ob-

tained at different time frequencies such as annually, monthly, weekly, daily, minute,

second, milliseconds, and even microseconds. The high frequency data are currently

the hardest to find and the more expensive. The existence of such data is sometimes

associated to the belief that in financial data analysis the more data we have the bet-

ter. However, some studies have clearly shown that using more data in an estimation

doesn’t imply the best goodness of fit [2,4,6]. Indeed discrepancies in the statistical

behavior between the proposed SDE and the observational data might lead to large

errors in the parameter or functional estimation, [2, 78]. Such issue is well known in
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the finance literature where high frequency time series are known to be composed

of market microstructure noise that if unaccounted can impact the quality of the

estimators. In that case, subsampling which means reducing the sampling frequency

produces better results, [2,4–7]. A third reason, that is also the central theme of this

dissertation, is the model selection. In other terms, which functional assumptions to

make on the drift and diffusion of a proposed SDE to obtain the greatest goodness

of fit. When dealing with observational datasets in financial markets, the appropri-

ateness of the model can be measured by its ability to generate profits and losses

[25, 26, 55, 69, 73]. For this reason, model selection is critical for market participants

and remains a very active research area in academia. Imposing parametric restric-

tions on the drift and diffusion is for many practitioners the starting point. After a

preliminary work on a ’toy’ model, more sophisticated diffusion process are consid-

ered. A good example is in derivatives pricing where to model an asset whose value

Vt follows a certain stochastic process, [8, 9, 48, 59] the building block equations are

generally Arithmetic or Geometric Brownian Motion, respectively ABM and GBM

with the following known form:

ABM : dVt = µdt+ σdWt and GBM : dVt = µVtdt+ σVtdWt,

where µ and σ are constant parameters and Wt is a standard Brownian motion. The

literature contains a great amount of references on parametric estimation of SDEs,

[1, 3, 5, 7, 11, 38]. A survey paper on different parametric approaches could be found

in [72]. But we chose in the following to avoid any assumption on the SDE. For

this purpose, we selected non-parametric methods and explore them in a free model

environment. Consequently, the first objective of this dissertation is to identify
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from discrete data the drift and diffusion without parametric restrictions. Different

approaches in the literature have been proposed to implement such estimation, [1,

18–20, 33, 42, 51, 52, 74, 75]. We chose to follow the approach developed by [18] that

makes use of the eigenspectrum, i.e eigenvalues and eigenfunctions, of the discretized

generator of the process to reconstruct the drift and diffusion. The sensitivity of the

chosen non-parametric technique to space and time discretization motivates an error

analysis. This study uses conditional expectation based estimators and constitutes

the second part of this work.

1.2 Outline

This thesis is divided into 2 main chapters.

In Chapter 2, we review the methodology of reconstruction of the drift and

diffusion using spectral information. The procedure is implemented on a SDE whose

drift and diffusion have periodic boundary conditions. We propose for this type

of SDE an alternative matrix to generate the eigenspectrum. We then propose an

extension to stochastic processes commonly used in financial applications, known as

affine processes. An application to the modeling of crude oil price is realized using

real 1-minute data for a period covering November 2010 to December 2016.

In Chapter 3, we propose to study the impact of the time and space discretiza-

tion on the estimation of the drift and diffusion of a SDE. We restrict our attention

to the study of an Ornstein-Uhlenbeck (OU) process and to conditional expectation
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based estimators. We propose two estimators, one for the drift and one for the dif-

fusion. The chapter begins by assuming that the number of data points is fixed in

each interval, or bin, where estimation is performed, and study in this context how

the spatial and time step sizes impact the behavior of errors made when computing

the conditional expectation of an OU process using our estimators. The following

sections relax the assumption of a fixed number of points and then propose a scaling

of the errors made when estimating drift and diffusion.
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CHAPTER 2

SPECTRAL RECONSTRUCTION OF DRIFT AND

DIFFUSION

Goal of this chapter: to study the non parametric estimation of the drift and

diffusion of SDEs using the spectral information from the discrete time-series.
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2.1 Motivation

One of the greatest achievements of modern financial theory is undoubtedly the

design and widespread use of derivatives securities to mitigate risk. Since the Black

Scholes Merton equation [9], countless applications all over the financial spectrum

have been done and the interest for this mathematical model has barely bulged

among researchers and investors. The recent 2008’s financial crisis seems to have

shifted the practitioners’ focus from derivative pricing to risk management issues

(including volatility modeling) but also academics’ interest from traditional inference

methods such as least square or maximum likelihood to more data driven and machine

learning based techniques. Despite such apparent paradigm shift, stochastic analysis

continues to provide a rigorous and powerful framework to understand the asset price

dynamics. Diffusion type processes described by SDEs, remain the mathematical

building blocks commonly used by the financial community to price instruments

such as equity, interest rate, credit derivatives or construct standard risk measures

such as Value at Risk (VaR) [48]. In order to use this tool, financial modelers have

to provide a model specification, or in other terms identification of the parameters

or functions of the mathematical model that explains the drivers of the stochastic

behavior of a financial asset. Inappropriate specification and use of theoretical models

for the purpose of investing have received a considerable amount of attention from

regulators and academics since they have been blamed for the last financial crisis

[69, 73]. Referred in the industry as Model risk, the hazard of working with a not

well suited model can result in major losses, that could lead to bankruptcies such as

LTCM in the nineties or Lehman Brothers in 2008, and even jeopardize the entire
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economic system. Regulators, worldwide, have set forth guidelines to mitigate model

risk even if more needs to be done to understand the complexity of financial systems

[26]. One key element of the regulations is the crucial role played by SDEs in domain

such as scenario generations. The estimation of these equations is at the center of

this thesis.

2.2 Background

In the literature, there are some studies that mathematically justify the use of spec-

tral data to estimate the drift and diffusion of SDE, [18–20, 42, 52]. Even though

applications on physical data exist (atmospheric data for example [76]) works on

financial time series are difficult to find. Our main reference has been the estimation

technique introduced by Crommelin and Vanden-Eijnden [18]. In this work, the au-

thors used estimates of eigenvalues and eigenfunctions to reconstruct the drift and

diffusion of SDEs with periodic boundary conditions. One key contribution of our

work is to explore ways to implement this inference technique on SDE commonly

used in financial modeling, e.g., with non periodic drift and diffusion components.

In addition to [18], we will also briefly refer subsequent papers by the same authors

[19, 20]. We start by discussing the object of the proposed estimation. Its goal is to

use the eigenvalues and eigenfunctions of the transition probability matrix generated

by the data to infer the drift and diffusion of a Stochastic Differential Equation. This

inference is performed via an optimization problem on the eigenvalue equation, or

8
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eigenequation, solved using standard quadratic programming techniques. The par-

ticular interesting feature of this reconstruction is that no functional assumption on

the drift and diffusion of the stochastic process is needed. In [18, 19] a Finite Dif-

ferences (FD) scheme is used to derive the eigenequation. Due to a certain number

of limitations of FD such as discretization errors of the derivatives, another method

using Finite Element (FE) approximation of the diffusion operator and its adjoint

was introduced in [20]. Although the FE approach described below is the most re-

cent study, our work is centered around the FD approach that we attempt to extend

to processes with non periodic drift and diffusion with applications in the field of

finance. One part of this work is to apply this methodology to financial market data

in order to reach a pure data-driven and free-model environment estimation of these

equations.

We start laying the background of this method by recalling that the simplest

SDE has two major components, the drift denoted b(Xt, t) that indicates the general

trend, followed by the process and the diffusion term, a(Xt, t), also referred as the

volatility term, that models the degree of randomness of the system. No functional

assumptions on b(Xt, t) and a(Xt, t) are used in this work. We do not consider jumps

in this thesis and will only concentrate on diffusions. We assume time homogeneity,

what allows us to omit the time dependency and to focus only on the relationship

between the components and the state of the process. The mathematical formulation

of our SDE of interest is quiet standard [24,64]:

dXt = b(Xt)dt+
√
a(Xt)dWt. (2.1)

with an initial condition, X(0) = x0, and Wt, the standard Brownian motion. In
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order for a SDE to be usable in practical applications, b(Xt) and a(Xt), are calibrated

to market data or estimated. A variety of parametric and non-parametric methods

have been applied to time series data to find robust estimates of these terms, [1, 10,

42,51,52]. Most of these studies on non-parametric estimations rely on the statistical

definition of the drift and diffusion in terms of conditional expectations [24,27,64]:

b(Xt) = lim
∆t→0

1

∆t
E [Xt+∆t − x|Xt = x] ,

a(Xt) = lim
∆t→0

1

∆t
E
[
(Xt+∆t − x)2|Xt = x

]
.

(2.2)

These definitions that seem at first glance intuitive and easy to handle, provide

undeniably to the modeler a simple way to think of the estimation of the SDE’s

components. After a careful look, many issues could arise from these definitions, as

noted by [18]. For example, what is the appropriate time resolution to model the

data, i.e. do we need seconds, minutes, hourly, daily, or more coarse grained data

to compute these expectations? Secondly, note that according to the formulas (2.2),

the data subsampling needs to be sufficiently small for the above limit to converge,

otherwise, we can have a bias due to a finite-time effect. A third type of issue could

be the lack of flexibility of the above estimators where prior information on the

components is hardly taken into consideration.

2.2.1 Some processes used in finance

The choice of functional forms of the drift and diffusion of asset-price processes is

more an art than a science. For simplicity, many modelers start by making easy

to handle assumptions such as the components are either both constant, or both

10
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linear. The case where they are both linear is a key assumption of the Black Scholes

Merton model [9,59]. This SDE is known as a Geometric Brownian motion. Another

example of an assumed functional form is the square root diffusion of the asset value

introduced by Cox, Ingersoll, and Ross in the context of interest rate models in 1985

[17]. In option pricing theory, despite the success of the Black Scholes framework,

assumptions underpinning the model have long been questioned. The first one was

the assumption of constant volatility of the stock return during the entire life of a

derivative. Practitioners and academics both agree that the very dynamic nature

of the financial market prevents the volatility from remaining constant and that a

varying variance term should enable a more accurate description of financial assets.

One way to take into account this issue is to model the volatility as a stochastic

process itself. This led to the famous Heston models [44,45]. For illustration, consider

an asset price value modeled by processes, Vt and Xt, with constant parameters

{µ, σ, κ, θ, ζ} and Brownian motions Wt, W1,t, and W2,t. Here are some of the most

commonly used SDE in finance that can be constructed with these variables:

Arithmetic Brownian Motion (ABM) : dVt = µdt+ σdWt,

Geometric Brownian Motion (GBM) : dVt = µVtdt+ σVtdWt,

OrnsteinUhlenbeck (OU) : dVt = κ(θ − Vt)dt+ σdWt,

Cox Ingersoll Ross (CIR) : dVt = κ(θ − Vt)dt+ σ
√
VtdWt,

It’s also possible to use more than one SDE. A second family of models could con-

sider an asset price process, Xt, and a volatility process, Vt. Assume two correlated

Brownian motion, W1,t and W2,t such that corr(W1,t,W2,t) = ρ with |ρ| < 1. This

type of model is known as a standard stochastic volatility model and examples of

11
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such model are :

• Heston model [44]

dXt = µXtdt+
√
VtXtdW1,t,

dVt = κ(θ − Vt)dt+ ζ
√
VtdW2,t.

• 3/2 model [45]

dXt = µXtdt+
√
VtXtdW1,t,

dVt = κ(θ − Vt)dt+ ζ 3
√
VtdW2,t.

• 4/2 model [39]

It is the latest stochastic volatility model introduced by Graselli [39] that com-

bines the Heston and the 3/2 model into a single tractable specification.

dXt = µXtdt+

(
a
√
Vt +

b√
Vt

)
XtdW1,t

dVt = κ(θ − Vt)dt+ ζ
√
VtdW2,t.

A third category of models that has been introduced as a way to relax the con-

stant volatility assumption in the Black Scholes model takes into account a nonlinear

relationship between the risk of a financial asset and its value. This is the Constant

Elasticity of Variance model, henceforth CEV [14, 16, 23] that offers a compact ex-

pression of a family of volatility models. Introduced in the 1970’s to take into account

the leverage effect, in other words the intertwined relationship between asset value

and risk, the CEV model with mean reversion with an appropriate choice of param-

eters provide a generalization of the above models. A standard formulation of CEV

12
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is:

dVt = κ(θ − Vt)dt+ σVt
β
2 dWt.

Notice that an OU specification could be obtained if β = 0, when β = 1 we have the

CIR model with mean reversion [44], and β = 3 gives us a mean reverting 3/2 model,

[45]. The GBM can be obtained with additional assumptions on the drift parameters

whereas the ABM could be derived from CEV by choosing the right parameters and

also removing the state dependency of the components of the SDE. The transition

probability distribution of some of the above models can be obtained using the CEV

formulation above:

• Case of β = 2

The OU process, θ = 0 and β = 2 has a log-normal transition probability

density so we define y = log(Vt+∆t) and x = log(Vt):

Prob(y, t+ ∆t|x, t) =
1√

2πσ2∆t
e
− 1

2

(
y−(x−κ−σ

2

2 )

σ2∆t

)

• Case of β 6= 2

When β 6= 2, the transition probability distribution generally follows a non

central Chi squared. In this case, no log variables are needed. Thus define

y = Vt+∆t and x = Vt. In addition to these, denote Iq(.) a modified Bessel

function of order q and define the following parameters:

k =
−2κ

σ2 (2− β) (e(2−β)(−κ∆t) − 1)
,

x = kx2−βe(2−β)(−κ∆t),

z = ky2−β.

13
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1. For β < 2 [14]

A special case is the Heston model. The transition probability density has

the form:

Prob(y, t+ ∆t|x, t) = (2− β) k
1

2−β
(
xz1−2β

) 1
4−2β e−x−zI 1

2−β

[
2
√
xz
]
.

2. For β > 2 [23]

A popular special case is the 3/2 stochastic volatility model and its tran-

sition probability density:

Prob(y, t+ ∆t|x, t) = (β − 2) k
1

2−β
(
xz1−2β

) 1
4−2β e−x−zI 1

β−2

[
2
√
xz
]
.

2.2.2 Affine processes

Our objective is to test spectral information extracted from time series data to iden-

tify the drift and diffusion of SDEs such as the ones presented above. For this

purpose, it appears natural to start by processes with known spectral characteristics

and useful applications in financial modeling. Good processes to start with are the

affine ones. Indeed Affine Diffusion processes have well-known spectral character-

istics, transition probability densities, and are the starting points of most financial

models, [35]. In the following, we will focus on three of such processes: The Ornstein-

Uhlenbeck (OU) process, the Cox-Ingersoll-Ross (CIR) process, also referred as the

square root process, and the Jacobi Process (JAC). The characteristics of these pro-

cesses are now presented. More details are found in [35]. Assume, we have a stochas-

tic process, Xt, and parameters, {κ, θ, γ, a, b}, and a standard Brownian motion, Wt.

We define:
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1. The OU process

The SDE for the OU process is:

dXt = κ(θ −Xt)dt+ γdWt. (2.3)

The eigenvalues are given by λn = −κn.

The eigenfunctions are the Hermite polynomials given by:

Hen(Xt) = (n!)
1
2

[n
2

]∑
m=0

(−1)m
1

m!2m(n− 2m)!
(
−2b

c0

)
n−2m

2 (Xt − β)n−2m. (2.4)

Note that the eigenfunctions are standardized with respect to Gaussian dis-

tribution N (θ,−γ2

2κ
). The recurrence relation for the Hermite polynomials is

given by:

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0. (2.5)

The stationary distribution is

f(x) =

√
κ

πγ2
exp

(
−κ(x− θ)2

γ2

)
. (2.6)

2. The CIR process

The standard SDE for the CIR process is:

dXt = κ(θ −Xt)dt+ γ
√
XtdWt. (2.7)

The eigenvalues are given by λn = −κn.

The eigenfunctions are given by the Generalized Laguerre polynomials:

Lαn(−2κXt) =

(
n+ α

n

)− 1
2

n∑
m=0

[(
n+ α

n−m

)
(2κ)

(Xt)
m

m!

]
, (2.8)
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where α = −2κθ − 1. The eigenfunctions are standardized with respect to

the marginal distribution of the process which is an affine transformation of

the gamma distribution Γ(−2κθ). The recurrence relation for the Laguerre

polynomials is given by:

(n+ 1)Lαn+1(x)− (2n+ α + 1− x)Lαn(x) + (n+ α)Lαn−1(x) = 0. (2.9)

The stationary distribution of the CIR process is

f(x) =
(2κ)2κθ

Γ(2κθ)
exp(−2κθ)x2κθ−1

1(0,+∞)(x). (2.10)

3. The JAC process

This process is defined in a bounded interval [a, b] with a < b. The standard

SDE for the Jacobi process is:

dXt = κ(θ −Xt)dt+ γ
√

(Xt − a) (b−Xt)dWt. (2.11)

The eigenvalues are given by λn = −κn− n(n−1)
2

.

The eigenfunctions are given by the Jacobi polynomials:

Pα,β
n (Xt) =

[
Γ(α + n+ 1)(2n+ α + β + 1)Γ(α + 1)Γ(β + 1)

n!Γ(α + β + n+ 1)Γ(α + β + 2)Γ(β + n+ 1)

] 1
2

×
n∑

m=0

[(
n

m

)
Γ(α + β + n+m+ 1)

Γ(α +m+ 1)

(
Xt − b
b− a

)m]
,

(2.12)

where α = 2θ

(
b−θ
b−a

)
and β = 2θ

(
θ−a
b−a

)
−1. The eigenfunctions are standardized

with respect to the marginal distribution of the process which is an affine

transformation of the Beta distribution, Beta(β + 1, α + 1). The recurrence
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relation for the Jacobi polynomials can be expressed as:

2n(n+ α + β)(2n+ α + β − 2)Pα,β
n (x)

= (2n+ α + β − 1){(2n+ α + β)(2n+ α + β − 2)x+ α2 − β2}Pα,β
n−1(x)

− 2(n+ α− 1)(n+ β − 1)(2n+ α + β)Pα,β
n−2(x).

(2.13)

The Jacobi process has a stationary distribution:

f(x) =
(x− a)2κβ−a

b−1
−1(b− x)2κ b−β

b−1
−1

(b− a)2κ−1Beta(2κβ−a
b−a , 2κ

b−β
b−a )

1(a,b)(x), (2.14)

where 1(a,b)(x) is an indicator function.

2.3 Important concepts in stochastic processes

Before presenting an alternative inference methodology to the ones commonly used

in the econometric literature, key concepts in stochastic process are recalled in this

section. Consider {Xt, t ≥ 0} an ergodic diffusion process. The dynamics of Xt

is described by the equation (2.1). One key element used throughout this thesis is

the duality between Stochastic Differential Equations(SDE) and Partial Differential

Equations (henceforth PDE). Indeed, if a SDE provides a powerful probabilistic de-

scription of the process, a PDE’s perspective offers a more physical interpretation in

terms of diffusion. In this latter case, (differential) Chapman- Kolmogorov equations

provides a time evolution of the process in its state space. The change, backward

or forward in time, of the transition probability density, denoted P (x, t | y, t′) with

t > t′ for given states, x and y, generates the following differential equations (see

[27]):
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• Backward differential Chapman-Kolmogorov equation

∂P (x, t | y, t′)
∂t′

= −b(y)
∂P (x, t | y, t′)

∂y
− 1

2
a(y)

∂2P (x, t | y, t′)
∂y2

. (2.15)

• Forward differential Chapman-Kolmogorov equation

∂P (x, t | y, t′)
∂t

= − ∂

∂x
[b(x)P (x, t | y, t′)] +

1

2

∂2

∂x2
[a(x)P (x, t | y, t′)]. (2.16)

The Backward Chapman Kolmogorov equation is represented by a infinitesimal gen-

erator operator, L, and the Forward Chapman Kolmogorov equation by its adjoint

operator, L∗ . They both are defined as followed:

Lf = b(x, t)
∂f(x, t)

∂x
+

1

2
a(x, t)

∂2f(x, t)

∂x2
,

L∗f = − ∂

∂x
[b(x, t)f(x, t)] +

1

2
a(x, t)

∂2

∂x2
[a(x, t)f(x, t)].

(2.17)

Assuming a sampling process in equilibrium allows the removal of the time depen-

dency of the infinitesimal generator, L, and similarly for the adjoint, L∗, that can

now be expressed as follows:

Lf = b(x)
∂f(x)

∂x
+

1

2
a(x)

∂2f(x)

∂x2
,

L∗f = − ∂

∂x
[b(x)f(x)] +

1

2
a(x)

∂2

∂x2
[a(x)f(x)].

(2.18)

Assume L has a discrete spectrum, {ψk(x), φk(x), λk} for k ∈ N where {ψk(x), φk(x), λk}

is a set of left, right eigenfunctions and eigenvalues, respectively such that

Lφk(x) = λkφk(x), (2.19)

L∗ψk(x) = λ̄kψk(x). (2.20)

Note that in the case of a stationary process, the leading eigenvalue, λ1, would

be equal to zero, while all others would be strictly negative. Furthermore, the left
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eigenfunction, ψ1, corresponding to the leading eigenvalue of the adjoint operator

would be the stationary distribution of the process.

Connection between transition probability, infinitesimal generator and

their spectrum

Consider the diffusion process, Xt, introduced in the previous section, with initial

condition, X0 = x, and a suitable function, f(x) and t ≥ 0. Define the following

operator Pt by

(Ptf)(x) = E [f(Xt)|X0 = x] . (2.21)

The infinitesimal generator L associated to Pt is [27]

Lf(x) = lim
t↓0

(Ptf)(x)− f(x)

t
. (2.22)

Using the above definition and semi-group theory, one can show that for a given

time, t, the operators, Pt and L, are related by the equation.

Pt = etL. (2.23)

The same relationship is satisfied by the adjoint operators, P ∗t and L∗. This re-

lationship between Pt and L implies a direct relationship between the underlying

eigenstructures of both operators. More precisely, note that both operators share

the same left and right eigenfunctions denoted ψk, φk, respectively and that the
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eigenvalues of Pt are just an exponential transformation of those of L: for k ∈ N:

Ptφk(x) = Λkφk(x), (2.24)

P ∗t ψk(x) = Λ̄kψk(x), (2.25)

λk =
1

t
log(Λk). (2.26)

where {Λk} are eigenvalues of Pt and {λk} those of L. As mentioned in [18], these

relationships are valid regardless of the value of t. By using a finite time value, one

is not making any time discretization error since by the above relations time has no

effect on the estimation of the infinitesimal generator.

2.4 Spectral Reconstruction of one SDE

Here, we summarized briefly [18]. This paper tries to answer the following question:

given some data {Un, n = 1, ..., N} can we recover the components b(x) and a(x) of

the data generating SDE? Different approaches to this problem already exist in the

literature but one key contribution of [18] has been to develop an efficient method

to find the ”closest”, measured by the spectrum, drift, and diffusion of the under-

lying infinitesimal generator of the data. Different stages of the reconstruction are

discussed below.

2.4.1 Construction of the transition probability matrix P

A discrete time Markov chain obtained by discretization of the state space of the

process could be constructed as a finite state representation of Pt. We call it Pm,m′ .
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It is a M×M stochastic matrix where M is the number of states, m,m′ are integers,

{1, . . . ,M}. All the entries are between zero and 1 and the rows sum to one. The

construction of this stochastic matrix straight from the data doesn’t guarantee that

the relationship (2.23) holds. In fact, this issue is related to an open question on the

theory of Markov chains called the embedding problem [41]. Not every construction

of a discrete time Markov chain such as Pm,m′ is associated with an infinitesimal

generator. If such generator could be found, Pm,m′ is said to be embeddable. The

authors in [18] get around the embedding problem by finding the drift and diffusion

of not the exact generator but those of the generator whose spectrum is the closest

to the eigenvalues and eigenfunctions generated from the data. The procedure omits

the embedding issue and starts with the construction of Pm,m′ and the calculation of

the eigenpairs. Pm,m′ is the (m,m′) transition probability defined by:

Pm,m′ = Prob
(
X(j+1)∆t ∈ state m′|Xj∆t ∈ state m

)
.

where j ∈ N, ∆t is time step, and m,m′ ∈ {1, . . . ,M}. States are defined by

discretizing the state space with a step size ∆x, i.e. {Xj∆t ∈ state m} is equivalent

to Xj∆t ∈
[
m− ∆x

2
, m+ ∆x

2

]
The standard approach to construct these probabilities

to use the maximum likelihood estimator (henceforth MLE ) of this Markov chain.

The likelihood function can be expressed as:

L(Pm,m′) =
∏

m,m′∈M

P
δm,m′

m,m′ .

whereM = {1, . . . ,M}, δm,m′ is equal to 1 when there is a transition between m and

m′ and zero otherwise. A MLE estimator of the transition probabilities is obtained

by maximizing the log likelihood function, L(Pm,m′), subject to the constraint that
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all the rows of the matrix Pm,m′ sum to one. Using Lagrange multipliers, (µm)m∈K ,

the estimator is obtained by maximizing the following objective function:

L(Pm,m′)−
∑
m′∈M

µm

( ∑
m′∈M

Pm,m′ − 1

)
.

The solution of the above problem provides the following formula for each tran-

sition probability:

Pm,m′ =
δm,m′∑

m′∈M δm,m′
. (2.27)

Following authors in [18], we define a spectral estimation using the empirical

counterpart of the above formula that can be written as follows:

Pm,m′ =

∑Nt
j=1 1(Xj∆t = m)1(X(j+1)∆t = m′)∑Nt

j=1 1(Xj∆t = m)
. (2.28)

2.4.2 Finite Difference (FD) approach

As can be seen from equation (2.18), the infinitesimal generator is an operator which

depends on the drift and diffusion, b(x) and a(x), so the goal of the method is to find

the drift and diffusion that would generate a spectrum which is as close as possible to

the one generated by the data. Practically, this reduces to an optimization problem

whose objective function minimizes the error between the data-based spectrum and

the one from the infinitesimal generator, L, from its adjoint and from the eigenequa-

tion of the diffusion process. Let K ∈ N be the highest mode that is possible to

reliably estimate. The objective function used has the following form:

E(b, a) =
K∑
k=1

αk||L∗ψk−λkψk||2 +βk||Lφk−λkφk||2 +γk| < ψk, Lφk > −λk|2, (2.29)
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where αk = 1
|λkψk|2

, βk = 1
|λkφk|2

, and γk = 1
|λk|2

. Note that the discrete counterpart

of the above error function is obtained using a finite difference approximation of

the infinitesimal generator where Di and D2
i stand for the first and second finite

differences operators, respectively, defined as follows:

Dif =
fi+1 − fi−1

2∆x
, D2

i f =
fi+1 + fi−1 − 2fi

∆x2
. (2.30)

Using these operators, the discrete analog of (2.29):

Ẽ(b, a) =
K∑
k=1

αk

N∑
i=1

∣∣∣∣−Di(bψ̃k) +
1

2
D2
i (aψ̃k)− λ̃kψ̃k,i

∣∣∣∣2
+

K∑
k=1

βk

N∑
i=1

∣∣∣∣biDi(φ̃k) +
1

2
aiD

2
i (φ̃k)− λ̃kφ̃k,i

∣∣∣∣2

+
K∑
k=1

γk

∣∣∣∣∣
N∑
i=1

ψ̃k,i

(
biDi(φ̃k) +

1

2
aiD

2
i (φ̃k

)
− λ̃k

∣∣∣∣∣
2

(2.31)

This expression can be reduced to a quadratic optimization problem of the form

Ẽ(b, a) =< v,Hv > + < v, F > +Ẽ0 (2.32)

where Ẽ0 is a constant term, F is vector, H is a positive definite symmetric matrix

and v is the 2N dimensional vector containing the discretized drift and diffusion term

v = (b1, b2, ...bN , a1, a2, ...aN).

2.5 Periodic boundary conditions and reconstruc-

tion

The first numerical part of this work has been to reproduce, using MATLAB, the

result from [18] for 1-dimensional SDE with periodic drift and diffusion. The goal is
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to generate synthetic data from a known SDE, then assume that we ignore the data-

generating process and apply the reconstruction procedure to identify the potential

SDE that have generated the data. The true drift and diffusion being known, we can

compare them with the reconstructed ones. Consider a bounded domain Ω = [−π, π]

and a SDE, dx = b(x)dt+ a(x)dW , with drift and diffusion terms defined as follows:

b(x) = 1 + cos(x), a(x) = 1 +
1

2
sin(x). (2.33)

In the original work [18], 106 points were generated using a Euler scheme with a time-

step of 10−4, a subsampling time of 0.1 between consecutive points and a number

of bins and of discretization points both equal to 60. The parameters used are

T = 106, dt = 104, h = 0.1, and M = N = 60. Only the first three eigenvalues and

eigenfunctions were used , so K, the number of eigenpairs in the reconstruction is

such that K = 3. We used a slightly different approach. Instead of generating only

one time series, we generated 200 paths by numerical integration of the process. The

idea is to avoid any randomness in the conclusion of this estimation. The trajectories

are generated with two nested loops. The first one computes T
h

points where the

solution would be evaluated, and the second loop inside the first sub-samples by

integrating h
dt

points of the SDE between each time step h. This subsampling is very

computationally expensive, i.e. more than T
h

operations for one trajectory. From

these 200 paths, we constructed 200 transition probability matrices and averaged

their entries to have only one stochastic matrix. The matrix rows sum to 1 and we

recover eigenvalues and eigenfunctions close to the one in [18]. The eigenvalues are

shown in the Table 2.1 below. Through the reconstruction process, the computed

eigenfunctions exhibit oscillations mostly due to a finite sample size. The authors
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Our work Eigenvalues in [18]
λ1 -2.2204 e-15 + 0i 0
λ2 −0.6408 + 0.8988i −0.6508 + 0.9086i
λ3 −0.6408− 0.8988i −0.6508− 0.9086i

Table 2.1: Comparison of the eigenvalues obtained by simulating ensemble of trajectories
with the one in [18]

in [18] Fourier filtered the computed eigenfunctions in order to reduce the small

scale errors that distort the final reconstructed functions. We use a slightly different

Fourier filter in our reconstruction process and also try a different approach based

on the idea of a sliding, Parzen, windows computation .

2.5.1 Periodic boundary conditions with Fourier filter

In order to have an idea of the magnitude of the errors made on eigenfunctions, we

discretized the infinitesimal generator associated to (2.33) and constructed a finite

matrix A representing this operator. Then we used the eigenpairs of A, {φA, ψA}

as reference of the true one. We compute the L2 norm of the difference between

the eigenfunctions from the Markov chain {φ, ψ} and the eigenfunctions from the

generator A. The norms before applying a Fourier filter are given in Table 2.1. The

numerical second derivatives appear to be the major source of errors. In order to

smooth out the derivatives of the eigenfunctions, the authors in [18] used a Fourier

filter whose goal was to project each eigenfunction into the phase space, identify

the leading wave-numbers and discarding the higher ones. They arbitrarily chose to

discard all eigenmodes with wavelengths greater than 6. We attempted the same
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Before Fourier filtering

K ‖φ− φA‖2 ‖ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 0.00423 0.0370 0.01470 0.12198 0.4507 4.6005
2 0.11921 0.2771 0.16117 0.32288 1.6991 4.6687
3 0.11921 0.2771 0.16117 0.32288 1.6991 4.6687

After Fourier filtering

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 6.013e-14 0.03246 8.05e-14 0.04305 4.58e-13 0.09866
2 0.11893 0.27616 0.15535 0.28786 0.33009 0.35506
3 0.11893 0.27622 0.15517 0.28919 0.32499 0.37616

Table 2.2: Comparison before and after Fourier filtering of the difference of eigenpairs
and their derivatives with those of the discretized generator

approach but found it unreliable in our case. We instead used the fast Fourier trans-

form command fft of MATLAB, identify and set to zero all the Fourier coefficients

less than 10−3, and apply the inverse transform using the command ifft. After using

this Fourier filter, we recompute the 2-norm of the difference of these eigenfunctions

and the reference ones, see Table 2.1. As expected the Fourier filter significantly

smoothed out the second derivatives that show less discrepancy with the reference

ones. We also carry over the reconstruction whose results are presented in Figures

2.1, 2.2, 2.3, and 2.4.

Conclusion of this subsection: From an ensemble of trajectories we have

constructed a Markov chain whose spectrum has been used to reconstruct the drift

and diffusion of the data-generating process. In the procedure, we found that the

leading eigenvalues and eigenfunctions are well approximated and that the major

source of errors appears to be the numerical differentiation of the eigenfunctions

using finite differences.
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Figure 2.1: The results of an estimation using only the generator not the adjoint and a
Fourier filtering of the eigenfunctions are given in this plot. The x-axis gives the values, x,
taken by the process Xt. The y-axis provides the values of b(x) and a(x) on the left and
right plots respectively. On the left plot, the reconstructed drift is shown in circle while
their true value is given by the line curve. On the right plot, the estimated diffusion is
shown in circle and the corresponding true values are given by the curve.
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Figure 2.2: The results of an estimation using only the adjoint operator not the generator
and a Fourier filtering of the eigenfunctions are given in this figure. The x-axis gives the
values, x, taken by the process Xt. The y-axis provides the values of b(x) and a(x) on the
left and right plots respectively. On the left plot, the reconstructed drift is shown in circle
while their true value is given by the line curve. On the right plot, the estimated diffusion
is shown in circle and the corresponding true values are given by the curve.
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Figure 2.3: The results of an estimation using the generator, the adjoint operator and a
Fourier filtering of the eigenfunctions are given in these plots. The x-axis gives the values,
x, taken by the process Xt. The y-axis provides the values of b(x) and a(x) on the left and
right plots respectively. On the left plot, the reconstructed drift is shown in circle while
their true value is given by the line curve. On the right plot, the estimated diffusion is
shown in circle and the corresponding true values are given by the curve.
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Figure 2.4: The results of an estimation using the entire expression E(b, a) in (2.29) and
a Fourier filtering of the eigenfunctions are given in these plots. The x-axis gives the values,
x, taken by the process Xt. The y-axis provides the values of b(x) and a(x) on the left and
right plots respectively. On the left plot, the reconstructed drift is shown in circle while
their true value is given by the line curve. On the right plot, the estimated diffusion is
shown in circle and the corresponding true values are given by the curve.
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2.5.2 Periodic boundary conditions with Parzen windows

The filtering approach in [18] which consists in discarding all the Fourier modes

greater than a certain value appears rather excessive and some relevant information

might be lost in the process. We tried a different approach based on modifying entries

of the transition probability matrix to smooth out the eigenvalues. We refer to it

as a Parzen Windows smoothing. The key idea is to generalize the definition (2.28)

of the entries transition probabilities Pm,m′ . This is done by replacing the indicator

function that accounts for a transition between two statesm andm′ by a more general

kernel function. We modified the recording of transitions by adding one value at not

only the relevant entry (m,m′) where transition occurs but also at the immediate

neighboring entries for example (m − m′,m′) and (m + 1,m′). The matrix, Pm,m′ ,

has therefore more nonzero entries than in the Fourier Filter case. More formally,

we generalize the formula (2.28) as follows. Denote κ(m,m′) a function from which

a transition probabilities can constructed as:

Pm,m′ =
κ(m,m′)∑

m′∈M κ(m,m′)
, (2.34)

where κm,m′ stores the transitions. We tried a triangular (or tent) function which

consists on giving a value less than 1 to the entry where transition occurs and also

a nonzero value to neighboring entries such that the total amount input is 1. This

scheme takes into account cases where a transition to m′ from m is observed but

the probability of a transition to neighbors of m′ should be non-zero. We refer to

this scheme as parzenw(hc, sl) where hc is the number of entries to input, including

neighbors and target entry, and sl is a positive constant that gives the relationship
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between the values in one entry and its neighbors. For example, if we have a slope

of 2 it would mean that the entries (m,m′) in the matrix is assigned a certain value

and the 2 first neighboring entries, 1 transition apart from the left and right, have a

value 2 times smaller than that of (m,m′), the entries 2 transitions apart are 4 times

smaller, etc. The sum of all these values are set to 1. The idea of the parameter

hc is to identify a certain number of entries to be assigned. For example, let hc =2

means that we consider (m,m′) and 2 entries (m,m′ ± 1), when hc = 4 involves 4

entries around (m,m′), i.e. (m,m′ ± 1) and, (m,m′ ± 2).

Different number of neighboring entries have been used. The values used for each

are as follows:

1. For parzenw(3, 2), the entries when a transition m,m′ occurs are:

((m− 1,m′), (m,m′), (m+ 1,m′)) = (0.25, 0.5, 0.25).

2. For parzenw(5, 2), the entries when a transition m,m′ occurs are:

((m−2,m′), (m−1,m′), (m,m′), (m+1,m′), (m+2,m′)) = (0.1, 0.2, 0.4, 0.2, 0.1).

3. For parzenw(7, 2), the entries when a transition m,m′ occurs are:

((m−3,m′), (m−2,m′), (m−1,m′), (m,m′), (m+1,m′), (m+2,m′), (m+3,m′))

= (0.045455, 0.090909, 0.18182, 0.36364, 0.18182, 0.090909, 0.045455).

Recall that the eigenvalues obtained from the Markov chain based on MLE esti-

mation in [18], were (λ1, λ2, λ3) = (0,−0.6508 + 0.9086i,−0.6508 − 0.9086i). Using

parzenw(hc, sl) , we obtain larger eigenvalues as shown in Table 2.3. These values

seems to increase with the number of neighbors hc. Like in the Fourier filtering case,
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2.5. PERIODIC BOUNDARY CONDITIONS AND RECONSTRUCTION

we also calculated the 2-norm of the difference between the eigenfunctions, their

derivatives and those of discretized generator A. Comparison is presented in the

Tables 2.4, 2.5, and 2.6. The best filtered numerical derivatives with parzenw(hc, sl)

appear when hc = 5. We implement the reconstruction by generating with a Euler

parzenw(3, 2) parzenw(5, 2) parzenw(7, 2)
λ1 3.1086e-14 + 0i 2.7311e-13 + 0i -3.0864e-13 + 0i
λ2 −0.6745 + 0.9064i −0.7007 + 0.9152i −0.7329 + 0.9218i
λ3 −0.6745− 0.9064i −0.7007− 0.9152i −0.7329− 0.9218i

Table 2.3: Comparison of the eigenvalues using a transition probability computed with
parzenw with those [18]

scheme of 200 trajectories of T = 106 sample points, a time-step of dt = 10−4, a sub-

sampling time of h = 0.1 and a number of bins and discretization points to M = 60.

Results of this Parzen windows-reconstruction approach are presented in the Figures

2.5 to 2.16. Note that the reconstructed diffusion component via this technique is

higher than the true one. This could be explained by the fact that in each row of

the transition probability matrix, a window of values that sum to one is used to

record a transition instead of a single entry. Each entry with one nonzero transition

will impact the neighboring entries and the diffusion spreads out a little more with

this window reaching more states than it would have without Parzen windows. This

results in a greater inferred diffusion coefficient at each spatial point as shown below.
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parzenw(3, 2)

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 6.1e-14 0.0183 8.35e-14 0.02111 4.77e-13 0.1228
2 1.9972 0.13613 2.2132 0.1437 3.6638 0.2294
3 1.9972 0.13613 2.2132 0.1437 3.6638 0.2294

Table 2.4: Comparison of the difference of eigenpairs and their derivatives obtained using
parzenw(3, 2) with those of a discretized generator.

parzenw(5, 2)

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 2.0000 1.9999 2.88e-13 0.8809 8.57e-13 1.0366
2 0.0996 0.0211 0.1805 0.0411 0.5027 0.2320
3 0.0996 0.0211 0.1805 0.0411 0.5027 0.2320

Table 2.5: Comparison of the difference of eigenpairs and their derivatives obtained using
parzenw(5, 2) with those of a discretized generator.

parzenw(7, 2)

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 2.0000 1.9998 4.84e-13 0.8712 1.09e-12 1.0230
2 0.2054 0.0341 0.3051 0.0658 0.7534 0.2288
3 0.2054 0.0341 0.3051 0.0658 0.7534 0.2288

Table 2.6: Comparison of the difference of eigenpairs and their derivatives obtained using
parzenw(7, 2) with those of a discretized generator.
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Figure 2.5: Reconstruction of the drift and diffusion using only the generator and
parzenw(3, 2). The exact value of the drift is given by the line and the reconstructed
value in circle. The x-axis gives the values, x, taken by the process Xt. The y-axis pro-
vides the values of b(x) and a(x) on the left and right plots respectively. On the left graph,
the drift is overall reconstructed with some oscillations that take the form of cluster of
points. On the right plot, we can see that the reconstructed diffusion is close to the true
value with less oscillations compared to the drift.
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Figure 2.6: Reconstruction of the drift and diffusion using only the adjoint and
parzenw(3, 2). The true values are given by the lines and the reconstructed values by
the circles. The x-axis gives the values, x, taken by the process Xt. The y-axis provides
the values of b(x) and a(x) on the left and right plots respectively. On the left graph, the
drift is close to the true value even if at some space, for example x = 2 more errors could
be seen. On the right plot, we can see that the reconstructed diffusion matches the true
diffusion minus some term.
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Figure 2.7: Reconstruction of the drift and diffusion using the generator and the adjoint
as well as parzenw(3, 2). The x-axis gives the values, x, taken by the process Xt. The
y-axis provides the values of b(x) and a(x) on the left and right plots respectively. The
true values are given by the curve and the reconstructed values by the circles. On the left
graph, the reconstructed drift is better than the one in Figure 2.5 but less accurate than
in Figure 2.6. On the right side, the diffusion shows similar accuracy than in Figure 2.6.
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Figure 2.8: Reconstruction of the drift and diffusion using the entire error function (2.29)
and parzenw(3, 2). The estimates are in circles the true values are given by the curve. The
x-axis gives the values, x, taken by the process Xt. The y-axis provides the values of b(x)
and a(x) on the left and right plots respectively. On the left graph, the reconstructed drift
has the same precision than in Figure 2.7 implying than the third term in the formula has
a relative small contribution.On the right side, the diffusion, except a vertical translation,
shows again similar accuracy than in previous Figure 2.6 and 2.7.
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Figure 2.9: Reconstruction of the drift and diffusion using only the generator and
parzenw(5, 2). The exact value of the drift is given by the line and the reconstructed
value in circle. The x-axis gives the values, x, taken by the process Xt. The y-axis pro-
vides the values of b(x) and a(x) on the left and right plots respectively. On the left graph,
the drift is overall reconstructed with some oscillations that take the form of cluster of
points. On the right plot, we can see that the reconstructed diffusion is close to the true
value with less oscillations compared to the drift.
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Figure 2.10: Reconstruction of the drift and diffusion using only the adjoint and
parzenw(5, 2). The true values are given by the lines and the reconstructed values by
the circles. The x-axis gives the values, x, taken by the process Xt. The y-axis provides
the values of b(x) and a(x) on the left and right plots respectively. On the left graph, the
drift is close to the true value even if at some space, for example x = 0 more errors could
be seen. On the right plot, we can see that the reconstructed diffusion matches the true
diffusion minus some constant term.
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Figure 2.11: Reconstruction of the drift and diffusion using the generator and the adjoint
as well as parzenw(5, 2). The true values are given by the curve and the reconstructed
values by the circles. The x-axis gives the values, x, taken by the process Xt. The y-axis
provides the values of b(x) and a(x) on the left and right plots respectively. On the left
graph, the reconstructed drift is better than the one in Figure 2.9 but less accurate than
in Figure 2.10. On the right side, the diffusion shows similar accuracy than in Figure 2.10.
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Figure 2.12: Reconstruction of the drift and diffusion using the entire error function
(2.29) and parzenw(5, 2). The estimates are in circles the true values are given by the
curve. The x-axis gives the values, x, taken by the process Xt. The y-axis provides the
values of b(x) and a(x) on the left and right plots respectively. On the left graph, the
reconstructed drift has the same precision than in Figure 2.11 implying than the third
term in the formula has a relative small contribution. On the right side, the diffusion,
except a vertical translation, shows again similar accuracy than in previous Figures 2.10
and 2.11.
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Figure 2.13: Reconstruction of the drift and diffusion using only the generator and
parzenw(7, 2). The exact value of the drift is given by the line and the reconstructed value
in circle. The x-axis gives the values, x, taken by the process Xt. The y-axis provides the
values of b(x) and a(x) on the left and right plots respectively. On the left graph, the drift
is overall reconstructed with some oscillations that take the form of cluster of points. On
the right plot, we can see that the reconstructed diffusion is close to the true value with
less oscillations compared to the drift.
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Figure 2.14: Reconstruction of the drift and diffusion using only the adjoint and
parzenw(7, 2). The true values are given by the lines and the reconstructed values by
the circles. The x-axis gives the values, x, taken by the process Xt. The y-axis provides
the values of b(x) and a(x) on the left and right plots respectively. On the left graph, the
drift is close to the true value even if at some space, for example x = 0 more errors could
be seen. On the right plot, we can see that the reconstructed diffusion matches the true
diffusion minus some constant term.
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Figure 2.15: Reconstruction of the drift and diffusion using the generator and the adjoint
as well as parzenw(7, 2). The true values are given by the curve and the reconstructed
values by the circles. The x-axis gives the values, x, taken by the process Xt. The y-axis
provides the values of b(x) and a(x) on the left and right plots respectively. On the left
graph, the reconstructed drift is better than the one in Figure 2.13 but less accurate than
in Figure 2.14. On the right side, the diffusion shows similar accuracy than in Figure 2.14.
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Figure 2.16: Reconstruction of the drift and diffusion using the entire error function
(2.29) and parzenw(7, 2). The estimates are in circles the true values are given by the
curve. The x-axis gives the values, x, taken by the process Xt. The y-axis provides the
values of b(x) and a(x) on the left and right plots respectively. On the left graph, the
reconstructed drift has the same precision than in Figure 2.15 implying than the third
term in the formula has a relative small contribution. On the right side, the diffusion,
except a vertical translation, shows again similar accuracy than in previous Figures 2.14
and 2.15.
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Conclusion of this subsection: The reconstruction method given by [18] has

been applied on an ensemble of trajectories. We found that the eigenpairs are very

close but the filtering of the eigenfunctions by discarding all eigenmodes of a certain

values has to be adjusted to reconstruct the drift and diffusion. We modified the

Fourier filter and obtain similar results seen in [18]. We also proposed a slightly

different scheme using an alternative definition of the transition probabilities that

we refer as Parzen windows smoothing. This latter approach systematically overes-

timates diffusion even if it can recover the overall shape of both drift and diffusion.

2.6 Extension to non periodic drift and diffusion

functions

2.6.1 Testing reconstruction using a known generator

The goal of this subsection is to test how the non periodic boundary conditions affect

the spectral reconstruction process. As a way to test our reconstruction process, the

Kolmogorov Backward operator is discretized for each process using finite difference,

the spectrum and eigenfunctions are computed and the reconstruction procedure is

implemented. We emphasize that no data are used. In our testing approach, the gen-

erator is discretized over an interval and expressed in matrix form, and this matrix

now contains the information that would permit reconstruction via its eigenvalues

and eigenfunctions. Note that we restrict our applications to polynomial eigenfunc-

tions processes such as OU, CIR, and JAC, because an analytic expression of their
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2.6. EXTENSION TO NON PERIODIC DRIFT AND DIFFUSION FUNCTIONS

eigenvalues and eigenfunctions exist which was given in the previous section. The

affine processes under investigation are:

dXt = κ(θ −Xt)dt+ γdWt,

dXt = κ(θ −Xt)dt+ γ
√
XtdWt,

dXt = κ(θ −Xt)dt+ γ
√

(Xt − a) (b−Xt)dWt.

(2.35)

We chose (κ, θ, γ) = (1, 1, 1) in the above processes. Note that using these coefficients

the Feller condition (2κθ > σ2) is satisfied. The interval [a, b] is chosen to be [a, b] =

[θ − 1, θ + 2] = [0, 3].

Construction of a finite representation of the generator

Using these SDEs a discretized version of generators corresponding to each of the

above processes can be constructed and written in matrix form. Consider an interval

I. Discretize I into M points, {xi} with i = 1, . . . ,M . Now define for i = 1..M the

values of a drift b(xi) = bi, a diffusion a(xi) = ai and a smooth function f(xi) = fi

representing the solution of the Kolmogorov equation. Using the finite difference

operators (2.30), the discretized Backward differential equation is

Lfi = biDif +
1

2
aiD

2
i f. (2.36)

Note, that to compute the derivative at each point xi the value of the function at xi−1

and xi+1 are needed. Boundary conditions need to be supplied to implement this

scheme. For diffusions, we generally encounter three types of boundary conditions:

absorbing, reflecting, and periodic. The idea is that the value of a stochastic process

at an absorbing barrier or boundary is imposed or a priori known, it could be zero or

another constant. A reflecting barrier would mean that the value of the process at
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the barrier is the same than the value right before the boundary. Finally, a periodic

boundary means that the values of the process at the extreme are the same. More

details could be found in [27]. In mathematical terms, these boundary conditions can

be formulated as follows. Assume that we found the solution under some boundary

conditions of a equation of the type (2.36) at each discretization point xl = x1 <

x2 < · · · < xM = xu. Periodic boundary conditions in this context would imply

that f(xl) = f(xu), absorbing boundary conditions f(xl) = f(xu) = 0 and reflecting

boundaries f(xl) = f(xl+1) and f(xu−1) = f(xu). Each condition would modify the

structure of the matrix representing the generator. In our work, since no functional

form is assumed for the drift and diffusion, the boundary conditions are difficult to

impose. In that case, we chose to omit the boundary points.

The discretized generator is given generally by a matrix of the form:

a1

2(∆x)2 − b1
2(∆x)

− a1

(∆x)2
a1

2(∆x)2 + b1
2(∆x)

. . . 0

0 a2

2(∆x)2 − b2
2(∆x)

− a2

(∆x)2 . . .
...

...
. . . . . . . . .

...

... . . . −aM−1

(∆x)2

aM−1

2(∆x)2 + bM−1

2(∆x)
0

0 . . . . . . − aM
(∆x)2

aM
2(∆x)2 + bM

2(∆x)


Note that the rows should sum to zero when boundary conditions are imposed. Since

we opted for no condition in the boundaries, the sum of the entries of the first and

last rows of our discretized generators would be different than zero. The first and
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last columns are associated to the boundary conditions and removing them gives:

− a1

(∆x)2
a1

2(∆x)2 + b1
2(∆x)

0 . . . 0

a2

2(∆x)2 − b2
2(∆x)

− a2

(∆x)2
a2

2(∆x)2 + b2
2(∆x)

. . . 0

0 . . . . . . . . . . . .

... . . . aM−1

2(∆x)2 − bM−1

2(∆x)
− aM−1

(∆x)2

aM−1

2(∆x)2 + bM−1

2(∆x)

0 . . . 0 aM
2(∆x)2 − bM

2(∆x)
− aM

(∆x)2


The eigenvalues and eigenvectors of the matrix are computed and the drift and

diffusion estimators are obtained by minimizing the error function (2.31).

About the Optimization

Regarding the minimization, two approaches are possible. The first one, suggested

by [18], consisted in writing the above error in terms of a constraint quadratic pro-

gramming problem whose objective function is:

XTHλkX + F T
λk
X, (2.37)

where the matrix, Hλk , and the vector, Fλk , represent the discretization of the opera-

tors and the column vectorX, the coefficients written asX = (b1, . . . , bM , a1, . . . , aM).

This approach is a little tedious because the adjoint term in the error contains the

derivatives of the product b(x)f(x) and a(x)f(x) that need to be discretized and

then squared, this complicates the expansion. A second, and equivalent way, to ap-

proach this estimation is to consider that the summation over the number of data

i is the error term of a least squares problem, and the overall sum over the num-

ber of eigenvalues K used represent a weighted sum of least squares problems. We

therefore separately construct for each λk a matrix, Hλk , representing the discretized
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operator, multiply each of the matrix by the weights, and combine the matrices.

As an example, take the expression for the generator: K matrices are constructed,

multiplied by a weight, and then pooled to created a big matrix H where the first

N block represents the first Hλ1 , second block Hλ2 , etc. We then used the built

in MATLAB function for constraint least squares lsqlin. This way to program the

optimization problem appears more flexible since different inference techniques can

be used, ridge regression for example. Both approaches have been tested and on the

generator, they give similar results. We chose to use the second approach to perform

inference in the rest of this chapter.

Estimation using different boundary conditions

In order to determine what needs to be done for the condition at the boundary,

we tested the two following alternatives, (i) imposing no conditions or (ii) reflecting

boundary condition. We do not consider the absorbing boundary condition since it

is a rather strong assumption on the process. Using 40 bins for a CIR process, we

present in the Figures 2.17, 2.18, and 2.19 the reconstruction when reflective bound-

ary conditions are imposed to the discretized generators. Figures 2.20, 2.21, and 2.22

show the reconstruction when no boundary conditions are imposed. These figures

show that the boundary conditions affect mostly the reconstruction using error func-

tion including the adjoint and the bi-orthonormality constraint i.e. the error function

(2.31). The same type of behavior has been observed when we consider other pro-

cesses (OU and JAC). This leads to the conclusion than the error function involving

only eigenequation of the generator appears more robust to change of conditions at

the boundary than the more general error function (2.31). This is consistent with

43



2.6. EXTENSION TO NON PERIODIC DRIFT AND DIFFUSION FUNCTIONS

[18] where they decided to keep only the generator term in their subsequent paper

[20].

Estimation using discretized generator of drift and diffusion of affine

processes

No data was used. The goal is to test how the boundary conditions affect the recon-

struction. We focused on the reconstruction based on a discretized generator with

no boundary conditions and an error function that only involves the eigenequation

of the generator. The number of bins is set to 40 and only the first 3 eigenvalues are

used. The eigenvalues of the discretized generator are very close to their theoretical

counterparts. Table 2.7 shows the first 3 eigenvalues for each process. The method

perfectly reconstructs the drift and diffusion of the targeted processes as shown in

Figures 2.23 to 2.28.

True value OU CIR JAC

λ1 0 -0.0109 0.0639 -0.0062
λ2 -1 -1.0795 -0.9988 -1.0188
λ3 -2 (-3 for JAC) -2.2701 -2.4444 -3.0315

Table 2.7: The eigenvalues obtained from the discretized generator for the three affine
processes is compared to their real values.
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Figure 2.17: Reconstruction of the drift and diffusion using only the generator not the
adjoint of a discretized infinitesimal generator with reflective boundary conditions. The
x-axis gives the values, x, taken by the process Xt. The y-axis shows on the left and right
plots the values of b(x) and a(x) respectively.
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Figure 2.18: Reconstruction of the drift and diffusion using only the adjoint not the
generator of a discretized infinitesimal generator with reflective boundary conditions. The
x-axis gives the values, x, taken by the process Xt. The y-axis shows on the left and right
plots the values of b(x) and a(x) respectively .
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Figure 2.19: Reconstruction of the drift and diffusion using the error function (2.29) and
a discretized infinitesimal generator with reflective boundary conditions. The x-axis gives
the values, x, taken by the process Xt. The y-axis shows on the left and right plots the
values of b(x) and a(x) respectively .
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Figure 2.20: Reconstruction of the drift and diffusion using the generator, not the adjoint,
and a discretized infinitesimal generator without boundary conditions. The x-axis gives
the values, x, taken by the process Xt. The y-axis shows on the left and right plots the
values of b(x) and a(x) respectively.
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Figure 2.21: Reconstruction of the drift and diffusion using only the adjoint and not
the generator with a discretized infinitesimal generator without boundary conditions. The
x-axis gives the values, x, taken by the process Xt. The y-axis shows on the left and right
plots the values of b(x) and a(x) respectively.
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Figure 2.22: Reconstruction of the drift and diffusion using the error function (2.29) and
a discretized infinitesimal generator without boundary conditions. The x-axis gives the
values, x, taken by the process Xt. The y-axis shows on the left and right plots the values
of b(x) and a(x) respectively.
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Reconstruction of the OU process
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Figure 2.23: Reconstruction of the drift of the OU process using the discretization of its
known generator and no boundary conditions. The x-axis gives different values, xt, taken
by the process. The y-axis shows the values of b(x). The true values are given by the line
and estimates by the circles.
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Figure 2.24: Reconstruction of the diffusion of the OU process using the discretization
of its known generator and no boundary conditions.The x-axis gives different values, xt,
taken by the process. The y-axis shows the values of a(x). The true values are given by
the line and estimates by the circles.
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Reconstruction of the CIR process
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Figure 2.25: Reconstruction of the drift of a CIR type process using the discretization
of its known generator and no boundary conditions. The x-axis gives different values, xt,
taken by the process. The y-axis shows the values of b(x). The true values are given by
the line and estimates by the circles.
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Figure 2.26: Reconstruction of the diffusion of a CIR type process using the discretization
of its known generator and no boundary conditions. The x-axis gives different values, xt,
taken by the process. The y-axis shows the values of a(x). The true values are given also
by the line and estimates by the circles.
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Reconstruction of the JAC process
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Figure 2.27: Reconstruction of the drift of a Jacobi type process using the discretization
of its known generator and no boundary conditions. The x-axis gives different values, xt,
taken by the process. The y-axis shows the values of b(x). The true values are given by
the line and estimates by the circles.
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Figure 2.28: Reconstruction of the diffusion of a Jacobi type process using the discretiza-
tion of its known generator and no boundary conditions. The x-axis gives different values,
xt, taken by the process. The y-axis shows the values of a(x). The true values are given
by the line and estimates by the circles.
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Conclusion of this subsection: the objective of this section was to test how

boundary conditions affect the spectral reconstruction. We do not use discrete data,

instead we use a discretized generator to address this issue. We found that the

adjoint and last terms in (2.29) could be source of large errors since they appear

sensitive to boundary conditions. Using the error function that includes only the

generator eigenequation, we have been able to reconstruct the drift and diffusion of

each affine process using spectral data. Therefore, we will in the next section use

only a generator-based error function.

2.6.2 The number of bins or spatial step size

The choice of the time step and spatial size are crucial in the reconstruction. The sta-

bility of the finite difference scheme is used to understand the spatial discretization.

Recall that given a suitable function, f , the infinitesimal generator is

Lf = b(x)
∂f(x)

∂x
+

1

2
a(x)

∂2f(x)

∂x2
.

Using central finite differences, the infinitesimal generator for every point xi can be

written as:

Lf(x) =
N∑
i=1

b(xi)Dif(xi) +
1

2
a(xi)D

2
i f(xi),

=
N∑
i=1

biDifi +
1

2
aiD

2
i fi,

=
N∑
i=1

bi

(
fi+1 − fi

2∆x

)
+

1

2
ai

(
fi−1 − 2fi + fi+1

∆x2

)
,
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where bi = b(xi), ai = a(xi), and fi = f(xi). This forward Euler discretization is

similar to the scheme of a one dimensional advection-diffusion equation with space-

dependent parameters:

∂f(t, x)

∂t
= b(x)

∂f(t, x)

∂x
+

1

2
a(x)

∂2f(t, x)

∂x2
.

Discretizing advection and diffusion terms using second order central differences gives

for a point xj:

∂fj
∂t

= bj

(
fj+1 − fj

2∆x

)
+
aj
2

(
fj−1 − 2fj + fj+1

∆x2

)
. (2.38)

If we assume a constant drift and diffusion, then the stability of the finite difference

approximation can be obtained using the Courant-Friedrichs-Lewy (henceforth CFL)

condition [66]. The advection equation is known to be unstable when using a forward

Euler scheme with a constant or variable diffusion is :∣∣∣∣a∆t

∆x2

∣∣∣∣ ≤ 1 or

∣∣∣∣supx(a(x))∆t

∆x2

∣∣∣∣ ≤ 1.

The diffusion equation stabilizes the advection and a stability condition can be ob-

tained by using a Von Neumann Analysis [66] as follows. Substitute in (2.38)

fn = ρeikxn , xn+1 = xn + ∆x, and xn−1 = xn −∆x.
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We then take the derivative of fn with respect to t :

∂fn
∂t

= bn

(
fn+1 − fn

2∆x

)
+
an
2

(
fn−1 − 2fn + fn+1

∆x2

)
,

= bn

(
ρeikxn+1 − ρeikxn−1

2∆x

)
+
an
2

(
ρeikxn−1 − 2ρeikxn + ρeikxn+1

∆x2

)
,

= bn
ρeikxn

∆x

(
eik∆x − e−ik∆x

2

)
+ an

ρeikxn

∆x2

(
e−ik∆x − 2 + eik∆x

2

)
,

= bn
ρeikxn

∆x

(
eik∆x − e−ik∆x

2

)
+ an

ρeikxn

∆x2

(
−2 + eik∆x + e−ik∆x

2

)
,

= bn
ρeikxn

∆x
(i sin(k∆x)) + an

ρeikxn

∆x2
(−1 + cos(k∆x)) ,

= i bnfn
(sin(k∆x))

∆x
− anfn

(1− cos(k∆x))

∆x2
.

The usual CFL conditions for the diffusion and advection equations involve the time

step. Then let’s introduce the following variables that are in fact the CFL numbers

of the advection, denoted by CA, and the diffusion, CD. Note that they depend on n.

In practice, when the velocity and diffusion parameters are variable, the supremum

of these functions is taken and the two constant can be written as:

CA =
b̃∆t

∆x
and CD =

ã∆t

∆x2
.

with b̃ = sup bn and ã = sup an .

∂fn
∂t

= i bnfn
(sin(k∆x))

∆x
− anfn

(1− cos(k∆x))

∆x2
,

= i CAfn
(sin(k∆x))

∆t
− CDfn

(1− cos(k∆x))

∆t
,

=

(
i CA

(sin(k∆x))

∆t
− CD

(1− cos(k∆x))

∆t

)
fn.

If we consider the time discretization again using the forward Euler scheme for the

left hand side, it yields the following:

f t+1
n = (1− CD (1− cos(k∆x)) + i CA (sin(k∆x))) f tn.
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This scheme is stable if

|1− CD (1− cos(k∆x)) + i CA (sin(k∆x)) | < 1.

This constraint is equivalent to the following

(1− CD (1− cos(k∆x)))2 + (CA (sin(k∆x)))2 < 1.

Expanding the constraint

(1− CD (1− cos(k∆x)))2 + (CA (sin(k∆x)))2 < 1,

1− 2CD(1− cos(k∆x)) + C2
D(1− cos(k∆x))2 + C2

A sin2(k∆x) < 1,

− 2CD(1− cos(k∆x)) + C2
D(1− cos(k∆x))2 + C2

A(1− cos2(k∆x)) < 0,

(1− cos(k∆x))
(
−2CD + C2

D(1− cos(k∆x)) + C2
A(1 + cos(k∆x))

)
< 0.

This reduces to

− 2CD + C2
D(1− cos(k∆x)) + C2

A(1 + cos(k∆x)) < 0,

C2
A − 2CD + C2

D < (C2
D − C2

A) cos(k∆x).

The value of the right hand side defines different cases

• case 1: cos(k∆x) = 0

C2
A − 2CD + C2

D < 0⇒ C2
A < 2CD − C2

D ⇒ C2
A < 2CD(1− CD

2
) ,

• case 2:cos(k∆x) = 1

C2
A − 2CD + C2

D < (C2
D − C2

A)⇒ C2
A < CD ,

• case 3: cos(k∆x) = −1

C2
A − 2CD + C2

D < (C2
A − C2

D)⇒ CD(CD − 1) < 0 .
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Case 3 is only possible if 0 < CD < 1. Using now case 2, the condition becomes

C2
A < CD < 1. From conditions 1 and 3, one can see that CD < 2CD(1 − CD

2
). In

general, the first condition is neglected and only the second and third ones are used.

Therefore, our condition is

C2
A < CD < 1. (2.39)

The first inequality gives a bound for the time step that is already met by the small

time step used. We therefore focused on the second inequality. Using the definitions

of the spatial step and of the CFL of the diffusion,

CD < 1⇐⇒ ã∆t

∆x2
< 1,

⇒ ã∆t < (∆x)2 =

(
R

M

)2

,

⇒M2 <
R2

ã∆t
⇐⇒M <

R√
ã∆t

with R standing for the range of the sample path and M for the number of bins.

Recall that the diffusion in the generator denoted, a(Xt), is the square of the diffu-

sion component of the SDE, σ(Xt). Using an estimate of the diffusion of the SDE,

denoted σ̃, and such that ã = (σ̃)2, the bound for M or the spatial step size could be

equivalently written as

M <
R

σ̃
√

∆t
or ∆x > σ̃

√
∆t. (2.40)

For practitioners, these inequalities provide a criterion to select the number of bins

or the spatial step size. More precisely, to pick M for some data observed at a fixed

time step, one can calculate its upper bound using the range, standard deviation,

and the square root of the sampling frequency of the observations. Equivalently, if a
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spatial step size has to be selected, it should be greater than the square root of the

sampling time multiplied by the standard deviation of the data.

Conclusion of this subsection: Using stability analysis of a diffusion equa-

tion with constant parameters, we derived an upper bound on the number of bins,

and equivalently the spatial step size. From this result, one could conclude that the

spatial step size should be larger that the time step. For practical purposes, the

inequalities in (2.40) provide a criterion for the spatial discretization in the recon-

struction process.

2.6.3 Reconstruction using simulated data of affine processes

Before exploring extension to non-periodic drift and diffusion, we discuss in this

paragraph the optimization step. As mentioned in [18], it’s possible for one to per-

form reconstructions using only the generator and not the adjoint or the adjoint and

not the generator. Our tests on the discretized generator of known affine processes

suggest that the error function involving only the generator eigenequation provides

a more robust estimation. We will then for the rest of this work concentrate on this

type of error function to reconstruct the drift and diffusion. Our goal is to minimize

an objective function of the form:

Ẽ(b, a) =
K∑
k=1

βk

N∑
i=1

∣∣∣∣biDi(φ̃k) +
1

2
aiD

2
i (φ̃k)− λ̃kφ̃k,i

∣∣∣∣2 (2.41)

This is equivalent to setting αk = γk = 0 in the error function (2.31). The next

step of testing the spectral reconstruction procedure consists of using synthetic data

generated by different affine processes.
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Simulation of affine processes

1. Simulation of OU process

The simulation of such process can be done using the Euler Maruyama scheme,

[32]. To simulate T sample points of (2.3), with time step h = ti+1 − ti and

initial condition X0 = x0, we used the discretized version of the SDE which is

Xti+1
−Xti = κ(θ−Xti)h+ γ

√
h zti , with zti ∼ N (0, 1) to generate each new

value.

2. Simulation of CIR process

Euler scheme also could be used for this process but it could produce complex

values. One way to simulate the CIR process avoiding negative and com-

plex values makes use of the transition probability density of the process [32].

Suppose that we want to simulate T sample points of (2.7) with time step

h = ti+1 − ti and initial condition X0 = x0. The transition density is, for time

u < t, a non central Chi squared of the form:

Xt|Xu ∼
1− e−(t−u)

4
χ2
d

(
4e−(t−u)

1− e−(t−u)
Xu

)
, (2.42)

where χ2
d(λ) is a non central Chi squared with d degrees of freedom and a

non-centrality parameter, λ. Each new value of the CIR process Xt could be

obtained using the following loop. For i = 1 . . . T − 1 The following steps were

done with d = 4:

step 1: generate c← 1−e−(ti+1−ti)

4
,

step 2: generate λ← e−(ti+1−ti)

c
Xti ,

step 3: generate zti ∼ N (0, 1),
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step 4: generate R ∼ χ2
d−1,

step 5: compute Xti+1
= c

[
(z +

√
λ)2 +R

]
,

step 6: if i < T do i← i+ 1 and go back to step 1. If i = T , stop.

3. Simulation of JAC process

The simulation of such process can be done using a truncated version of the

Euler Maruyama scheme as shown in [34]. Suppose that we want to sim-

ulate T sample points of (2.11), at each time point, ti, with i = 1 . . . T ,

with time step, h = ti+1 − ti, initial condition, X0 = x0, and in an inter-

val [a, b]. The discretized version of the SDE (2.11) Xti+1
− Xti = κ(θ −

Xti)dt + γ
√

(Xti − a) (b−Xti)
√
h zti . with zti ∼ N (0, 1) is used to simulate

new points. However, to guarantee that the process remains inside the interval

[a, b], we can’t keep all the Xti+1
generated with the Euler scheme. Hence, we

only validate as a solution of the Jacobi process, values X̂ti+1
defined as:

X̂ti+1
=



b− 0.01 , if Xti+1
> b

Xti+1
, if Xti+1

∈ [a, b]

a+ 0.01 , if Xti+1
< a.

(2.43)

We generate only one trajectory and not 200 paths seen in the previous subsection.

The drift and diffusion are no longer a continuous periodic function, so we can’t

guarantee that all the bins will be visited. If bins are not visited at least once, we

would have rows in our stochastic matrix that do not sum to 1. It is computationally

expensive to randomly generate 200 paths to visit every bin. To simplify our study,

we generate only one path and ensure that all the rows sum to 1. Another adjustment
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is better results are obtained with a subsampling time, h, smaller that the spatial

step size, ∆x. This is also a conclusion of the upper bound (2.40) that we derived

for the space discretization. We used h = 0.01 instead of h = 0.1 in [18] chosen

with 60 bins such a way that the subsampling time is closed to the spatial step, i.e.

∆x = 0.105. When dealing with non-periodic functions, we would like h < ∆x. This

means that our bins are a little bit larger and have higher probability of being visited

at least once. Therefore, we use the following parameters to generate the trajectories

and test the impact of the boundaries: T = 106, h = 0.01, dt = 10−4, and the number

of bins is equal to 40 such that it satisfies the upper bound (2.40). The number of

eigenvalues and eigenfunctions used for reconstruction is set at 3. We also tried to

use a higher number for eigenvalues and eigenfunctions to improve the estimation. In

particular we tried K = 5, 7, 10 eigenpairs. But more eigenpairs didn’t significantly

affect the outcome of the reconstruction. The parameters for the affine processes

are the same as before (κ, θ, γ) = (1, 1, 1). The eigenvalues and eigenfunctions of

the discretized generator are compared to the eigenfunctions obtained by the data-

based Markov chains. From Table 2.8, we can see that the estimated eigenvalues are

close to their theoretical values except for the OU process where they overestimated.

The eigenfunctions, and their derivatives are compared to the ones obtained from a

discretized generator in Tables 2.9, 2.10, and 2.11. The largest deviations from the

reference values appear in the computation of the numerical second derivatives. We

proceed with the estimation for each process of the drift and diffusion.
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True value OU CIR JAC

λ1 0 1.55e-13 -1.22e-13 -2.11e-13
λ2 -1 -0.8100 -1.0004 -0.9882
λ3 -2 (-3 for JAC) -1.6544 -2.8196 -3.0718

Table 2.8: The eigenvalues obtained from data-based Markov chain for the three affine
processes are compared to their real value.

OU Process

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 0.1724 0.1024 0.4348 0.4049 1.9479 5.0605
2 0.5055 0.7406 0.9892 1.7846 7.6413 17.8950
3 1.8511 1.6370 2.3809 3.5300 12.5390 13.3690

Table 2.9: Comparison the difference of eigenpairs and their derivatives obtained for the
OU process with those of a discretized generator.

CIR Process

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 1.9785 1.9962 0.4782 2.3482 3.1038 11.5840
2 0.3993 0.5575 0.7576 1.6360 2.8979 7.3186
3 1.9244 1.7860 1.4645 4.6457 3.8957 23.7660

Table 2.10: Comparison the difference of eigenpairs and their derivatives obtained from
the CIR process with those of a discretized generator.

Jacobi Process

K ‖φ− φA‖2 |ψ − ψAx ‖2 ‖φx − φAx ‖2 ‖ψx − ψAx ‖2 ‖φxx − φAxx‖2 ‖ψxx − ψAxx‖2
1 0.2687 0.2574 0.5295 1.3269 4.3172 30.7610
2 1.9747 1.9706 2.3178 3.9779 7.7879 50.9240
3 0.3088 0.3244 1.5420 1.3981 14.3080 33.9870

Table 2.11: Comparison the difference of eigenpairs and their derivatives obtained for the
Jacobi process with those of a discretized generator.
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OU process

For the OU process, note that the spatial step size is dx = 0.11596. Estimation

of the drift and diffusion are given in Figures 2.29 and 2.30, respectively. The linear

fit and the 95% confidence bounds gives a drift with a slope of −1.4192±0.4945 and

a constant term of 1.5167 ± 0.8024. The true values are definitely in the interval.

A quadratic fit p1 ∗ x2 + p2 ∗ x + p3 with 95% bounds is used for the squared of

the diffusion. We obtained that only p3 is significantly different than zero using a

t-statistics test and is close to 1, its true value. More precisely, p1 = p2 = 0 and

p3 = 1.379± 0.2877.

CIR process

The spatial step used with 40 bins is dx = 0.092511. MATLAB financial toolbox

provides a command cir to simulate the square root process. We use this command

to generate paths and to estimate the drift and diffusion. We compare the latter

reconstructed components with the ones obtained from generating paths using the

transition probability density. The estimates are the same using both simulation

techniques. We found no significant intercept for both the drift and the squared

diffusion. The linear coefficient in the drift is p1 = −2.8739 ± 1.5176 which is a

large confidence interval for a true value of -1. Part of the diffusion function could

be recovered. The quadratic fit p1 ∗ x2 + p2 ∗ x + p3 for the squared diffusion

gives significant coefficients at 95% confidence level: p1 = −0.6061 ± 0.2562, p2 =

2.1984±0.9809 and p3 = 0. This implies that the drift has an extra linear term since

p1 is significantly different than zero. After taking the square root, the diffusion

becomes a linear function of the state. The reconstructed drift and diffusion are
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shown in Figures 2.31 and 2.32.

Jacobi process

For the Jacobi process, note that the spatial step size is dx = 0.074826 and 40

bins have been used. The drift and diffusion are given in Figures 2.33 and 2.34,

respectively. The linear fit and the 95% confidence bounds can’t be obtained for the

drift. For the diffusion, a quadratic polynomial, p1 ∗ x2 + p2 ∗ x+ p3, was fitted and

except the intercept, p3, the coefficients are significant with p1 = −1.4898± 0.9608,

p2 = 4.9625±2.9611. Note that the true values of p1 and p2 are -1 and 3, respectively.

Like the CIR process, only the general shape of the diffusion was recovered by the

method.
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Figure 2.29: Reconstruction of the drift of an OU process using simulated data using
T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas on the y-axis values of b(x) are given. The true values are given by the
line and estimates by the circles. Large approximation errors appear on the large positive
values of the process
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Figure 2.30: Reconstruction of the diffusion of an OU process using simulated data using
T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas on the y-axis values of a(x) are given. The true values are given by the
line and estimates by the circles. Large approximation errors appear at the extreme values
of the process
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Figure 2.31: Reconstruction of the drift of a CIR process using simulated data using
T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas on the y-axis values of b(x) are given. The true values are given by the
line and estimates by the circles. Large errors could be found for any value of the process.
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Figure 2.32: Reconstruction of the drift of a CIR process using simulated data using
T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken by
the process whereas on the y-axis values of a(x) are given. The true values are given by
the line and estimates by the circles. Diffusion for small values of the process are better
approximated than for large values.
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Figure 2.33: Reconstruction of the drift of a Jacobi process using simulated data using
T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas on the y-axis values of b(x) are given. The true values are given by the
line and estimates by the circles. These parameters fail to provide reconstruction.
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Figure 2.34: Reconstruction of the diffusion of a Jacobi process using simulated data
using T = 106, dt = 10−4, h = 0.01, M = 40. The x-axis gives different values, xt, taken
by the process whereas on the y-axis values of a(x) are given. The true values are given by
the line and estimates by the circles. The shape of the diffusion is recovered but outliers
appear when the process takes values around the long-term mean.
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Conclusion of this subsection: Unlike the case of periodic functions, the

reconstruction procedure using simulated data, and no filtering, fails to recover the

true drift and diffusion. When a polynomial fit is possible, the 95% confidence

intervals of the coefficients are relatively large. One reason could be the presence of

outliers in the estimates of the drift and diffusion. As an example, approximation

errors prevent a fit for the drift in the case of the JAC. The diffusion functional seen

for all 3 processes is easier to fit than the drift.

2.7 Improved reconstruction

Without filtering, the spectral reconstruction fails to provide robust estimates of the

non-periodic drift and diffusion coefficients. Numerically, there are many potential

sources of errors, the transition probabilities, the eigenvalues and eigenfunctions, or

the optimization. In this section, we study how the selection of parameters (T, h,M)

could improve the reconstruction.

2.7.1 Large data sets

We check if an increase of the number of observations could significantly improve the

reconstruction. We consider the parameters: subsampling time, h = 0.01, simulation

time, dt = 10−4, and the number of bins M is set to 40. This generates 10 times

more data than before. The number of observations simulated was T = 107.
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OU process

For the OU process, note that the spatial step size is dx = 0.12854. The drift and

diffusion are given in the Figures (2.35) and (2.36), respectively. The linear fit and

the 95% confidence bounds give the drift with a slope of −2.6448 ± 1.8666 and a

non significant constant i.e. p2 = 0. The slope is larger than its true value and the

confidence interval is larger than with less data. A quadratic fit p1 ∗ x2 + p2 ∗ x+ p3

for the diffusion gives p1 = p2 = 0 and a constant term p3 = 1.242 ± 0.0889. The

constant diffusion is correctly recovered and close to the real value which is 1. When

we increase further the number of sample points, 5 to 10 times the current value,

the slope of the drift term is stiffer and for the diffusion estimate shows larger errors

when the process takes large values.

CIR process

The spatial step used with 40 bins used is dx = 0.14586. Even with the eigenvalues

closed to the true one, eigenvalues are {λ1, λ2, λ3} = {1.1102e−13,−1.3421−2.7205},

we found no significant fit for both the drift and diffusion. Again half of the diffusion

is recovered but the presence of large errors when the process takes large values

prevent a polynomial fit. We increase T further, multiplied it by 5, 10 ,20 times its

value but found small improvements for the CIR reconstruction. When the process

reaches large values, the errors continue to increase. The reconstructed drift and

diffusion are shown in Figures (2.37) and (2.38).

Jacobi process

For the Jacobi process, the spatial step size is dx = 0.074992 and 40 bins have been

used. The drift and diffusion are given in the Figures (2.39) and (2.40), respectively.
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The linear fit and the 95% confidence bounds yields a drift with p1 = −0.9855±0.7325

and a non significant intercept. Note that p1 is closed to its true value of -1 and

allows part of the drift to be recovered. Again a quadratic fit p1∗x2 +p2∗x+p3, for

the diffusion gives p1 = −1.0482 ± 0.1828, p2 = 3.1617 ± 0.5644 and no significant

constant, i.e. p3 = 0. The significant coefficients are close to their true values -1 and

3, respectively. The Jacobi process drift and diffusion estimates improve when the

number of observations 5, 10, or 20 times larger. We found a perfect match to the

true value when the number of observations is greater than 5× 107 .
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Figure 2.35: Reconstruction of the drift of an OU process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 40. The values taken by the process are given by xt on
the x-axis. On the y-axis, the values of the reconstructed drift are given. The true values
are given by the line and estimates by the circles. The parameters provide an overestimated
reconstruction. Large errors appear when the process takes extreme values.
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Figure 2.36: Reconstruction of the diffusion of an OU process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 40. The values taken by the process are given by
xt on the x-axis. On the y-axis, the values of the reconstructed diffusion are given. The
true values are given by the line and estimates by the circles. The parameters provide an
overestimated reconstruction of the diffusion. Large errors appear when the process takes
extreme values.
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Figure 2.37: Reconstruction of the drift of a CIR process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 30. The values taken by the process are given by
xt on the x-axis. On the y-axis, the values of the reconstructed drift are given. The true
values are given by the line and estimates by the circles. Large errors could be found for
any value of the process.
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Figure 2.38: Reconstruction of the diffusion of a CIR process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 30. The values taken by the process are given by xt
on the x-axis. On the y-axis, the values of the reconstructed diffusion are given. The true
values are given by the line and estimates by the circles. Large estimation errors could be
found for large values taken by the process.
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Figure 2.39: Reconstruction of the drift of a Jacobi process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 40. The values taken by the process are given by
xt on the x-axis. On the y-axis, the values of the reconstructed drift are given. The true
values are given by the line and estimates by the circles. Large errors could be found for
any value of the process.
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Figure 2.40: Reconstruction of the drift of a Jacobi process using simulated data using
T = 107, dt = 10−4, h = 0.01, M = 40. The values taken by the process are given by xt
on the x-axis. On the y-axis, the values of the reconstructed diffusion are given. The true
values are given by the line and estimates by the circles. Large errors could be found for
values close to the long-term mean.

71



2.7. IMPROVED RECONSTRUCTION

Conclusion of this subsection: We tested if the increase in the number of

sample points would reduce the approximation errors and improve the reconstruction

of the drift and diffusion. The drift estimates for the OU process with an increase

of data has a lot steeper slope while the errors in the diffusion estimates increase

when the process takes extreme values. In summary, for the OU process, more data

causes an overestimation of the drift and diffusion. The drift of the JAC process is

partially recovered while the diffusion is fully reconstructed. The drift and diffusion

of the CIR process could not be reconstructed even when the number sample was of

the order 108.

2.7.2 Errors with subsampling and spatial steps

We generated 100 paths using different values of h and numbers of bins M . For

each process, we test how the choice of these parameters affects the estimation error

that we define as the 2-norm of the difference between the true value and the esti-

mated drift and diffusion at each discretization point. More formally we consider the

following: ∀i = 1, . . . ,M :

error1,drift = ‖btruei − b̂i‖2, error1,diffusion = ‖atruei − âi‖2, (2.44)

where btruei and atruei are the true values of the drift and diffusion at the point xi,

respectively. The corresponding estimated values are given by b̂i and âi. For each

i, we can compute a vector of size 100 × 1. Large errors occur in the estimation

especially at the extreme values taken by the process. We tried a second type of
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Nb. of bins(M) Error Drift Error Diff

20 7.3938 1.9578
40 4.1169 0.8256
60 2.292*109 8.3687
80 5.827*1012 1.2620
100 4.9765*1011 170.22

Table 2.12: Estimation errors obtained by varying the number of bins in the case of OU
process

errors

error2,drift = ‖btruei − b̄i‖2, error2,diffusion = ‖atruei − āi‖2, (2.45)

where b̄i = 1
100

∑100
i=1 bi and similarly āi = 1

100

∑100
i=1 ai. For each i, this error of

type 2 gives one value. The reconstructed values at the extreme of the range of

simulated data still affect this second type of errors. In addition to this difficulty,

the calculation of errors is complicated by the fact that all bins need to have at

least one data point. Not all randomly generated paths satisfy this condition. After

multiple trials, we came to the conclusion that the values of h ≤ 0.05 produce fewer

errors. Subsampling with this observational time step produced the best results. This

gives us the following relationship between the simulation time and the subsampling

time: h = α dt with 1 < α ≤ 10. The best values found were (dt, h) = (10−3, 0.01).

Given these, we focused on the number of bins. We used the errors defined above in

(2.45) and sum them for a given number of bins, M . This gave an overall value for

the total error in the estimation of the drift and the diffusion that can be compared

for different numbers of bins, M . The sum of the error made for different numbers of

bins for the OU process is seen in Table 2.12. Estimation of the other processes show
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the same behavior seen in Table 2.12, the errors are larger when the number of bins

increases. The best number of bins appear to be approximately 40. Sometimes a

smaller number of bins is more appropriate for the CIR. For this process, M = 30 also

produces good results. To illustrate more visually how the estimation errors depend

on the number of bins, we constructed box plots that show for a given number of

bins the error defined by (2.44) for 100 paths. To reduce the effect of outliers on

the plots, we just set for the drift that any error above 100 would be considered as

an outlier and set to be equal to 100. For the diffusion, we use a threshold of 10.

The following box plots, Figures 2.41 to 2.46, show that when the number of bins is

greater than 40, the errors increased significantly for OU and JAC. This threshold is

approximately equal to 30 for CIR. Note that the reconstruction of the components

of JAC with 40 bins produces fewer errors and almost no outliers. The drift and

diffusion reconstruction with more than 20 bins for the CIR process generated large

errors for both the drift and the diffusion.
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Figure 2.41: The number of bins for the OU process is given on the x-axis and the 2-norm
of the difference between estimate and true drift on the y-axis. All values greater or equal
to 100 are set to 100. Number of bins between 20 and 40 provides less errors. When the
number of bins is greater than 40, more outliers appear.
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Figure 2.42: The number of bins for the OU process is given on the x-axis and the 2-norm
of the difference between estimate and true diffusion on the y-axis. All values greater or
equal to 10 are set to 10. Observe that 40 bins give the smallest estimation errors for the
diffusion.
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Figure 2.43: The number of bins for the CIR process is given on the x-axis and the
2-norm of the difference between estimate and true drift on the y-axis. All values greater
or equal to 100 are set to 100. Observe that compared to the OU process, the magnitude
of errors made in the drift estimation is at least twice higher. The median is multiplied by
at least 2 just by increasing the number of bins from 20 to 30.
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Figure 2.44: The number of bins for the CIR process is given on the x-axis and the 2-
norm of the difference between estimate and true diffusion on the y-axis. All values greater
or equal to 10 are set to 10. The estimation errors are also larger than those of the OU.
Small number of bins, between 20 and 40, gives less errors.
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Figure 2.45: The number of bins for the JAC process is given on the x-axis and the
2-norm of the difference between estimate and true drift on the y-axis. All values greater
or equal to 100 are set to 100. The error value, when the number of bins is between 20
and 40, is smaller than 20. The error increases fourfold when the number of bins is greater
than 40.
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Figure 2.46: The number of bins for the JAC process is given on the x-axis and the 2-
norm of the difference between estimate and true diffusion on the y-axis. All values greater
or equal to 10 are set 10. Same pattern than the drift, a number of bins between 20 and
40 gives a better approximation.
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Conclusion of this subsection: We found empirically that subsampling with

h ≤ 0.01 improves the reconstruction while sampling less than 10 produces the

best results. A large number of bins, and equivalently a small spatial step size,

produces large errors. A number close to 40 bins appears to be optimal for the OU

and JAC. Reconstruction of the drift and diffusion of the CIR generates the largest

approximation errors. As suggested by the Figures 2.43 and 2.44, one way to reduce

the estimation errors is to use a number of bins such that 20 ≤M ≤ 30.

2.7.2.1 Truncation of the outliers

The estimation seems to be worse at the extreme values of the process. This is

expected since the process would visit these extreme states only a few number of

times. Therefore, one way to improve the estimation is to only consider states that

are most frequently visited by the process. For a mean reverting process as the

one we have, this means that the estimation has to be restricted to the area close

to the long term average. One simple way to restrict our estimation to the above-

mentioned region is to truncate the transition probability matrix constructed from

data. Hence, the approach that we chose is to look at the histogram of the data

and to truncate bins with a low amount of points. The OU and JAC processes

have a symmetric stationary distribution so both the leftmost and rightmost bins

are truncated. The CIR process has a stationary density that follows a Chi-square

distribution. For this process, more bins can be removed on the right tail than

the left. Simulation parameters remain the same. The number of bins, M, is set

to 40, the subsampling time, h = 0.01, and the number of observations T = 106.
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We include in the estimation observations in an interval sufficiently close to the

mean. We introduce the following notations: the mean of the process is denoted

by µX and the variance σX . We found for each process cutoff points, denoted by

cL for the left tail cutoff value and cR for the right one, and remove bins (same as

states in the transition probability matrix) that are not in the interval [µX − cL ∗

σX , µX + cR ∗ σX ]. The Jacobi process is simulated with a truncated scheme, so

we didn’t apply any additional truncation. The truncation significantly impacts the

eigenvalues and eigenfunctions. The eigenfunctions are modified but remain close to

their reference values before truncation. The first eigenvalues remained close to the

true ones as shown in Table 2.13. The second and third eigenvalues after truncation

are smaller than the theoretical ones. The eigenvalues are related to the weights.

Smaller value in this case implies a small weight. To assess the reconstruction with

True value OU CIR JAC

λ1 0 -1.7764e-13 -3.7007e-14 -1.1102e-13
λ2 -1 -1.4100 -1.7317 -1.3010
λ3 -2 (-3 for JAC) -3.7508 -5.0499 -4.0999

Table 2.13: The eigenvalues after truncation of the extreme values the three affine pro-
cesses are compared to their real value.

different subsampling times we computed error estimates using the definition (2.45).

Subsampling at most every 10 observations gives the best reconstruction as shown

in Table 2.14. We also plot the result of this table in Figures 2.47 and 2.48. One can

clearly see that when h > 0.02, the errors increase for all processes. If h is small, i.e.

(h < 0.003), the errors, especially for the diffusion, also increases.

79



2.7. IMPROVED RECONSTRUCTION

OU OU CIR CIR JAC JAC
h error2,drift error2,diff error2,drift error2,diff error2,drift error2,diff

0.1 53.176 3.0154 977.24 2.5409 29.982 4.3950
0.05 62.299 1.7263 15.839 2.1124 22.874 1.9512
0.01 2.7779 0.2703 2.6650 0.2523 0.6659 0.3224
0.005 3.3931 0.4709 5.6534 0.4052 0.7565 0.5096
0.003 3.4695 0.7657 5.6758 0.7189 1.1344 0.8044
0.001 5.3535 2.1012 7.3795 1.9892 3.3086 2.0984

Table 2.14: This table gives the error corresponding to different subsampling time after
applying a truncation of some values of the process histogram.

We use Table 2.14 to select the subsampling time for the reconstructions. We

present the best cases for each process.

OU process

The extreme values of the process are the ones that we want to eliminate. Empirically

we found that cL = cR = 2. We focus the estimation on states in the interval

[µX − 2σX , µX + 2σX ]. This implies that around 5% of the data has been removed.

The best results are obtained by subsampling every 10 observations. The Figures

2.49 and 2.50 show the results. The parameters are h = 0.01, M = 40, ∆x =

0.074516 and T = 106. The drift has a slope −1.17 ± 0.312 and a constant term

1.149 ± 0.397. For the diffusion, p1 = 1.076 ± 0.065 and p2 = p3 = 0. Apart

of providing statistically significant coefficients close to their theoretical values one

could notice that the confidence intervals are smaller than without truncation.

CIR process

The best results are obtained when we sub-sample between every third and tenth

data, i.e h ∈ [0.003, 0.01]. For illustration we present the case where h = 0.003,
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M = 30, ∆x = 0.0575 and T = 106. The right tail should have a larger cut cL = 1.5

and cR = 2 so our interval is [µX−1.5σX , µX + 2σX ]. Using this interval removes 5%

of the total number of observations, so we are left with most of the data. One can see

in Figures 2.51 and 2.52 that the reconstruction has improved but still fails to recover

the drift at the extreme values of the process. The drift has a slope −1.95 ± 0.695

and a constant term 1.909 ± 0.914. These values are almost twice the true values,

both are 1, but have the correct sign. The quadratic fit p1 ∗ x2 + p2 ∗ x+ p3 for the

diffusion whose coefficients with 95% bounds for the diffusion is p1 = p3 = 0; and

p2 = 1.2795 ± 0.3541. So the diffusion is a linear function of the process value as

expected.

Jacobi process

The Jacobi process data obtained from a truncated Euler scheme, requires no ad-

ditional truncation since the extreme states have been removed during the data

simulation. We therefore look at different subsampling times in the entire interval.

Similar to the CIR process, good reconstructions are obtained when h ∈ [0.003, 0.01].

We present the results for h = 0.003, M = 40, ∆x = 0.0074995 and T = 106 in Fig-

ures 2.53 and 2.54. We obtained: a drift with a slope −0.857± 0.267 and a constant

term 0.753 ± 0.456. Both values are different than -1 and 1 respectively their true

values. But the coefficients are statistically significant and relatively close compared

to the case without truncation where no relationship could be found. The quadratic

polynomial p1 ∗x2 + p2 ∗x+ p3 whose coefficients with 95% bounds for the diffusion

is p1 = −1.0145± 0.0395; p2 = 3.0367± 0.1221 and p3 = 0.2971± 0.0796. the coef-

ficients p1 and p2 match their true values -1 and 3 respectively. An extra constant
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term is found.

Conclusion of this subsection: By eliminating the rows and columns of the

transition probability matrix which correspond to the tails of the stationary distri-

bution we successfully remove the effect outliers have on the reconstruction and the

polynomial fit on the estimates. We accomplished this truncation of the transition

probability matrix by restricting our reconstruction on sub-interval close to the mean

of the process, [µX−cL*σX , µX + cR ∗σX ] where cL and cR are constants that depend

on the process. The drift and diffusion of the OU and JAC processes are recon-

structed much better than without truncation. The diffusion of the CIR process is

fully reconstructed and its drift can only be partially reconstructed.
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Figure 2.47: The error2,drift for different subsampling times is given for the three affine
processes after some values have been truncated. On the x-axis the time interval between
consecutive values of the process, the subsampling time, h, is given. On the y-axis the
values of the error error2,drift are provided. We can see that the error on the drift of the
Jacobi is smaller than the one of the other processes. Around h = 0.01 the approximation
error of the drift is minimal for the processes.
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Figure 2.48: The error2,diff for different subsampling times is given for the 3 affine
processes after some values have been truncated. On the x-axis the time interval between
consecutive values of the process, the subsampling time, h, is given. On the y-axis the values
of the error error2,diff are provided. We can see that the diffusion is better reconstructed
for all 3 process when the subsampling time is close to 0.01. However when the subsampling
time, h, is large, the Jacobi process generates the largest estimation errors for the diffusion.
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Figure 2.49: Reconstruction of the drift of an OU process using truncated histogram
T = 106, dt = 10−3, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of b(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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Figure 2.50: Reconstruction of the diffusion of an OU process using truncated histogram
T = 106, dt = 10−3, h = 0.01, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of a(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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Figure 2.51: Reconstruction of the drift of a CIR process using truncated histogram
T = 106, dt = 10−3, h = 0.003, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of b(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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Figure 2.52: Reconstruction of the diffusion of a CIR process using truncated histogram
T = 106, dt = 10−3, h = 0.003, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of a(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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Figure 2.53: Reconstruction of the drift of a Jacobi process using truncated histogram
T = 106, dt = 10−3, h = 0.003, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of b(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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Figure 2.54: Reconstruction of the diffusion of a Jacobi process using truncated histogram
T = 106, dt = 10−3, h = 0.003, M = 40. The x-axis gives different values, xt, taken by the
process whereas values of a(x) are given on the y-axis. The true values are given by the
line and estimates by the circles.
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2.8 Application: Modeling energy commodity

prices dynamics

2.8.1 Motivation

Crude oil is the most commonly traded energy commodity in financial markets and it

is considered a fundamental driver of most countries’ macroeconomic performance.

The recent fall of crude oil price has left the financial community stunned. From

roughly $ 100 per barrel prior to mid 2014, the price of oil in 2017 fluctuates around

$ 50, half of what it was a little more than three years ago. The important role in

economic growth plays by this fossil fuel motivated various researchers to model its

market price dynamics. Stochastic Differential Equations offer a simple and easy way

to describe the behavior of the price of crude oil. Unlike the Geometric Brownian mo-

tion assumption, generally found in stock price models [8, 9], researchers commonly

agree that commodities in general and crude oil in particular, should be modeled

by a mean reverting process [28, 70,77]. This mean-reversion feature of the oil price

has been the object of different studies which tries to established its validity. The

implications for forecasting are important: if mean reversion is observed, crude oil

price could be considered predictable. On the other hand, if the price is assumed to

follow a random walk type of dynamics, then in line with theories such as the famous

efficient market hypothesis [25, 55] the price could be considered as unpredictable.

87



2.8. APPLICATION: MODELING ENERGY COMMODITY PRICES
DYNAMICS

2.8.2 Literature review

The heart of the debate could be summarized by the following question ”Is Crude

oil price mean reverting or a random walk? ”. This is not a new question. Geman

[29] proposes two statistical tests of mean reversion in Oil and Natural gas prices.

She used two well-known stationarity tests [40], Augmented Dickey Fuller (ADF)

and Phillips Perron (PP) and reach the conclusion that the answer depends on the

time period of interest. The time interval covered by her analysis went from January

1994 to October 2004. In this period, she found that the crude oil price mean-

reverts from 1994 to 2000 and then the process became a random walk from 2000

to 2004. For natural gas, the same pattern could be observed, prices mean-reverts

until 1999 and then behaves like a random walk. Skorodumov [71] also tested mean

reversion in both oil and gas markets using historical data from 1990 to 2008. His

test is based on the statistical significance of the estimated coefficients of an OU

process. He concluded that for 10 years, 1991, 1994-1998, 2000, and 2003-2005, the

crude oil price exhibits significant mean reversion coefficients. Chikobvu et al.(2013)

[15] also investigated whether crude oil price followed a random walk or a mean

reverting path. They used stationary tests like Geman [29,30] and a GARCH model

with time varying coefficients. The data set comprised of monthly prices over the

period of January 1980, to September, 2010. The ADF test and the GARCH model

show significant mean reversion between 1980 and 1994 and random walk from 1994

to 2010. Therefore, all these studies showed that the price dynamics is constantly

changing from mean reverting to random walk. The goal of this section is to use

the spectral reconstruction to estimate the drift and diffusion of the crude oil price
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process. A constant drift would suggest that the oil price behaves like a random

walk when a linear one would be in favor of the mean reverting hypothesis. Apart

of bringing more evidence on the shape of the drift, another contribution of this

work is to identify the functional form of the diffusion process, what have not been

considered in the previous studies.

2.8.3 Description of crude oil price data

There are different grades of crude oil based on the sulfur content and the density.

A crude oil with low sulfur content would be qualified as sweet while a low density

fuel would be referred as light. Different benchmarks to describe oil exist. The West

Texas Intermediate (hereafter WTI) is a high grade crude oil, also known as the

Texas light sweet, used primarily in the USA and mostly refined in the Midwest

and Gulf Coast region of the country. The second popular benchmark is the Brent

crude extracted in the northern sea. WTI and Brent are considered worldwide as

benchmark for oil prices. In this work, we use WTI. The prices used in this study

are part of the free data available in the website www.histdata.com. It comprises

1 minute intervals of data of the main crude oil index, WTI, covering the time

period from November 14th 2010 to December 31th 2016. The total number of data

available from the website for this period is 1965766 observations. Note that within

some trading days some quotations are missing, or values for entire days are just

not reported. The presence of gaps in the data implies that the total number of

observations available for a year varies. In the financial markets, Out of 365 days

per year, almost a dozen days are labeled as market holidays, which leaves us with
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approximately 350 full trading days. But in these data a regular year consists in 310

or 311 trading days at the most. Another point is that for each day not all data are

reported. In the Table 2.15, the number of dates available per year are provided as

well as for each year the total number of observations. For each 1-minute interval

during the day trading session, the open bid quote, high bid quote, low bid quote,

close bid quote are recorded. The crude oil price is then computed using an average

of the open and close bid quotes.

The evolution of the WTI from 2010 to 2016 is presented in Figure 2.55. The oil

extraction in the last two decades has been marked by a widespread use of Hydraulic

fracturing also known as fracking, a stimulation technique that allowed to access the

oil and gas in the shales reserves. Fracking created a boom in the oil supply. This

increase in oil production in the USA, Canada but also China led to a global drop

of the price of a barrel. We can easily distinguish in Figure 2.55, 3 potential state

regimes in the crude oil markets for the last 7 years. Expressed in terms of years, we

can see: a period 1 of high oil price from 2010 to 2013, a period 2 that covers the year

2014 that seems to be a year of transition from a high to low price regime. Finally

the last period 3, 2015 to 2016, could be interpreted as the low oil price regime. The

graphs for each regime are given in the Figures 2.56, 2.57 and 2.58. We also provide

in Table 2.16 some summary statistics of the data. The average price for each period

confirm the presence of high and low price regimes.
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2010 2011 2012 2013 2014 2015 2016

Nb of dates 42 310 311 311 311 311 310
Nb of data 41143 318466 333544 320814 308208 326253 317338

Table 2.15: Description of WTI 1-minute data set. Note that not everyday is reported
and within a day the price for some minutes is missing. In this data set, a regular year
appears to have between 310 and 311 days of quotations.

Period 1 Period 2 Period 3 Period 1+2+3

Mean 95.4122 92.2897 46.087 78.773
Stand. dev. 7.3968 13.5881 7.2932 24.409

Skew 0.0637 -1.3931 -0.2293 -0.5748
Kurtosis 2.3871 4.0217 3.0853 1.7235
Minimum 75.040 52.470 26.040 26.040
Maximum 114.71 107.640 62.470 114.71

Table 2.16: Descriptive statistics of the WTI 1-minute dataset. The mean of each period
shows three possible regimes in the last seven years. Period 1, 2010-2013, is a high oil price
regime. Period 2, 2014, is a transition year during which the price of a barrel dropped. It
was also a year of high uncertainty as shown by the standard deviation twice higher than
during the two other periods. The Period 3, 2015-2016, is a low price regime with the
average price per barrel less than half what it was in period 1.
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Figure 2.55: WTI 1-minute evolution from November 2010 to December 2016. The
value of the benchmark is given by the average of the open and close bid at each minute.
Graphically, one can distinguish 3 different regimes: the regime 1 with a value of WTI
around $ 90 from November 2010 to June 2014, regime 2 from June 2014 to January 2015
a fall of the price. And a regime 3 from January 2015 to December 2016 where the WTI
oscillates around $ 40 mark.
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Figure 2.56: Period 1: High oil price regime, November 2010- to December 2013. This
period is dominated by a WTI $ 95 with a maximum value of $114.83 on May 2nd 2011
after an increase of production by Saudi Arabia. The minimum price in this period was $
75.05 in October 04th 2011 due to recession fears.
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Figure 2.57: Period 2: 2014 the transition year. The price oscillates around $100 from
January 2014 until October 07th 2014 when it dropped below the $90 mark. The maximum
value of $ 107.64 has been reached on June 12th 2014 while the lowest value $ 52.51 was
on December 31st2014
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Figure 2.58: Period 3: Low oil price regime, from January 2015 to December 2016. The
maximum value was $ 62.45 occurred on May 6th 2015 and the minimum value was $26.05
on February 11th 2016
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2.8.4 Model of crude oil price dynamics

In order to model the oil price, we use the standard SDE representation introduced

by [70, 77]. Let’s St denote the crude oil spot price. A standard one factor model

that describes the stochastic behavior of a commodity price has been introduced by

[70]. The idea of this paper is to assume the dynamics of the commodity follows a

diffusion process that can be constructed as follows:

dSt
St

= b(St)dt+ a(St)dWt,

= κ
(
θ − log(St)

)
dt+ σdWt,

(2.46)

where κ is the speed of mean reversion, θ is the long run mean and σ is the volatility.

Defining the log price Xt = log(St) and applying Ito’s lemma to it the author in [70]

obtained a SDE of an Ornstein-Uhlenbeck process

dXt = κ
(
θ? −Xt

)
dt+ σdWt, (2.47)

with θ? = θ− σ2

2κ
. This approach has been used as a reference to model the behavior of

commodity prices. Note that parametric assumptions on the drift and diffusion have

been formulated, the drift is linear and the volatility is constant. Unlike previous

studies in the literature, such as [29,70,71] and others, except the log transformation

of the price data, we are making no functional assumptions on the component of the

SDE. In other words, using the spectral reconstruction methodology, we estimate the

drift b(Xt) and diffusion a(Xt) of the following SDE:

dXt = b(Xt)dt+
√
a(Xt)dWt, (2.48)

where Xt = log(St).
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2.8.5 Construction of the Markov chain and parameters se-

lection

As in the previous section, we opt for a small number of eigenpairs and pick the first

3 only. As mentioned in the above description, gaps between observations prevent us

from having data for every minute of each trading year. In order to avoid spurious

transitions between states, we skip transition that didn’t occur in a one minute time

period. For example, suppose that we have data from 8:00 am today and missing

data until tomorrow 8:00 am. We do not keep as valid the transition today to

tomorrow but use 1 minute transitions from tomorrow 8:00 am onward. We also

discard the transition from end of the year holidays (Christmas, New Year Eve,. . . ).

This reduces the number of data, but guarantees that all the transitions recorded

in the transition probability matrix occurred in a 1 minute time lapse. The time

frequency of the data determined the scale of the parameters. In this application,

we set the sampling frequency to the number of days divided by the total number of

observations, T i.e. dt = Number of days
Number of observations

. Another value for dt would just scale up

or down the eigenvalues and the parameters but wouldn’t change the reconstructed

functional form of the drift and diffusion. The subsampling time, h, would be again

a multiple of dt such as h = αdt with α ∈ N and α ≥ 1. We would look at

three cases α = 2, 5, 10 or in other words we sub-sample every second, fifth, and

tenth observation. Increasing h implies discarding a certain amount of data. If for

example, we sample every other data it means that we use only 50% of the data.

If h = 10 ∗ dt means that we use every other 10th value so 10% of the data. The

process of subsampling reduces the sample size but, in the parametric case [4–7] and
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non-parametric estimation of the previous section, has been shown to improve the

quality of the estimators. The mean of the process would be denoted µXt and the

volatility σXt . A 95% confidence interval is given along with the parameters of a

linear fit, p1 ∗ x + p2, for the drift and quadratic fit, p1 ∗ x2 + p2 ∗ x + p3, for the

diffusion. An important feature of a mean-reverting process is the time that it takes

to revert from its current level half way to its long term level. This half-life could

be computed using the speed of reversion, which is the coefficient of the slope of the

drift. We provide the half-life, t 1
2
, for each subsampling time computed as follows

Xt+1 = Xte
−κt 1

2 ⇒ e
−κt 1

2 =
Xt+1

Xt

= 0.5⇒ t 1
2

=
ln(2)

κ
. (2.49)

The value of t 1
2

for each observational time step can be found by substituting the

drift coefficient p1 for κ.

2.8.6 Spectral estimation applied to crude oil price data

2.8.6.1 Period 1: 2010-2013

The total number of observations available for this period is equal 1013967. The

histogram for the entire period is given in Figure 2.59. The sampling frequency is as-

sumed to be dt = 974
1013967

= 0.00096. In order to remove outliers, we found that empir-

ically better reconstruction is obtained with only log prices between [4.3607, 4.7302]

that represents data in [µXt − 2.5σXt , µXt + 2.25σXt ]. The histogram after trunca-

tion is given in Figure 2.60. We used M = 40 bins. The spectral reconstruction still

generates outliers in the estimated drift and diffusion.
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Figure 2.59: Full data histogram of the period 2010-2013. The log price is on the x-axis
and the number of observations on y-axis.
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Figure 2.60: Truncated data histogram for the period 2010-2013. The log price is given
on the x-axis and the number of observations on y-axis. We removed values on the both
left and right tails such that each bin has at least 2000 observations.
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h ∆x Drift Diff

p1= -0.14325 p1=0.02606
2*dt 0.0092 (-2.7024) (4.4935)

p2= 0.65168 p2= -0.23984
(2.7095) (-4.5599 )

p3=0.55367
(4.6427)

p1=-0.10082 p1= 0.01852
5*dt 0.0092 (-2.9796) (4.5866)

p2=0.45819 p2=-0.17029
(2.9843) (-4.6489 )

p3= 0.3927
(4.7283)

p1=-0.06467 p1=0.013639
10*dt 0.0092 (-2.3187) (4.9519)

p2=0.29343 p2=-0.12556
(2.3208) (-5.0296)

p3=0.2898
(5.1254)

Table 2.17: Least squares fit for reconstruction during the period 2010-2013. The coeffi-
cients of a linear fit for the drift are provided for different subsampling times h. A quadratic
fit was used for the diffusion and its coefficients are given for different values of h. The
mean reverting assumption is validated for the drift whereas a non constant diffusion is
identified

Model t 1
2

RMSE Drift RMSE Diff.

2*dt 4.84 0.033 0.000327
5*dt 6.87 0.021 0.000228
10*dt 10.72 0.017 0.000148

Table 2.18: Half-life and RMSE for period 1 2010-2013
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All the subsampling times confirmed the mean reversion hypothesis for the pe-

riod from 2010 to 2013, see Table 2.17 and 2.18. The drift is linear with respect

to the log price. Even if the mean reversion rate, the slope, changed with h, the

long term mean which was equal to p2
p1

was the same for all h and was equal to

approximately 4.5. An unexpected finding is the rejection of the constant volatil-

ity assumption for this period. Indeed, the diffusion can be fitted with a quadratic

function. So the estimated diffusion has a quadratic form. Figures 2.61 and 2.62

show the reconstructed drift and diffusion for the h = 5dt case. One limitation of

these results is this estimation of the eigenvalues, fitted coefficients and, errors, mea-

sured by RMSE, decrease when h increases. The eigenfunctions were unaffected by

a change in h. Future research will investigate this observation. Such behavior is an

indication that more preliminary work on the data is required and suggest that some

microstructures are currently unaccounted for. A second possibility might be that

the drift and diffusion are time dependent and therefore might not be well captured

by this method. Another possibility might be better described by a jump process or

by fractional Brownian motion.
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Figure 2.61: Drift estimates with h = 5dt, ∆x = 0.0092, and M = 40 for period from
2010 to 2013. The log price is given on the x axis and the value of the drift on the y axis.
The estimates are in circles and the linear fit in line. The estimates are centered around
a linear line with decreasing slope. This supports a mean reversion assumption for this
period.

4.35 4.4 4.45 4.5 4.55 4.6 4.65 4.7 4.75

Log price of WTI

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0.046

0.048

0.05

least sq. fit

reconst

Figure 2.62: Diffusion estimates with h = 5dt, ∆x = 0.0092, M = 40 for period from
2010 to 2013. The log price is given on the x axis and the value of the diffusion on the y
axis. The estimates are in circles and the linear fit in line. The estimates are distributed
around a quadratic curve. This supports a non constant diffusion assumption for this
period.
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2.8.6.2 Period 3: 2015-2016

The total number of observations available for the period starting from January 2015

to December 2016 is 643591. We have less data for this time-frame. We obtain better

estimations by increasing the number of bins by 20 to M = 60. The full histogram

for the entire period between 2015-2016 is given in Figure 2.63. The stationary

distribution is right skewed and different from the one of period 2010-2013. Only the

log prices between [3.3581, 4.0008] that represents data in [µXt+2.75σXt , µXt+1.1σXt ]

are used in the reconstruction process. The histogram after truncation is given in

Figure 2.64.

We present the estimated drift and diffusion in Figures 2.65 and 2.66 for the case

h = 5dt. For this period, the random walk assumption seems to be validated, see

Tables 2.19 and 2.20. No significant parameters can be found for the drift. The

diffusion like in the previous case is quadratic. The half life coefficients are not

significant in this case.

As before the eigenvalues and fitted coefficients in this estimation decrease when

we increase h. The eigenfunctions are still unaffected by a change h. Further research

on that matter is needed.
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Figure 2.63: Full histogram for the period 2015-2016. The left tail contains bins with
less than 2000 observations. Similarly on the right tail when the log price is close to 4,
bins have a small number of observations.
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Figure 2.64: Truncated histogram for the period 2015-2016. We removed the bins in
both the left and right tails that contain less than 2000 observations.
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h ∆x Drift Diff

p1=0.042942 p1=0.01668
2*dt 0.0107 (0.68422 ) (4.3081)

p2=-0.15922 p2=-0.12738
(-0.6917 ) (-4.4879)

p3=0.24648
(4.7484)

p1= 0.07038 p1= 0.01583
5*dt 0.0107 (1.1387) (4.5194)

p2=-0.26605 p2=-0.12042
(-1.1736) (-4.6906)

p3=0.23131
(4.9266)

p1=0.060668 p1= 0.01391
10*dt 0.0107 (1.3582) (4.4745)

p2=-0.22385 p2=-0.10512
(-1.3664) (-4.5914)

p3=0.19951
(4.7649)

Table 2.19: Least Squares fit for reconstruction during the period 2015-2016. The co-
efficients of a linear fit for the drift are provided for different subsampling times h. A
quadratic fit is used for the diffusion and its coefficients are given for different values of
h. The random walk assumption for the drift failed to be rejected whereas a non-constant
diffusion is identified.

Model t 1
2

RMSE Drift RMSE Diff.

2*dt 16.14 0.084 0.00082
5*dt 9.85 0.083 0.00074
10*dt 11.43 0.060 0.00066

Table 2.20: Half-life and RMSE for period 3 from 2015 to 2016

103



2.8. APPLICATION: MODELING ENERGY COMMODITY PRICES
DYNAMICS

3.3 3.4 3.5 3.6 3.7 3.8 3.9

Log price of WTI

-0.2

-0.1

0

0.1

0.2

0.3

0.4

d
ri
ft
 b

(x
)

least sq. fit

reconst

Figure 2.65: Drift estimate with h = 5dt,and M = 60. The log price is given on the x
axis and the value of the drift on the y axis. The estimates are in circles and the linear fit
in line. The estimates are centered around the zero line what supports the random walk
assumption.
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Figure 2.66: Diff estimate with h = 5dt and M = 60. The log price is given on the x
axis and the value of the diffusion on the y axis. The estimates are in circles and the linear
fit in line. A quadratic fit well approximates the general distribution of the data, what
supports the rejection of a constant drift assumption.
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Conclusion of this subsection: The spectral estimation has been applied to

crude oil prices. Two time periods have been selected for the estimation 2010-2013

and 2015-2016. The reconstruction of the SDE describing the crude oil price for

each period has been performed. The first period validated the hypothesis of mean

reversion in the oil price. The second period showed no significant drift coefficient

and could be associated with a random walk process. These results are to be taken

with caution since it appears that all the results scale with the observation time step.

Further research on this observation will be done, however, this behavior might point

to an omission in our model of some key data structures or the need for a methodology

for SDE with jumps or fractional Brownian motion.

2.9 Conclusion Chapter 2

1. The reconstruction procedure has been tested to different affine processes rel-

evant in many areas of science, engineering, and finance.

2. In most cases, diffusion can be reconstructed better than the drift.

3. Discarding a fixed high number of wave-number for Fourier filtering like in [18]

appears too drastic. Instead, we tried instead to use a Parzen windows filtering

scheme to smooth the entries of the Markov chain. The scheme has been done

for a 1 and 2 dimensional filtering. A 1 dimensional filter is used where only

the rows of the matrix are smoothed but in a 2 dimensional filter both rows

and the columns are filtered. A triangular, or tent, and a Gaussian filter have

been implemented. The results are close to the performance obtained by the
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unfiltered matrix. The use of the Parzen windows produced good results for

the periodic case.

4. For diffusion, of the OU, CIR, and JAC processes, both the shape and the

value at different points were recovered while the shape of the drift was hardly

recovered.

5. When the procedure used the discretized generator instead of the data-based

transition probability matrix the drift and diffusion can be reconstructed re-

gardless of the boundary conditions used.

6. Small differences between the eigenvalues and eigenfunctions of the data esti-

mated transition probability matrix and these of the discretized generator seem

to increase the errors in the reconstructed components.

7. Estimation procedures are sensitive to the choice of the subsampling time and

the number of bins.
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CHAPTER 3

CONDITIONAL EXPECTATION BASED RECONSTRUCTION

OF DRIFT AND DIFFUSION

The main goal of this chapter. In this chapter, we analyze a second approach

to the non-parametric estimation of the drift and diffusion of SDEs. This approach

relies on conditional expectations formulas (2.2) introduced earlier in this thesis.
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3.1 Introduction-Chapter 3

In the previous chapter, spectral reconstruction methods have been used to estimate

the drift and diffusion functions of a SDE. One of the main conclusions was that

the parameters used in the space and time discretization as well as the interval in

which carries the estimation are crucial for an accurate estimation. An analysis

of the sensitivity of the spectral reconstruction to these parameters have to take

into account various type of errors. For example, we should consider errors from the

construction of a random transition probability matrix, errors from the calculation of

eigenvalues and eigenfunctions, errors from the generator’s numerical derivatives, and

also the least squares estimation errors in the optimization step. These considerations

make the sensitivity analysis of the spectral approach complex and we refer to [18–20,

42] for more details. For simplicity and clarity reasons, we performed this sensitivity

analysis in the context of conditional expectation based estimation, a second type of

non-parametric technique. Consider a SDE:

dXt = b(Xt)dt+ a(Xt)dWt. (3.1)

with an initial condition, X(0) = x0, and Wt, the standard Brownian Motion. The

drift and diffusion have a statistical definition in terms of expectations, [24,27,64]:

b(x) = lim
∆t→0

1

∆t
E (Xt+∆t − x|Xt = x) ,

a2(x) = lim
∆t→0

1

∆t
E[
(
Xt+∆t − x)2|Xt = x

]
.

(3.2)

A discrete time estimator for the drift and for the diffusion can be constructed as

follows. Consider N + 1 observations {Xi}i=0...N generated by a stochastic process
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(3.1), a subsampling time step ∆t with discrete estimators which are analogs of the

conditional expectations in (3.2):

b̃(x) = lim
∆t→0

1

∆t

∑N
i=0 (Xi+1 − x)1{Xi=x}∑N

i=0 1{Xi=x}
,

ã2(x) = lim
∆t→0

1

∆t

∑N
i=0 (Xi+1 − x)2

1{Xi=x}∑N
i=0 1{Xi=x}

.

(3.3)

Note that the condition in the indicator function is the observed data pointXi is equal

to one specific value. This event has a probability of zero but can be approximated

by the event where Xi belongs to an interval centered at x. The state space of the

process is discretized using a bin size of ∆x and the event {Xi = x} is approximated

by another which is Xi ∈
[
x− ∆x

2
, x+ ∆x

2

]
. We assume in the following that x is

the center of the given bin.

Our objective is to study for a particular interval, in the L2 sense, the behavior

of the estimation error with respect to the spatial step ∆x, the time step ∆t, and the

number of sample points involved in the estimation that we denote M . We consider

a particular case of an OU process of the following form:

dXt = −γXtdt+ σdWt,

X(0) = X0,

(3.4)

where b(Xt) = −γXt and a(Xt) = σ, with γ and σ being two strictly positive

constants. We set, without loss of generality, (γ, σ) = (1, 1). Using standard Ito’s

calculus techniques, see [24], one can find that the solution of the SDE (3.4) is

Xt = X0e
−γt + σe−γt

∫ t

0

eγsdWs. (3.5)
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The density of Xt is known to be a normal distribution

Xt ∼ N
(
X0e

−γt,
σ2

2γ

(
1− e−2γt

))
.

Using the above solution, one can derive the following expression for the covariance

of the process:

E(XtXs) =
σ2

2γ
e−γ|t−s|

(
1− e−2γ(s∧t))+X2

0e
−γ(t+s). (3.6)

Discrete versions of these results for the OU process could be found in the literature,

see [61]. Assume that these time series data, {Ui}i=0...N , are collected. We have

(N+1) direct observations, Xi = Xti = Ui∆t with i = 0, . . . , N extracted from the

trajectory of an OU process during a time period [0, T ] sub-sampled at discrete time

steps, ti = i∆t. The data points are observed at equal time intervals, i.e. they have

a fixed subsampling such that 0 = t0 < · · · < ti < · · · < tN = T and ti+1 = ti + ∆t.

Then Xi+1 and Xi obey for any i:

Xi+1 = Xie
−γ∆t + σe−γti+1

∫ ti+1

ti

eγsdWs. (3.7)

This expression by a change of variable becomes:

Xi+1 = Xie
−γ∆t + σe−γ∆t

∫ ∆t

0

eγsdWs,

= X0e
−γ(i+1)∆t + σe−γ(i+1)∆t

∫ (i+1)∆t

0

eγsdWs.

(3.8)

A finite difference version without stochastic integral, as in [4], is:

Xi+1 = Xie
−γ∆t +

√
σ2(1− e−2γ∆t)

2γ
Zi = X0e

−γ(i+1)∆t +

√
σ2(1− e−2γ(i+1)∆t)

2γ
Zi

(3.9)
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where the Zi are i.i.d standard Gaussian variables and are independent of X0, . . . , XN

for each i = 1, . . . , N − 1. The data are not independent so a discretized version of

the covariance (3.6) could also be derived.

3.2 Error Analysis

The first step in our analysis of the estimators (3.3) would be the study of the impact

of the state-space discretization parameters, ∆x and ∆t, as well as the number of

points in computing the conditional expectation. For this purpose, we will first look

at the case where we know exactly the number of points used in each bin and then

relax this assumption in the coming sections. We define two estimators, m̂1 and m̂2,

of the first and second moments respectively as:

m̂1 =

∑N
i=1Xi1{Xi−1∈Bcj }∑N
i=1 1{Xi−1∈Bcj }

, m̂2 =

∑N
i=1 X

2
i 1{Xi−1∈Bcj }∑N

i=1 1{Xi−1∈Bcj }
. (3.10)

where Bcj is an interval of size ∆x centered at a point cj. This interval is defined in

more details in the following subsection.

3.2.1 Conditional expectation with fixed number of points

Our goal in this subsection is to have an estimate of the error made in each bin given

that the number of points that is used in this bin is known. To compute this error,

we restrict our attention to the interval [µX − σX , µX + σX ], where µX and σX are

respectively the mean and standard deviation of the process Xt. We refer to it as

interval I . We chose this interval to ensure that each partition would consist in
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neighborhoods that are often visited by the trajectory. In this setting, we assume

that we have exactly M points falling into a bin denoted Bcj whose center is the point

cj and is of size ∆x. More precisely, the bin is an interval obtained by partitioning I

into sub-intervals of size ∆x centered at points cj such that Bcj = [cj − ∆x
2
, cj + ∆x

2
].

We use the notations c± = cj ± ∆x
2

and also write Bcj = [c−, c+]. Therefore, the

denominator of the estimators (3.10) is just set to M.

m̂1 =
1

M

N∑
i=1

Xi1{Xi−1∈Bcj }, m̂2 =
1

M

N∑
i=1

X2
i 1{Xi−1∈Bcj }. (3.11)

The above estimators (3.11) would estimate the first moment E
[
Xi|Xi−1 = cj

]
and

the second one E
[
X2
i |Xi−1 = cj

]
, respectively.

Bias of the estimators

First, we would like to characterize the bias of the estimators. We start by computing

the conditional expectation of the first estimator.

E
[
m̂1|Xi−1 = cj

]
= E

[
1

M

N∑
i=1

Xi1{Xi−1∈Bcj }

∣∣∣∣Xi−1 = cj

]

= E

[
1

M

M∑
i=1

(
Xi−1e

−γ∆t + σe−γ∆t

∫ ∆t

0

eγsdWs

)∣∣∣∣Xi−1 = cj

]

=
1

M

M∑
i=1

E

[
Xi−1e

−γ∆t

∣∣∣∣Xi−1 = cj

]
= cje

−γ∆t.

(3.12)

This conditional expectation of the first estimator gives the mean in terms of the

center of the bin and is equal to the theoretical average of (3.7). Similarly, for the

second moment, we obtained
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E
[
m̂2|Xi−1 = cj

]
= E

[
1

M

N∑
i=1

(
Xi1{Xi−1∈Bcj }

)2∣∣∣∣Xi−1 = cj

]

= E

[
1

M

M∑
i=1

(
Xi−1e

−γ∆t + σe−γ∆t

∫ ∆t

0

eγsdWs

)2∣∣∣∣Xi−1 = cj

]

=
1

M

M∑
i=1

E

[
X2
i−1e

−2γ∆t +
σ2(1− e−2γ∆t)

2γ

∣∣∣∣Xi−1 = cj

]
= c2

je
−2γ∆t +

σ2(1− e−2γ∆t)

2γ
(3.13)

The second moment also has no bias for this estimator. This expectation is a special

case of a more general one involving Xi−1 ∈ Bcj where Xi−1 doesn’t have to be equal

to the center, but can instead take any value in Bcj . This more general condition

would most likely lead to a bias of order ∆x for the first estimator and (∆x)2 for the

second one.

3.2.2 Crude error estimates

Recall that the conditional expectation of the OU process defined by equation (3.4)

is E[Xt+∆t|Xt = cj] = cje
−γ∆t.
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The L2 error of m̂1 is given by :∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
=
∥∥m̂1 − cje−γ∆t

∥∥
2

=

∥∥∥∥ 1

M

N∑
i=1

Xi1{Xi−1∈Bcj } − cje
−γ∆t

∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1e

−γ∆t + σe−γ∆t

∫ ∆t

0

eγsdWs

)
− cje−γ∆t

∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)e−γ∆t +
1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

(by triangular inequality)

≤
∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)e−γ∆t

∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

(since |Xi−1 − cj| ≤
∆x

2
)

≤ ∆x

2
e−γ∆t +

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

≤ ∆x

2
e−γ∆t +

σ√
M

√
1− e−2γ∆t

2γ
=

∆x

2
e−γ∆t +

1√
M

√
σ2

2γ
(1− e−2γ∆t)

=
∆x

2
e−γ∆t + σ

√
∆t√
M
≤
√

∆x

2
e−γ∆t + σ

√
∆t√
M

≈
√

∆x

2
+ σ

√
∆t√
M
, , (for small ∆t)

(3.14)

Different cases appear with this bound:

1. When ∆t is fixed, then the second term of the bound decays at a rate propor-

tional to one over the square root of the number of points. An optimal scaling

in this case would be ∆x ∝ 1
M

. This would allow the error to decay as 1√
M

.

So for a fixed ∆t, having ∆x ∝ 1
M

would allow the error to decay at

the rate 1√
M
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2. When ∆t → 0 we need to balance the two terms in L2 error which leads to

∆x = ∆t
M

Similar the L2 norm error of m̂2 is given by∥∥m̂2 − E[(Xt+∆t)
2|Xt = cj]

∥∥
2

=

∥∥∥∥m̂2 −
(
σ2

2γ
(1− e−2γ∆t) + c2

je
−2γ∆t

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
Xi1{Xi−1∈Bcj }

)2

−
(
σ2

2γ
(1− e−2γ∆t) + c2

je
−2γ∆t

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1e

−γ∆t + σe−γ∆t

∫ ∆t

0

eγsdWs

)2

−
(
σ2

2γ
(1− e−2γ∆t) + c2

je
−2γ∆t

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
X2
i−1 − c2

j

)
e−2γ∆t +

1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)2

+
1

M

M∑
i=1

2Xi−1e
−γ∆t

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)
− σ2

2γ
(1− e−2γ∆t)

∥∥∥∥
2

(using triangular inequality)

=

∥∥∥∥ 1

M

M∑
i=1

(
X2
i−1 − c2

j

)
e−2γ∆t

∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)2∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

2Xi−1e
−γ∆t

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

+

∥∥∥∥σ2

2γ
(1− e−2γ∆t)

∥∥∥∥
2

= term 1○ + term 2○ + term 3○ + term 4○

(3.15)
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Consider these four terms separately

term 1○ =

∥∥∥∥ 1

M

M∑
i=1

(
X2
i−1 − c2

j

)
e−2γ∆t

∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)(
Xi−1 + cj

)∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)(
Xi−1 − cj + 2cj

)∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)2

+
1

M

M∑
i=1

2cj

(
Xi−1 − cj

)∥∥∥∥
2

(using triangular inequality)

≤ e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)2∥∥∥∥
2

+ e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

2cj

(
Xi−1 − cj

)∥∥∥∥
2

≤ e−2γ∆t

[(
∆x

2

)2

+ 2cj

(
∆x

2

)]
, since |Xi−1 − cj| ≤

∆x

2

term 2○ =

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)2∥∥∥∥
2

= σ2e−2γ∆t 1

M

∥∥∥∥ M∑
i=1

(∫ ∆t

0

eγsdWs

)2∥∥∥∥
2

≤ σ2e−2γ∆t

M

(
e2γ∆t − 1

2γ

)√
2M +M2

=
σ2

2γ

(
1− e−2γ∆t

)√
1 +

2

M
(3.16)
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term 3○ =

∥∥∥∥ 1

M

M∑
i=1

(
2σXi−1e

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)
+

2σcj
M

M∑
i=1

(
e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

(using triangular inequality)

≤
∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
2σcje

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2(

using the fact that |Xi−1 − cj| ≤
∆x

2

)
≤ ∆x

2

∥∥∥∥ 1

M

M∑
i=1

(
2σe−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
2σcje

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=

(
∆x

2
+ cj

)
2σe−2γ∆t

√
M

√(
e2γ∆t − 1

2γ

)
(3.17)

The term 4○ remains unchanged. Combining all the terms gives:

term 1○ + term 2○+ term 3○ +term 4○

≤ e−2γ∆t

[(
∆x

2

)2

+ 2cj

(
∆x

2

)]
+
σ2

2γ

(
1− e−2γ∆t

)√
1 +

2

M

+

(
∆x

2
+ cj

)
2σe−2γ∆t

√
M

√(
e2γ∆t − 1

2γ

)
+
σ2

2γ

(
1− e−2γ∆t

)
= e−2γ∆t

[(
∆x

2

)2

+ 2cj

(
∆x

2

)]
+
σ2

2γ

(
1− e−2γ∆t

)(
1 +

√
1 +

2

M

)
+

2σe−2γ∆t

√
M

(
∆x

2
+ cj

)√(
e2γ∆t − 1

2γ

)
≈ cj∆x+ σ2∆t+ 2cjσ

(√
∆t

M

)
, (for small ∆t)

(3.18)

Again the last line is obtained by taking a Taylor expansion of the exponential and

117



3.2. ERROR ANALYSIS

by discarding the second order terms. Unlike the first estimator, in addition to a

term proportional to the spatial step size, we have a term linear in the subsampling

time.

1. Given a number of points, M , when ∆t is fixed if we choose ∆x ∝ 1√
M

the

error decays as ∆t+ 1√
M

. Notice that the error doesn’t decay to zero . When

∆t is fixed, an optimal spatial step size ∆x ∝ 1√
M

is picked to obtain

the errors to decay at a rate of 1√
M

until they reach ∆t .

2. If M points are available in the bin, when ∆t→ 0 the spatial step size and the

subsampling would have to approach zero at the same rate , e.g. ∆t ∝ 1
M

and

∆x ∝ 1
M

, to have a error to decay at the rate 1
M

. Both the subsampling

time and spatial step size should be inversely proportional to M to

see the error decay at a rate of 1
M

.

Combining error analysis for m̂1 and m̂2 we obtain the following scaling

1. for fixed ∆t: ∆x ∝ 1√
M

2. for ∆t→ 0, ∆t ∝ 1
M

and ∆x ∝ 1
M2 . In this case both L2 errors for m̂1 and m̂2

decay as 1
M

. However, scaling ∆x ∝ 1
M2 produces extremely refined partitions

for computing the conditional expectations. Recall that each bin required M

data points. Thus, the total amount of data needed is of the order of M3 which

can be prohibitively large. In this case, one may want to choose scaling

∆t ∝ 1

M
and ∆x ∝ 1

M
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Note that in the latter case the L2 error of the m̂1 decays slower at 1√
M

due to

the
√

∆x term. The L2 error for m̂2 decays at rate 1
M

.

3.2.3 Refined error estimates

Motivation

The L2 error estimates for the m̂1 and m̂2 provided in the previous section could

be improved. The above derivation does not take into account the distribution of the

different observations, Xi−1 and rather used only the fact that the distance between

each observation and the corresponding center in a given bin is less than half the

spatial step size, i.e |Xi−1 − cj| ≤ ∆x
2

. Another way to find an error bound is to

consider the distribution of the observations falling inside a given bin. In other

words, setting for a bin Bcj the indicator function in (3.11) to 1 and estimate the

value of the conditional expectation for this interval. Recall that each observation is

extracted from an OU process such that for each i < j, Xj conditional on Xi follows

a normal distribution with mean Xie
−γ(j−i)∆t and variance σ2

2γ
(1 − e−2γ(j−i)∆t). The

distribution of all sample points over the real line is normal but the one conditional on

being in one interval might not be normal. We have a distribution of points restricted

to be in an certain interval of size ∆x what gives us a normal random variable in a

bounded interval. A normal random variable restricted to a certain interval is called a

truncated normal distribution. Truncated distributions in general, and the truncated

normal variable in particular, have been studied in various fields where they have

have practical applications. For example hydrology (Pearson type III distribution )
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or in econometrics (probit or tobit model) [13,40,49].

Truncated normal distribution

Different types of truncation are possible, one sided left (right) truncation means that

values of the random variable are greater (lower) than a certain threshold. There

is also a two sided truncation, also known as doubly truncated distribution, which

is a combination left and right truncations. In this section, we consider a doubly

truncated normal distribution since the bins have a lower bound c− and an upper

one c+. Next, we define the distribution. Suppose X ∼ N (µ, σ2) and takes value not

on the entire real line R but only in an interval [a,b]. Let’s denote φ(x) and Φ(x)

respectively the probability and cumulative density functions, henceforth, pdf and

cdf, of a standard normal distribution. X conditional on a ≤ X ≤ b has a probability

distribution fX(x) on the support x ∈ [a, b] given by ( see [50])

fX(x) =


1
σ
φ(x−µ

σ
)

Φ( b−µ
σ

)−Φ(a−µ
σ

)
a ≤ x ≤ b

0 x /∈ [a, b].

(3.19)

In our work a = cj − ∆x
2

and b = cj + ∆x
2

and we define α = a−µ
σ

and β = b−µ
σ

. The

mean and the variance are given by ( see [12,13,50] )

E
(
X
)

= µ+

(
φ(α)− φ(β)

Φ(β)− Φ(α)

)
σ

V ar
(
X
)

= σ2

[
1 +

αφ(α)− βφ(β)

Φ(β)− Φ(α)
−
(
φ(α)− φ(β)

Φ(β)− Φ(α)

)2]
.

(3.20)

In our study for the data extracted from an OU process, the distribution of Xj

conditional on Xi with for i < j, denoted hereafter Xj|Xi = cj, has a mean µXj =

Xie
−γ(j−i)∆t = cje

−γ(j−i)∆t and a variance σ2
Xj

= σ2

2γ
(1− e−2γ(j−i)∆t). Notice that we

are interested in the case where j = i+1, i.e. Xi+1|Xi. If the observation satisfies the
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condition given by the indicator function, for a relatively small ∆t, say ∆t ≤ 0.05,

our bins are centered around the values cj. If that is the case, each bin is centered

around the mean of a Gaussian distribution and since the density is symmetric, we

can simplify the expressions of the moments in (3.20) . Using the symmetry of the

standard normal distribution, we can deduce that for Xi+1|Xi we have β = ∆x
2σXi+1

,

α =
cj−∆x

2
−cj

σXi+1
= −∆x

2σXi+1
= −β. Also φ(α) = φ(β) and Φ(β) = 1− Φ(α). Now a small

∆t loosens the dependence on the previous observation of the the mean and variance.

We have for ∆t < 0.05 that µXi+1
≈ Xi and by Taylor expanding the exponential

in the variance, σ2
Xi+1

≈ σ2∆t. We will then omit the subscript and denote the

mean and variance of Xi+1|Xi by µX and σ2
X , respectively. Replacing these into the

formulas (3.20) simplifies the above moments’ definition as follows :

E
(
X
)

= µX ,

V ar
(
X
)

= σ2
X

[
1−

∆x
σX
φ( ∆x

2σX
)

2Φ( ∆x
2σX

)− 1

]
.

(3.21)

Autocorrelation of the points inside the bin

As mentioned before, the values of the OU process are correlated but one would like

to know if the observations that fall within a particular bin are themselves correlated.

We first provide a numerical argument. We simulated 250000 sample points of an

OU process, kept the values in one standard deviation of the mean, i.e values in

[µX − σX , µX + σX ]. Then we partition this interval into 1, 2, 3 . . . 7 bins. We pick a

bin, the first one for example, and record the value of the autocorrelation of order 1 to

5 of the data within the bin. For a stochastic process, Xt, the autocorrelation of order

k, denoted rk, measures the correlation between Xt and Xt+k, where k = 0 . . . K,
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K < T . The formula is defined by

rk =
Ck
C0

with Ck =
1

T − 1

T−k∑
t=1

(Xt − X̄)(Xt+k − X̄) (3.22)

where X̄ and C0 are the sample mean and variance of the time series Xt, respectively.

We empirically observed that autocorrelation is a function of the spatial step ∆x.

Small spatial step, i.e. large number of bins, implies little or no autocorrelation.

Figure 3.1 below shows how fast the autocorrelation inside one bin decreases. We

start with no partition, so 1 bin, ∆x = 0.2 and stop after dividing the interval into

7 bins, where ∆x = 0.028. When we have no partition, ∆x = 0.2, autocorrelation

of order 1 is 0.8912, of order 2 is 0.7577, and of order 3 is 0.6567. After creating

3 intervals, ∆x = 0.066 the autocorrelation of order 1 and 2 are 0.42 and 0.1956

respectively while the autocorrelation of order 3 vanished. With 4 bins, ∆x = 0.049,

we have only an autocorrelation of order 1 whose value was 0.1844. When the interval

was divided into 7 bins, and ∆x = 0.028, no autocorrelation was found in any bin.

This is an argument in favor of using the independence assumption for the points

inside the bins. A QQplot was done to see how close the data inside the bin are

from a normal distribution. We can see from Figure 3.2 that the extreme values of

the sample data are far from being from a normal. This is due to the truncation of

the tails of a normal probability density. On the other hand, the data between the

first standard normal quantiles show a perfect match with the sample data quantiles.

This shows that these data are close to normally distributed points.
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Figure 3.1: This graph shows the autocorrelation of order 1,2, and 3 of the data recorded
in the first bin formed by the different partition of the interval [µX − σX , µX + σX ] into
bins. After dividing the interval by 4 we have no autocorrelation of order 2 and 3. When
the interval is divided by 7 the data does not show autocorrelation.
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Figure 3.2: The QQplot shows that the data inside the first bin are normal around the
mean but differ greatly in the tails.
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Autocorrelation of the points inside the bin, a probabilistic argument

To explain the decay of the autocorrelation when spatial step size decreases, we con-

sider the question of how to pick ∆x. One drawback of an arbitrary discretization is

a wrong choice of parameters, ∆t and ∆x, could create dependence between obser-

vations in each bin. This should not be surprising since given a fixed subsampling

frequency, a large bin has a higher probability to contain consecutive observations.

If the bin width is too small the probability of it not being visited increases, which

creates a need for a large number of points. To address this issue, we consider the

probability that consecutive observations are in the same bin. First, we assume that

our process lives in a measure space (Ω,F , P ) where Ω is the state space, F is the

sigma algebra of subsets of Ω, and a probability measure, P . In this setting, we want

to understand how space-time discretization impacts P (|Xt+∆t −Xt| > ∆x). The

SDE gives us the distribution of the increments, ∆Xt = Xt+∆t −Xt, conditional on

Xt which is Gaussian with a mean of, −Xt∆t, and unit variance. Although the dis-

tribution of each ∆Xt is Gaussian, the direct computation of the probability would

involve a state-dependent expectation, which generates an extremely complicated

expression. The value of the probability, P , itself is not important only its connec-

tion with ∆t and ∆x is of interest. We used an equivalent probability measure to

study the connection. The OU process under a different probability measure is just

a Brownian motion. The change of the probability measure can be obtained using

the Girsanov theorem, [8, 64,65]. Recall the OU SDE:

dXt = −Xtdt+ dWt, (3.23)

Using the Girsanov theorem, a new probability, Q(.) on (Ω,F), equivalent to P ,
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could be defined for any subset A ⊂ Ω. For such A, we would have:

Q(A) =

∫
A

Z(w)dP (w), (3.24)

where Z(w) = exp{
∫ t

0
−XsdWs − 1

2

∫ t
0
X2
sds} is the Radon Nikodym derivative. Un-

der the probability measure, Q, a Brownian motion, Bt, could be defined on the

filtration, F , such that the increment, ∆Xt, is equal to this process, i.e. ∆Xt =

∆Bt. The increments under Q are then normally distributed with a mean of zero

and variance ∆t. Instead of analyzing P (|Xt+∆t −Xt| > ∆x), we can compute

Q (|Xt+∆t −Xt| > ∆x) = Q (|∆Xt| > ∆x). The absolute value of a normal density

with a mean of zero is called a half-normal distribution and the moments are defined.

Since our random variable is non-negative and should be greater than ∆x > 0, we

can apply Markov ’s inequality and obtain

Q (|∆Xt| > ∆x) ≤ EQ|∆Xt|
∆x

,

=
∆t

∆x

√
2

π
.

(3.25)

where EQ is the expectation under the probability measure Q. For ∆x too small this

bound is not informative. However, we can see that if ∆t goes to zero faster than

∆x, observations would tend to be in the same bin. The ratio of the time and spatial

steps affect the correlations inside the bin, which could impact the estimation. Since

P and Q share the same null sets, this conclusion would be true for both probability

measures.

L2 error analysis with independence assumption

The same behavior can be observed inside any bin. This allows us to assume that

the observations inside the bin are independent for some values of ∆x, e.g., when
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the number of bins is greater than 7. In addition to this observation, we can assume

that the sample points identically follow a truncated normal distribution. In order

to simplify the notation, we omit the subscript Xi and define the truncated variance

as

η2 = σ2
X

[
1−

∆x
σX
φ( ∆x

2σX
)

2Φ( ∆x
2σX

)− 1

]
.

The variance doesn’t depend on the centers of the bin. Each event {Xi+1|Xi = cj}

has a truncated Gaussian distribution, T N (cj, η
2). Using this set up, we can find

alternative bounds for the estimators m̂1 and m̂2 by computing∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)
∥∥∥∥

2

in (3.14) and

∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)2

∥∥∥∥
2

in (3.16)

using their corresponding probability distribution. We start with m̂1 and the 2-norm

term in (3.14). Given that Xi−2 = cj, we have Xi−1 ∈ Bcj and {Xi−1|Xi−2 = cj} ∼

T N (cj, η
2). Moments of a standardized doubly-truncated random variable works like

the non-truncated case, see [12,13]. So we can standardize like a normal distribution.

Therefore, we have {Xi−1 − cj|Xi−2 = cj} ∼ T N (0, η2). Consider the 2-norm term.

By the law of iterated expectation [24,64], one can see that the argument is the mean

of the M-independent truncated normal distribution centered at zero. When M is

large, by the central limit theorem for a truncated normal distribution [13] this mean

follows a normal N (0, η
2

M
).
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The L2 term squared can be computed as:∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)
∥∥∥∥2

2

= E

[(
1

M

M∑
i=1

(Xi−1 − cj)
)2]

=
1

M2
E

[( M∑
i=1

(Xi−1 − cj)
)2]

=
1

M2

M∑
i=1

E

(
Xi−1 − cj

)2

=
η2

M

=
1

M
σ2
X

[
1−

∆x
σX
φ( ∆x

2σX
)

2Φ( ∆x
2σX

)− 1

]
(3.26)

From line 2 to 3, we used the independence assumption of the points inside the bin.

Lemma 3.2.1. For any y > 0,

(
1− 2yφ(y)

2Φ(y)−1

)
< y2.

Proof. Using a Taylor approximation of the cumulative of a normal distribution

suggested in [56] we can write:

Φ(y) =
1

2
+

1√
2π
e
−y2

2

[
y +

y3

3
+O(y5)

]
=

1

2
+ φ(y)

[
y +

y3

3
+O(y5)

]
⇒ 2Φ(y)− 1 = 2φ(y)

[
y +

y3

3
+O(y5)

]
⇒ 1− 2yφ(y)

2Φ(y)− 1
= 1− 2yφ(y)

2yφ(y)
[
1 + y2

3

] = 1− 1

1 + y2

3

= 1− 3

3 + y2
=

y2

3 + y2
< y2

Using the Lemma 3.2.1:∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)
∥∥∥∥

2

=

√
η2

M

=

√√√√ 1

M
σ2
X

[
1−

∆x
σX
φ( ∆x

2σX
)

2Φ( ∆x
2σX

)− 1

]

≤ σX√
M

√(
∆x

2σX

)2

=
1√
M

∆x

2

(3.27)
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One can see that the 2 norm term is dependent on the number of points in the bin

M unlike the first approach. From this, we can find a different bound for the first

moment estimator m̂1:

∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
=
∥∥m̂1 − cje−γ∆t

∥∥
2

≤
∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)e−γ∆t

∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

<
1√
M

∆x

2
e−γ∆t +

1√
M

√
σ2

2γ
(1− e−2γ∆t)

=
1√
M

∆x

2
e−γ∆t +

1√
M
σX

=
1√
M

∆x

2
e−γ∆t + σ

√
∆t√
M

≤
√

∆x√
M

e−γ∆t + σ

√
∆t√
M
≈
√

∆x√
M

+ σ

√
∆t√
M

(3.28)

1. Given a number of points M , when ∆t is fixed the error decays as 1√
M

. So

the choice of the spatial step should not influence the decay of the errors. No

optimal spatial step seems necessary for the errors to decay at rate

1√
M

.

2. If M points are available in the bin, when ∆t→ 0 choosing a spatial step size

to approach zero at the same rate, e.g. ∆t ∝ 1
M

and ∆x ∝ 1
M

, would make the

error to decay at the rate 1
M

. In this case, both the subsampling time

and spatial step size are inversely proportional to M as well as the

decay rate of the estimation errors.
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Alternatively, the second moment estimator bound could also be derived by using

the probability distribution of Xi+1|Xi to compute

∥∥∥∥ 1
M

∑M
i=1(Xi−1 − cj)

2

∥∥∥∥
2

. The

distribution of this summation can be found using the Gaussian distribution. In

fact, recall that Xi−1 − cj follows a T N (0, η2). Using moment generating functions,

the square of a truncated normal could be shown to follow a truncated non-central

Chi square i.e. (Xi−1 − cj)
2 ∼ η2χ1. We omit this proof. The summation of Chi

square with one degree of freedom is a Chi square whose degree of freedom is the

number of variables in the sum. We can write
∑M

i=1(Xi−1 − cj)2 ∼ η2.χM . We can

finally divided both side by M and obtain the distribution η2

M
χM . The computation

of the mean is straightforward:

E

[
1

M

M∑
i=1

(Xi−1 − cj)2

]
≤ 1

M
η2M = η2 (3.29)

The inequality is obtained assuming that the mean of a truncated Chi square is

smaller than the mean of an un-truncated Chi square distribution. We obtain the

second moment using the central Chi square moments.

E

[(
1

M

M∑
i=1

(
Xi−1 − cj

η

)2

η2

)2]
=

η4

M2
E

[( M∑
i=1

(
Xi−1 − cj

η

)2)2]

=
η4

M2
E

[ M∑
i=1

(
Xi−1 − cj

η

)4

+ 2
M∑
k=1

M∑
l>k

(
Xk−1 − cj

η

)2(
Xl−1 − cj

η

)2]
≤ η4

M2

[
2M +M(M − 1)

]
=
η4

M
+ η4

(3.30)

We assumed again that the variance of a truncated distribution is smaller than the

un-truncated one. We also used the independence of increments, (Xk−1 − cj)2 and
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(Xl−1 − cj)2, to find the above expectation. We can then write:∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)2

∥∥∥∥
2

≤
√
η4

M
+ η4 = η2

√
1

M
+ 1.

From Lemma 3.2.1, we have that η2 <
(

∆x
2

)2
. Then∥∥∥∥ 1

M

M∑
i=1

(Xi−1 − cj)2

∥∥∥∥
2

≤ η2

√
1

M
+ 1 <

(∆x

2

)2

√
1

M
+ 1.

We can again look at the four different terms in (3.15) of the L2 error computed for

the second moment estimator m̂2. The second and last terms remain the same while

the first and third ones are modified.

term 1○ =

∥∥∥∥ 1

M

M∑
i=1

(
X2
i−1 − c2

j

)
e−2γ∆t

∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)(
Xi−1 + cj

)∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)(
Xi−1 − cj + 2cj

)∥∥∥∥
2

= e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)2

+
1

M

M∑
i=1

2cj

(
Xi−1 − cj

)∥∥∥∥
2

(by the triangular inequality)

≤ e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)2∥∥∥∥
2

+ e−2γ∆t

∥∥∥∥ 1

M

M∑
i=1

2cj

(
Xi−1 − cj

)∥∥∥∥
2

(using the distribution of {Xi−1 − cj})

< e−2γ∆t

[(
∆x

2

)2
√

1 +
1

M
+ 2cj

(
∆x

2

)(
1√
M

)]
.

(3.31)
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We can similarly find an upper bound for the third term as follows:

term 3○ =

∥∥∥∥ 1

M

M∑
i=1

(
2σXi−1e

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)
+

2σcj
M

M∑
i=1

(
e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
2σcje

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=

∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

+

∥∥∥∥ 1

M

M∑
i=1

(
2σcje

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

= term (3a) + term (3b).

term (3a) =

∥∥∥∥ 1

M

M∑
i=1

(
2σ(Xi−1 − cj)e−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

= 2e−γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
Xi−1 − cj

)(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=
2

M
e−γ∆t

∥∥∥∥ M∑
i=1

(
Xi−1 − cj

)(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

=
2

M
e−γ∆t

√√√√E

( M∑
i=1

(
Xi−1 − cj

)(
σe−γ∆t

∫ ∆t

0

eγsdWs

))2

=
2

M
e−γ∆t

√
Mη2σ2

X =
2√
M
e−γ∆tησX

<
2σX√
M
e−γ∆t

(
∆x

2

)
= σXe

−γ∆t

(
∆x√
M

)
.

(3.32)

131



3.2. ERROR ANALYSIS

term (3b) =

∥∥∥∥ 1

M

M∑
i=1

(
2σcje

−2γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

= 2cje
−γ∆t

∥∥∥∥ 1

M

M∑
i=1

(
σe−γ∆t

∫ ∆t

0

eγsdWs

)∥∥∥∥
2

= 2cje
−γ∆t σX√

M

term 3○ = term (3a) + term (3b)

< σXe
−γ∆t

(
∆x√
M

)
+ 2cje

−γ∆t σX√
M
.

(3.33)

∥∥m̂2 − E[(Xt+∆t)
2|Xt = cj]

∥∥
2

= term 1○ +term 2○+ term 3○+term 4○

< e−2γ∆t

[(
∆x

2

)2
√

1 +
1

M
+ 2cj

(
∆x

2

)(
1√
M

)]
+ σ2

X

√
1 +

2

M
+ σXe

−γ∆t

(
∆x√
M

)
+2cje

−γ∆t σX√
M

+ σ2
X

= e−2γ∆t

[(
∆x

2

)2
√

1 +
1

M
+ 2cj

(
∆x

2

)(
1√
M

)]
+ σ2

X

(
1 +

√
1 +

2

M

)
+σXe

−γ∆t

(
∆x√
M

+
2cj√
M

)
≈
(
cj∆x√
M

)
+ σ2∆t+ σ

√
∆t

(
∆x√
M

+
2cj√
M

)
=

(
cj∆x√
M

)
+ σ2∆t+ 2cjσ

(√
∆t

M

)
+ σ
√

∆t

(
∆x√
M

)
=

(
cj + σ

√
∆t√

M

)
∆x+ σ2∆t+ 2cjσ

(√
∆t

M

)

The bound for the second moment has the same behavior than the crude bound

for m̂2 derived without the independence assumption.

1. Given a number of points, M , when ∆t is fixed, the error doesn’t go to zero

but should converge to ∆t when M is large and we chose ∆x ∝ 1√
M

.
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When ∆t is fixed and we choose a spatial step size ∆x ∝ 1√
M

, the

errors decay at a rate of 1√
M

to ∆t .

2. With M points in the bin, when ∆t→ 0, we have the same conclusion than in

the case of the crude bound of m̂2. Choosing a spatial step size that approaches

zero at the same rate than the subsampling time, e.g. ∆t ∝ 1
M

and ∆x ∝ 1
M

,

would make errors decay at a rate of 1
M

. In this case, the subsampling

time, spatial step size, and the decay rate of the estimation errors

are inversely proportional to the number of points in the bin, M .

In summary the different upper bounds obtained are:

Crude error bounds∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
≤
√

∆x

2
+ σ

√
∆t√
M∥∥m̂2 − E[(Xt+∆t)

2|Xt = cj]
∥∥

2
≤ cj∆x+ σ2∆t+ 2cjσ

(√
∆t

M

)

Refined error bounds∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
≤
√

∆x√
M

+ σ

√
∆t√
M∥∥m̂2 − E[(Xt+∆t)

2|Xt = cj]
∥∥

2
≤
(
cj + σ

√
∆t√

M

)
∆x+ σ2∆t+ 2cjσ

(√
∆t

M

)

(3.34)

3.2.4 Numerical investigation

The goal of this subsection is to numerically justified the existence of the bounds

(3.34). We generate some paths and compute the errors and compare them to the

values of the upper bounds (3.34) at each discretization point. Parameters used were
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T = 250000, ∆t = 0.01, the number of points in the bin Bcj centered at a point cj

is denoted by Mcj = {50, 100, 200, 300, 500, 600, 700, 800, 900, 1000}. The number of

simulated paths is denoted by Nsim, which is set at Nsim = 2000. The bin chosen

is the one whose center is equal to the long term mean plus ∆x. Using a log log

scale, we compare a line of slope −0.5 with the graph of the relationship between

estimation errors and the number of points inside the bin. If slopes are the same it

would confirm that the errors have a decay rate of 1
M

. To compute the error at each

point, we chose the Root Mean Square Error (RMSE) defined as:

errorbj =

√√√√ 1

Nsim

Nsim∑
j=1

|bj − btruej |2,

erroraj =

√√√√ 1

Nsim

Nsim∑
j=1

|aj − atruej |2.

where bj, aj, b
true
j , atruej are the computed and true values of m̂1 and m̂2 respectively.

The estimation errors are computed and compared to the crude and refined bounds.

Test 1: ∆x = 0.039801, cj = 0.039801, subsampling time step ∆t = 0.01,

simulation time step, dt = 0.001 while the number of bins is 5

Figures 3.3 and 3.4 show that for a fixed sub-sampling time the errors decay at a

rate inversely proportional to Mcj . At Mcj = 1000 the error of the m̂1, errorbj , is

0.006006. The error is below the refined bound at 0.0094711. The crude estimator

is much larger at 0.10291. Similarly for the m̂2 error, when Mcj = 1000, the error

erroraj is 0.0008938. The crude bound is 0.012 while the refined is 0.011. The

refined bound for the m̂1 has the same slope as the error estimate whereas for the

m̂2 the crude and refined bounds are equal. In the log log scale plots, Figures 3.5
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and 3.6, we can fit a linear regression for the m̂1 and m̂2. The slope of the m̂1

error is −0.497± 0.013 and constant is −1.665± 0.079. The slope of the m̂2 error is

−0.492 ± 0.008 and constant is −3.603 ± 0.051. The slopes of the errors of m̂1 and

m̂2 are close to −0.5, what confirms the decay rate of 1√
Mcj

.
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Figure 3.3: Error and bounds for m̂1, ∆x = 0.039801, ∆t = 0.01. The number of
points per bin, Mcj , is given in the x axis and the corresponding errors in the y axis. The
estimation errors are in star line. The errors are closely bounded by the refined bound
whereas the crude one is about five times higher than the error and refined bound.
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Figure 3.4: Error and bounds for m̂2 , ∆x = 0.039801, ∆t = 0.01. The number of
points per bin, Mcj , is given in the x axis and the corresponding errors in the y axis. The
estimation errors are in star line. The errors are relatively smaller than both crude and
refined bounds.
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Figure 3.5: Log error vs Mcj , m̂1, ∆x = 0.039801, ∆t = 0.01. In the log log scale, the
number of bins is given in the x axis and the corresponding errors in the y axis. The
estimation errors are in star line. The 1√

M
decay rate is confirmed for m̂1.
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Figure 3.6: Log error vs Mcj , m̂2, ∆x = 0.039801, ∆t = 0.01. In the log log scale, the
number of bins is given in the x axis and the corresponding errors in the y axis. The
estimation errors are in star line. The 1√

M
decay rate is confirmed for m̂2.
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Test 2: Fixed subsampling time step, ∆t = 0.01, and ∆x = 1
Mcj

We would like to test the optimal scaling when the subsampling time is fixed and

the spatial time step is the inverse of the number of points in the bin. The num-

ber of bins is not fixed but changes with ∆x. The number of points in a bin

centered at cj is denoted by Mcj . In this test, we look at the errors for Mcj =

{50, 100, 150, 200, 250, 300, 350, 400, 450, 500}. The number of simulated paths was

set at Nsim = 2000. Table 3.1 gives the parameters used to compute the errors of

the different paths.

Mcj ∆t ∆x

50 0.01 0.022112
100 0.01 0.010474
150 0.01 0.006862
200 0.01 0.005103
250 0.01 0.004061
300 0.01 0.003373
350 0.01 0.002884
400 0.01 0.002519
450 0.01 0.002236
500 0.01 0.002010

Table 3.1: This table gives us the parameters used to test optimal scaling when ∆t is
fixed and ∆x = 1

Mcj
.

At Mcj = 500, the error of the m̂1, errorbj , is 0.00479. The refined bound is

higher at 0.006477 while the crude estimator is larger at 0.02689. Similarly for the

m̂2, when Mcj = 500, the error erroraj is 0.000672 when both bounds are 0.01005.

In the log scale, the slope of the errors of m̂1 is −0.649 ± 0.043 and the constant is

−1.329± 0.236. The slope of the errors of m̂2 is −0.692± 0.068 and the constant is

−3.075± 0.371. Choosing ∆x ∝ 1
Mcj

makes the L2 errors decay faster.
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Figure 3.7: The errors for m̂1 is plotted with the two bounds. The subsampling time ∆t
is fixed at 0.01 and the spatial step size is ∆x = 1

Mcj
. Both bounds are above the error

values.
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Figure 3.8: The errors for m̂2 is plotted with the two bounds. The subsampling time ∆t
is fixed at 0.01 and the spatial step size is ∆x = 1

Mcj
. Again both bounds are close to the

value of the time step ∆t. The errors are smaller than the bounds.
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Figure 3.9: The error of m̂1 in the log log scale when ∆t = 0.01 and ∆x = 1
Mcj

. The

slope of the error is −0.649± 0.043. The slope of the log errors of m̂1 being smaller than
−0.5 implies that the estimation errors decay a little bit slower than expected.
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Figure 3.10: The error of m̂2 in the log log scale when ∆t = 0.01 and ∆x = 1
Mcj

. The

slope of the error is equal to −0.692±0.068. The slope of the log errors of m̂2 being smaller
than −0.5 implies that the estimation errors decay a little bit slower than expected.
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3.2.5 Relaxing assumption of the fixed number of points

In order to analyze the estimation errors, of m̂1 and m̂2, when the assumption of a

fixed number of points has been relaxed, we change the definition of the variable M .

The total number of data points generated from the process (3.7) is now denoted by

M , and the observations are given by Xi for i = 1 . . .M . The connection with the

previous notation is that we now use N = M . For each sample point, we observe

that Xi ∼ N(0, σ2
Xi

) with σ2
Xi

= σ2

2γ
(1 − e−2γi∆t). The spatial discretization is done

using bins defined as Bcj = [c−, c+] = [cj − ∆x
2
, cj + ∆x

2
]. In this set up, the first

moment estimator is given by

m̂1 =

∑M
i=1 Xi1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

. (3.35)

When we relax the assumption of a fixed number of points in each bin, the denom-

inator of m̂1 can be written as a summation of indicator functions like in (3.35).

Since the non stationary case is more complicated, we restricted our analysis of this

estimator for a stationary OU process, where each observation follows a Gaussian

N(0, σ2
X). Before studying the distribution of m̂1, we discuss separately about the

distribution of the denominator and numerator of m̂1

3.2.5.1 Denominator

The denominator in (3.35) represents the total number of times the process visits

the bin, Bcj . Notice that the value of each indicator function, 1{Xi−1∈Bcj }, of this

denominator is either zero or one. It can be represented by a random variable that

follows a Bernoulli distribution whose parameter is denoted by pBcj , the probability
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of the observation Xi−1 to be in the bin Bcj . In other terms, pBcj is the probability

of the event {Xi−1 ∈ Bcj}. The OU process follows a normal distribution so this

probability can be obtained by computing the difference Φ(c+) − Φ(c−) where Φ(.)

is the cumulative normal distribution. Using the independence of observations, we

can write the sum of Bernoulli as a binomial distribution with the parameters, M

and pBcj . In other words, we can write
∑M

i=1 1{Xi−1∈Bcj } ∼ Bin(M, pBcj ). We omit

the subscript to simplify the notation of the probability, i.e. we use p instead of

pBcj . When the number of observations, M , is very large, we can use the Central

Limit Theorem (CLT), a normal approximation of the binomial distribution, [67,68].

When M is sufficiently large, by CLT we can use the convergence in distribution:

Bin(M, p) −→ N(Mp,Mp(1− p)). (3.36)

3.2.5.2 Numerator

Unlike the case where the number of points is fixed and a sum of truncated normal

distributions could be used, the exact number of points in the bin is not known. As

argued for the denominator of the estimator (3.35), the indicator function is a random

variable that could be represented by a Bernoulli distribution with parameter, p. We

examine the sum of products of Bernoulli and Normal distributions in the numerator.

The product of a discrete and continuous density is called a mixed distribution [53].

Similar work has been done by [22] for the sum of independent product of Bernoulli

and exponential distribution. Following [22], we derive the density of the numerator

of (3.35).
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Product of Bernoulli and Gaussian distributions

We consider the data generated by an OU process, Xi, i = 1 . . .M , to define two

new random variables, Yi = 1{Xi−1∈Bcj } and Zi = XiYi. We know that P (Yi = 1) = p

and P (Yi = 0) = 1− p. By Bayes theorem, [53,68], we have:

P (Zi ≤ z) = P (Yi = 0)P (Zi ≤ z|Yi = 0) + P (Yi = 1)P (Zi ≤ z|Yi = 1),

= (1− p) P (Zi ≤ z|Yi = 0) + p P (Zi ≤ z|Yi = 1).

The first probability, P (Zi ≤ z|Yi = 0), could be understood as follows. When Yi = 0

the product Zi is equal to zero and if z < 0 then P (Zi ≤ z|Yi = 0) = 0. However, if

z ≥ 0, the probability is one. We then have

P (Zi ≤ z|Yi = 0) =


0 z < 0

1 z ≥ 0.

(3.37)

This function is called the step or Heaviside function and it is denoted here by H(z).

The same argument can be used for Yi = 1, but in both cases the solution is equal

to the cumulative of the variable Xi that we denoted Φ(X). We therefore have

P (Zi ≤ z|Yi = 1) = Φ(X). The cumulative distribution FZi is

FZi(z) = P (Zi ≤ z) = (1− p) P (Zi ≤ z|Yi = 0) + p P (Zi ≤ z|Yi = 1),

= (1− p) H(z) + p FXi(z).

where FXi(z) is the cumulative of the normally distributed process, Xi. By differenti-

ating the cumulative with respect to z, assuming that the derivative of the Heaviside

function is the Dirac delta distribution ∂H(z)
∂z

= δ(z), we obtain the following proba-

bility density fZi :

fZi(z) = P (Zi ≤ z) = (1− p) δ(z) + p fXi(z),
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where fXi(z) is the normal density function with a mean of zero and a variance of

σ2
X .

Sum of independent products of Bernoulli and Gaussian distributions

We consider the distribution of the sum of M products of Zs i.e.

SM =
M∑
k=1

Zk. (3.38)

Note that the data are not independent. Indeed the covariance of any Zk and Zl,

for k and l two integers less than M, would be equal to either zero or E[XkXl]. The

latter is given in equation (3.6) and is not generally zero. But we argued in the

previous section that the points in one bin could be assumed independent if one uses

a sufficiently small bin size. Using this fact, we assume independence of the nonzero

points Zk in the bin, k = 1 . . .M . Similarly to [22], we can prove that the density of

our mixed distribution has the following form:

fSM (x) =
M∑
k=0

(
M

M − k

)
pk(1− p)M−k fX∗k(x)

where fX∗0(x) = δ(x) and for k ≥ 1 we have that fX∗k(x) the k-fold convolution of

normal distribution. Recall that X∗k means X1 ∗X2 ∗ · · · ∗Xk and for independent

normal distribution X∗k ∼ N(0, kσ2
X). For details of the derivation of this density,

its distribution and moments, we refer to [22] since our results mirror theirs. The

nth moment of the sum (3.38) would be:

E[SnM ] =
M∑
k=0

(
M

M − k

)
pk(1− p)M−k E[(X∗k)n]
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Since the X∗k ∼ N(0, kσ2
X) the moments of k fold convolutions could be written as :

E[(X∗k)n] =


0 n is odd

(σX
√
k)n(n− 1)!! n is even

(3.39)

The double factorial, !!, in this expression is defined as

n!! =



n(n− 2) . . . 5.3.1 n > 0 and n is odd,

n(n− 2) . . . 6.4.2 n > 0 and n is even,

1 n = 0,−1.

(3.40)

Using this definition, the nth moments are then defined as

E[SnM ] =


0 n is odd∑M

k=0

(
M

M−k

)
pk(1− p)M−k (σX

√
k)n(n− 1)!! n is even

(3.41)

When n = 1 we have E[SnM ] = 0. The variance, or second moment in this case, is

obtained by plugging n = 2 in the above expectation and using a change of variable

what gives:

E[S2
M ] =

M∑
k=0

(
M

M − k

)
pk(1− p)M−k kσ2

X = Mpσ2
X . (3.42)

Following the same derivation as in [22], we found that the moment generating

function MSM(t) has the form

MSM(t) =
[
(1− p) + p e

σ2
Xt

2

2

]M
. (3.43)

Using the CLT, [67, 68], this density is approximately Gaussian when M is large

enough. In other terms, we can write that

fSM (x) −→ N(0, pM σ2
X). (3.44)
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3.2.5.3 Distribution of the estimator m̂1

The estimator m̂1 is a ratio of two random variables that can both be separately

approximated by a normal distribution. We can write schematically:

m̂1 =

∑M
i=1Xi1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

∼ N(0, pM σ2
X)

N(Mp,Mp(1− p))
(3.45)

In this particular case, the denominator cannot be zero, since the number of elements

in the bin is an integer number between 1 and M , to produce a strictly positive

normally distributed variable in the denominator. The exclusion of non-negative

values for the denominator would result in a truncated Cauchy distribution which

unlike the classical one has all its moments [62,63]. The problem with this approach is

that we do not have a ratio of standard normal variables. Instead, we used another

approach based on the normal approximation of the ratio of Gaussian variables,

[21,31,43,47,57]. The idea is as follows. Take two random variables, X and Y, with

respective distributions, N(µx, σ
2
x) and N(µy, σ

2
y). Suppose that you are interested

in the distribution of Z = X
Y

. Key parameters according to [21] are the variables,

(β, σx, ρ, δy), where, β = µx
µy

, ρ = σy
σx

, and δy = σy
µy

. The joint density of Y and Z is

fY,Z and the marginal density of Z is, fZ . The joint density can be expressed as :

fY,Z(y, z; β, ρ, δy, σx) = fZ(z; β, ρ, δy)fY |Z(y|z; β, σx, ρ, δy). (3.46)

The conditional density is Gaussian but what we are looking for is the first term in

the right hand-side. Its expression is given by (see [21,57]):

fZ(z; β, ρ, δy) =
ρ

π(1 + ρ2z2)

{
exp

[
− ρ2β2 + 1

2δ2
y

]
+

√
π

2
q erf

(
q√
2

)
exp

[
− ρ2(z − β)2

2δ2
y(1 + ρ2z2)

]} (3.47)
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with q = (1+βρ2z)

δy
√

1+ρ2z2
. The cumulative distribution of Z, is denoted by FZ and can be

approximated by a simpler distribution than FZ . It’s shown in [21, 47] that when

δy → 0, we can find a function F ∗(z) that is converging uniformly to FZ(z). This

function introduced by [47] is defined as

F ∗(z) = Φ

(
zµy − µx√
σ2
x + z2σ2

y

)
= Φ

(
z − β

δy
√
ρ−2 + z2

)
. (3.48)

Another important result in [47] is the upper bound of the absolute difference of FZ

and F ∗ depends on δy, i.e.

|FZ(z; β, ρ, δy)− F ∗(z)| ≤ Φ

(
− δ−1

y

)
(3.49)

An important limitation of F ∗ is it is not a probability distribution since

F ∗(−∞) = Φ(−δ−1
y ); F ∗(∞) = 1− Φ(−δ−1

y ). (3.50)

A normal approximation to F ∗ and FZ has been presented in [21] and is summarized

by the following theorem:

Theorem 3.2.2. Theorem 1 in Dias et Frances et al. (2013) [21] Let X be a normal

random variable with positive mean µx, variance σ2
x and coefficient of variation δx

such that 0 < δx < λ ≤ 1, λ is a known constant . For every ε > 0, there exists γ(ε) ∈

(0,
√
λ2 − δ2

x) and also a normal random variable Y independent of X, with positive

mean µy variance σ2
y and coefficient of variation δy that satisfies the conditions,

0 < δy ≤ γ(ε) ≤
√
λ2 − δ2

x < λ for which the following result holds: for any z in

I =
[
β − σz

λ
, β + σz

λ

]
we have that |G(z)− FZ(z)| < ε.

This theorem is fundamental for the study of our estimators. Different remarks

can be made. First notice that this result is only valid in a specific interval I. The
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second remark is that the theorem cannot be used for the bin centered at zero. This

leads to a third remark where the bins under consideration should only be centered

at positive values. When the center of a bin cj > 0, the mean of the numerator is

negative and the theorem cannot be used. In that case, we can restrict our analysis

to bins centered at positive values. The distribution of an OU process with a zero

long-term mean is symmetric around zero so bins with negative centers should be

filled in the same way as positive bins. Therefore, we can use the theorem assuming

cj < 0 in the following lines.

∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
=
∥∥m̂1 − cje−γ∆t

∥∥
2

=

∥∥∥∥
∑M

i=1 Xi1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

− cje−γ∆t

∥∥∥∥
2

=

∥∥∥∥
∑M

i=1(Xi − cje−γ∆t)1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

∥∥∥∥
2

(3.51)

The distribution of this ratio has parameters µx = −cje−γ∆t, µy = Mp, σ2
x = Mpσ2

X

and σy = Mp(1 − p). According to Theorem 3.2.2, the distribution of the ratio in

the interval I =
[
β − σz

λ
, β + σz

λ

]
is N(β, σ2

z) where

β =
µx
µy

=
−cje−γ∆t

Mp

σ2
z = β2(δ2

x + δ2
y) =

(
−cje−γ∆t

Mp

)2(
σ2
x

(−cje−γ∆t)2
+

σ2
y

Mp(1− p)

)
=

(
−cje−γ∆t

Mp

)2(
Mpσ2

X

(−cje−γ∆t)2
+
Mp(1− p)

(Mp)2

) (3.52)

The ratio in (3.51) has a mean equal to
−cje−γ∆t

Mp
and a standard deviation is given
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using

σz =

√(
−cje−γ∆t

Mp

)2(
Mpσ2

X

(−cje−γ∆t)2
+
Mp(1− p)

(Mp)2

)

=

(
−cje−γ∆t

Mp

)√
Mpσ2

X

(−cje−γ∆t)2
+

1− p
Mp

=

(
1

Mp

)√
Mpσ2

X +
−cje−γ∆t(1− p)

Mp

=

√
σ2
X

Mp
+
−cje−γ∆t(1− p)

(Mp)3

(3.53)

Taylor expansion to the first order of the process variance yields σ2
X = σ2(1−e2γ∆t)

2γ
≈

σ2∆t. The value, Mp, approximates the number of points in a bin that we assumed

is sufficiently large when we consider points of the OU that are close to the long-run

mean. When M is large, we neglected the last term in the standard deviation and

obtain

σz =

√
σ2
X

Mp
+
−cje−γ∆t(1− p)

(Mp)3
≈

√
σ2
X

Mp
=

σX√
Mp

(3.54)

The probability that a sample point is in a bin centered at cj, p = Pcj = Φ(cj +

∆x

2
)− Φ(cj − ∆x

2
), can be approximated using the mean value theorem as

p =Φ

(
cj +

∆x

2

)
− Φ

(
cj −

∆x

2

)
=

∫ cj+
∆x
2

cj−∆x
2

φ(t)dt

∗
=φ(t∗)∆x using integral mean value theorem

where t∗ ∈ [cj − ∆x

2
, cj + ∆x

2
]. Hence, the variance of the ratio is given by

σz =
σX√
Mp

=
σ
√

∆t√
Mφ(t∗)∆x

=
σ√

Mφ(t∗)

√
∆t

∆x
. (3.55)
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∥∥m̂1 − cje−γ∆t
∥∥

2
=

∥∥∥∥
∑M

i=1(Xi − cje−γ∆t)1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

∥∥∥∥
2

=

√(
σ√

Mφ(t∗)

√
∆t

∆x

)2

+

(
−cje−γ∆t

Mp

)2

≈ σ√
Mφ(t∗)

√
∆t

∆x
(for Mp large)

(3.56)

1. For m̂1, when ∆t is fixed, the error would decay at a rate of 1√
M

if the spatial

step size is chosen to be equal to the subsampling time step. So ∆x ∝ ∆t

2. For m̂1, when ∆t→ 0, we would need the spatial step ∆x to go to zero slower

than ∆t. So if ∆t ∝ 1
M

and ∆x ∝ 1√
M

, the error would scale at the rate of 1
M

.

We can see that for m̂1, for fixed ∆t, a good choice of ∆x would be ∆x = ∆t.

In this case, the error would decay at a rate of 1√
M

. When ∆t → 0, we

would need the spatial step ∆x to reach zero slower than ∆t. So if ∆t ∝ 1
M

and ∆x ∝ 1√
M

, the error would scale at a rate of 1
M

.

Sum of independent products of Bernoulli and Chi square distributions

Similar analysis can be done for the second estimator defined as

m̂2 =

∑M
i=1X

2
i 1{Xi−1∈Bcj }∑M

i=1 1{Xi−1∈Bcj }
. (3.57)

The only difference is that now the square of the observations is used in the

numerator. Since each observation follows a Gaussian distribution, the square of a
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standard normal distribution is a Chi square. Here, we have a non-central Chi square

where ∀i, σ2
XX

2
i ∼ χ1. We rewrote the estimator

m̂2 =

∑M
i=1

(
σXXi
σX

)2

1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

=

∑M
i=1 σ

2
X

(
Xi
σX

)2

1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

=
σ2
X

∑M
i=1 Ui1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

(3.58)

where Ui =
X2
i

σ2
X

and Ui ∼ χ1. We then have the sum of the product of Chi square and

Bernoulli distributions. We just mirrored the approach for the sum of independent

product of Normal-Bernoulli and derive the density, distribution, and moments. We

have a k-fold convolution of Chi square of degree 1 that gives us a Chi square with

degree equal to k. We define the sum as SM =
∑M

i=1 Ui1{Xi−1∈Bcj } and following the

approach in [22], we can show that the density of our mixed distribution has the

following form:

fSM (x) =
M∑
k=0

(
M

M − k

)
pk(1− p)M−k fU∗k(x)

where fU∗0(x) = δ(x) and ∀k ≥ 1. We have that fU∗k(x), the k-fold convolution of

the Chi square distributions, such that U∗k ∼ χk . As shown previously, the nth

moment could be computed as

E[SnM ] =
M∑
k=0

(
M

M − k

)
pk(1− p)M−k E[(U∗k)n]

The expectation on the right-hand side is easy to handle, since the moments of a Chi

square with k degrees of freedom, denoted by χk, are well-known:

E[(U∗k)n] = k(k + 2)(k + 4) . . . (k + 2n− 2) = 2n
Γ(n+ k

2
)

Γ(k
2
)

(3.59)
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By the binomial theorem and using the moments of χk, when n = 1, E[SM ] = Mp;

while when n = 2 , E[S2
M ] = Mp(1−p)+(Mp)2 +2Mp and the variance, V ar[SM ] =

Mp(3− p). The nth moments formula is given by

E[SnM ] =
M∑
k=0

(
M

M − k

)
pk(1− p)M−k 2n

Γ(n+ k
2
)

Γ(k
2
)

(3.60)

Following the approach in [22], the moment generating function MSM(t) has the form

MSM(t) =

[
(1− p) + p

1

(1− 2t)
k
2

]M
, t <

1

2
(3.61)

As the Normal-Bernoulli case, when M →∞ or is large, we use the CLT [67,68] to

give an approximation of the distribution of SM :

fSM (x) −→ N(Mp,Mp(3− p)) (3.62)

3.2.5.4 Distribution of the estimator m̂2

The distribution of the ratio of the estimator, m̂2, after approximating the numerator

and denominator by a normal is

m̂2 =
σ2
X

∑M
i=1 Ui1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

=
(
σ2
X

)∑M
i=1 Ui1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

∼ σ2
X

N(Mp,Mp(3− p))
N(Mp,Mp(1− p))

=
N(Mp,Mp(3− p)σ4

X)

N(Mp,Mp(1− p))

(3.63)

⇒ m̂2 ∼
N(Mp,Mp(3− p)σ4

X)

N(Mp,Mp(1− p))
(3.64)

Exactly like m̂1, let X and Y be the numerator and denominator of the distribution

of m̂2 with µx = Mp, µy = Mp, σ2
x = Mp(3− p)σ4

X , and σ2
y = Mp(1− p). The ratio
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is again denoted by Z = X
Y

and the parametrization:

β =
µx
µy

= 1

ρ =
σy
σx

=
1

σ2
X

√
Mp(1− p)
Mp(3− p)

=
1

σ2
X

√
1− p
3− p

=
1

σ2
X

√
1− 2

3− p

δx = σ2
X

√
3− p
Mp

δy =

√
1− p
Mp

(3.65)

The 2-norm that we would like to study is:

∥∥m̂2 − E[(Xt+∆t)
2|Xt = cj]

∥∥
2

=

∥∥∥∥m̂2 −
(
σ2
X + c2

je
−2γ∆t

)∥∥∥∥
2

=

∥∥∥∥σ2
X

∑M
i=1 Ui1{Xi−1∈Bcj }∑M
i=1 1{Xi−1∈Bcj }

−
(
σ2
X + c2

je
−2γ∆t

)∥∥∥∥
2

=

∥∥∥∥
∑M

i=1

(
σ2
XUi − (σ2

X + c2
je
−2γ∆t)

)
1{Xi−1∈Bcj }∑M

i=1 1{Xi−1∈Bcj }

∥∥∥∥
2

(3.66)

The above term is the ratio of normal random variables

N(Mp− (σ2
X + c2

je
−2γ∆t),Mp(3− p)σ4

X)

N(Mp,Mp(1− p))
.

Also, we assume that p >
(σ2
X+c2je

−2γ∆t)

M
in order for the mean of the numerator to be

positive. Using the Theorem 3.2.2, the distribution of the ratio is N(β, σ2
z) where

β =
µx
µy

= 1

σ2
z = β2(δ2

x + δ2
y) = σ4

X

(
3− p
Mp

)
+

1− p
Mp

(3.67)
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The 2 norm is then∥∥m̂2 − E[(Xt+∆t)
2|Xt = cj]

∥∥
2

=

∥∥∥∥
∑M

i=1

(
σ2
XUi − (σ2

X + c2
je
−2γ∆t)

)
1{Xi−1∈Bcj }∑M

i=1 1{Xi−1∈Bcj }

∥∥∥∥
2

=

√
σ4
X

(
3− p
Mp

)
+

1− p
Mp

+ 1

≤

√
1 + σ4

X

(
3

Mp

)
+

1

Mp
, since 0 < p < 1

≤

√
1 + (1 + σ4

X)

(
3

Mp

)
≈

√
1 +

3(1 + (σ2∆t)2)

Mp

≈

√
1 +

3(1 + (σ2∆t)2)

Mφ(t∗)∆x

(3.68)

The last two lines were derived using a Taylor expansion of the variance around ∆t

and an approximation of the probability distribution using the mean value theorem.

1. For m̂2, when ∆t is fixed, the error won’t reach zero. If ∆x ∝ 1
M

, the bound

depends on ∆t.

2. For m̂2, When ∆t→ 0, we would need the spatial step, ∆x, to approach zero

slower than ∆t for the error to be bounded. For ∆t ∝ 1
M

and ∆x ∝ 1
M

, the

error would be bounded by
√

1 + 1
M2 .
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In summary, our upper bounds for the errors when the number of points

in each bin is not fixed are:

∥∥m̂1 − E[Xt+∆t|Xt = cj]
∥∥

2
≤ σ√

Mφ(t∗)

√
∆t

∆x∥∥m̂2 − E[(Xt+∆t)
2|Xt = cj]

∥∥
2
≤

√
1 +

3(1 + (σ2∆t)2)

Mφ(t∗)∆x

For m̂1, for a fixed ∆t, choosing a ∆x equal to ∆t makes the error decay

at a rate of 1√
M

. For m̂2, the error will not decay to zero regardless of

the choice of parameters ∆t and ∆x. We conclude for fixed ∆t or ∆t→ 0,

an optimal choice of ∆x that would help to have a fast decay rate of the

estimation errors is ∆x ∝ 1√
M

.

3.3 Conditional expectation based estimators of

the drift and diffusion

The two estimators m̂1 and m̂2 provide insights on how the space and time dis-

cretization steps can affect the first two moments. Our primary objective was to

use the information about the conditional expectation to produce the same type of

results for the drift and diffusion estimators (3.3). However, applying the same type

of derivations were tedious. We chose to circumvent this issue by using a different

approach based on the relationship between our estimators, m̂1 and m̂2, and the least

square estimates for an OU process. The least squares method has been introduced

in the beginning of the nineteenth century with the work of mathematicians such as
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Legendre and Gauss. The formulas of least squares coefficients have been studied

for a long time and are today part of the basic toolbox of any mathematician [40].

Indeed, the ratio estimators we are studying could be seen as a special case of a

generalized linear squares.

Weighted Least Squares connection

Consider the following simple regression: yi = βxi+ui ∀i = 1 . . .M , where M is the

total number of observations, yi and xi are the independent and dependent variables

respectively, β is a constant coefficient, and ui is an error term. The Ordinary Least

Squares (OLS) method assumes that all the data are of equal importance in the

estimation whereas Weighted Least Squares (WLS) allows us to vary the weight of

each observation. Assume for example that we have a known matrix of weights,

W = {wi},∀i = 1, . . . ,M . Each observation can receive a weight in an estimation

whose goal would be:

Minimize
β

M∑
i=1

wi
(
yi − βxi

)2
. (3.69)

By taking the derivative and setting it equal to zero, we obtain the WLS coefficient:

β̂ =

∑M
i=1wixiyi∑M
i=1wix

2
i

(3.70)

Now, if we choose the weight to be equal to the inverse of the value of each observa-

tion, e.g., wi = 1
xi

= x−1
i we can see that that our estimate is a ratio of sums:

β̂ =

∑M
i=1 yi∑M
i=1 xi

(3.71)

This WLS estimate of β can be related to our estimators (3.10) by replacing first

xi by 1{Xi−1∈Bcj } and then yi by either Xi1{Xi−1∈Bcj } or X2
i 1{Xi−1∈Bcj } to obtain

either m̂1 or m̂2. The inconvenience with WLS is that values of the process close
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to zero will generate extremely large weights. The second, and crucial, drawback

is in econometrics, the weights are positive values whereas in the current setting

using wi = x−1
i does not guarantee that wi > 0 . In fact, WLS is a special case of

the Generalized Least Squares approach that has been used to estimate models in

the presence of heteroskedasticity [40]. In these problems, the weights are strictly

positive since they are proportional to the noise variance of each observation. So

the use of WLS in our modeling of the estimators (3.10) is a little bit odd since the

weights can’t be negative.

Ordinary Least Squares connection

To avoid this issue, we use the coefficients β from a simple regression done by OLS.

The estimator would be the average value, or square value, for each bin and this can

be obtained by running a simple linear regression without an intercept:

yi = βxi + ui ∀i = 1 . . .M. (3.72)

Since OLS has been used for over a century, the statistics of the estimator are well

known, [40], and could be used to understand our ratio estimators (3.10). In order to

estimate the value of our estimators at the point xj, we have to look at all the points

that fall inside one bin, Bcj . A linear regression that captures this evaluation involves

setting the independent variable xi of (3.72) to the dummy variable 1{Xi−1∈Bcj }. The

dependent variables are given by the product of the dummy by the observation,

or their squares. Our two estimators, m̂1 and m̂2, are calculated via the following

regressions:

Xi1{Xi−1∈Bcj } = β11{Xi−1∈Bcj } + u1,i,

X2
i 1{Xi−1∈Bcj } = β21{Xi−1∈Bcj } + u2,i.

(3.73)
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where uk,i ∼ (0, σ2
uk

) for k = 1, 2. Minimizing the squared errors of the regressions

(3.73) yields β̂1 = m̂1 and β̂2 = m̂2. The variance of these coefficients do not generally

depend on the independent variable [40]:

V (β̂k) =
σ2
uk∑M

i=1 1{Xi−1∈Bcj }
, k = 1, 2 (3.74)

Scaling of drift and diffusion estimators

Recall, the general form of the SDE:

dXt = b(Xt)dt+ a(Xt)dWt

The discretized version of this

Xi+1 −Xi = b(Xi)∆t+ a(Xi)
√

∆tzi

where zi ∼ N(0, 1) and i = 1 . . .M . A special example of such process is the OU

process where b(Xi) = bi = γXi with γ < 0 and a(Xi) = ai = σ.

The impact of the discretization on the two following estimators of the drift and

diffusion, b̂j and âj, is investigated:

b̂j =
1

∆t

∑M
i=0(Xi+1 −Xi)1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
; âj =

1

∆t

∑M
i=0(Xi+1 −Xi)

2
1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
. (3.75)

Upper bound for the drift

Again, we write the drift estimator

b̂j =
1

∆t

∑M
i=0(Xi+1 −Xi)1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
. (3.76)

As argued before, the conditional expectation could be associated to a simple

linear regression of the observation on a constant. A bound of the standard deviation
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of the difference between the estimator and the true value of drift, ‖b̂j − bj‖2, could

be found. This bound is explicitly:

‖b̂j − bj‖2 =

∥∥∥∥ 1

∆t

∑M
i=0(Xi+1 −Xi)1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
− bj

∥∥∥∥
2

=

∥∥∥∥ 1

∆t

∑M
i=0(Xi+1 −Xi)1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
− bj

∆t
∑M

i=0 1{Xi∈Bcj }

∆t
∑M

i=0 1{Xi∈Bcj }

∥∥∥∥
2

=
1

∆t

∥∥∥∥
∑M

i=0(Xi+1 −Xi − bj∆t)1{Xi∈Bcj }∑M
i=0 1{Xi∈Bcj }

∥∥∥∥
2

.

(3.77)

Again, note that the term inside the norm is a OLS coefficients that can be obtained

by running the following linear regression

(Xi+1 −Xi − bj∆t)1{Xi−1∈Bcj } = β11{Xi−1∈Bcj } + u1,i, (3.78)

where u1,i ∼ (0, σ2
u1

). The unknown coefficients of this regression are β1 and σ2
u1

.

We can calibrate these parameters using information on the discretized SDE. This

equation could be written as:

Xi+1 −Xi = b(Xi)∆t+ a(Xi)
√

∆tzi = bj∆t+ aj
√

∆tzi. (3.79)

This latter equality mixed continuous and discrete time notation. It takes into ac-

count the drift and diffusion estimates obtained from points Xi over a bin center at

cj, with a subscript index j not i. The expectation is conditional on the observation

being in the bin. A subscript, like Ej, is used to emphasize that the expectation is

conditional on being in the bin j. We abuse notation and omit the subscript. The

expectation of (3.79)

E((Xi+1 −Xi − bj∆t)1{Xi∈Bcj }) = β11{Xi∈Bcj } + E(u1,i). (3.80)
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One basic assumption of the OLS is that E(u1,i) = 0. This implies that the expec-

tation of the deviation is β1. Using this implication and the discretized SDE we can

write that the unconditional expectation of (3.78):

E
(
(Xi+1 −Xi − bj∆t)

)
= β1 = 0. (3.81)

Similarly, for the variance of (3.79)

V ar
(
(Xi+1 −Xi − bj∆t)

)
= E

(
(Xi+1 −Xi − bj∆t)2

)
= V ar(u1,i) = σ2

u1

= a2
j∆t , which is the variance of an OU process.

(3.82)

The asymptotic variance of the OLS coefficient in (3.78) is as defined in (3.74)

V (β̂1) =
σ2
u1∑M

i=0 1{Xi∈Bcj }
=

a2
j∆t∑M

i=0 1{Xi∈Bcj }
. (3.83)

The 2 norm of the drift deviation is

‖b̂j − bj‖2 =
1

∆t

∥∥∥∥
∑M

i=0(Xi+1 −Xi − bj∆t)1{Xi∈Bcj }∑M
i=0 1{Xi∈Bcj }

∥∥∥∥
2

=
1

∆t

√
V (β̂1),

=
1

∆t

√
σ2
u1∑M

i=0 1{Xi∈Bcj }
=

1

∆t

√√√√ a2
j∆t∑M

i=0 1{Xi∈Bcj }
,

=
1√
∆t

√√√√ a2
j∑M

i=0 1{Xi∈Bcj }
=

√
∆x√
∆t

√√√√ a2
j

∆x
∑M

i=0 1{Xi∈Bcj }
.

(3.84)

For an OU process aj is a constant so (3.84) is well posed. This expression has two

main drivers the ratio
√

∆x
∆t

and the term
aj√

∆x
∑M
i=0 1{Xi∈Bcj }

. The denominator of the

latter term is a portion of the process histogram. It means that the error is inversely

proportional to the number of points in the bin of size ∆x. Infrequently visited bins
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have a large third term and error, while bins regularly visited have a bounded square

root term. Another important point is by reducing ∆x alone will not reduce the

error since a smaller ∆x would imply a smaller bin size and a greater possibility of

no points in the bin which leads to a higher squared root term.

Upper bound for the diffusion

Consider the diffusion estimator:

â2
j =

1

∆t

∑M
i=0(Xi+1 −Xi)

2
1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
. (3.85)

The 2 norm of the deviation from the true diffusion is expressed as

‖â2
j − a2

j‖2 =

∥∥∥∥ 1

∆t

∑M
i=0(Xi+1 −Xi)

2
1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
− a2

j

∥∥∥∥
2

=

∥∥∥∥ 1

∆t

∑M
i=0(Xi+1 −Xi)

2
1{Xi∈Bcj }∑M

i=0 1{Xi∈Bcj }
− a2

j

∆t
∑M

i=0 1{Xi∈Bcj }

∆t
∑M

i=0 1{Xi∈Bcj }

∥∥∥∥
2

=
1

∆t

∥∥∥∥
∑M

i=0((Xi+1 −Xi)
2 − a2

j∆t)1{Xi∈Bcj }∑M
i=0 1{Xi∈Bcj }

∥∥∥∥
2

.

(3.86)

The corresponding regression for this deviation is

((Xi+1 −Xi)
2 − a2

j∆t)1{Xi∈Bcj } = β21{Xi∈Bcj } + u2,i, (3.87)

where u2,i ∼ (0, σ2
u2

). Here the unknown coefficients are β2 and σ2
u2

. Again by setting

E(u2,i) = 0 would imply that the expectation of the deviation is equal to β2 as shown:

E
(
((Xi+1 −Xi)

2 − a2
j∆t)

)
= β2 = 0 (3.88)

The variance of the diffusion deviation is

V ar
(
((Xi+1 −Xi)

2 − a2
j∆t)1{Xi∈Bcj }

)
= E

(
(((Xi+1 −Xi)

2 − a2
j∆t)1{Xi∈Bcj })

2
)
,

= V ar(u2,i) = σ2
u2
.

(3.89)
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The asymptotic variance of the OLS coefficient in (3.87) would be:

V (β̂2) =
σ2
u2∑M

i=0 1{Xi∈Bcj }
. (3.90)

Here, notice that the variance of the coefficient β̂2, depends on the variance of the

error term σ2
u2

that we assumed constant when we chose OLS as an inference method.

In econometrics [40], a estimator, s2, of this variance exists. It follows a non-central

Chi squared distribution with M − 1 degrees of freedom, i.e. s2 ∼ σ2
u

M−1
χM−1. When

the number of points, M , is large we can see that the variance decreases. We do not

use this argument but just the OLS assumption of a constant variance. This allowed

us to write the bound for the diffusion deviation as:

‖â2
j − a2

j‖2 =
1

∆t

∥∥∥∥
∑M

i=0((Xi+1 −Xi)
2 − a2

j∆t)1{Xi∈Bcj }∑M
i=0 1{Xi∈Bcj }

∥∥∥∥
2

=
1

∆t

√
V (β̂2),

=
1

∆t

√
σ2
u2∑M

i=0 1{Xi∈Bcj }
=

1

∆t

√
σ2
u2∑M

i=0 1{Xi∈Bcj }
,

=
1

∆t

√
σ2
u2∑M

i=0 1{Xi∈Bcj }
,

=

√
∆x

∆t

√
σ2
u2

∆x
∑M

i=0 1{Xi∈Bcj }
.

(3.91)

This expression, like for the drift, depends on the ratio of ∆x and ∆t as well

as the histogram ∆x
∑M

i=0 1{Xi∈Bcj }. A small denominator in the third term would

increase the error, which implies the error is inversely proportional to the number of

points in the bin of size ∆x. Compared the drift estimator, there is a square root

only on the spatial step but not the time step. This means that for a small ∆x, the

drift error bound would have a smaller error than the diffusion error.
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3.4 Conclusion Chapter 3

1. An error analysis of the non-parametric estimation of the drift and diffusion of

a SDE has been done. The goal was to study the impact of the sample size,

time, and space discretization on the estimation errors.

2. In practical applications, a large amount of data on a given stochastic process

are sampled at a fixed time interval, ∆t. On the other hand, a researcher

has control of any state space discretization. Let ∆x be the spatial step size

of a given state-space partition. Here spatial discretization implies a binning

procedure i.e. partitioning the state space into bins of equal size ∆x. In this

context, understanding how ∆t and ∆x affects the estimation errors on the drift

and diffusion is crucial to obtain reliable reconstruction of the components of

a SDE.

3. We focus on a non-parametric estimation based on conditional expectations.

We also limited the scope of our analysis to an Ornstein Uhlenbeck (OU)

process.

4. We define, using time and space discretization, two conditional expectation

estimators, m̂1 and m̂2, and conduct an error analysis on them.

5. Assuming that the number of points in each bin is fixed, and equal to M , when

the observational time step, ∆t, is fixed we found that the L2 errors made when

estimating the drift decays at a rate of 1√
M

.

6. When we relaxed the assumption that the number of points in each bin is fixed,
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we found for a fixed ∆t that the L2 errors when estimating the drift decays at

a rate of 1√
M

while the diffusion error did not decay to zero but was bounded.

7. We look at conditional expectation estimator of the drift and diffusion over

a certain bin, j, denoted b̂j and âj, respectively. We found that for, a fixed

∆t, the L2 errors depend on the ratio ∆x
∆t

and the number of points inside the

bin. Bins that are frequently visited have a smaller estimation errors because

the square root term in the upper bound of the error is finite. Also, we found

that choosing a nonzero spatial step size smaller or equal to the subsampling

time produces small values of the ratio ∆x
∆t

and by consequence implies smaller

estimation errors for both the drift and diffusion.

8. More research needs to be done for the case where the number of points is not

fixed.
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APPENDIX–CHAPTER 2

Brief overview of the spectral reconstruction method using Finite Element

(FE)

The finite difference approach exploits a close relationship between the spectrum

of the infinitesimal generator and that of the data estimated transition probabili-

ties matrix to estimate the best possible drift and diffusion terms. Issues such as

model misspecification can be avoided using this approach. Unfortunately, one ma-

jor limitation is the magnitude of the approximation errors that could be generated

by the method itself. Indeed the method requires computing approximation for the

derivatives of the eigenfunctions to perform the numerical optimization. Since no
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conditions are imposed on the spectrum except of being discrete, finite differences of

these functions appear as a major source of errors.

Crommelin and Vanden-Eijnden introduced in [20] a modification of the opti-

mization error in order to avoid differentiating. The key idea is to use a Galerkin

approximation of the eigentriplets that allow to compute the infinitesimal generator

without using derivatives of the eigenfunctions, but instead differentiating test func-

tions. This approach is based on the same key relationship between the infinitesimal

generator and the Markov chain generated by the data and the finite difference could

be seen as a special case of this more general approach. We summarize the key idea

of this approach using the same notation as in [20].

Consider a diffusion process Xt on the space Ω with invariant measure µ that

admits an invariant density ρ. Consider that the infinitesimal generator L lies on

a the Sobolev space H2(Ω, µ) and the operator Pt on a larger space F = L2(Ω, µ).

The eigentriplets are denoted as {ψk(x), φk(x), λk(x)}.

Using the Galerkin method implies that the domain of the conditional expectation

operator Pt is approximated by its projection into a finite dimensional subspace

denoted FM ⊂ F . The set of independent functions fi : Ω → R, for i = 1..M is a

basis of FM. A weak formulation of the eigenvalue problem (2.24) is expressed as:

〈Ptφk, fi〉ρ = 〈Ωkφk, fi〉ρ (1)

for all i = 1..M , k ∈ N and ρ (the invariant density of the process) is used as the

weight function in the above inner product.

The Galerkin approximation of the right eigenfunctions, denoted φgk, on the basis
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of function of FM is:

φgk =
M∑
i=1

vkifi(x) (2)

where the vki ∈ C are expansion coefficients.

A matrix formulation of this problem can be obtained by first representing all the

expansion coefficient by a matrix V, the basis function and the mapping operator

by respectively a symmetric matrix R and another matrix T whose entries are as

follows:

Vij = {vki}i=1..M,k∈N, (3)

Rij = 〈fi, fj〉ρ , (4)

Tij = 〈Ptfi, fj〉ρ . (5)

The following generalized eigenvalue problem for Pt is expressed as

V T = DΛV R, (6)

where DΛ is a diagonal matrix containing the eigenvalues of Pt. Similar problem

than in [18] could be formulated for the adjoint of the infinitesimal generator with

the same eigenvalues but with left eigenfunctions ψk. In this approach, instead of

using the left eigenfunctions, functions ξk are derived from the generalized eigenvalue

problem could be defined using the invariant density as

ψk = ρξk. (7)

The eigenvalue problem gives Galerkin approximation of these functions:

TW ? = RW ?DΛ, (8)
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where W is the matrix of the expansion coefficients wki of the functions ξgk such that

ξgk =
M∑
i=1

wkifi(x), (9)

V TW ? = DΛ. (10)

In the first method, [18, 19] the residuals of the discretized eigenfunctions of both

the infinitesimal generator and its adjoint were minimized. In the latest approach

[20] only the infinitesimal generator is integrated against a set of test functions to

construct a weak formulation of the eigenvalue problem and the residuals generated

are minimized using different weights to estimate the drift and diffusion. The general

objective function appears as follows:

Ẽ(b, a) =
K∑
k=1

N∑
i=1

αki

∣∣∣〈ξk,L(b, a)σi〉ρ − λk 〈ξk, σi〉ρ
∣∣∣2 . (11)

The choice of the Galerkin basis functions, the test functions and the weights enables

to construct different methods.

The authors distinguished three cases:

1. Case 1: Binning case. Like in the finite difference approach, the eigenpairs

are obtained after binning the state space to construct a transition probability

and its eigendecomposition. Test functions are chosen to be integrated along

the generator avoiding any numerical differentiation of the eigenfunctions The

objective function in this case is as follows:

Ẽb(b, a) =
K∑
k=1

N∑
i=1

αkiE |ξk(Xt)(Lσi)(Xt)− λkξk(Xt)σi(Xt)|2 . (12)
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2. Case 2: Smooth Galerkin. When the eigenfunctions are estimated with

smooth Galerkin functions, the test functions are set to be the actual eigenfunc-

tions with weights depending on the data eigenvalues. The objective function

can be more easily written in terms of matrix:

Ẽg(b, a) = ||V QW ? −Dλ| |2c . (13)

where the weighted Frobenius norm is used with a weight denoted c.

3. Case 3: Mixed case. A third technique can be designed using smooth

Galerkin basis functions that would also be used as test functions instead of

the eigenfunctions. The objective function is

Ẽm(b, a) =
K∑
k=1

N∑
i=1

αki
∣∣(WQT −DλWW )ki

∣∣2 . (14)
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