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Abstract

External stimuli shape the network structures of our nervous system. The synap-

tic connections between neurons are plastic and molded both by spontaneous activity

and information they receive from the outside. This is the basis of memory formation

and learning. In this dissertation, we study the effects of interactions between neu-

ronal properties and learning rules on neuron network structures. In Chapter 2, we

choose EIF (exponential integrate-and-fire) neurons as our neuron model, and show

how to use linear response theory to approximate a fundamental descriptor of the

interactions between neurons - their spike train cross-covariances. In Chapter 3, we

investigate how these cross-covariances along with particular learning rules determine

the evolution of synaptic weights in simple two-cell networks, from unidirectionally

connected to bidirectionally connected examples. We propose a theoretical way to

approximate the evolution of synaptic weights between neurons, and verify that the

approximations hold using simulations. We next extend these ideas and approaches

to large networks in Chapter 4. The insights we obtained using two-cell networks can

help us interpret how synaptic weights evolve in larger networks. We also present a

theoretical way to predict the final network structure which is the result of a partic-

ular learning rule, and depends on the level of drive and background noise of each

neuron in the network.
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CHAPTER 1

Introduction

Our nervous system underlies our thoughts and actions through the electrochemical

activity of its constituent neurons. These networks of cells detect, classify, and re-

spond to external stimuli. However, these external stimuli also shape our nervous

systems. As our experiences differ, our living environment thus makes each one of

us unique. Since the dawn of neuroscience as a modern discipline, one if its main

goals has been understanding the physiological basis, and physical mechanisms that

underlie learning and memory.
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1.1. A BRIEF HISTORY OF SYNAPTIC PLASTICITY

1.1 A brief history of synaptic plasticity

In the early 20th century, the Italian physiologist Ernesto Lugaro introduced the

term “plasticity” to describe short- or long-lasting changes in synaptic or cellular

physiology caused by a stimulus [24]. The term is now widely used to describe stim-

ulus and activity driven changes in the wiring of neuronal networks. The following

is a brief overview of the nearly hundred years of neural plasticity studies. Ralf

Gerard used electrical recording in 1930 to find long-lasting depolarization in frog

nerves after receiving high-frequency stimuli. This was the first evidence supporting

long-lasting electrophysiological changes in response to stimulation. The desire to

understand the relationship between neuronal activity and mental function has in-

spired many early neuroscientists, such as Rafael Lorente de Nó and Karl Lashley. de

Nó proved that synaptic transmission only occurs if several synapses are activated,

and only then if it “complies with a set of most rigid and exacting conditions” [15].

Lashley suggested that mental function depends on the general, dynamic, adaptive

organization of the entire cerebral cortex [36]. In 1949, Karl Lashley’s student, Don-

ald Hebb, presented a theoretical mechanism of memory formation in his landmark

book “ The Organization of Behavior” [16]:

“When an axon of cell A is near enough to excite a cell B and repeatedly

or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficacy, as one of

the cells firing B, is increased.”
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1.1. A BRIEF HISTORY OF SYNAPTIC PLASTICITY

This idea is sometimes paraphrased as “Neurons that fire together wire together”,

and is now known as Hebb’s rule. Hebb’s ideas have strongly influenced the theories

of plasticity up to the present.

In 1960’s, the most forceful evidence for synaptic plasticity as a mechanism for

behavioral learning was provided by Eric Kandel and Ladislav Tauc through an

electrophysiological model developed by themselves [22, 23]. They applied stimulus-

pairing sequences based on classical behavioral conditioning paradigms to the isolated

abdominal ganglion of sea slug Aplysia depilans. Their results demonstrated that

in certain cells the amplitude of the post-synaptic potential produced by a weak

stimulus to one pathway is capable of being facilitated for a prolonged period of

time as a result of the repeated and concomitant pairing with a more effective stim-

ulus to another pathway. Later on, Terje Lømo and Timothy V.P. Bliss found that

high-frequency stimulation of the perforant path from entorhinal cortex to the den-

tate gyrus caused long-term potentiation (LTP) of post-synaptic potentials [64, 67],

which was also confirmed by Robert M. Douglas and Graham V. Goddard [56]. Be-

sides LTP, Lynch, Dunwiddie and Gribkoff discovered long-term depression (LTD)

in response to low-frequency stimulation in the hippocampus at the end of 1970’s

[28, 63].

Levy and Steward highlighted the importance of the relative timing of pre-

and post-synaptic activity [71]. In the late 1990’s, Henry Markram and his co-

workers demonstrated such spike timing-dependent plasticity (STDP) experimental-

ly by showing that iterative pairs of pre- and post-synaptic spikes can result in either

potentiation or depression depending on their relative timing [29]. Later, Bi and Poo
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1.2. MATHEMATICAL MODELS OF PLASTICITY

provided a more detailed analysis of the timing dependence [27]. Such experimental

studies underlined how the precise timing between pairs of pre- and post-synaptic

spikes can govern plasticity, which subserving learning and memory.

1.2 Mathematical models of plasticity

In parallel with this experimental work, the development of the mathematical theory

of synaptic plasticity and associated computational approaches have played an im-

portant role in our growing understanding of how our nervous system is shaped [30].

Mathematical models have been developed to match experimental observations. In

turn theoretical approaches have been used to explain experimentally observed phe-

nomena, and drive computational approaches to simulate the experiments. These

models have been tested, validated, and improved by comparing the simulated and

experimental data.

Many rate-based plasticity rules were created before the discovery of STDP. A-

mong them, three classic models by Bienenstock, Cooper & Munro (BCM) [21], Oja

[19] and Linsker [54], illustrate attempts to capture how synaptic plasticity shapes

networks so they can perform computations. The BCM rule predicts that synaptic

depression is due to the joint activity between the pre- and post-synaptic neurons,

not the competition among synapses. It works well in both the visual cortex and the

hippocampus, and it can be shown to correspond to certain abstract learning algo-

rithms [8]. Oja’s rule builds on the connection between theories of Hebbian learning
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1.2. MATHEMATICAL MODELS OF PLASTICITY

and neural-inspired computations. Both the BCM and Oja’s rule can be used to

model networks that can perform principal component analysis, and can lead to the

emergence of self organizing maps in a layer-by-layer unsupervised learning scheme,

such as as those used in models of binocular vision [20]. Linsker’ rule explains the

emergence of stimulus-selectivity in sensory areas, which is similar to the BCM rule.

However, it focuses on orientation selectivity, not ocular dominance. All these rules

rely on average firing rates and exclude the discussion of how spiking activity on

neuronal timescales affects plasticity.

Different mechanistic models of synaptic plasticity have also been proposed.

Calcium-based models have been remarkably influential, and come in two major

types: those based on the calcium control hypothesis [61], and those on the assump-

tion of multiple sensors for post-synaptic calcium [31]. The first type is motivated

by the experiments illustrating that different post-synaptic calcium levels lead to

different plasticity outcomes [61]. The behavior of some of these models depends

sensitively on calcium concentration thresholds. The synapse depresses if calcium

levels are intermediate while it potentiates if calcium levels are above a threshold.

The second type can determine whether synaptic efficiency increases, decreases, or

does not change according to a biophysically plausible calcium detection system.

Both of these types of model can reproduce STDP that has been observed experi-

mentally. Figure 1.1 shows a comparison between experiments and the second type

of model.

5



1.2. MATHEMATICAL MODELS OF PLASTICITY

Figure 1.1: The STDP curve generated by the second type of Calcium-based model
which can determine the synaptic weights evolution efficiency. From Rubin et al.,2005
[57]. Experimental data points from Bi and Poo,1998 [27].

Donald Hebb postulated in 1949 that a synaptic connection between two neurons

is potentiated when a pre-synaptic neuron is repeatedly implicated in the firing of

a post-synaptic cell, or, more generally, when a pre- and post-synaptic neuron are

active simultaneously. Terrence Sejnowski suggested spike-time correlations as a

requirement for synaptic plasticity in 1977 [66]. In 1993, Wulfram Gerstner and

colleagues proved that, for a recurrent network to learn spatio-temporal patterns,

instead of firing rates, plasticity needs to be based on spike times [70], and, a few years

later, proposed spike-timing plasticity models for sound localization [69]. The STDP

learning rule have been shown to feed forward artificial neural networks capable of

pattern recognition, and have been used to recognize traffic, sound or movement

using Dynamic Vision Sensor cameras [9, 65, 49]. Such learning rules can be mapped

to equivalent rate-based rules under the assumption of stationary Poisson statistics

for the firing times of pre- and postsynaptic neurons [52]. We can also relate STDP to

a nonlinear rate model where the weight change depends linearly on the presynaptic

rate, but nonlinearly on the postsynaptic rate [21]. There are two ways to achieve
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1.2. MATHEMATICAL MODELS OF PLASTICITY

this. One way is to is to implement standard STDP with nearest-neighbor instead of

all-to all coupling. This gives a nonlinearity consistent with the BCM rule [32]. The

other way is using a triplet STDP rule instead of the standard pair-based rule. The

triplet STDP rule can become identical to the BCM rule under certain cases [21].

The timing-based plasticity rules specified the synaptic weight change as a piece-

wise function of the time lag between pre- and post-synaptic spikes, defining separate

windows for potentiation and depression for positive and negative time lags respec-

tively, have the general form:

∆Wpost←pre =


f+φ(tpost − tpre), if tpost − tpre ≥ 0

−f−φ(tpost − tpre), if tpost − tpre < 0

,

where f± stands for the amplitudes of synaptic weight change and the function φ

handles their time dependence. The typical forms of φ are exponential functions

usually. These models capture the results of pair-based plasticity protocols, and

provide an example of theory predicting experimental results in neuroscience. As

many other learning rules, this rule can lead to unbounded changes in synaptic am-

plitudes, and is therefore typically complemented with a hard threshold to prevent

runaway potentiation [59]. Alternatively, a sliding potentiation threshold can also

prevent such divergence [13]. We use pair-based STDP learning rules throughout

this whole dissertation.
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1.3. MOTIVATION OF THIS DISSERTATION

1.3 Motivation of this dissertation

Many studies have explored how STDP shapes the distribution of synaptic weights

of a group of synaptic connection to a a single neuron [58, 47, 53, 51, 3]. Here, we

consider the more challenging problem of understanding how STDP shapes the glob-

al structure of a recurrent network of spiking neurons. Related questions have been

addressed before in a number of studies [59, 17, 1, 18, 39, 40, 41, 42, 43, 44, 33, 11].

The generally antisymmetric shape of the STDP window, in which reversing the or-

dering of pre- and postsynaptic spikes reverses the direction of synaptic change, led

to the proposal that this synaptic modification rule should eliminate strong recur-

rent connections between neurons [59, 37]. This idea has been expanded by Kozloski

and Cecchi [33] to larger polysynaptic loops in the case of balanced STDP which

the magnitudes of potentiation and depression are equal. The case of enhancing

recurrent connections through pair-based STDP was also proposed by Song and Ab-

bott [59] and was explored by Clopath and colleagues [11] later in a more complex

model. Clopath and her colleagues proposed a STDP model in which the synaptic

changes depend on presynaptic spike arrival and the postsynaptic membrane poten-

tial, filtered with two different time constants. They use this model to explain the

connectivity patterns in cortex with a few strong bidirectional connections. Their

plasticity rule lead not only to development of localized receptive fields but also to

connectivity patterns that reflect the neural code. An excessively active group of

neurons has been shown to decouple from the rest of the network through STDP [1],

and in presence of axonal delays, STDP enhances recurrent connections when the

neurons fire in a tonic irregular mode [18].

8



1.3. MOTIVATION OF THIS DISSERTATION

Babadi and Abbott have shown that large network properties can be explained by

the effect of STDP on pairwise interactions of Poisson neurons based on the baseline

firing rates [4]. They begin with analyzing the vector fields of the synaptic weights

for two-cell recurrent symmetric (2 cells with the same baseline firing rate), and

asymmetric (with different rates) networks under the influence of balanced and un-

balanced (potentiation dominated and depression dominated) Hebbian STDP rules.

Based on this analysis, they were able to make predictions about the dynamics of

weights in large networks, and found that potentiation dominated STDP rules will

generate loops while depression dominated rules will eliminate loops. Moreover, they

showed that rightward shifted STDP can generate recurrent connections, and STDP

with leftward shift generates loops at higher firing rates but eliminates loops at low-

er rates. This work provided a clear picture of how local learning rules can shape

network dynamics from simple neuron circuits.

Gilson and his colleagues used a theoretical framework based on the assumption

that spike trains can be described as Poisson processes, and used this framework

to analytically describe the network dynamics and the evolution of the synaptic

weights in a series of five papers [39, 40, 41, 42, 43]. They apply STDP to some of the

synaptic connections in a network driven by two pools of input spike trains that have

homogeneous within-pool firing rates and spike-time correlations. In the first paper,

they found that the weights from the more correlated inputs are potentiated. In the

second paper, they showed that the presence of fixed excitatory recurrent connections

between neurons makes neurons tend to select the same input pool. They showed

that, in the absence of external inputs, STDP can nevertheless generate structure

9



1.3. MOTIVATION OF THIS DISSERTATION

in the network through autocorrelation effects in the third paper. In the fourth

paper, they illustrated that, for a network receiving fixed input weights which are

stimulated by external spike trains, STDP can lead to both a stabilization of all the

neuron firing rates and a robust weight specialization. In the last paper, they showed

that a recurrently connected network stimulated by external pools can divide into

two groups of neurons under the effect of STDP.

Most of these previous studies were based on the Poisson neuron model. However,

while the assumption of a Poisson neuron leads to tractable models, it also does not

fully reflect a number of properties of actual neurons. One of the main issues is

the noise in neuronal firing. While a Poisson model captures such noise indirectly

through the probabilistic nature of the firing of spikes, it does not capture explicitly

the internally generated and synaptic noise. Thus it does not provide a mechanistic

explanation of neuronal response variability. Spike generation, by itself, is highly

reliable and deterministic. However, noise in neural responses is believed to result

in part from the fact that synapses are very unreliable [10]. Noise is therefore due

to unreliable synapses, or inherited from the input from the rest of the network, and

is not due to spike generation. In the integrate-and-fire neuron model, the output is

a filtered, thresholded and deterministic function of the input. Thus, the integrate-

and-fire model captures many of the qualitative features, and is often used as a

starting point for conceptualizing the biophysical behavior of single neurons [62].

There is evidence showing that some cells respond as integrate-and-fire neurons

[55]. This implies such model is more close to the real neurons. Here we consider

networks built of this general type of neurons - EIF (exponential integrate-and-fire)

10



1.3. MOTIVATION OF THIS DISSERTATION

neurons [25], which have been shown to match spiking dynamics well in certain

cortical areas [7]. We find some new properties for the networks even if the baseline

firing rates of the neurons are all the same, which can not be captured by networks

of Poisson neurons.

11



CHAPTER 2

Methods

We consider networks of EIF neurons with the same baseline firing rate but where

each cell receives different levels of background noise, which is driven by noise with

mean µ and standard deviation σ. The properties of background noise are common

to many neurons, so they provide a natural starting point. For fixed baseline firing

rate, based on the values of µ and σ, there are two main regimes for EIF neurons:

noise driven (higher σ value and lower µ value) and stimulus driven (lower σ value

and higher µ value). The spikes of EIF neurons are mainly driven by the noise (σ) in

the former regime while the stimulus (µ) is dominant in the latter regime. A neuron

is said to be excitable when the direct input, µ results in membrane voltage that is

12



2.1. THE EIF MODEL

close to threshold. In this case small fluctuations in membrane voltage, whether due

to input or noise internal to the cell, can cause the neuron to fire.

Our goal is to study the impact of STDP rules on the evolution of weights in a

network. To do so, we start with networks of two cells. We use linear response theo-

ry to determine the cross-covariance function between the cells in the network. It is

essential that we require the weights change slowly compared to network dynamics,

which provides a separation of time scales (2.3). In turn, this allows us to determine

how the weights evolve. Moreover, this also allows us to generalize the approach

described in [34] to networks in which the weights are changing by analyzing their

cross-covariance functions or phase planes (vector fields), and use these to predict

the behavior of large networks. We test our predictions in large networks using both

our theoretical framework, and direct numerical simulations.

2.1 The EIF model

All of the the networks we considered are composed of EIF (exponential integrate-

and-fire) neurons. The membrane potentials Vi is thus modeled by

Cm
dVi
dt

= gL(VL − Vi) + gLψ(Vi) + Ii(t) + fi(t) . (2.1)

13



2.1. THE EIF MODEL

Here Cm is the membrane capacitance, VL is the leak reversal potential, and gL is

the membrane conductance.

ψ(Vi) = ∆T exp

[
Vi − VT

∆T

]

is the exponential term. Here VT is the soft threshold. ∆T shapes the spiking

dynamics of the membrane potential. Ii(t) = µi + gLσiD(
√

(1− c)ξi(t) +
√
cξc(t)) is

the input term. D =
√

2Cm
gL

, ξi(t) models background white noise with mean µi and

standard deviation σi, ξc(t) is the external common white noise input, and c ∈ [0, 1]

is the scaling parameter. When c = 0 the neurons in the network receive independent

background white noise input. When c = 1 this background noise is identical in all

cells. Here we choose to use the EIF neuron model because it accurately predicts the

statistical features of spike trains for a large class of pyramidal neurons [35].

A post–synaptic input current is generated whenever a presynaptic cell spikes.

We assume the synaptic kernels are exponential, and thus have the form:

Jij(t) = WijH(t− τD)exp

[
− t− τD

τS

]
.

Here H is the heaviside step function, τD is the synaptic delay, τS is the synaptic

time constant. The matrix W defines the synaptic weights, and the entry Wij de-

notes the weight of the directed connection from neuron j to neuron i. Therefore,

yj(t) = Σkδ(t − tj,k) is the output spike train of cell j, then the synaptic current in

cell i generated by the spiking of cell j is given by fi(t) = Σj(Jij ∗ yj)(t).

14



2.1. THE EIF MODEL

A Poisson neuron is completely described by its firing rate [60]. However, the

dynamics and response of the EIF neuron are governed by parameters that capture

the physiological properties of the cell. Here we will concentrate on two parameters,

the mean µ and standard deviation σ of the input. These two parameters both affect

the firing rate, and the variability of the neuron’s output [38]. The same firing rate

can be achieved for different µ and σ values (Figure 2.1). The variability in the

output is not the same however. The statistics of the spike trains can be different

according to the µ and σ values (Figure 2.2). Moreover, CV (coefficient of variation,

the ratio of the standard deviation σ to the mean µ, σ
µ
) can vary even if the firing rate

stays the same. As we will see below, this makes STDP in such networks more subtle.
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Figure 2.1: Different µ-σ values can attain the same baseline firing rate.
(A) Changes of baseline firing rate according to µ and σ values. (B) Bottom of (A),
illustrating that different µ and σ values can attain the same baseline firing rate.
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2.1. THE EIF MODEL

(a) (b) (c)

Figure 2.2: Neurons with the same baseline firing rate can have different
firing statistics. (A) Different µ and σ values can attain the same baseline firing
rate 7.6 Hz. (B) EIF neurons with the same baseline firing rate 7.6 Hz and higher µ
will generate more regular spike train. (C) Neurons with lower µ will generate less
regular spike train.

In Table 2.1, we choose 5 different µ-σ pairs that lead to the same baseline firing

rate 7.6(Hz) as an example. Besides µ and σ, other parameters can also affect the

rates, such as the spiking dynamics shaping parameter ∆T in the exponential term

ψ(Vi). Higher ∆T causes more rapid spike onset, and leads to higher firing rates.

However, the impact of these other parameters is expected to be small compared to

µ and σ, the parameters that are the focus of our study.

Pair index µ (mV) σ2 (mV2) Fano factor Baseline firing rate (Hz)
1 1.37 49 0.77
2 1.19 64 0.81
3 1 81 0.84 7.6
4 0.81 100 0.88
5 0.61 121 0.91

Table 2.1: 5 different µ-σ pairs that attain the same baseline firing rate 7.6(Hz). Red
row is our baseline setting for the neuron model.

16



2.2. THE HEBBIAN STDP RULE

We take the red pair as our baseline setting. Table 2.1 thus shows that to obtain

the same baseline firing rate when we increase σ, we need to lower µ.

2.2 The Hebbian STDP rule

To study how plasticity shapes the structure of the network, we use a well-known

model of STDP [69], which has been supported by experimental evidence starting

with that of Bi and Poo in 1998 [27], and followed by other studies [72, 2, 68]. If we

denote by s the time difference between the pre- and post-synaptic spikes

s = tpost − tpre = tj − ti ,

then we can define a Hebbian STDP rule by

∆Wji(s) =


W0

jiH(Wmax −Wji)L(s) , if s ≥ 0

W0
jiH(Wji)L(s) , if s < 0

, (2.2)

where

L(s) =


f+e

− |s|
τ+ , if s ≥ 0

−f−e
− |s|
τ− , if s < 0

.

Here H(x) is the Heaviside function, f+ > 0 and f− > 0 are the amplitudes of

17



2.3. WEIGHT CHANGE DYNAMICS

potentiation and depression respectively, τ+ and τ− are the time constants, Wmax is

the upper bound of the synaptic weights and W0 is the binary adjacency matrix of

the network, enforcing that STDP rule can only modify connections that exist in the

network structure.

We also consider an Anti-Hebbian STDP rule, which is similar to the Hebbian

STDP rule and the only difference is the potentiation and depression sides are re-

versed. We use these rules in a number of examples we describe below, although our

approach is applicable to any other pairwise STDP rules.

2.3 Weight change dynamics

We can denote the spiking output of a neuron i by

yi(t) =

ni∑
i=1

δ(t− ti) . (2.3)

According to [52, 37, 44, 3], we can build the bridge from the joint statistics of yi(t)

and yj(t) to the evolution of synaptic weights. The learning rule given in Eq.(2.2)

governs the changes of the synaptic weight Wji (from neuron i to neuron j). Let

∆TWji be the total change in the related synaptic weight during a time interval of

length T . This weight change is calculated by summing the contributions of input
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(i) and output (j) spikes occurring in the time interval [t, t+ T ]. We have

∆TWji =

ˆ t+T

t

ˆ t+T

t

∆Wji(t2 − t1)yj(t2)yi(t1)dt2dt1 .

Let s = t2−t1, 〈·〉 denote the trial average, then the trial-averaged rate of synaptic

weight change is

〈∆TWji〉
T

=
1

T

ˆ t+T

t

ˆ t+T−t1

t−t1
∆Wji(s)〈yj(t1 + s)yi(t1)〉dsdt1 . (2.4)

The trial-averaged spike train cross-covariance Cji(s) is

Cji(s) =
1

T

ˆ t+T

t

〈yj(t1 + s)yi(t1)〉dt1 − rirj ,

where rj and ri are the stationary firing rates for neuron j and i respectively. Using

this term in Eq.(2.4), we get

〈∆TWji〉
T

=

ˆ t+T−t1

t−t1
∆Wji(s)(Cji(s) + rjri)ds . (2.5)

We define the widthW of the learning rule ∆Wji(s) and let T �W . Then most

of the contributions to the weights evolution of the learning rule should be inside

the interval [−W ,W ]. Thus, we can extend the integration over s in Eq.(2.5) to run

from −∞ to +∞. We require the amplitude of individual changes in the synaptic

weights to be small (f± � Wmax). So the value of Wji do not change much in the

time interval of length T . Thus T separates the time scale W from the time scale of
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2.3. WEIGHT CHANGE DYNAMICS

the learning dynamics, which allows us to approximate the left-hand side of Eq.(2.5)

by the rate of change
dWji

dt
:

dWji

dt
=

ˆ +∞

−∞
∆Wji(s)(Cji(s) + rjri)ds

=

ˆ +∞

−∞
∆Wji(s)Cji(s)ds︸ ︷︷ ︸

1

+ rjri

ˆ +∞

−∞
∆Wji(s)ds︸ ︷︷ ︸
2

. (2.6)

For fixed learning rule and neuron properties of the networks, part 2 of Eq.(2.6)

is a constant. Part 1 is illustrated in Figure 2.3.

−40 −20 0 20 40
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−0.5

0

0.5

1
x 10

−3

C
(s

) 
(k

H
z2 )

s (ms)

 

 

Cross−covariance
STDP function
Area of their product

−1

−0.5

0

0.5

1

Figure 2.3: Illustration for Part 1 of Eq.(2.6). Cross-covariance (red curve),
together with the STDP rule (blue curve) define the weight change dynamics (yellow
region). These quantities are used to obtain the theoretical weight change dynamics.
The yellow region is the integral (area) of the product of cross-covariance and learning
rule, which stands for Part 1 of Eq.(2.6). It contributes the weights evolution.
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THEORY

2.4 Approximating cross-covariances using linear

response theory

We will briefly introduce an approximation method to estimate the pairwise spike

train cross-covariances Cij(s) using a synaptic weight matrix W [5, 6, 34, 48]. We

consider the Fourier transform of a spike train (Eq.(2.3)),

ỹi(ω) =

ˆ ∞
−∞

yi(t)e
−2πiωtdt ,

where ω is frequency. Assuming the synaptic weights, Wij are weak, we can approx-

imate the spike response from neuron i (Eq.(2.1)) as:

ỹi(ω) ≈ ỹ0
i (ω) + Ãi(ω)

( N∑
j=1

J̃ij(ω)ỹj(ω)

)
. (2.7)

Here Ãi(ω) is Fourier transform of the linear response [12] of the post-synaptic neu-

ron i, measuring how strongly modulations in synaptic currents at frequency ω are

transferred into modulations of instantaneous firing rate about a background state

ỹ0
i (ω). The function J̃ij(ω) is the Fourier transform of a synaptic filter. Eq.(2.7) is

a linear approximation for how a neuron integrates and transforms a realization of

synaptic input into a spike train.

Following [5, 6, 34], we use this linear approximation to estimate the Fourier

transform of Cij(s), written as C̃ij(ω) =< ỹi(ω)ỹ∗j(ω) >. Here ỹ∗ denotes the
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conjugate transpose. This yields the following matrix equation:

C̃(ω) ≈ (I− K̃(ω))−1C̃
0
(ω)(I− K̃

∗
(ω))−1 , (2.8)

where K̃(ω) is an interaction matrix defined by K̃ij(ω) = Ãi(ω)J̃ij(ω). We can

compute Ãi(ω) using standard methods based on using a Fokker-Planck equation to

describe the probability distribution of a neuron’s membrane potential [45, 46]. The

diagonal matrix C̃
0
(ω) is the auto-spectra in the absence of synaptic coupling, with

elements C̃
0

ii(ω) =< ỹ0
i (ω)ỹ0∗

i (ω) >, and I is the identity matrix. From Eq.(2.8),

we can recover the matrix of spike train cross-covariance functions C(s) through

inverse Fourier transformation. Thus, Eq.(2.8) gives us an estimate of the statistics

of pairwise spiking activity in the full network given its architecture.

For the parameter of correlated input c > 0, let Cext be the covariance matrix

of the common external input (gLσiD
√
cξc(t) for neuron i) for all the neurons in a

network, we have

Cext
ii = Cov(gLσiD

√
cξc(t), gLσiD

√
cξc(t)) = Var(gLσiD

√
cξc(t)) = cg2LD

2σ2
i ,

Cext
ij = Cov(gLσiD

√
cξc(t), gLσjD

√
cξc(t)) = cg2LD

2σiσj .

The full array of cross-spectra in the network can then be approximated by

C̃(ω) ≈ (I− K̃(ω))−1(C̃
0
(ω) + Ã(ω)CextÃ

∗
(ω))(I− K̃

∗
(ω))−1 , (2.9)

where Ã(ω) is a diagonal matrix containing the Fourier transform of linear response
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functions of each neuron (Ãi(ω)s).

Examples comparing theoretical and simulated cross-covariances of simple cir-

cuits with two neurons are in Sections 3.1.1 and 3.1.2.
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CHAPTER 3

Results for simple circuits

In this chapter we first study the evolution of synaptic weights in a system of two mu-

tually coupled neurons. We apply the theoretical approach described in the previous

section, and confirm the results numerically. Insights gained from the simple system

of two neurons allow us to understand how features of the linear response function

together with the shape of the STDP function together determine the evolution of

synaptic weights.
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3.1. CROSS-COVARIANCES AND LEARNING FOR TWO-CELL NETWORKS

3.1 Cross-covariances and learning for two-cell net-

works

We first study the cross-covariances and evolution of synaptic weights in particular

two-cell networks. We then generalize the approach to larger networks in the follow-

ing chapter.

3.1.1 Two EIF neurons with one directed connection

The connectivity in a network of two EIF neurons with a synaptic connection from

cell 1 to cell 2 (Figure 3.1), is described by the weight matrix

W =

 0 0

W21 0

 .

1 2
Figure 3.1: Connected 2 EIF neurons with just one connection from cell 1
to cell 2.

For this case, we have J12(t) = 0, K12(t) = 0 and K̃12 = 0. Thus,

K̃ =

 0 0

K̃21 0


25



3.1. CROSS-COVARIANCES AND LEARNING FOR TWO-CELL NETWORKS

with K̃21 = Ã2J̃21. We therefore have, (I−K̃)−1 = (I+K̃), and similarly, (I−K̃
∗
)−1 =

(I + K̃
∗
).

The cross-spectrum matrix of the two processes is therefore given by Eq.(2.8),

 C̃11 C̃12

C̃21 C̃22

 ≈ (I + K̃)

 C̃
0

11 0

0 C̃
0

22

 (I + K̃
∗
)

=

 1 0

K̃21 1


 C̃

0

11 0

0 C̃
0

22


 1 K̃

∗
21

0 1


=

 C̃
0

11 K̃
∗
21C̃

0

11

K̃21C̃
0

11 |K̃21|2C̃
0

11 + C̃
0

22

 .

Thus, C̃21 ≈ K̃21C̃
0

11 = Ã2J̃21C̃
0

11, and C̃12 ≈ (Ã2J̃21)
∗C̃

0

11. We can therefore use

inverse Fourier transforms to recover the cross-covariances, C12(t) ≈ F−1(C̃12)(t)

and C21(t) ≈ F−1(C̃21)(t).

These equations show that the cross-covariances are determined by the linear

response function, Ai(t), the synaptic kernel Jij(t), as well as the uncoupled auto-

covariance C0
11. This is shown in Figure 3.2. This dependence can be presented

schematically as:

Linear response + Synaptic kernel + Uncoupled auto-covariance

→ Cross-covariances . (3.1)
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In Figure 3.2, we show the linear response function, A2(t), the synaptic kernel,

J21(t), the uncoupled auto-covariance, C0
11, and the matched cross-covariance, C21(t).

As we have shown, the first three functions (panels A–C) can be combined to obtain

an approximation of the fourth (panel D). In Figure 3.2D, the red curve represents

this theoretical result obtained using Eq.(2.8), while the blue curve is obtained using

direct simulations of the stochastic differential equation Eq.(2.1). We use the same

color assignments to distinguish theoretical and simulation results below.

The dynamics of synaptic weights given by Eq.(2.6) is determined by the cross-

covariances, and the learning rule. This is illustrated in Figure 3.3. Note that a

change in synaptic weights affects the firing rate. In turn, this can affect the cross-

correlation, and the further evolution of the weights. We therefore need to recompute

the rates and linear responses for each update of synaptic weights. Thus this is a

closed loop - unlike in the Poisson neuron case.

In sum, we can complement the heuristic rule expressed in Eq.(3.1) by

Cross-covariance + Learning rule → Synaptic weight changes .

Figure 3.3A shows the theoretical cross-covariance, C21(t). Figure 3.3B shows

the balanced Hebbian STDP rule (f+ = f− and τ+ = τ− in Eq.(2.2)). The peak of

the cross-covariance is in the positive time domain. This is the potentiation side of

the balanced Hebbian STDP rule (See Figure 2.3). Due to the shape of the cross-

covariance and the learning rule, the synaptic weight W21 will be potentiated (Figure

3.3C).
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Figure 3.2: A theoretical approximation of the cross-covariances. The base-
line firing rate is about 27 Hz for the two cells when µ = 2 mV and σ = 9 mV.
W21 = 1 µA/cm2. (A) The linear response function, A2(t). (B) The synaptic
kernel, J21(t). (C) The auto-covariance for uncoupled cells, C0

11. (D) Matched
cross-covariance C21(t). The smooth red curve shows he theoretical results, while
the blue curve shows the results of simulations. Here we use the spike trains with
length of 107 ms and bin size of 0.5 ms for computing the simulated cross-covariance.
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Figure 3.3: The relation between cross-covariances and learning. The base-
line firing rate is about 27 Hz for the two cells with µ = 2 mV and σ = 9 mV. (A)
Theoretical cross-covariance C21(t). (B) Balanced Hebbian STDP rule (∆W). (C)
A comparison of the theoretical (red) and simulated (blue) evolution of the synaptic
weight W21. The light blue curves are obtained from 10 realizations of the system.
The thick blue curve is the average of these 10 simulations.
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3.1.2 Two EIF neurons with recurrent connections

For the network formed by two EIF neurons with recurrent connections shown in

Figure 3.4, we have the synaptic weight matrix

W =

 0 W12

W21 0

 .

1 2

Figure 3.4: Two EIF neurons with recurrent connections.

In this case,

K̃ =

 0 K̃12

K̃21 0


with K̃21 = Ã2J̃21 and K̃12 = Ã1J̃12.

Similarly,

(I− K̃)−1 =
1

1− K̃12K̃21

(I + K̃) , and (I− K̃
∗
)−1 =

1

1− K̃
∗
12K̃

∗
21

(I + K̃
∗
) ,
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and so,

 C̃11 C̃12

C̃21 C̃22

 ≈ 1

(1− K̃12K̃21)(1− K̃
∗
12K̃

∗
21)

(I + K̃)

 C̃
0

11 0

0 C̃
0

22

 (I + K̃
∗
)

=
1

|1− K̃12K̃21|2

 1 K̃12

K̃21 1


 C̃

0

11 0

0 C̃
0

22


 1 K̃

∗
21

K̃
∗
12 1


=

1

|1− K̃12K̃21|2

 C̃
0

11 + |K̃12|2C̃
0

22 K̃
∗
21C̃

0

11 + K̃12C̃
0

22

K̃21C̃
0

11 + K̃
∗
12C̃

0

22 |K̃21|2C̃
0

11 + C̃
0

22

 .

This implies

C̃12 ≈
K̃
∗
21C̃

0

11 + K̃12C̃
0

22

|1− K̃12K̃21|2
=

(Ã2J̃21)
∗C̃

0

11 + Ã1J̃12C̃
0

22

|1− Ã1J̃12Ã2J̃21|2

and

C̃21 ≈
K̃21C̃

0

11 + K̃
∗
12C̃

0

22

|1− K̃12K̃21|2
=
Ã2J̃21C̃

0

11 + (Ã1J̃12)
∗C̃

0

22

|1− Ã1J̃12Ã2J̃21|2
.

We can rewrite these expressions as geometric series,

1

1− K̃12K̃21

=
∞∑
k=0

(K̃12K̃21)
k ,

1

1− K̃
∗
12K̃

∗
21

=
∞∑
l=0

(K̃
∗
12K̃

∗
21)

l ,
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to obtain

1

|1− K̃12K̃21|2
=

1

(1− K̃12K̃21)(1− K̃
∗
12K̃

∗
21)

=

( ∞∑
k=0

(K̃12K̃21)
k

)( ∞∑
l=0

(K̃
∗
12K̃

∗
21)

l

)
=

∞∑
k,l=0

(K̃12K̃21)
k(K̃

∗
12K̃

∗
21)

l .

This leads to, for example,

C̃12 ≈
∞∑

k,l=0

(K̃12K̃21)
k(K̃

∗
12K̃

∗
21)

l((Ã2J̃21)
∗C̃

0

11 + Ã1J̃12C̃
0

22) , (3.2)

and similar expression for C̃21. These expressions can be interpreted in terms of

paths through the graph which is in this case composed of just two cells [34].

When k = 0 and l = 0, we obtain the first term of this series, (Ã2J̃21)
∗C̃

0

11 +

Ã1J̃12C̃
0

22. But (Ã2J̃21)
∗C̃

0

11 is just the cross-correlation, C̃12, in the unidirectionally

coupled network of two EIF neurons discussed in Section 3.1.1. Similarly, Ã1J̃12C̃
0

22

is the cross-correlation C̃12 of the mirror image of this network formed by a single

connection from cell 2 to cell 1. The cross-covariance is determined by this leading

term when coupling is not too strong (See Figure 3.5). The other terms may matter

if coupling is strong. This implies that the cross-covariances in a two-cell recurrent

networks are approximately the sum of the cross-covariances of two unidirectionally

coupled networks, which has already been noted by Ostojic and Brunel [50], as well

as Trousdale [34], et al.
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(a)

1 2

(b)

1 2
(c)

1 2

Figure 3.5: Using leading order term to approximate the cross-covariances
in two-cell recurrent networks. (A) Cross-covariance for the two-cell network
with a synaptic connection from cell 1 to cell 2. (B) Cross-covariance for the two-cell
network with a synaptic connection from cell 2 to cell 1. (C) The red curve is the
cross-covariance of the full circuit, while the sum of the cross-covariances in (A) and
(B) is shown in black.

The top row of Figure 3.5 shows the two halves, and the full two-cell network:

with only a synaptic connection from cell 1 to cell 2 (A); with a connection from cell

2 to cell 1 (B); the recurrent network (C). The bottom row shows the corresponding

cross-covariances. Figure 3.5C bottom, shows that the cross-covariance of the full

two-cell network (red) is well approximated by the sum of the two cross-covariances

corresponding to the unidirectional networks (black). It is important to also note

that this type of decomposition does not always work, for example when coupling is

too strong.

33



3.1. CROSS-COVARIANCES AND LEARNING FOR TWO-CELL NETWORKS

(a)

0 5 10 15 20 25 30
−5

0

5

10

15

20
x 10

−3

t (ms)

Li
ne

ar
 r

es
po

ns
e 

A
i(t

) 
(H

z.
m

V
/p

A
)

 

 

A
1
(t) for cell 1

A
2
(t) for cell 2

(b) (c)

−50 0 50
−0.05

0

0.05

0.1

0.15

0.2

t (ms)

C
ii0  (

kH
z2 )

 

 

C0
11

(t)

C0
22

(t)

(d) (e)

Figure 3.6: Cross-covariance and learning under balanced Hebbian STDP
rule for two-cell recurrent network. (A) Here the red and blue curves are the
linear response functions A1(t) and A2(t), respectively. (B) The red and blue curves
are the synaptic kernels J12(t) and J21(t), respectively. (C) The red and blue curves
are uncoupled auto-covariances C0

11 and C0
22, respectively. (D) Theoretical (red) and

numerically (blue) obtained cross-covariance C21(t). (E) Compared synaptic weights
change curves. Red and blue curves correspond to W12 and W21, respectively. The
thin curves again represent individual realizations.

Figure 3.6A shows the linear response functions A1(t) and A2(t). These are

the same as the intrinsic properties of the two cells are equal – we chose the same

parameters for this example. Figure 3.6B shows the synaptic kernels J12(t) and

J21(t). The amplitude of J21(t) is bigger than that of J12(t), since W21 = 2 µA/cm2

is greater than W12 = 1 µA/cm2. Figure 3.6C shows the uncoupled auto-covariances,

C0
11 and C0

22. These are again equal since the two cells are identical. Figure 3.6D
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compares the cross-covariance C21(t) obtained from simulations (blue) and theory

(red). The peak with the higher amplitude is in the positive time domain, which is

on the potentiation side of our Hebbian STDP rule (Figure 3.3B). With a symmetric

learning rule this implies that potentiation of W21 is dominant, which will lead to

an increase in W21, while W12 will decrease in time. Figure 3.6E shows W12 and

W21 obtained using theory and simulations with a symmetric Hebbian STDP rule.

The asymmetry of the cross-covariances seen in Figure 3.5 and 3.6 is due to

the different initial weights of the two synaptic connections. Asymmetric cross-

covariances can also occur when the connection weights and firing rates are equal,

but the intrinsic properties, as determined by the parameters µ and σ, differ between

the cells. This is illustrated in Figure 3.7.

Here we fixed the baseline firing rate of both cells at 27 Hz. This occurs both

when µ = 2 mV and σ = 9 mV, and when µ = 2.37 mV and σ = 5 mV (note that

firing rates can be equal for different µ and σ values, as shown in Figure 2.1 and

Table 2.1). We also set both synaptic weights to 2 µA/cm2. We consider two cases:

two cells with the same and two cells with different setting of the parameters µ and

σ. When we use µ = 2 mV and σ = 9 mV for both cells we have symmetric cross-

covariances (Figure 3.7B). With µ = 2 mV and σ = 9 mV for cell 1 and µ = 2.37 mV

and σ = 5 mV for cell 2 we see that the amplitude of the linear response function

for cell 2 (A2(t) (blue)) is larger than that for cell 1 (Figure 3.7D). This means that,

even when the baseline firing rates are equal, the cell with lower σ (or higher µ value)

will have a linear response function of bigger amplitude. That is, lower noise makes

a cell more sensitive to its inputs, and hence a larger peak in the linear response.
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Figure 3.7: Different intrinsic properties of neurons lead to asymmetric
cross-covariances, and, in turn, affect the evolution of synaptic weights.
(A,D) Linear response functions for the two cells with the same setting and different
setting respectively. (B,E) cross-covariance C21(t) for the two cells with the same
setting and different setting respectively. (C,F) Integrals of the product of cross-
covariances C21(t) and different learning rules for the two cells with the same setting
and different setting respectively.

This difference in linear responses breaks the symmetry of the cross-covariances.

With equal synaptic weights, A2(t) governs the peak of C21(t) (spike times of cell

1 as reference) in the positive time domain while A1(t) controls the peak in the

negative time domain. The amplitude of A2(t) is bigger than that of A1(t) implying

the amplitude of the peak in the positive time domain will be bigger than that in the

negative time domain. This leads to the asymmetry of the cross-covariances which

is apparent in Figure 3.7E.
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The shape of the cross-covariances affects the evolution of the synaptic weights. In

the right column of Figure 3.7, we show the integrals of the product of corresponding

cross-covariances and different learning rules. Here we used a balanced leaning rule

with f = f+ = f−, τ = τ+ = τ−, and varied f and τ . For symmetric cross-covariance,

the integral is always 0. However, for asymmetric cross-covariances, it changes with

f and τ . We can see that the integral increases with f and τ (Figure 3.7F). This

implies that the learning rule with bigger amplitude (f) and broader shape (τ) will

make the synaptic weight changes more sensitive to the cross-covariance.

In this case, under fixed baseline firing rate, the differences in the properties of

the individual cells result in an asymmetric cross-covariance, and thus impact the

evolution of their coupling weights according to the applied learning rule. Cross-

covariances and learning rules shape the network structure together, and both are

important here. However, the Poisson neuron model does not exhibit this behavior,

as the properties of this neuron are determined by the baseline firing rate only.
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3.1.3 Two EIF neurons with recurrent connections and com-

mon input

In a recurrent two-cell network with common input to the two cells, Eq.(2.9), gives

the uncoupled auto-spectrum as:

C̃
0

+ ÃCextÃ
∗

=

 C̃
0

11 0

0 C̃
0

22
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1|Ã1|2 cg2LD
2σ1σ2Ã1Ã
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where

P1 = σ2
1|Ã1|2 + σ1σ2Ã2Ã

∗
1K̃12 + σ1σ2Ã1Ã

∗
2K̃
∗
12 + σ2

2|Ã2|2|K̃12|2 ,
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∗
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∗
2K̃21K̃

∗
12 + σ2

2|Ã2|2K̃
∗
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1|Ã1|2|K̃21|2 + σ1σ2Ã2Ã
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∗
21 + σ1σ2Ã1Ã

∗
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Thus,

C̃12 ≈
(Ã2J̃21)

∗C̃
0

11 + Ã1J̃12C̃
0
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2P2

|1− Ã1J̃12Ã2J̃21|2
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0

11 + (Ã1J̃12)
∗C̃

0

22 + cg2LD
2P3

|1− Ã1J̃12Ã2J̃21|2
.

Common input thus modifies the uncoupled cross-spectrum C̃
0

and therefore

increases the uncoupled auto-covariances. These will lead to an increase in the am-

plitude in the cross-covariances compared with the ones without common input.

Similar as Eq.(3.2), we can rewrite C̃12 in the form of series,

C̃12 ≈
∞∑

k,l=0

(K̃12K̃21)
k(K̃

∗
12K̃

∗
21)

l((Ã2J̃21)
∗C̃

0

11 + Ã1J̃12C̃
0

22 + cg2LD
2P2) .
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The leading term in this series is (Ã2J̃21)
∗C̃

0

11 + Ã1J̃12C̃
0

22 + cg2LD
2P2. In this

leading term, the summand (Ã2J̃21)
∗C̃

0

11 is just the cross-covariance C̃12 of the net-

work formed by two EIF neurons with a synaptic connection from cell 1 to cell 2, but

without common input. Ã1J̃12C̃
0

22 is C̃12 of the network for reversed case (connection

from cell 2 to cell 1 without common input). The last summand, cg2LD
2P2, contains

the term cg2LD
2σ1σ2Ã1Ã

∗
2, which is the cross-covariance C̃12 between cell 1 and cell

2 with common input in the absence of synaptic connections between the cells.

Thus, we can approximate the cross-covariances of a recurrent, two-cell network

with common input by combining the cross-covariances of two unidirectional circuits,

and one with common input (See Figure 3.8).

(a)

1 2

(b)

1 2

(c)

1 2

Common Input
(d)

1 2

Common Input

Figure 3.8: Approximation of the cross-covariances in a two-cell recurrent
network with common input. (A) Cross-covariance of two-cell network with a
synaptic connection from cell 1 to cell 2. (B) Cross-covariance of two-cell network
with a synaptic connection from cell 2 to cell 1. (C) Cross-covariance of two-cell
network without connections, but with common input to both cells. (D) Red curve
is the cross-covariances of two-cell recurrent network with common input. The black
curve is the combination of cross-covariances in (A), (B) and (C).
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Figure 3.8 is similar to the Figure 3.5 in the previous section. The figure illus-

trates that in a two-cell recurrent network with common input, we can also use the

cross-covariances of simpler, uni-directional circuits, along with the cross-covariance

generated by the common input to approximate the full cross-covariance.

(a) (b)

(c) (d) (e)

Figure 3.9: Cross-covariances and synaptic weight dynamics under bal-
anced Hebbian STDP in a two-cell, recurrently coupled network with
common input. (A) Cross-covariances between the cells with (red) and without
(blue) common input. (B) Comparison of cross-covariance with common input (red
curve in (A)) obtained analytically and numerically. (C) Theoretical weight changes
for two-cell recurrent network with (solid lines) and without (dash lines) common
input. (D) Matched weight changes for two-cell recurrent network with common
input (solid lines in (C)). (E) The first iteration of dW

dt
for two-cell recurrent network

according to c value.

41



3.1. CROSS-COVARIANCES AND LEARNING FOR TWO-CELL NETWORKS

Figure 3.9A shows the cross-covariances for two-cell recurrent network with (red)

and without (blue) common input. Here we set c = 0.05. We can see that the

cross-covariance of the case with common input has bigger amplitude. And this

change in cross-covariance will affect the learning according to the learning rule. For

the same learning rule, cross-covariance with bigger amplitude will lead to faster

learning. Figure 3.9B shows that the cross-covariance obtained using Eq.(2.9) is a

good approximation to those obtained from direct simulations. Figure 3.9C shows

the theoretical weight changes for two-cell recurrent network with (solid lines) and

without (dash lines) common input under the same potentiation dominated Hebbian

STDP rule (here we set f+ = 0.005, f− = 0.004 and τ+ = τ−). We can see that the

solid lines reach the boundaries (maximal synaptic weights) faster. This implies the

learning speed of networks with common input is faster than that without common

input under the same learning rule. Figure 3.9D is the weight changes for two-cell

recurrent network with common input (solid lines in bottom left) got by Eq.(2.6)

and direct simulations. In Figure 3.9E, we plot the first iteration of dW
dt

according

to change of c by fixing the initial network structure and learning rule. We can see

that both dW12

dt
and dW21

dt
increase with c. This implies that increase common input

will make changes in the weights faster.
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3.2 The effects of cross-covariances and learning

rules

We have shown that the cross-covariances determine the evolution of weights in net-

works. Eq.(2.6) shows that to approximate weight change dynamics requires com-

puting the cross-covariances, and using them in conjunction with the learning rules.

We next illustrate the effects of these two components separately.

We consider a two-cell recurrent network with identical cells, equal weights (W12 =

W21 = 2 (µA/cm2)) and baseline firing rates (about 27 Hz). We choose 6 different

µ−σ pairs which result in the same baseline firing rate with σ ranging from 3 mV to

8 mV. The corresponding linear response functions and cross-covariances are shown

in Figure 3.10. The linear response functions of network with pair for lower σ value

(or higher µ value) have more oscillation, which is reflected in the corresponding

cross-covariances. What’s more, the cross-covariances with lower σ value (or higher

µ value) have bigger amplitude. This is again due to the higher sensitivity of less

noisy cells to input.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: The linear response functions and cross-covariances for two-
cell recurrent networks with same baseline firing rate but different µ − σ
settings. (A-F) Linear response functions (top) and cross-covariances (bottom)
for two-cell recurrent networks with σ varying from 3 mV to 8 mV. For the cross-
covariances, blue lines show the results of simulation, while the red lines show the
theoretical predictions.
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We use a balanced Hebbian STDP rule for the networks (see Figure 3.11).

(a) (b) (c)

Figure 3.11: Weights changes in two-cell recurrent networks with different
σ value but same baseline firing rate. The fixed baseline firing rate is about
27 Hz. We set W12 = 1 (µA/cm2) and W21 = 2 (µA/cm2) initially. (A) Theoretical
weight changes for two-cell recurrent networks with σ = 4 (solid lines) and 9 mV
(dash lines) respectively. (B) Comparison of numerically and theoretically obtained
weight change dynamics for σ = 4 mV (solid lines in (A)). (C) Comparison of
numerically and theoretically obtained weight change dynamics for σ = 9 mV (dash
lines in (A)).

Figure 3.11A shows the evolution of the weights predicted by Eq.(2.6). Figure

3.11B shows the synaptic weight changes for σ = 4 mV while Figure 3.11C is for

σ = 9 mV. Weight changes are faster in the network with lower σ value (or higher

µ value), even thought the rates in both cases are equal. As we have discussed

above, this is due to the higher amplitude of their cross-covariances when direct

input dominates. A more obvious example is shown in Figure 3.12.
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(a) (b)

(c) (d)

Figure 3.12: Another example for weights changes in two-cell recurrent net-
works with different σ value but same baseline firing rate. Here the fixed
baseline firing rate is about 7.6 Hz. (A) Comparison of numerically and theoretically
obtained cross-covariance for σ = 11 mV. (B) Comparison of numerically and the-
oretically obtained cross-covariance for σ = 3 mV. (C) Comparison of numerically
and theoretically obtained weight change dynamics for σ = 11 mV. (D) Comparison
of numerically and theoretically obtained weight change dynamics for σ = 3 mV.

To illustrate the effects of different learning rules we compare a balanced (sym-

metric), and asymmetric Hebbian STDP rules in a network with σ = 9 mV. The

results are shown in Figure 3.13, while the corresponding phase planes (vector fields)

are shown in Figure 3.14. We chose the same initial weights in these simulations.

Under a symmetric learning rule, one of the weights is potentiated, while the other
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depressed. However, under asymmetric learning rule, both of them are potentiated.

Thus different learning rules can lead to different network dynamics.

(a) (b)

(c) (d)

Figure 3.13: Effects for different learning rules. (A) Symmetric (balanced) Heb-
bian STDP function we choose. (B) Compared weight changes for two-cell recurrent
network under the learning rule in (A). (C) Asymmetric (potentiation dominated)
Hebbian STDP function we choose. (D) Compared weight changes for two-cell re-
current network under the learning rule in (C).
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For a two-cell recurrent network, according to Eq.(2.6), the following system of

equations governs the evolution of the weights,


dW12

dt
=
´ +∞
−∞ ∆W12(s)(C12(s) + r1r2)ds

dW21

dt
=
´ +∞
−∞ ∆W21(s)(C21(s) + r2r1)ds

.

The phase planes for two-cell recurrent networks (like Figure 3.14) are obtained

using these equations. For an initial value of the weights (W12,W21), the related

phase plane shows what values will (W12,W21) attain under certain learning rule.

Here we follow the idea of Babadi and Abbott [4] in analyzing the phase planes.

(a) (b)

Figure 3.14: Phase planes for Figure 3.13. (A) Phase plane under balanced
(symmetric) Hebbian STDP rule (Figure 3.13A). There are two stable fixed points,
(3,0) and (0,3). (B) Phase plane under asymmetric Hebbian STDP rule (Figure
3.13C). There are three stable fixed points, (3,0), (0,3) and (3,3).
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Here we set the upper bound of the synaptic weights at 3 (µA/cm2). Figure

3.14A shows the phase plane in the case of a balanced (symmetric) Hebbian STDP

rule while Figure 3.14B is for asymmetric learning rule. In the balanced case, there

are two stable fixed points (3,0) and (0,3), while the unstable fixed points are on the

diagonal line. Almost all initial weight values result in trajectories that are driven

to these two fixed points. In the asymmetric case, a new stable fixed point at (3,3)

emerges. For the parameters we chose, most initial weights will result in trajectories

that converge to this point. This explains the different dynamics of the weights un-

der these two leaning rule. Initially we set the weights (W12,W21) = (1, 2), under

symmetric learning rule, they will go to fixed point (0,3) (Figure 3.13B). However,

under asymmetric learning rule, they go to fixed point (3,3) (Figure 3.13D). This

implies that the asymmetric learning rule leads to a asymmetric final state, while

the symmetric learning rule leads to a symmetric final state.

We next illustrate the effects of the shapes of cross-covariances. We begin with the

case of unequal baseline firing rates for different networks. Here we apply asymmetric

Hebbian STDP rule on the two-cell recurrent networks. The cells from the two

networks have the same µ value (µ=2 mV) but different levels of noise (σ=9 and 20

mV respectively). In this case, cells with σ=9 mV have baseline firing rate about 27

Hz, while cells with σ=20 mV have baseline firing rate about 52 Hz. The results are

shown in Figure 3.15 while the corresponding phase planes are in Figure 3.16.
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Figure 3.15: Effects for different cross-covariances under different baseline
firing rates. (A) The selected asymmetric (potentiation dominated) Hebbian STD-
P function. (B) Square of baseline firing rate times learning rule in (A) (rirjL(s)
and ri = rj in Eq.(3.3)) for σ = 9 mV (blue) and σ = 20 mV (red) respectively. (C)
Compared cross-covariances for σ = 9 mV. (D) Compared weights changes curves
for σ = 9 mV under the learning rule in (A). (E) Compared cross-covariances for
σ = 20 mV. (F) Compared weights changes curves for σ = 20 mV under the learning
rule in (A).
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Figure 3.15B shows that square of baseline firing rate times learning rule (rirjL(s)

and ri = rj in Eq.(3.3)) for σ = 9 mV (blue) and σ = 20 mV (red) respectively.

When the difference of the baseline firing rates is large, the difference of these prod-

ucts (rirjL(s)) is also large, as is the difference of the integrals of the products.

These difference will be reflected in the evolution of the synaptic weights. Figure

3.15C illustrates the case σ = 9 mV while Figure 3.15E shows the case σ = 20 mV.

Here we can see that the shape of the cross-covariance with higher sigma value is

broader under fixing µ value. Figure 3.15D and F are for the corresponding weights

changes curves. For the same learning rule, we have different dynamics for these

two networks: one weight is potentiated while another is depressed for lower σ value;

both of the weights are potentiated for higher σ value. Here the difference of network

dynamics is mainly due to the different baseline firing rates. We will show that we

can also get different network dynamics under same learning rule and fixed baseline

firing rate (Figure 3.20).

(a) (b) (c)

Figure 3.16: Phase planes related to Figure 3.15. (A) Phase plane for σ = 9
mV under the learning rule in Figure 3.15A. (B) Phase plane for σ = 20 mV under
the learning rule in Figure 3.15A. (C) Phase plane for σ = 9 mV and µ = 3 mV
under the learning rule in Figure 3.15A.
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Figure 3.16A shows the phase plane when noise is smaller, that is σ = 9 mV,

while Figure 3.16B is for higher σ (σ = 20 mV) under the same asymmetric learning

rule. We can see that these two phase planes have the same stable fixed points (3,0),

(0,3) and (3,3). However, the region of initial weights which converge to the fixed

point (3,3) for bigger σ is much larger than that for smaller σ. Thus, under this same

asymmetric learning rule, the initial weights (W12,W21) = (1, 2) will go to the fixed

point (0,3) in the low σ case (Figure 3.15C), and to the fixed point (3,3) for higher

σ (Figure 3.15E). The main reason is the baseline firing rates. For µ = 2 mV and

σ = 9 mV, the baseline firing rate is about 27 Hz. It becomes to about 52 Hz for

µ = 2 mV and σ = 20 mV. In Figure 3.16C, we fix σ = 9 mV and increase µ from 2

mV to 3 mV. In this case, the baseline firing rate is about 52 Hz. We obtain a similar

phase plane as in Figure 3.16B. Increasing the baseline firing rate will increase the

basin of attraction for the fixed point (3,3).

We next use an analytical approach to understand these observations. Accord-

ing to Section 2.2, for simplification, we can rewrite the Hebbian STDP learning

(Eq.(2.2)) rule as

L(s) =


W0

ijH(Wmax −Wij)f+e
− |s|
τ+ , if s ≥ 0

W0
ijH(Wij)(−f−)e

− |s|
τ− , if s < 0

.

For the recurrent connected two cells i and j (i ↔ j), the two weights Wij and
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Wji always exist initially. So we have W0
ij = W0

ji = 1. Then

L(s) =


H(Wmax −Wij)f+e

− s
τ+ , if s ≥ 0

−H(Wij)f−e
s
τ− , if s < 0

.

The theoretical weight changes due to the learning rule is

dWij

dt
=

ˆ +∞

−∞
L(s)(Cij(s) + rirj)ds (3.3)

=

ˆ +∞

−∞
L(s)Cij(s)ds+ rirj

ˆ +∞

−∞
L(s)ds

= f+

ˆ +∞

0

H(Wmax −Wij)e
− s
τ+ Cij(s)ds︸ ︷︷ ︸

A

− f−
ˆ 0

−∞
H(Wij)e

s
τ−Cij(s)ds︸ ︷︷ ︸

B

+ rirj

ˆ +∞

−∞
L(s)ds︸ ︷︷ ︸

C

= A−B + C .

3.2.1 Symmetric learning rules

For the symmetric (balanced) Hebbian STDP learning rule, that is when f+ = f−

and τ+ = τ− in Eq.(2.2), we have
´ +∞
−∞ L(s)ds = 0 and C = 0 in Eq.(3.3). In this

case, if Wij = Wji initially, we have Cij(s) = Cji(s) and both of them are sym-

metric with respect to the zero time axis (s = 0). Therefore, A = B and
dWij

dt
= 0

in Eq.(3.3), which implies that both synaptic weights will not change (See Figure
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3.14A where the diagonal consists of unstable fixed points). However, if the initial

synaptic weights are not equal, e.g. Wij > Wji, the amplitude of the peak of Cij(s)

in the positive time domain (potentiation side of the learning rule) will be larger

than that in the negative time domain (depression side of the learning rule). We

therefore obtain an asymmetric cross-covariance which drives the change in synaptic

weight for this case. In this case, A > B,
dWij

dt
> 0 in Eq.(3.3) and Wij increases

while Wji decreases (note Cji(s) = Cij(−s)). Therefore, larger initial weights are

potentiated and smaller initial weights depressed.

3.2.2 Asymmetric learning rules

We next consider one type of asymmetric learning rules, the potentiation dominat-

ed Hebbian STDP learning rules. The key difference between such rules and the

symmetric rules is that
´ +∞
−∞ L(s)ds > 0 and thus C > 0 in Eq.(3.3).

We can compute the term C explicitly.

C = rirj

[
f+

ˆ +∞

0

H(Wmax −Wij)e
− s
τ+ ds− f−

ˆ 0

−∞
H(Wij)e

s
τ− ds

]
.

The learning rules modify the weights when 0 < Wij < Wmax, i.e. when

H(Wmax −Wij) = H(Wij) = 1. In this case,

C = rirj

(
f+

ˆ +∞

0

e
− s
τ+ ds− f−

ˆ 0

−∞
e
s
τ− ds

)
= rirj(f+τ+ − f−τ−) .
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Note that the magnitudes of cross-covariances we considered are around 10−4 ∼

10−3 (kHz2), while the baseline firing rates (ri, rj) are around 10 ∼ 20 (Hz). For the

learning rules such that

f+τ+ − f−τ− 6= 0 ,

we have

|C| � |A| and |C| � |B| .

If we choose a potentiation dominated Hebbian STDP learning rule by setting

f+ > f− and τ+ = τ− = τ in Eq.(2.2), for fixed baseline firing rates of all the neurons

(ri = rj = r) in the networks, we have

C = r2τ(f+ − f−) > 0 ,

and thus contribution from C in Eq.(3.3) is positive for all such networks.

When Wij = Wji, A > B for f+ > f−, even if both of Cij(s) and Cji(s) are

symmetric with respect to the zero time axis (s = 0). In addition, C > 0,
dWij

dt
> 0

and both of Wij and Wji will be potentiated. This implies that (Wmax,Wmax) is a

fixed point (Figure 3.14B).

When the two weights are not equal, the larger will be potentiated. The smaller

one, if the difference between it and the bigger one is not large (the cross-covariances

does not change much compared to the case of equal synaptic weights), we may
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have A − B + C > 0 for f+ > f− and C > 0. In this case, the weaker synaptic

weight also gets potentiated. With fixed neuron properties (σ and µ), the basin of

attraction of the stable fixed point (Wmax,Wmax) in the phase plane is determined

by the difference between f+ and f−. The larger this difference, the larger the basin

of attraction.

If we fix the potentiation dominated learning rule and increase the baseline firing

rates of both cells (ri and rj) by increasing σ or µ, part C can increase dramatically,

and make a larger contribution, or even dominate in Eq.(3.3). Both of the initial

weights will be potentiated due to the high positive C value. This leads to the

increase of the basin of attraction for the stable fixed point (Wmax,Wmax) in the

phase plane (Figure 3.16).

We can also build the potentiation dominated Hebbian STDP learning rules by

setting f+ = f− = f and τ+ > τ− in Eq.(2.2). In this case, for fixed baseline firing

rate (r) of all the neurons in the networks, we have

C = r2f(τ+ − τ−) > 0

is also a positive constant.

With a fixed baseline firing rate, the cross-covariances between neurons will not

change much when varying µ and σ (for fixed weights between neurons). The changes

in cross-covariances will change the values of A and B a bit. However, comparing

with the high positive constant C, such changes are very small and affect the phase

planes of the weights only a little. This means the basin of attraction in the phase
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planes are mainly determined by the C value for such potentiation dominated learn-

ing rules (Figure 3.17).

Figure 3.17: Phase planes for small differences between τ+ and τ−.

The different rows of Figure 3.17 show that phase planes change little when

we vary µ and σ (change the cross-covariances). The small differences are in the

boundaries of different basins of attraction.
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If the difference between τ+ and τ− in the potentiation dominated learning rule

is sufficiently large, then C will dominate the changes in weights, so that
dWij

dt
can

never be negative, no matter how the cross-covariances change. In this case, ini-

tial (W12,W21) = (a, 0) will go to (Wmax, 0), initial (W12,W21) = (0, b) will go to

(0,Wmax) and initial (W12,W21) = (a, b) will go to (Wmax,Wmax) with a, b > 0

(Figure 3.18).

Figure 3.18: Phase planes for big differences between τ+ and τ−.

58



3.2. THE EFFECTS OF CROSS-COVARIANCES AND LEARNING RULES

For fixed baseline firing rate (r), if we want to increase the effect of cross-

covariances, we need to decrease the effect of part C:

C = r2(f+τ+ − f−τ−) .

The direct way is setting the learning rule so that

C = r2(f+τ+ − f−τ−) = 0 ⇐⇒ f+τ+ = f−τ− .

Here we fix f− and τ−, and we change f+ and τ+ to make sure that f+τ+ = f−τ−.

Note that here we ignore the balanced (symmetric) case: f+ = f− and τ+ = τ−.

Then we check the phase planes by varying µ and σ (change the cross-covariances

under the same baseline firing rate). They are illustrated in Figure 3.19.
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Figure 3.19: Phase planes for setting the integral of learning rule to be 0.

From the middle and bottom rows of Figure 3.19, the changes in the phase planes

are much more obvious. This implies the effect of cross-covariances is larger. Here

we use the the parameters of bottom row left one and right one of Figure 3.19 as an

example (Figure 3.20), which shows that cross-covariances can change the network

dynamics for fixed baseline firing rate under such learning rules. We can see that

the properties of the cells (µ and σ) can affect the cross-covariances, and therefor

can affect the dynamics of the weights in the network. However, this only happens

when the term C is not big compared with A and B in Eq.(3.3).
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(a) (b)

(c) (d)

Figure 3.20: Cross-covariances can affect network dynamics for the same
baseline firing rate. (A) Selected learning rule with the parameter in Figure 3.19.
(B) Theoretical weights changes for σ = 5 mV and σ = 9 mV under the learning rule
in (A) respectively. (C) Compared weights changes for σ = 5 mV. (D) Compared
weights changes for σ = 9 mV.
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CHAPTER 4

Results for larger networks

In the previous section, we studied how STDP together with the properties of spike

train cross-covariances determine the evolution of synaptic weights in networks of

two neurons. In this chapter we will generalize these ideas, and examine the evolu-

tion of weights in larger networks. For demonstration we simulate networks of put

to 100 EIF neurons, although our conclusions and approach hold more generally.
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4.1 Different µ-σ settings have different weight

change speeds

In Section 3.2, we showed that, with a fixed baseline firing rate and with a balanced

STDP learning rule, for two coupled neurons with different levels of drive (µ) and

background noise (σ), the synaptic weights can change at different rates. Similar

results hold in larger networks, and we have consequences for their global connectivity

structure.

The different intrinsic properties of the cells (µ-σ settings) affect the cross-

covariances between the spike trains of synaptically connected pairs of cells in the net-

work (See Figure 3.10). This in turn leads to distinct dynamics of synaptic weights,

as governed by the learning rule. Here we choose µ-σ settings shown in Table 2.1.

The cross-covariances of two-cell recurrent networks for these 5 different parameter

values are shown in the following Figure 4.1A. We also show the balanced Hebbian

STDP learning rule we use in the simulations (Figure 4.1B; By “balanced” we again

mean that f+ = f− and τ+ = τ− in Eq.(2.2)). Note that the baseline firing rates in

Figure 3.10 (about 27 Hz) and 4.1A (about 7.6 Hz) are different. We can see that

there are more oscillations for higher baseline firing rates case.

63



4.1. DIFFERENT µ-σ SETTINGS HAVE DIFFERENT WEIGHT
CHANGE SPEEDS
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Figure 4.1: The cross-covariance functions of two-cell recurrent networks
for the 5 pairs of parameters shown in Table 2.1 and the balanced Hebbian
STDP rule. (A) Cross-covariances for two-cell recurrent networks with 5 pairs of
parameters. (B) The graph of the function defining the balanced Hebbian STDP
learning rule we choose.

Despite different initial weights, Figure 4.1A is similar to Figure 3.10: given equal

firing rates, neurons with lower noise (σ), and higher drive (µ) are more susceptible

to inputs. Thus the cross-covariance functions for pairs of such neurons have higher

amplitudes than for other pairs subject to higher background noise. As we have

argued in the previous chapter, give the same STDP rule (e.g. the one in Eq.(2.6)),

we can predict that the synaptic weights will change faster in networks with higher

drive, and lower noise. The weight dynamics in a two-cell network under a balanced

Hebbian STDP rule for 3 different pairs of parameters are shown in Figure 4.2.
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Figure 4.2: The evolution of synaptic weights for three different pairs of
parameter values specifying intrinsic properties of cells. Results are obtained
using the theory developed in Section 2.3.

As in Figure 3.11A, we can see that the synaptic weights in the less noisy networks

(with lower σ) reach the boundaries faster (See Figure 4.2).

We next built a network of ten all–to–all connected cells. We again used the

five different parameter sets described above, and let the synaptic weights in the

network evolve according to the same balanced Hebbian STDP rule describe above.

We used the same initial synaptic weight matrix for all these networks (Figure 4.3A),

and obtained the same steady state (Figure 4.3B) after a transient period. Here the

initial synaptic weight matrix is generated randomly. The dynamics of synaptic

weights for 3 parameter sets are shown in Figure 4.4.
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Figure 4.3: The initial synaptic weight matrix and the theoretical steady
state for all the 5 µ-σ pairs. (A) The initial synaptic weight matrix. (B) The
theoretical steady state of the weight matrix after learning. This final state is the
same for each of the five parameter settings we used.

(a) (b) (c)

Figure 4.4: The evolution of synaptic weights for three different parameter
settings. (A) The dynamics of the synaptic weights obtained using the theory
developed in Section 2.3. (B) The dynamics of the synaptic weights for the same
parameter values as in (A) obtained by direct simulation of the network and averaging
over 10 realizations. (C) The comparison between the dynamics of the synaptic
weights obtained by theory ((A)) and simulation ((B)). The thick curves are from
(A) while the thin curves are from (B).

66



4.2. WEIGHT DYNAMICS DEPEND ON INDIVIDUAL
NEURON PROPERTIES

In this example the main effect of the different parameter settings is the speed at

which the final state is reached. Networks with less background noise (lower σ) reach

the final state faster than those with higher levels of noise, but the same baseline

firing rate. This verifies our prediction and generalizes our results in Section 3.2.

4.2 Weight dynamics depend on individual

neuron properties

As discussed in Section 3.1.2 (Figure 3.7), we know that, for the same baseline firing

rate, different properties of individual cells, i.e different values of the parameters µ

and σ, in a two-cell recurrent network affect spike train cross-covariances. In Sec-

tion 3.2, we can show that learning rules can magnify the effect of cross-covariances

on weight change dynamics. Here we will examine how these two factors affect the

dynamics of synaptic weight changes in larger networks.

4.2.1 Balanced Hebbian STDP case

As in the previous section we examine weight changes under a balanced Hebbian

STDP rule. As we have shown in Section 3.2 this implies that the cross-covariances

dominate the evolution of synaptic weights. We begin by analyzing the phase planes

(vector fields) of two-cell, recurrent networks with each neuron with different parame-

ter settings. We will then use the properties found in two-cell networks to understand
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the dynamics observed in larger networks.

(a) (b) (c)

Figure 4.5: Phase planes for synaptic weights in two-cell, recurrent net-
works under balanced Hebbian STDP. In all cases we refer to the parameter
numbering used in Table 2.1. We use an upper bound on the weights corresponding
to Wmax = 5 µA/cm2. (A) Phase plane with both cells having the same parameters
(setting 3). (B) Phase plane with parameter setting 1 for cell 1 and setting 3 for cell
2. (C) Phase plane with parameter setting 1 for cell 1 and setting 5 for cell 2.

Phase planes of two-cell network for three parameter settings from Table 2.1 un-

der a balanced Hebbian STDP rule are shown in Figure 4.5. When the two cells have

the same parameter setting (Figure 4.5A), the phase plane is symmetric. The diag-

onal consists of unstable equilibria. The two stable fixed points (W21,W12)=(5,0)

and (W21,W12)=(0,5) are attracting and have symmetric basins. This is a conse-

quence of the shapes of the learning rule and the cross-covariance (both of them

are symmetric). We can therefore predict that, for a network with cells with the

same parameter setting under balanced Hebbian STDP rule, if all the initial synap-

tic weights are generated randomly, half of them will be potentiated while the other

half will be depressed.

68



4.2. WEIGHT DYNAMICS DEPEND ON INDIVIDUAL
NEURON PROPERTIES

When we consider a network of two cells with different parameter settings (Figure

4.5B and C) this symmetry is broken. The line of unstable fixed points is tilted toward

the axis corresponding to the weight of the connection from the cell with higher drive

(µ) to the cell with higher noise (σ). This implies that the basin of attraction of the

fixed point (W21,W12)=(0,5) is larger than the basin of (W21,W12)=(5,0). The

outgoing synapses of the neuron with higher noise values (parameter settings 3 and

5 in Table 2.1) are more likely to be potentiated, while the incoming synapses are

likely to weaken. Conversely, outgoing synapses from the neuron with higher drive

value (setting 1 in Table 2.1) are more likely to weaken and its incoming synapses

are more likely to be potentiated.

We therefore predict that for a network consisting of different groups of cells

sharing the same initial baseline firing rate, but with different individual properties,

under balanced Hebbian STDP rule, the synaptic weights of the connections from

cells with lower drive (lower µ) and higher noise (higher σ) to cells with higher drive

and lower noise will be potentiated. The synaptic weights of the connections from

cells with higher drive to those with lower drive will weaken. These synapses can

eventually be pruned if the lower bound is set to 0.

We next examine the dynamics of synaptic weights in a network of 100 cells with

all–to–all connectivity. We again use a balanced Hebbian STDP rule. The network

consists of two groups composed of cells with indices 1-50 (Group 1), and 51-100

(Group 2), respectively. Cells in the two groups have the same baseline firing rates,

and share the same intrinsic properties with those within the group, but not with

those in the different group. That is the values of the parameters µ and σ differ
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between the two groups. As a result we can split the synaptic weight matrix into

four quarters corresponding to connections within and between these two groups.

We will use two examples to illustrate how our phase plan analysis can be used to

predict weight dynamics in a larger network.

Example 4.2.1. We use parameter set 3 for cells in the Group 1 (indices 1-50),

and set 1 for cells in Group 2 (indices 51-100). The initial synaptic weight matrix is

generated randomly, and it is shown in Figure 4.6.
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Figure 4.6: The initial synaptic weight matrix of 100-cell dense network.

The final state of the synaptic weights in the network is shown in Figure 4.7

obtained both using our theoretical approach, and direct simulations of the network

of EIF neurons. The two approaches give quantitatively similar results. As predicted

by our simulation of the two cell recurrent network, the bottom-left quarter (the

weights corresponding to connections from higher noise neurons (parameter set 3)

to lower noise neurons (parameter set 1)), is lighter than the top-right quarter after

training. This indicates that these weights are bigger. We quantify this effect further

below. The comparison of weight dynamics is in Figure 4.8.
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Averaged simulated final state
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Figure 4.7: The steady states for 100-cell dense network consisting of two
groups (Example 4.2.1). (A) The steady state obtained using the theoretical
prediction as described in Section 2.3. (B) The steady state obtained from direct
simulations using the same initial weights as in (A). The final state was averaged
over 10 realizations.

Figure 4.8: Comparison of theoretically and computationally obtained
synaptic weight dynamics in a large network. Here we show the results with
the parameter settings discussed in Example 4.2.1. The smooth curves represent
theoretical results, while the jagged curves represent the average obtained from 10
realizations of the network of EIF neurons.
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To quantify this difference we compute the mean synaptic weight for each of the

four types of connections between and within the groups in the final state of the

network. These are shown in Table 4.1 with the standard error of the averaged sim-

ulated final states obtain using bootstrap statistics (boot() function in R with 1000

replicates).

group 1: pair 3(strong noise) mean weights(µA/cm2)
standard error

group 2: pair 1(weak noise) theory simulation
strong-strong(top-left) 0.025 0.025 0.00039
weak-strong(top-right) 0.020 0.020 0.00040

strong-weak(bottom-left) 0.030 0.030 0.00039
weak-weak(bottom-right) 0.025 0.025 0.00040

Table 4.1: The mean weights in each of the four quarters of the synaptic weights
matrix for Example 4.2.1.

We again observe that the mean synaptic weight for the strong-weak (noise level)

connections (bottom-left quarter of the synaptic weight matrix) is higher than that

for weak-strong connections (top-right quarter) for both theoretical and simulated

final states. The mean weights for strong-strong (top-left quarter) connections and

weak-weak connections(bottom-right quarter) are very close. Moreover, the theory

and simulation results agree closely.
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Example 4.2.2. For this example we set the parameters for cells in Group 1 (indices

1-50) according to setting 3, for cells in Group 2 (indices 51-100) according to setting

5 in Table 2.1. The initial synaptic weight matrix is the same as Example 4.2.1

(Figure 4.6). Note that the results do not depend on the initial weight matrix.

The theoretically obtained final state, and that obtained by direct simulation of the

network are shown in the following Figure 4.9. We use the same balanced STDP rule

discussed in the previous section.
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Averaged simulated final state
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Figure 4.9: The theoretical and simulated final steady states for 100-cell
network with two groups of cells described in Example 4.2.2. (A) The final
state of the synaptic weight matrix obtained using our theoretical approach. (B)
The same final state obtained using simulations and averaging over 10 realizations.

The final weight matrix in this example has a different structure, as weights of

connections from high noise neurons (setting 5) to low noise neurons become stronger

than weights from low noise to high noise neurons. There is again a good comparison

between the theory and simulations, as show in Figure 4.10. The means of the four

quarters of the synaptic weights matrix are in the following Table 4.2.
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Figure 4.10: The comparison of the evolution of selected weights in a 100-
cell network of all–to–all coupled cells with parameter setting as discussed
in Example 4.2.2. Smooth curves are theoretical results, while jagged curves
represent the average over 10 realizations.

group 1: pair 3(weak noise) mean weights(µA/cm2)
standard error

group 2: pair 5(strong noise) theory simulation
weak-weak(top-left) 0.025 0.025 0.00041

strong-weak(top-right) 0.030 0.030 0.00040
weak-strong(bottom-left) 0.020 0.020 0.00039

strong-strong(bottom-right) 0.025 0.025 0.00041

Table 4.2: The mean weights in each of the four quarters of the synaptic weights
matrix for Example 4.2.2.

Here we show that the mean weight of connections from neurons with strong

background noise to those with weak niose (strong-weak, top-right quarter) is higher

than that of weak-strong connections (bottom-left quarter), both in the case of the

final state obtained theoretically and by simulations. The mean weights of weak-weak

connections (top-left quarter) and strong-strong connections (bottom-right quarter)
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are in the same level. Moreover, all the theoretical mean weights are close to their

related simulated ones.

These two examples agree with the conclusions of our two-cell, recurrent network

in the beginning of this section : the synaptic weights of the connections from cells

with lower drive (lower µ) and higher internal noise (higher σ) to those with high-

er drive (higher µ) and lower lower internal noise( lower σ) are potentiated, while

weights in the opposite direction are typically weakened under a balanced Hebbian

STDP rule. This is due to the difference in the size of basins of attraction of the

fixed points for the two different types of cells.

4.2.2 Balanced Anti-Hebbian STDP case

Here we ask what is the effect of a balanced Anti-Hebbian STDP rule mentioned

in Section 2.2 on the evolution of synaptic weights in larger networks. This rule is

defined by the following weight change function:

∆Wji(s) =


W0

jiH(Wji)L(s) , if s ≥ 0

W0
jiH(Wmax −Wji)L(s) , if s < 0

,

where

L(s) =


−f−e

− |s|
τ+ , if s ≥ 0

f+e
− |s|
τ− , if s < 0

.
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The rule is similar to the Hebbian STDP rule defined in Eq.(2.2), but it reverses

the windows of potentiation and depression. As with the the balanced Hebbian

STDP rule, this rule also leads to a cancellation of part C in Eq.(3.3) so that the

cross-covariances control the weight evolution.

Similar as the balanced Hebbian case, fixing the learning rule as balanced Anti-

Hebbian STDP rule, we study the phase planes for two-cell recurrent networks with

each neuron in different parameter (µ-σ) settings firstly.

Phase planes of two-cell network for three parameter settings from Table 2.1 un-

der a balanced Anti-Hebbian STDP rule are shown in Figure 4.11.

(a) (b) (c)

Figure 4.11: Phase planes for synaptic weights in two-cell, recurrent net-
work under balanced Anti-Hebbian STDP rule. In all cases we refer to the
parameter numbering used in Table 2.1. We use an upper bound on the weights
corresponding to Wmax = 5 µA/cm2. (A) Phase plane with both cells having the
same parameters (setting 3). (B) Phase plane with parameter setting 1 for cell 1
and setting 3 for cell 2. (C) Phase plane with parameter setting 1 for cell 1 and
setting 5 for cell 2.
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Since the Anti-Hebbian STDP rule differs from the Hebbian STDP rule in the

that potentiation side and depression side are reversed, we obtain the same phase

planes as Figure 4.5, but with reversed time flow. This means that all arrows are

now reversed (see Figure 4.11), and therefore all initial conditions converge to the

line of fixed points.

For the two cells with the same parameter (µ-σ) setting (Figure 4.11A), the phase

plane is also symmetric. We can make a prediction that, for a network with cells

of the same parameter setting, under balanced Anti-Hebbian STDP rule, if all the

initial weights are generated randomly, they will attain the same value or similar

values finally.

Additionally, for the two cells with different parameter settings (Figure 4.11B and

C), the line of equilibrium (stable fixed points) is tilted toward the axis corresponding

to the weight of the connection from the cell with higher drive (µ) to the cell with

higher noise (σ). This implies that the outgoing synapses of the neuron with higher

noise (parameter settings 3 and 5 in Table 2.1) are more likely to weaken, while its

incoming synapses are likely to be potentiated. Conversely, outgoing synapses from

the neuron with higher drive (setting 1 in Table 2.1) are more likely to be potentiated

and its incoming synapses are more likely to weaken.

As in the previous section we can use these observations to examine the evolution

of synaptic weights in networks composed of different groups of cells with the same

baseline firing rates, but different levels of drive and noise. Under a balanced Anti-

Hebbian STDP rule, the weights of synaptic connections from cells with higher noise

to those with lower noise will weaken. The weights going of synapses in the opposite
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direction will be potentiated. We verify this prediction in the following example.

Example 4.2.3. For this example we set the parameters for cells in Group 1 (indices

1-50) according to setting 1, for cells in Group 2 (indices 51-100) according to setting 5

in Table 2.1. The initial synaptic weight matrix is the same as previous two examples

(Figure 4.6). Under balanced Anti-Hebbian STDP rule, the theoretically obtained

final state, and that obtained by direct simulation of the network are shown in the

following Figure 4.12.
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Averaged simulated final state
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Figure 4.12: The theoretical and simulated final steady states for 100-cell
network with two groups of cells described in Example 4.2.3. (A) The final
state of the synaptic weight matrix obtained using our theoretical approach. (B)
The same final state obtained using simulations and averaging over 10 realizations.

We can see that, the final weight matrix in this example has a different structure,

as weights of connections from lower noise neurons to higher noise neurons (bottom-

left quarter) become stronger than weights from higher noise to lower noise neurons

(top-right quarter). The results look similar as Example 4.2.1, but with reversed
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4.2. WEIGHT DYNAMICS DEPEND ON INDIVIDUAL
NEURON PROPERTIES

parameter (µ-σ) settings according to the reversed sides of potentiation and depres-

sion in the learning rules. There is again a good comparison between the theory and

simulations, as show in Figure 4.13. The means of the four quarters of the synaptic

weights matrix are in the following Table 4.3.

Figure 4.13: The comparison of the evolution of selected weights in a 100-
cell network of all–to–all coupled cells with parameter setting as discussed
in Example 4.2.3. Smooth curves are theoretical results, while jagged curves
represent the average over 10 realizations.

group 1: pair 1(weak noise) mean weights(µA/cm2)
standard error

group 2: pair 5(strong noise) theory simulation
weak-weak(top-left) 0.025 0.025 0.00022

strong-weak(top-right) 0.020 0.020 0.00019
weak-strong(bottom-left) 0.028 0.028 0.00023

strong-strong(bottom-right) 0.025 0.025 0.00022

Table 4.3: The mean weights in each of the four quarters of the synaptic weights
matrix for Example 4.2.3.

Here we show that the mean weight of connections from neurons with strong

background noise to those with weak niose (strong-weak, top-right quarter) is lower

79
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SYNAPTIC WEIGHT EVOLUTION

than that of weak-strong connections (bottom-left quarter), both in the case of the

final state obtained theoretically and by simulations. The mean weights of weak-weak

connections (top-left quarter) and strong-strong connections (bottom-right quarter)

are in the same level. Moreover, all the theoretical mean weights are close to their

related simulated ones.

This example demonstrates that, under balanced Anti-Hebbian STDP rules,

weights of connection from cells with higher internal noise (σ) to those with lower

noise will weaken, while weights of connections in the opposite direction are poten-

tiated. This agrees with our predictions.

4.3 Internal cell properties can lead to differences

in synaptic weight evolution

We next consider a network of neurons with the same parameter setting µ-σ, and

therefore the same baseline firing rates. We then compare the dynamics of synaptic

weights for different parameter settings, but same baseline firing rates. We use the

potentiation dominated Hebbian STDP rule and set f+ = A · f− and τ+ = τ− with

A > 1. Again, our network initially has all–to–all connectivity. In this case, the

term denoted by C in Eq.(3.3) is bigger than 0, and hence firing rates will affect the

weight change in addition to the effect of cross-covariances. We will show that, the

cross-covariances can still affect the evolution of the synaptic weights in this case.
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4.3. INTERNAL CELL PROPERTIES CAN LEAD TO DIFFERENCES IN
SYNAPTIC WEIGHT EVOLUTION

As in the previous sections, we start by analyzing the phase planes for two-cell

networks first. These are shown for parameter settings 1 and 5, under potentiation

dominated Hebbian STDP with A = 1.5 in Figure 4.14.

(a) (b)

Figure 4.14: The phase planes of synaptic weights in a two-cell, recurrent
network under a potentiation dominated STDP rule. (A) Phase plane for
the parameter setting 1. (B) Phase plane for the parameter setting 5.

The phase planes show that, in this case there are three fixed points: (W21,W12)=(5,0),

(0,5) and (5,5). All thee fixed points are stable. However, the basin of attraction of

the stable fixed point corresponding to equal final weights, (W21,W12) = (5, 5) is

larger for parameter setting 5 than for setting 1. Thus, we can predict that networks

of identical cells with higher noise (σ) under potentiation dominated Hebbian STDP

rule will exhibit more recurrent connections – and more connections overall – after

in the final state. We illustrate that this conclusion holds in the following examples.
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SYNAPTIC WEIGHT EVOLUTION

Example 4.3.1. We use the potentiation dominated Hebbian STDP rule (f+ =

1.05 · f− and τ+ = τ−), and we begin with a small network of 10 all–to–all connected

cells for direct observation. We will show the results hold for large networks (networks

of 100 all–to–all connected cells, Example 4.3.3). We want to examine networks of

cells with different internal properties (parameter settings). The initial synaptic

weight matrix is fixed for all networks here, which is shown in Figure 4.3A. For the

networks of neurons with parameter setting 1 and 5, the theoretically obtained final

states, and those obtained by direct simulation are shown in the following Figure

4.15

Figure 4.15 shows that, after training, there are more white blocks in the synaptic

weight matrices of the second row. This means, there are more potentiated weights

in the network of neurons with parameter setting 5 than those for parameter setting

1. Therefore the network of cells with higher noise (parameter setting 5) get more

recurrently connected cells. There is also a good comparison between the theory and

simulations, as show in Figure 4.16.
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Theoretical final state for pair 5
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Averaged simulated final state
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Figure 4.15: The theoretical and simulated final steady states for 10-cell
network under potentiation dominated learning rule described in Example
4.3.1. (A) The final state of the synaptic weight matrix with parameter setting 1
obtained using our theoretical approach. (B) The final state corresponding to (A)
obtained using simulations and averaging over 10 realizations. (C) The final state of
the synaptic weight matrix with parameter setting 5 obtained using our theoretical
approach. (D) The final state corresponding to (C) obtained using simulations and
averaging over 10 realizations.
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Figure 4.16: The comparison of the evolution of selected weights in a 10-cell
network of all–to–all coupled cells with parameter setting as discussed in
Example 4.3.1. Smooth curves are theoretical results, while jagged curves represent
the average over 10 realizations. (A) For network of identical cells with parameter
setting 1. (B) For network of identical cells with parameter setting 5.

Example 4.3.2. Here we use the potentiation dominated Hebbian STDP rule by

setting f+ = 1.05 · f−, and again, τ+ = τ−. Then we apply the rule on the same

network of 10 all–to–all connected cells as Example 4.3.1. For the networks of neurons

with parameter setting 1 and 5, the theoretically obtained final states, and those

obtained by direct simulation are shown in the following Figure 4.17 and Figure 4.18

respectively, together with comparison of the evolution of selected weights between

the theory and simulations.
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(b)

Simulated final state for pair 1
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Figure 4.17: The final steady states and the comparison of the evolution of
selected weights for 10-cell network with parameter setting 1 in Example
4.3.2. (A) The final state of the synaptic weight matrix with parameter setting 1
obtained using our theoretical approach. (B) The final state corresponding to (A)
obtained using simulations and averaging over 10 realizations. (C,D) The compari-
son of the evolution of selected weights for parameter setting 1. Smooth curves are
theoretical results, while jagged curves represent the average over 10 realizations.
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(b)

Simulated final state for pair 5
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Figure 4.18: The final steady states and the comparison of the evolution of
selected weights for 10-cell network with parameter setting 5 in Example
4.3.2. (A) The final state of the synaptic weight matrix with parameter setting 5
obtained using our theoretical approach. (B) The final state corresponding to (A)
obtained using simulations and averaging over 10 realizations. (C,D) The compari-
son of the evolution of selected weights for parameter setting 5. Smooth curves are
theoretical results, while jagged curves represent the average over 10 realizations.
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By comparing the first row of Figure 4.17 and that of Figure 4.18, we can get

the same conclusion as Example 4.3.1. Additionally, we observe that there are more

potentiated weights for higher A value (which controls the tendency of potentiation)

of the potentiation dominated Hebbian STDP rule through comparing Example 4.3.1

and Example 4.3.2.

Example 4.3.3. Here we consider two networks of 100 cells with all–to–all connec-

tivity and with parameter setting 1 and 5 respectively. Their initial synaptic weight

matrices are the same as Figure 4.6. We then apply the potentiation dominated

STDP rule (f+ = 1.005 · f−) on them. The theoretically obtained final states, and

those obtained by direct simulation are shown in the Figure 4.19.

Although this is not obvious from inspection, there are more white dots, i.e.

synaptic connections that have strengthened, in the final states of the network when

we use parameter setting 5 (Figure 4.19C and D) than when we use parameter setting

1 (Figure 4.19A and B). This implies the former one have more potentiated weights.

The comparison between the theory and simulations is shown in Figure 4.20. The

means of the synaptic weights matrices are in the following Table 4.4.
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Figure 4.19: The theoretical and simulated final steady states for 10-cell
network under potentiation dominated learning rule described in Exam-
ple 4.3.3. (A) The final state of the synaptic weight matrix with parameter setting
1 obtained using our theoretical approach. (B) The same final state as (A) ob-
tained using simulations and averaging over 10 realizations. (C) The final state of
the synaptic weight matrix with parameter setting 5 obtained using our theoretical
approach. (D) The same final state as (C) obtained using simulations and averaging
over 10 realizations.
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(a) (b)

Figure 4.20: The comparison of the evolution of selected weights in a 100-
cell network of all–to–all coupled cells with parameter settings as discussed
in Example 4.3.3. Smooth curves are theoretical results, while jagged curves
represent the average over 10 realizations. (A) For network of identical cells with
parameter setting 1. (B) For network of identical cells with parameter setting 5.

Network mean weights (µA/cm2)
standard error

parameter setting theory simulation
Setting 1 0.030 0.029 0.00021
Setting 5 0.033 0.033 0.00019

Table 4.4: The means weights of the final states of the synaptic weights matrices for
Example 4.3.3

We can see that, for both theoretical and simulated final states, the mean of the

synaptic weights matrix for the network of neurons with higher noise (σ, parameter

setting 5) is bigger than that for lower noise (parameter setting 1).

These three examples above can verify our prediction that, under potentiation
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4.4. PREDICT THE STEADY STATE UNDER BALANCED HEBBIAN STDP
RULE

dominated Hebbian STDP rule, the synaptic weights of the networks of the neurons

with higher noise (σ, or lower drive µ) are more likely to strengthen than those of

the reversed case, even though all the neurons of all the different networks have the

same baseline firing rate.

4.4 Predict the steady state under balanced Heb-

bian STDP rule

Here we consider an ideal case: for some particular learning rules, we can predict

the steady state of a network after training just by giving its initial synaptic weight

matrix.

We apply balanced Hebbian STDP rule on 10-cell (with all-to-all connections)

networks of all the neurons with the same parameter setting in one network. The

initial synaptic weight matrices are the same for all networks and it is shown in

Figure 4.3A.

According to Eq.(2.6), we compute the matrices of
dWji

dt
at the beginning of the

training (the first iteration for updating the weights under balanced Hebbian STDP

rule) for the networks of neurons with different parameter settings. We then define

a transformation of the matrices of
dWji

dt
by replacing positive

dWji

dt
value with 1 and

negative
dWji

dt
value with 0.

We find that, through the transformation we defined, the matrices of
dWji

dt
are
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4.4. PREDICT THE STEADY STATE UNDER BALANCED HEBBIAN STDP
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identical for all the 5 networks of neurons with the 5 parameter settings (µ-σ in Table

2.1, same setting for the neurons in the same network). We show it in Figure 4.21,

compared with the theoretical steady states of the synaptic weight matrices for the

5 networks after training (they are also identical).
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Figure 4.21: The matrices of
dWji

dt
after transformation, and the theoretical

steady states of the weight matrices for all the 5 networks. (A) The ma-

trices of
dWji

dt
after transformation for all the 5 networks. They are identical. (B)

The theoretical steady states of weight matrices for the 5 networks. They are also
identical.

We can see that the above two matrices correspond with each other exactly. This

means that, under balanced Hebbian STDP rule, synaptic weight Wji will be po-

tentiated if its corresponding
dWji

dt
is positive at the beginning of the training, while

it will be depressed if the corresponding
dWji

dt
is negative. Thus, we can predict the

steady states of the networks under balanced Hebbian STDP rule just by computing

the matrix of
dWji

dt
at the beginning of the training.
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CHAPTER 5

Discussion and conclusions

In this dissertation, I examined the role of synaptic plasticity and the properties

of neuronal responses in shaping the architecture of recurrent networks. First, I

investigated synaptic weight dynamics in two-cell networks. Insights gained from

these networks allowed me to understand the evolution of the structure of larger

recurrent networks.

In Chapter 2, I introduced the the EIF neuron model which was used in the

remainder of the thesis. The EIF neuron has several properties that make it a more

faithful representation of an actual neuron than the Poisson model used in previous

studies. The EIF neuron model exhibits the same baseline firing rate but distinct
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firing statistics at different parameter settings, unlike a Poisson neuron. Next, I

discussed the synaptic plasticity rule I used to model weight dynamics, the STDP

learning rule. Finally, I illustrated how to use linear response theory to approxi-

mated the cross-covariances for recurrent networks, a crucial step in the theoretical

approximation of synaptic weight evolution under STDP.

In Chapter 3, I used STDP, and the theoretical tools developed in Chapter 2

to both uni-and bi-directionally connected two-cell networks. I used networks with

fixed baseline firing rates for neurons in the same network, but different noise level

(σ value). With the same STDP learning rule, lower noise and higher common

input lead to faster weight evolution. Moreover, the shape of the cross-covariances

contributes more to the weight evolution in the case of f+τ+ = f−τ− in Eq.(3.3),

while the shape of the STDP governs weight evolution in other cases (f+τ+ 6= f−τ−).

In Chapter 4, I generalized the results for Chapter 3 to large networks (from

10-cell to 100-cell recurrent networks). if the same baseline firing rate for all neurons

in the network is the same, lower noise leads to faster weight evolution, as it did in

networks of two cells. Moreover, I studied the weight dynamics for large networks

with groups of neurons with different noise levels (µ − σ settings). With the same

baseline firing rate, the weights from neurons with higher noise (σ) to those with

lower noise are more likely to strengthen under a balanced Hebbian STDP rule.

However, with an Anti-Hebbian STDP rule, the opposite result holds: the weights

from neurons with lower noise to those with higher noise are more likely to strengthen.

I also considered asymmetric Hebbian STDP rules, in particular the potentiation

dominated case. In this case weights are potentiated in network of neurons with
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higher noise. Last but not the least, for the symmetric Hebbian STDP rule, the

steady state of given network can be predicted from the the values of the derivatives

(positive or negative) of the synaptic weights at the beginning of weight evolution.

There are several interesting extensions of this work. For example, I have not

examined the effect of common input to the weight evolution of larger networks.

As shown in Chapter 2, a similar theoretical approach can be applied to this case.

Moreover, in this thesis, I just consider the EIF neuron model and Hebbian STDP

learning rules. However, many more detailed and physiologically realistic neuron

models and plasticity rule have been described in the literature. For example, the

Connor-Stevens neuron model [14] (which is considered to be more realistic than

EIF neuron model) and triplet STDP learning rule [26] are interesting examples

that could be studied using similar approaches. These neuron models and plasticity

rules could lead to different insights about the role of neuronal properties in shaping

network structure, but I leave them for future research.
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