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Abstract

This thesis is concerned with the development of quantitative methods for the

analysis of neuronal images. Automated detection and segmentation of components

of neurons in fluorescent images is a major goal in quantitative studies of neuronal

networks, including applications of high-content-screenings where one needs to com-

pute multiple morphological properties of neurons. Despite recent advances in image

processing targeted to neurobiological applications, existing algorithms of soma de-

tection and neurite tracing still have significant limitations which are more severe

when processing fluorescence image stacks of neuronal cultures. To address such

challenges, in this dissertation, we develop several novel methods and algorithms

aimed at extracting quantitative information in fluorescent images of neuronal cul-

tures or brain tissue, including methods for the automated detection of the soma and

other subcellullar structures of interest, and algorithms for cell classification. Our

methods rely on technique from harmonic analysis, especially wavelets and more

advanced multiscale representation systems. Using these techniques, we are able to

extract highly informative image characteristics with high geometric sensitivity and

computational efficiency. As part of our work, we include a theoretical justification

and an extensive numerical validation on microscopy imaging data provided by our

collaborators in neuriscience. An extensive comparison with state-of-the-art exist-

ing methods demonstrate that our algorithms are highly competitive in terms of

accuracy, reliability and computational efficiency.
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CHAPTER 1

Introduction

1.1 Multiscale Directional Analysis of Images

A major challenge in image analysis is how to efficiently and accurately model images

belonging to a certain class of interest. From a mathematical viewpoint, this consists

in defining a useful function space or a representation method that is able to describe

classes of images of interest in the applied sciences.

Multiscale methods and wavelets have been very successful in image processing

during the past 20 years due to their excellent approximation properties (relatively

1



1.1. MULTISCALE DIRECTIONAL ANALYSIS OF IMAGES

few coefficients are sufficient to capture the properties of interest of images), good

time-frequency localization (representation coefficients carry local information) and

high computational efficiency. However, it is also known that although conventional

wavelets are optimally efficient in dealing with point discontinuities, they are not

very efficient to deal with edges and other distributed singularities commonly found

in multivariate data. This limitation is due to the fact that conventional wavelets

are essentially isotropic. In order to process multivariate data, it is desirable to ap-

ply methods combining multiscale analysis and directional sensitivity, therefore they

can efficiently capture anisotropic information. Several ideas were proposed in the

literature to address this task, starting with rather heuristic methods such as the

directional wavelet filter banks introduced by Antoine et al. [6] and the directional

wavelets by Bamberger and Smith [7]. In more recent years, more sophisticated tools

were introduced including the ridgelets and curvelets of Candes and Donoho [8], [9],

the bandlets of Mallat and Peyre [37], the complex wavelets of Kingsbury [29], the

contourlets of Do and Vetterli [13] and the class of composite wavelets and shear-

lets, introduced by Guo, Kutyniok and Labate and Guo [30]. These methods offer

multiscale directional representations targeted to multivariate functions and a com-

plete theoretical foundation which is useful to assess the ultimate performance of the

methods. The backbone of this dissertation is the application of multiscale direc-

tional analysis methods to address problems in neuroscience image processing.

We start with some background material.

2



1.2. GEOMETRIC MULTISCALE ANALYSIS

1.2 Geometric Multiscale Analysis

1.2.1 Representation systems

Rapid advances in the technology of data acquisition during the past decade have

made data access easier and this calls for faster and more efficient ways to ana-

lyze data. Even in the most general scenarios, however, the first step of any data

processing pipeline consists in setting a mathematical framework to model the data.

In signal analysis, data is frequently modeled as a piecewise continuous function,

which has finite energy. Hence, it can be describes as a function from the space of

square integrable functions, L2(Rd), where d is the dimension of data. When we

model a signal as a function f ∈ L2(Rd), we basically have the representation of the

data in the standard basis of L2(Rd) [31].

A representation system in L2(Rd) is formed by a set of functions or vectors,

which is called a dictionary, and a transformation, which maps a function to its

representation with respect to a given dictionary. A representation is an analysis

tool which decomposes data into components reflecting the significant features of

data. Note that a vector space is not limited to have one representation system, it

can have many. Different dictionaries enable data to be represented in different ways

in the same domain which manipulates the data in order to process it more efficiently.

While in the literature the definition of representation is often very loose, it is usually

preferable to assume that it is an invertible map since invertibility makes it possible

to transfer data across different spaces as desired. A suitable representation can work

3
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as a direct analysis tool, as well as it can be used as a preprocessing step to increase

the efficiency of analysis. Therefore an accurate and appropriate representation of

the data can be considered as the initial step of data analysis.

Perhaps the most classical representation system is a basis in a Hilbert space. We

recall that a Hilbert space is a complete inner product space. We also recall that an

inner product on a complex vector space V is a function 〈·, ·〉 : V ×V → C satisfying:

• For any v 6= 0 ∈ V , 〈v, v〉 > 0.

• For any v, w ∈ V , 〈v, w〉 >= 〈w, v〉 >.

• For any v, w ∈ V , c ∈ C, 〈cv, w〉 >= c〈v, w〉 >.

• For any u, v, w ∈ V , 〈u+ v, w〉 >= 〈u,w〉 > +〈v, w〉 >.

For example, the space L2(Rd) is an Hilbert space with inner product given by

〈f, g〉 =

∫
L2(Rd)

f(x)g(x)dx,

and the sequence space `2 is a Hilbert space with inner product is defined as

〈(xk), (yk)〉 =
∞∑
1

xkyk.

In a Hilbert space H, if a countable dictionary {xn} gives a unique representation

for each f ∈ H such as f =
∑

n an(f)xn, then {xn} is called as basis [22]. In this

case, the sequence {an(f)}n is called as the representation of f with respect to basis

4
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{xn}. As a basis representation is unique for each function, it is like a signature of

the function.

A well-known basis representation system is an orthonormal basis:

Definition 1.2.1. Orthonormal basis [22]: Let {xn} be a sequence in a Hilbert

space H. {xn} is an orthonormal basis for H if every x ∈ H can be written

x =
∑∞

n=1 cnxn for a unique choice of scalars cn and 〈xm, xn〉 = δmn for each n.

Furthermore, the reconstruction for any f ∈ H is satisfied and

f =
∑
n∈N

〈f, xn〉xn.

holds.

An example of an orthonormal basis for L2(T), where T stands for the space of

2π-periodic functions, is the sequence {e2πinx}∞n=−∞ which is called the trigonometric

basis. The representation of a function with respect to the trigonometric basis is

given by the Fourier transform.

Definition 1.2.2. Discrete Fourier transform [22] : For f ∈ L1(T) where T

is the space of 2π-periodic functions, the Fourier transform of f is given by

f̂(n) =

∫ 2π

0

f(x)e2πixndx = 〈f, e2πin〉,

5
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and f(x) =
∑

n∈Z f̂(n)e2πinx, for x ∈ R. Here the representation {f̂(n)}n is the

unique representation of f .

The sequence {〈f, xn〉}n∈N is the representation of f with respect to the dic-

tionary {xn}. Since {xn}n is an orthonormal basis, this representation is unique.

Although uniqueness seems to be important it may be a deficiency in some cases.

For example, if we have a unique representation of a data that means all coefficients

in the representation are irreplaceable for the reconstruction. In applications from

signal analysis, it is possible that some information of a signal could be lost, e.g.,

during transmission, and in that case it would be impossible to recover the signal

from the incomplete information. Redundant dictionaries, where the representation

is non-unique, are introduced to deal with this type of data loss problem. [22]

1.2.2 Redundant and sparse representations

A frame generalizes the notion of a basis in Hilbert space.

Definition 1.2.3. Frames [22]: A sequence {xn} in a Hilbert space H is a

frame for H if there exist constants 0 < A,B <∞ such that

A||f ||2 ≤
∑
n

|〈f, xn〉|2 ≤ B||f ||2

6
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holds for each f ∈ H. A and B are called as lower and upper frame bounds

respectively. The largest of all possible lower frame bounds A is called the optimal

lower frame bound, similarly the smallest of all possible upper frame bounds B is

called the optimal upper frame bound.

The upper bound, B, ensures the stability of the frame, that is, any permutation

of the frame elements will give again a frame with the ability to represent a function

using a finite norm expansion. On the other hand, the nonzero lower bound, A

ensures the completeness, i.e., span{xn} is dense in H.

If the optimal lower and upper frame bounds are equal, A = B, then {xn} is a

tight frame. If further, A = B = 1 then {xn} is a Parseval frame. So, by the above

definition, for a Parseval frame {xn} one has:

||f ||2 =
∑
n

|〈f, xn〉|2.

which makes any orthonormal basis also a Parseval frame. However, the converse is

not true in general and there are Parseval frames that are not orthonormal bases.

There is no restriction on the procedure of generating frame sequences, for exam-

ple a zero vector could be member of a frame or elements can be repeated. The easiest

way to generate a frame is using an orthonormal basis for H with small modifications.

For example, if {en}n is an orthonormal basis for H, {e1, e1 + e2, e2, · · · , en, · · · } is a

frame which is not a basis for H.

7



1.2. GEOMETRIC MULTISCALE ANALYSIS

Even if there is no basis property, as we will show below a frame is associated

with a basis-like representation of each f ∈ H. This representation is not unique in

general, therefore it is possible to have multiple frame representations for the same

element of H.

Because of the existence of upper frame bound, the representation of f ∈ H

with respect to frame sequence {xn}n belongs to the `2(R) space, i.e., the space of

square summable sequences. Therefore a frame defines a mapping from H to `2 by

decomposing f ∈ H. This mapping is called analysis operator and satisfies:

S : H → `2

S : f → {〈f, xn〉}n.

The adjoint of S, S∗ is called synthesis operator:

S∗ : `2 → H

S∗ : {〈f, xn〉}n →
∑
n

〈f, xn〉xn.

and for any f ∈ H. The frame operator is defined as

S∗S : H → H

f →
∑
n

〈f, xn〉xn.

The frame operator is bounded because of the definition of frame, i.e. AIH ≤ S∗S ≤

8
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BIH where IH is the identity function in H. It is also invertible and self-adjoint.

The reconstruction formula of f ∈ H given by the frame system {xn}n is

f =
∑
n

〈f, S−1(xn)〉(xn) =
∑
n

〈f, xn〉S−1(xn).

Here {S−1(xn)}n forms another frame system and called by canonical dual frame of

{xn}. If the frame is a Parseval frame, the canonical dual frame of {xn} is the frame

itself and the reconstruction formula looks exactly like the reconstruction formula of

an orthonormal basis.[22]

1.2.3 The wavelet transform

The theory of wavelets emerged in the 1990’s to address some limitations of classical

Fourier analysis, namely, its limitations in providing local features of signals. This

is due to the fact that the basis functions of the trigonometric basis are periodic

functions, with support defined over all of R. As a result, any local change in a

signal affects all of its Fourier components. To define a representation system which

is able to capture the local properties of a signal, its basis functions must be local

or approximately local. In the wavelet approach, this is obtained by considering

building blocks made of ”little waves”, that is, functions that are local both in the

time and frequency domain.

A wavelet system is formed by an appropriate wave function ψ with its time-scale

9
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shifts. That is, a wavelet system on L2(R) is defined as:

{ψj,k = D−j2 Tmψ = 2j/2ψ(2j · −k) : j, k ∈ Z},

where ψ ∈ L2(R). Here Dt stands for the dilation operator and is defined as Dtψ =

t−1/2ψ(t−1/2·) and Tt stands for the translation operator which is defined as Ttψ =

ψ(· − t) and the corresponding wavelet transform is

Wψ : f → 〈f, ψj,k〉 j, k ∈ Z.

Typically, the generator function ψ (also called the mother wavelet) is chosen to

be well localized, that is, it exhibits rapid decay both in time and Fourier domain.

For example, ψ can be chosen to be compactly supported with rapid decay in the

Fourier domain, or band-limited (i.e., compact support in the Fourier domain) with

rapid decay in the time-domain. Recall that it is not possible to construct a function

that has compact support and is band limited at the same time. The construction

of appropriate wavelet generators is an important topic in wavelet theory. Several

properties of the wavelet system, including regularity and fast decay can be controlled

by the choice of mother function. [53], [22]

1.2.4 Multiresolution analysis

The multi-resolution analysis (MRA) was introduced by Mallat as a method to gen-

erate orthonormal wavelet bases for L2(R). A MRA consist of a sequence of nested

10
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closed subspaces {Vn}n with some special properties and a scaling function that

satisfy the following properties.

Definition 1.2.4. Multiresolution Analysis [22]: A multi resolution analysis

(MRA) for L2(R) is a sequence {Vn}n∈Z of closed subspaces of L2(R) such that

1. · · · ⊂ V−n ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2(R).

2. Vn+1 is the dilation of Vn by factor 2:

Vn+1 = {f(2x) : f ∈ Vn},

3. ∪n∈ZVn is dense in L2(R),

4. ∩n∈ZVn = {0},

5. there exists a function φ ∈ V0 such that {Tkφ}k∈Z is an orthonormal basis

for V0.

φ is called as scaling function for the MRA.

Here we define closed subspaces Wn to satisfy Vn+1 = Vn
⊕

Wn, where
⊕

stands

for orthogonal direct sum. The sets Wn’s are the wavelet spaces. Because of the

property 3 of the MRA,
⊕

n∈ZWn is dense in L2(R). By the property 2 of MRA, if

we can find an orthonormal basis ω of W0, then the corresponding system of scale

shifts of ω will be an orthonormal basis of L2(R). Another useful property of MRA

11
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is that for each MRA there exists a corresponding orthonormal wavelet system. In

other words, one can build a wavelet system which is an orthonormal basis for L2(R)

through a given sequence of subspaces{Vn}n∈Z and a scaling function which satisfy

the above properties. The scaling function φ must satisfy

φ̂(ξ) = m0(ξ/2)φ̂(ξ/2),

where m0 is a 2π-periodic function in L2([0, 2π]) and it satisfies

|m0(ξ)|2 + |m0(ξ + π)|2 = 1 a.e.

Then the corresponding wavelet function ψ satisfies

ψ̂(ξ) = eiξ/2m0(ξ/2 + π)φ̂(ξ/2).

These observations are useful to generate the wavelet function from a given scaling

function. Furthermore, one can design a wavelet system with the desired regularity

and decay properties by using the appropriate scaling function.

In order to form an orthonormal basis, the mother wavelet must satisfy the ad-

missibility property: ∫ ∞
−∞

|ψ̂(ξ)|2

|ξ|
dξ <∞.

That implies ψ̂(0) =
∫∞
−∞ ψ(x)dx = 0. Therefore ψ must change its sign at the origin.

[11]

12
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We have focused so far on wavelet systems on L2(R). To extend the wavelet

approach to the multivariate case, the simplest approach consists in generating sep-

arable wavelet systems by taking tensor products of univariate wavelet systems. For

instance, in dimension d = 2, a separable wavelet system will be of the form

{ψj,k1,k2(x1, x2) = 2jψ1(2
j(x1 − k1))ψ2(2

j(x2 − k2)) : j, k1, k2 ∈ Z},

for appropriate generators ψ1, ψ2. However, while such systems are used in several

applications, they are not as efficient as their one-dimensional counterpart to repre-

sent signals containing discontinuities. The reason is that separable wavelets have

a directional bias due to their special structure and this implies that they cannot

approximate very efficiently signal containing edge discontinuities. As we mentioned

above, this limitation led to the introduction of alternative systems such as curvelets

and sharlets. [31]

1.2.5 The shearlet transform

A shearlet system is a multivariate wavelet-like system obtained by applying appro-

priate translations and dilations to a generator function. The dilation operator is

designed in such a way to endow the system with anisotropy and directional selec-

tivity.

Definition 1.2.5. Continuous Shearlet System [31]: A continuous shear-

let system associated with the generator function ψ ∈ L2(R2) is a collection of
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functions of the form:

ψα,s,p(x) := {TpDAαDSsψ : α > 0, s ∈ R, p ∈ R2}.

where Tt is the translation operator and Dt is the dilation operator as defined

before. Aα is the parabolic scaling matrix, defined as Aα =

α 0

0 α1/2

 and Ss is

the shearing matrix, defined as Ss =

1 s

0 1



In the shearlet system, the parabolic scaling ensures that one direction is dilated

quadratically with respect to the perpendicular direction, therefore the supports of

the analyzing functions become increasingly more elongated at fine scales. The shear-

ing matrix has the effect similar to rotation, effectively generating analyzing functions

at multiple orientations. With respect to the rotation matrix, the shearing matrix

offers the advantage of preserving the integer lattice when the shearing parameter s

is restricted to the integers. This is an advantage in discrete implementations.

Discrete shearlets are obtained by sampling the scaling and shearing variables on

an appropriate discrete set.
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Definition 1.2.6. Discrete shearlets [31]: For a given ψ ∈ L2(R2), the asso-

ciated discrete shearlet system is defined by

SH(ψ) = {ψj,k,l = 2
3
4
jψ(SkA2j · −l) : j, k ∈ Z, l ∈ Z2}

and the corresponding shearlet transform is

f → (SH)ψf(j, k, l) = 〈f, ψj,k,l〉, (j, k, l) ∈ Z× Z× Z2.

Similar to wavelet systems, one can generate a discrete shearlet system with

special properties by choosing a proper generator function. In particular, one can

find an admissible generator therefore the corresponding shearlet system is a well

localized Parseval frame. Below is definition of the classical shearlet generator.

Definition 1.2.7. Classical shearlet [31]: Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(
ξ2
ξ1

),

where ψ̂1 ∈ L2(R) satisfies

∑
j∈Z

|ψ̂1(2
−jξ)|2 = 1 for a.e. ξ ∈ R

with ψ̂1 ∈ C∞(R) and suppψ̂1 ⊂ [−1
2
, −1
16

] ∪ [−1
2
, −1
16

], and ψ2 ∈ L2(R) is a bump
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function in the sense that

1∑
k=−1

|ψ̂2(ξ + k)|2 = 1 for a.e. ξ ∈ [−1, 1],

satisfying ψ̂2 ∈ C∞(R) and suppψ̂2 ⊂ [−1, 1]. ψ is called as a classical shearlet.

A discrete shearlet system associated with the classical shearlet generator is a

Parseval frame of L2(R2). Therefore (SH)ψ forms a useful analysis and synthesis

tool for L2(R2). [31]

1.2.6 Cone adapted shearlet transform

Due to the asymmetry of the construction, parabolic scaling and shearing opera-

tors cause the support of the shearlet functions ψj,k to become increasingly more

elongated, as it is seen in Figure 1.2, but also to cover rather unequally the Fourier

plane. To overcome this directional bias, there is a modified construction which

consists essentially in combining two separate shearlet systems.

Definition 1.2.8. Cone-adapted shearlet transform [31]: For φ, ψ, ψ̃ ∈

L2(R2) and c = (c1, c2) ∈ (R+)2, the cone adapted discrete shearlet system

SH(φ, ψ, ψ̃; c) is defined by

SH(φ, ψ, ψ̃; c) = Φ(φ; c1) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),
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where

Φ(φ; c1) = {φm = φ(· − c1m) : m ∈ Z2},

Ψ(ψ; c) = {ψj,k,l = 2
3
4
jψ(SkA2j · −Mcl) : j ≥ 0, |k| ≤ d2j/2e, l ∈ Z2},

Ψ̃(ψ; c) = {ψ̃j,k,l = 2
3
4
jψ(SkÃ2j · −M̃cl) : j ≥ 0, |k| ≤ d2j/2e, l ∈ Z2},

with

Mc =

c1 0

0 c2

 and M̃c =

c2 0

0 c1

 and Ãα = diag(α1/2, α).

If c = (1, 1), the parameter c is omitted in the formulas above.

As seen in the definition SH is combination of three generating functions which

are responsible of different subregions in frequency domain. The corresponding sub-

regions for each of these generating functions are illustrated in Figure 1.1
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Figure 1.1: Cone adapted shearlet transform. Cone adapted shearlet transform
seperates frequency domain into five subregions.The shearlet scaling function φ is associated
with central white region, shearlet generator function ψ is associated with horizontal orange
conic regions, ψ̃ is associated with vertical grey conic regions.

Figure 1.2: Effect of parabolic scaling and shearing on square region. left:
Parabolic scaling causes the region evolve along one axis more than the other one. Therefore
regions loses its characteristic and become more elongated. right: Shearing operator shifts
the upper vertices of square along a line parallel to x-axis. This causes very thin regions
in large shearing factors.
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1.3 Neuroscience Imaging

Neurons are the main functional units of the human brain and each one includes three

main components: a soma, several dendrites and one axon as shown in Figure 1.5.

Figure 1.3: A scheme of neuron. A simple neuron has three main components. (1)
soma (cell body): The main body of the cell, (2) dendrite: the vessel like structures which
receives the input, (3) axon: vessel like structure to send signals. [?]

Neurons exhibit a highly complex and diverse morphology which has led neu-

robiologists to investigate the connection between neuronal structure and neuronal

function. While early neuroanatomical studies were hand-drafted, advances in tech-

nologies and accessibility to larger amounts of data have led to the development of

more sophisticated methods of neuroimage analysis. In more recent years, the impact

of ideas from mathematics and computer science has grown significantly, spurred by

the need to develop accurate and automated methods that can be applied to pro-

cess large amounts of data with high efficiency. High-content screenings (HCS), for

instance, require the identification and extraction of multiple morphological features

of neurons, such as soma shape and volume, neurite length and branching properties
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from large data sets. Such complex information, usually compiled from multi-channel

fluorescence images, requires automated processing methods to handle large batches

of data and establish a confident statistical basis for a reliable prediction model.

With the rapid and widespread rise in the use of HCS in basic science settings, auto-

mated detection of morphological characteristics of neurons from fluorescent images

has become an area of very active research. Despite the advances in this area, how-

ever, there is still a lack of quantitative methods targeted to the needs of fluorescent

microscopy which is caused by challenges in the neural images analysis.

Fluorescent microscopy is an imaging modality which has gained increasingly

more relevance in neurobiology. Thanks to the application of a wide array of very

selective fluorescent dyes, this method enables the visualization of subcellular com-

partments of a neuron with remarkable accuracy. As a result, fluorescent microscopy

has been instrumental to several important discoveries in the field of neuroscience

[28].

However, processing images acquired through fluorescent microscopy comes with

some very specific challenges, due to the uneven distribution of the signal, the small

range of contrast levels and the noise introduced by the stochastic nature of the

image acquisition process. For such reasons, conventional image processing algo-

rithms may perform poorly when applied to fluorescent images. Furthermore, the

objects of interest in neuroscience imaging are often topologically complex and con-

tain structures at multiple resolution level making the processing of such images very

challenging. For instance, the segmentation of dendritic arbors from fluorescent im-

ages of neurons is very complex and generic image segmentation packages are unable
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Figure 1.4: Confocal stacks of fluorescent images. Confocal stacks of neuronal
culture stained for proteins; MAP2(blue channel), PanNav (Red Channel), FGF14 (Green
Channel). The image was provided by Dr. Laezza at the University of Texas Medical
Branch. Image size = 512× 512 pixels (1 pixel = 0.28× 0.28µm).

to provide accurate segmentation in general. As we will show in this Dissertation,

even a problem apparently as simple as the automated separation of somas from

neurites in a fluorescent image of a neuronal network requires some special care to

be solved reliably. Consider for instance the image in Fig. 1.4. Methods attempt-

ing to separate the soma based on intensity thresholding are ineffective since high

intensity values are also found outside the soma. Conventional morphological oper-

ators also perform poorly due to the irregularity and variation in size of the somas.

The method we developed relies on introducing a measure of local isotropy which is

measured using a collection of multiscale directional filters. As we will show, this

method is theoretically justfied and performs very reliably.
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1.4 Biological Analytics

This doctoral research is motivated by the need to develop innovative quantitative

methods targeted to the analysis of neuronal images. While a very significant ef-

forts has been made in this direction, for example, in the development of methods

for denoising and segmentation of neuronal images, several challenges remain. In

particular, methods for the identification of subcellular compartments of neurons

and extraction of morphological features still require a large component of manual

intervention. The work in this thesis aims to show that emerging methods from

harmonic analysis, including the new class of directional multiscale representations

emerged during the past decade, have the potential to facilitate the development of

a new generation of more accurate and computationally efficient algorithms for the

analysis of fluorescent images of neurons.
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Figure 1.5: Pipeline of bio image analysis. Input is fluorescent multi channel neu-
ral image. Preprocessing: Neural culture data is prepared for further analysis firstly by
converting the z-stack to 2d image through maximum projection. If data is already 2d
or a volume, this step is skipped. After the data is present, shearlet based denoising is
applied. Segmentation: The cell is separated from background with SVM based classifica-
tion method. In order to generate classification features, orientable laplacian and shearlet
filters are employed. Soma segmentation: Soma regions are detected with Directional ra-
tio, then segmented with help of Fast Marching method. Separation of contiguous somas:
If there is any contiguous soma, it is detected automatically and separated. Centerline
tracing: starting from the segmented somas, neurites are detected and traced along the
centerline. After the tracing step is completed, by comparing intensities along centerline
on different color channels, neurites are labeled as axon of dendrite. Associative measures:
Along the centerline corresponding intensity features are collected. since the background
is an artifact, it is eliminated automatically. Interpretation of features: For each of the
somas, which has axons, intensity vectors are collected form two dendrites and one axon.
These features are used to cluster corresponding cells with the help of pattern recognition
techniques. Output is classified cells.

As part of this doctoral research, we investigated the following specific and highly

relevant problems.
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1.4.1 Automated detection of somas in fluorescent images of

neuronal networks

We introduce an innovative algorithm for the detection and extraction of somas in

fluorescent images of neuronal cultures or brain tissue where somas and other struc-

tures exist in the same fluorescent channel. Our method relies on a new geometrical

descriptor called Directional Ratio and a collection of multiscale orientable filters to

quantify the level of local isotropy in an image. To optimize the application of this

approach, we introduce a new construction of multiscale anisotropic filters that is

implemented by separable convolution. In combination with the application of the

Fast Marching method, our algorithm is able to reliably detect somas in 2 and 3

dimensions, accurately segment them and separate contiguous ones.

These methods will be discussed in detail in Section 2.

1.4.2 Automated extraction of neuronal trees

Automatic extraction of the tree structure of neurons in fluorescent imaging can

be particularly challenging due to the topological complexity of the data and the

irregularities of fluorescent signal intensity that may cause thin neurites to appear

broken and neighbouring ones to merge. Difficulties are accentuated in fluorescent

images of neuronal cultures where neurons develop mostly horizontally and neurites

from different neurons may physically overlap. In order to overcome these challenges,

we introduce a method base on front propagation starting from each soma location

which is utilized with a well designed decision rule at the intersection of branches.
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Numerical experiments show that our method is highly reliable and accurately ex-

tracts trees associated with individual neurons in a network where neurites from

different cells may overlap.

The neuronal trees obtained from our method provide a spatial reference system

to compute the local fluorescent intensity signal along each neurite. Using multi-

spectral fluorescent images, we can automatically compute local fluorescent intensity

profiles on cells exposed to different types of perturbations. Hence generating mea-

surements that can be used for problems of high content screening.

This algorithm will be discussed in detail in Section 3.

1.4.3 Neuronal classification

As part of a collaboration with a team of neuroscientists from UTMB, we have

investigated what perturbations associated with a number of kinase inhibitors are

explanatory variables of changes in cell network architecture and expression levels of

macromolecular complexes of the axonal initial segment (AIS). This work is moti-

vated by problems in drug discovery since many brain disorders can be traced back

to molecular events happening at the single cell level. Change in the molecular

composition of the AIS has received particular attention in recent years.

In order to correlate the kinase inhibitors to composition of AIS proteins, we

applied our methods described above to measure expression levels of macromolecular

components through of the AIS in neurons exposed to different perturbations. The

major problem to address is the variability in the measurements due to cellular noise
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and noise caused by acquisition method. In order to eliminate irrelevant information

from the measurements we applied a shift-invatiant wavelet transform to generate

the features for our classifier. For the classification, we applied a Support Vector

Machine (SVM) classifier.

This algorithm will be discussed in detail in Section 4.
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CHAPTER 2

Soma Detection and Segmentation

1

Accurate identification of soma location and morphology in neuronal images is

a critical task in many neuroscience studies. It is known that neuronal character-

istics including soma volume and surface morphology are fundamental features for

discriminating different types of neurons [50]. Detecting somas also plays a major

role in extracting the connectivity and graph structure of a network of neurons as

each soma location is identified with the root of a (directed) graph associated with

the corresponding cell [3, 4].

1Materials from [27] are used in this chapter.
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In applications of high-content screening (HCS), multiple morphological proper-

ties of neurons need to be identified including soma location and shape characteristics.

This information is usually collected from large sets of multi-channel fluorescence

images therefore automated processing methods are often necessary to handle such

large data. However the automated analysis of confocal images of neuronal cultures

presents a number of challenges. In cultures, somas are usually visible in the chan-

nel marked by the Microtubules Associated Protein 2 (MAP2) antibody staining or

by a nucleus marker (e.g., DAPI or TROPO-3), neither of which is soma-selective.

Hence further processing is needed to identify somas. An additional difficulty is that

such confocal images typically consist of stacks containing 10-25 images. As a result,

only 10-25 pixels are available along the z-direction as compared with the x and y

directions which contain many more pixels (typically 512 or more). Due to this large

difference in pixels number, it may be inefficient or even impossible to process such

data using conventional 3D filters.

Automated or semi-automated methods for soma and cell detection found in stan-

dard image analysis packages frequently rely on binary masks generated by contrast

enhancement and image intensity thresholding [43, 52]. While these methods can be

very effective in phase-contrast microscopy [52, 18], they are often unreliable when

applied to the analysis fluorescent images since high intensity values are commonly

found outside somas. A number of alternative methods proposed in recent years to

deal with images where somas and other structures exist in the same fluorescence

channel. These methods combine smoothing filters to regularize fluorescence inten-

sity and classical morphological operators (e.g., morphological opening) to separate
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somas from connecting neurites [3, 21, 51, 46].

The main drawback of these methods is that they are very sensitive to the pa-

rameters of the algorithm therefore they typically require a significant manual inter-

vention to perform efficiently. In addition, many such methods have proven to be

impractical or inefficient in 3D setting, even though some recent studies have shown

a clever way to process 3D information by projecting the original image stack onto

its the three orthogonal planes [54].

To overcome the limitations of existing methods especially in the context of neu-

ronal cultures, an innovative approach was recently introduced by Labate et al. that

relies on a novel multiscale descriptor called Directional ratio to separate somas from

dendrites [42]. By quantifying the degree of local isotropy in images, this method

was shown to detect somas very accurately and reliably in 2D images. However, it

is computationally intensive as it requires the computation of multiple directional

filters at various scales and the application of the level set method. In addition, since

more directions and larger filters are needed in 3D, direct application of this method

in 3D is impractical. One major aim of this dissertation is to introduce and demon-

strate a major improvement of this method which relies on two novel ideas: (i) the

application of a new class of multiscale directional filters which can be implemented

by separable convolution to detect soma locations very efficiently; (ii) the application

of the Fast Marching method to extract the soma regions and separate contiguous

somas. Through these ideas we are able to speed up the extraction of somas in a

2D image by over 20 times with respect to the results in [42] while keeping the same

excellent level of accuracy and reliability.
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Remarkably, our method can detect somas more efficiently than algorithms based

on conventional morphological operators, which were known to be very fast, with

much higher levels of accuracy. Another contribution of this work is the algorithmic

implementation of our new approach based on Directional Ratio to 3D setting. The

performance of our 2D and 3D algorithms is extensively validated on multiple confo-

cal images of neuronal cultures and brain tissue, and successfully compared against

state-of-the-art methods from the literature.

2.1 Materials and Methods

We consider the problem of detecting soma locations in fluorescent image stacks of

neuronal cultures or neuronal tissue both in 2D and 3D settings.

Our algorithm for soma detection and extraction – whether in 2D or 3D – consists

of the following steps. Preprocessing: It is designed to remove noise and improve

image quality. Segmentation: It separates neurons from background. Soma

detection: It is designed to find somas. Soma extraction: It is designed to identify

the entire soma regions and split somas that are clustered together.

In the following, we describe the methods we developed and applied to address

each processing step, with most emphasis on the last two steps which contain our

main original contributions.
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2.1.1 Preprocessing

Preprocessing is designed to take full advantage of the capabilities of instrumentation

by reducing sources of image degradation such as blurring and noise.

A common denoising routine found in biomedical applications is Gaussian smooth-

ing [20], which consists in convolving an image with a Gaussian function g(x) =

1
2πσ2 exp (−‖x‖

2

2σ2 ), where σ2 is a variance parameter. This operation has the effect of

smoothing the image with a smoothing level controlled by σ2. While this method

is simple to implement and computationally efficient, it has the undesirable effect of

blurring edges with the consequent loss of spatial information.

To avoid the above limitation, we adopted instead wavelet shrinkage which con-

sists in: (i) transforming the image using the wavelet transform; (ii) filtering the

resulting wavelet coefficients using a shrinkage function whose parameters are au-

tomatically determined from the data; (iii) applying the inverse wavelet transform

to the shrinked coefficients to obtain a restored image. Wavelet shrinkage denoising

was theoretically proven to be optimal with respect to the mean-squared error for

estimating piecewise smooth signal corrupted by additive Gaussian noise [16, 17]

and was shown to perform very competitively with fluorescence microscopy imaging

data [32, 36, 57, 42].
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2.1.2 Segmentation

A widely used image segmentation strategy is intensity thresholding, which consists

in setting all pixels whose intensity value is below a certain threshold to 0, and

setting those pixels above or equal the threshold to 1. To automatically set a thresh-

old, one classical approach is Otsu’s method [20], which assumes that the intensity

distribution is bimodal and calculates the optimum threshold separating the two

classes.

The main setback of intensity thresholding is that it considers only the pixel

intensity and ignores any relationships between pixels, with the result that pixels

identified in the region of interest may fail to be contiguous. This performance issue

is more severe as the noise level increases.
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Figure 2.1: Comparison of segmentation routines. Image size = 512 × 512 pixels
(1 pixel = 0.28 × 0.28µm). (A): Denoised image of a neuronal culture. (B-D): Image
segmentation results using our SVM-based method. Red pixels are points belong to cell,
blue pixels are points belong to background. (B); intensity thresholding, Otsu’s method
(C); intensity thresholding, threshold based on median of the image (D).

To ensure a more faithful preservation the geometry of data, we adopted a seg-

mentation strategy based on Support Vector Machines (SVM) originally introduced

by one of the authors [23, 25] and whose main novelty is the use of features gener-

ated by a set of multiscale Laplacian and multiscale directional filters designed to

capture tubular structures in neuronal images. As for many algorithms of this type,

the proper classification stage of the algorithm is preceded by a training stage of
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the classifier which may be computationally intensive. However, training needs to

be run only once as long as the segmentation algorithm is applied to images of the

same type (e.g., same cell type and image acquisition setting). The entire procedure

is fully automated. Fig. 2.1 illustrates the segmentation of a 2D image of a neuronal

culture using different strategies. The result in the figure suggests that the SVM

approach is more effective at capturing the true data structure.

2.1.3 Soma detection

Our method for soma detection relies on the Directional Ratio, an approach recently

introduced in [33, 41] to quantify the degree of local isotropy in an image and

shown to be very effective for separating somas from neurites in fluorescent images

of neurons [42].

2.1.4 Directional Ratio

Given a collection of multiscale orientable filters {φj,`}, where the indices j, ` are

associated with a range of scales and orientations, respectively, the Directional Ratio

of an image f at the j-th scale and at location p is the quantity

Djf(p) =
min`{|f ∗ φj,`(p)|}
max`{|f ∗ φj,`(p)|}

. (2.1)
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For instance, in dimension 2, the simplest choice of filters φj,` are the functions

φj,`(x) = χSj,`(x),

where χA is the indicator function of A and the sets Sj,` are the scaled and rotated

rectangles Sj,` = 2jRθ`S, where Rθ =

 cos θ sin θ

− sin θ cos θ

 and S is a fixed rectangle.

Clearly, the same idea applies in 3D setting if one replaces 2D rectangles with 3D

rectangles and uses 3D rotations.

The Directional Ratio ranges between 0 and 1, and it measures the degree of

directional coherence of an image f at given scale and location. It is proved in [33, 41]

that, if f is an image containing blob-like and vessel-like structures, then, for an

appropriate range of scales controlled by j, there exists a threshold T significantly

less than 1 such that the Directional Ratio does not exceed T when p is located

inside a vessel-like structure. In contrast to that, when p is located strictly inside a

blob-like structures then the Directional Ratio is close to 1 (See Figure 2.2). Note

that Directional Ratio is not guaranteed to be close to 1 near the boundary of a

blob-like structure. Nevertheless it was shown that one can reliably detect somas

in a segmented image of a neuron f by computing the Directional Ratio Djf(p)

at an appropriate scale controlled by j and discarding those points p for which

Djf(p) < T . Specifically, j is chosen therefore the filter length is larger than the

radius of the neurites and close to the radius of the somas.
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Figure 2.2: Directional Ratio. Due to the different behavior of orientable filters, for
an appropriate range of scales, the Directional Ratio is much smaller than 1 at p1 inside a
vessel, and it is about 1 at p2, inside a blob structure.

The practical implementation of equation (2.1) requires computing multiple fil-

tered images f ∗ φj,� for various orientations � (at a fixed scale j). For a 2D image

f of size N × N the computation of each filtering step f ∗ φj,� using FFT to im-

plement convolution requires O(N2 logN) operations. Using L orientations, this

brings the total number of operations to O(LN2 logN). Applying the same reason-

ing in 3D, with the same density of orientations, the computational cost would be

O(L2N3 logN) operations. This shows that the computational cost of directly im-

plementing equation (2.1), as it was carried out in [42], is already significant in 2D

and would be unacceptable in 3D setting. A test on a 512× 512× 512 image stack

run on a standard laptop (2.4GHz processor) with a Matlab code requires about 103

hours to compute the Directional Ratio with L2 = 40 directional filters. Since the

main driver of the cost is explicit convolutions, we focused on reducing the cost of

that process. To address this problem we considered two approaches: (1) adopting

separable convolution instead of usual one, (2) using computationally more efficient
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filters instead of rectangular one.

2.1.5 Separable convolutions

A matrix is separable if it can be expressed as the product of a column and a row

vector 2. It is a known property that if a 2D matrix filter is separable, then a 2D

convolution can be implemented more efficiently.

We recall that 2D discrete convolution of an image f and a 2D filter h is given

by

y[m,n] = f [m,n] ∗ h[m,n] =
∑
j

∑
i

h[i, j]f [m− i, n− j] = 〈h, T(m,n)f̃〉.

where f̃ = f(−x). If the filter is separable, then h[m,n] = h1[m]ht2[n] where h1[m],

h2[n] are appropriate column vectors. Hence a direct computation shows that

y[m,n] =
∑
j

h2[j]
∑
i

h1[i]f [m− i, n− j] = 〈h2, 〈h1, T(m,n)f̃〉〉,

that is, 2D convolution is computed by performing two 1D convolutions, first along

the rows and then along the columns.

Hence according to the previously given image and filter sizes computational cost

will reduce to O(L2N logN) from O(LN2 logN).

2This condition is verified if the matrix has rank 1.
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Originally rotated rectangular filters are used in the Directional Ratio compu-

tation which are not separable unless rotation angle is either 0 or π/2. Thereby

separable convolution is not applicable to our case without modification. Luckily we

can still apply separable convolution if we rotate image instead of rotating filters.

Filtering the image with rotated filters is same with filtering the rotated image with

axis aligned rectangular filters and rotating the filtered image back. Therefore for

real valued image f and h define h̃(x) = h(−x):

(f ∗R−θh)(x) = 〈f, TxR−θf̃〉 =

∫
f(y)R−θh̃(y − x)dy

=

∫
f(y)R−θh(x− y)dy (substitute y = R−θy)

=

∫
f(R−θy)R−θh(x−R−θy)dy

=

∫
f(R−θy)h(Rθ(x−R−θy))dy

=

∫
f(R−θy)h(Rθx− y))dy

=

∫
Rθf(y)h(Rθx− y)dy

=

∫
Rθf(y)h̃(y −Rθx)dy

= 〈Rθf, TRθxh̃〉 = (Rθf ∗ h)(Rθx)

(2.2)

where R is the rotation matrix. Through this idea separable convolution can be

applied to the directional rectangular filters. Adopting shearing instead of rotation

is wiser since it preserves the integer grid. Equation (2.2) holds for shearing matrix

S too since detS = 1.
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2.1.6 Directional Ratio with sheared filters

Shearing is a transformation which keeps the area and shifts the geometric object

along a line. Since upper and lower triangular matrices are used as a shearing matrix,

shearing keeps one coordinate of points same. That is the reason why computational

effort of shearing is less than rotation.

Horizontal shearing is shifting parallel to x-axis and the matrix form is:

x′
y′

 =

1 λ

0 1


x
y

 ,

vertical shearing is shifting parallel to y-axis and the matrix form is:

x′
y′

 =

1 0

λ 1


x
y

 .

where λ = tan θ and θ is the shearing angle.

On the discrete case the deformation on the sheared image would be large if

the shearing angle is larger than π/4 . Therefore we have taken the adaptation from

cone-adapted continuous shearlet transform [30] and then used vertical shearing when

the shearing angle is less than π/4 or larger than 3π/4 and used horizontal shearing

otherwise. By this method we minimize the error caused by shearing.

Through that approach we save from computational cost as a consequence of sep-

arable convolution but applying shearing operator to input twice for each oriented
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filter is computationally very expensive. Therefore the overall gain from computa-

tional effort is not noteworthy. An alternative way to reduce cost would be filtering

image with anisotropic Gaussian function since it has both separable convolution

and recursive filtering implementation.

2.1.7 Anisotropic Gaussian filters

Several constructions of orientable anisotropic filters were proposed in the literature

such as the rotated Gaussians by Perona [45]. For our implementation of the Direc-

tional Ratio (2.1) we will employ a version of such filters that can be computed very

efficiently.

In 2 dimensions, an anisotropic Gaussian function is obtained by scaling a 2D

Gaussian using different factors σx and σy (say, σx = 10σy) in the x and y directions,

respectively:

g0(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
x2

2σ2
x

+
y2

2σ2
y

))
.

By rotating the coordinate axes by an angle θ, one obtains oriented anisotropic

Gaussian functions:

gθ(x, y;σx, σy) =
1

2πσxσy
exp

(
−1

2

(
(x cos θ + y sin θ)2

σ2
x

+
(−x sin θ + y cos θ)2

σ2
y

))
.

Geusebroek et al. [19] introduced a very efficient method to separate the convolution

40



2.1. MATERIALS AND METHODS

with the anisotropic Gaussian gθ(x, y;σx, σy) as the composition of a 1D convolution

with a Gaussian filter in the x direction followed by another 1D convolution with a

Gaussian filter in a non-orthogonal direction, that is

gθ(x, y;σx, σy) =
1

2πσxσφ
exp

(
−1

2

x2

σ2
x

)
∗ exp

(
−1

2

t2

σ2
φ

)
,

where t = x cosφ + y sinφ and φ is an appropriate functions of θ. An illustration

of this decomposition is shown in Fig. 2.3. Using a recursive approximation to

implement 1D Gaussian convolutions, this method yields an implementation that

is very accurate and faster than a FFT-based 2D convolution, as it requires only

O(1) multiplications per pixel. We adopted this implementation to compute our

Directional Ratio. In this case, the scale of the filters is controlled by σx and σy.

The same idea extends to the n-dimensional case, as shown by Lampert and

Wirjadi [34]. In particular, similar to 2D case we can represent any 3-dimensional

rotated anisotropic Gaussian filters as the composition of three 1-dimensional Gaus-

sian filters aligned along non-orthogonal directions. Again these filters have fast

implemention using separable convolution.

Adapting the above idea to the n-dimensional case, Lampert and Wirjadi [34]

introduced a method to decompose n-dimensional rotated anisotropic Gaussian filters

into n 1D Gaussian filters aligned along non-orthogonal directions.

An n dimensional anisotropic Gaussian filter with mean 0 and covariance matrix

Σ has the form

g(x) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
xtΣ−1x

)
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where |Σ| is the determinant of Σ. The following is proved in [34].

For any decomposition Σ = V DV t of the covariance matrix Σ into square

matrices D and V where D is diagonal and positive and V is a upper triangular

matrix with determinant 1, there is a separation of the n-dimensional Gaussian

into 1D Gaussians, where the separation directions are given by the column

vectors of V [34].

That is, one can write

g(x) ==
1√

2πd1
exp(− v21

2d21
) . . .

1√
2πdn

exp(− v2n
2d2n

)

where d1, . . . , dn are diagonal entries of the matrix D and v1, . . . , vn are the nonzero

entries of upper triangular matrix V , which give the direction of line convolutions.

Therefore, covariance decomposition factors directly apply to input. Since the

matrix V is upper triangular, it can be considered as a shearing matrix. Hence

decomposition Σ = V DV ′ geometrically means shearing input with matrix V t, ap-

plying axis aligned gaussian functions whose densities are diagonals of matrix D,

then shearing in the opposite direction with V . This is similar with our idea that

we attempted to use in shear filters section. Unlike sheared filters this new method

will be computationally affordable because of nice properties of gaussian function

filtering implementation.
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Figure 2.3: Nonorthogonal separation of anisotropic Gaussian in 2D. rotated
anisotropic Gaussian filter can be decomposed along its main axes u and v, but it is not
useful for implementation. The decomposition into x-axis and t-line is more useful and
requires less computational cost.

2.2 Automatic Scale Selection based on Scale-Space

Theory

In order to determine the optimal filter size we adapted the idea of scale space theory.

The idea bases on finding the scale of the local isotropy of the points. The definition

of local isotropy is as follows:

Definition 2.2.1. Let A ⊂ R2. If x ∈ A we say that the set A is locally isotropic

at the location x and at scale s > 0 if B(x, s/2) ⊂ A. [40]

Since our soma detection algorithm is designed to use radius of the largest soma
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contained in the image, we designed the automated scale selection algorithm to

predict this value. Since the soma regions are not perfectly blob, our method predicts

the radius of the largest disk that is completely covered by the soma. Therefore the

optimal scale value to use for our soma detection method is:

sup{s ∈ Z : B(x, s/2) ⊂ I, x ∈ I},

where I is the image. Thus basically the largest scale of local isotropy of points in

image, is the optimal scale for our soma detection method. In order to measure the

local isotropy level of a point x ∈ I, I is filtered with orientable directional filters with

various scales and at various orientations centered at x ∈ I. If x is locally isotropic

at scale s then for any s′ ≤ s filtering response is 1 for all oriented normalized filters

with scale s′. For scale s′ ≥ s the filtering response starts decreasing which shows

that x is locally isotropic with scale s.

The algorithm calculates the largest scale of local isotropy for each point of input.

Then the maximum of all is chosen as estimated optimal scale which gives the radius

of largest disk contained in cell. In application we used only two orthogonal directions

for filtering, with directional angles π/4 and −π/4, since our numerical experiments

showed that filtering at many directions do not improve the result significantly.
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Figure 2.4: Scale estimation. Figure illustrates the automatic scale selection algorithm.
On the right there is a ellipse-like (blue) object and algorithm estimates the diameter(in
terms of density of Gaussian function) of the largest blob (red) contained in. The algorithm
is inspired by the filter response of the centre (point p) of blobs according to different scales.
The filter response of the filter at point p which is the center of the blob is given in the left
plot. When the filter (white rectangle at the center of blob) density, fσ, reaches value d,
filtering response starts decreasing. d is the diameter of the given blob in terms of density
of Gaussian function.

In order to see the performance of algorithm we examined 20 images to segment

soma regions with both automatically selected scale and user determined scale. Our

numerical tests show that automated scale selection does not change overall per-

formance of the method. However it makes out method fully automated with an

insignificant cost, which is 0.67 sec. for 512x512 images. Performance result for

our method with automatically selected scale is given in Appendix Table 5.1 and

Table 5.2. The average result of accuracy of our method is given below in Table 2.1,

accuracy of the morphological methods is given in Table 2.2.
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Table 2.1: Performance results of Anigauss when scale selected automatically

TPR FPR DC Auto Scale Selection Cost Detection rate

AVG 0.90 0.29 0.84 0.67 sec 71 TP, 0 FN, 0 FP

Table 2.2: Performance results of MORPH2 when scale selected automatically

TPR FPR DC Auto Scale Selection Cost Detection rate

AVG 0.86 1.16 0.69 0.67 sec 65 TP, 6 FN, 20 FP

2.3 Soma Extraction

As we observed above, the Directional Ratio of the segmented image of a neuron is

expected to be close to 1 inside a soma but its value may be much lower near its

boundary. Hence, by thresholding the Directional Ratio, we will only find a region

strictly inside the soma (see Fig. 2.5). To identify the entire soma including the

region near its boundary, we need to grow the initial soma region. In our studies we

develop an approach based on the Fast Marching method.

46



2.3. SOMA EXTRACTION

Figure 2.5: Soma extraction. Image size = 512× 512 pixels (1 pixel = 0.28× 0.28µm).
Starting from the segmented image of a neuron (A), where red points belong to cell and
blue points belong to background, we compute the Directional Ratio in (B); whose values
are real numbers range from 0 (blue) to 1 (red). By thresholding those pixels in (B) was
value in above 0.85, we detect an initial soma region in (C). We apply the Fast Marching
algorithm to evolve the boundary of the initial soma region in (C) until it finds the entire
soma region in (D). The colors show the evolution of boundary at different time steps.

2.3.1 Level Set and Fast Marching methods

The Level Set and Fast Marching methods are variational approaches introduced to

track evolution of curves and shapes without having to parametrize these objects [39,

47]. In [42], the Level Set approach was used with the boundary curve of the region

found by the Directional Ratio inside the soma as the initialization curve Γ of the

level set evolution equation. Even though this method provides excellent results, it

is computationally intensive and its direct extension to 3D setting is impractical.

We apply here the Fast Marching method as an alternative faster approach for

tracking a moving boundary, which is designed for problems in which the speed func-

tion never changes sign, therefore the front is always moving forward or backward.

This assumption allows one to convert the evolution problem to a stationary formu-

lation, which has much faster implementation (about N logN operations for an N

size grid) than a Level Set method, even though the latter one is more flexible.
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The Fast Marching method builds the evolving curve Γ by computing the arrival

time T (p), as the time when the curve crosses a location p, with evolution speed F

given by the user. The equations which determine the expanding front is:

|∇T |F = 1 T = 0 on Γ

Front = Γ(t) = {(x, y)|T (x, y) = t} F > 0

The selection of the speed F is the critical factor in the application of this method.

In our situation, taking again the boundary curve of the initial soma region as the

initialization curve, we want the speed F of the evolving curve to decrease as it

approaches the boundary of the soma and finally stop at the boundary. This suggests

that the Directional Ratio of the segmented image could be a good candidate for the

velocity map as its values are larger inside the soma and decrease at the boundary.

However, the Directional Ratio does not vanish near the boundary of the soma or

at the connected neurites, therefore the curve Γ would continue to evolve outside

the soma and inside the neurites. To deal with this problem, we use the following

strategy. To generate a sharper decrease away from the interior of the soma, we set

F (p) equal to the modified Directional Ratio

min`{|f ∗ φj,`(p)|3}
max`{|f ∗ φj,`(p)|}

.

Due to the power introduced in the numerator, this quantity decreases faster than

the Directional Ratio away from the soma which is illustration is given in Figure
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2.6. Additionally, this function is thresholded by setting very small values (below

0.00001 in our experiments) to 0 in order to ensure that the evolution will stop when

Γ reaches the soma’s boundary.

For our numerical implementation of the Fast Marching method, we adapted the

Fast Marching Matlab toolbox by G. Peyré which is based on [12, 47].

Figure 2.6: Optimal Speed function for Fast Marching Approach. Optimal speed
map is shown as a 3d image. Intensity values (which are shown in z-axis) are real numbers
between 0 (blue) and 1 (red). Left: Directional Ratio of input, Right: Modified Directional
Ratio of input which gives a sharper decrease in Directional Ratio values close to boundary
of soma. Hence it is a better speed function for Fast Marching method

2.3.2 Separation of clustered somas

Our method to extract somas may detect multiple contiguous somas as a single

one. To address this issue, we use the following approach developed by one of the

authors in [42]. After applying our method based on Directional Ratio at the default

scale, we check the extracted soma area. If this area differs from the expected area

more than three times of the estimated standard deviation, then we conclude that

it contains more than one soma. Next, we compute again the Directional Ratio at

a coarser scale, that is, using twice as long directional filters; the application of a
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threshold on the Directional Ratio will now produce a smaller initial set inside each

true soma region. Finally, we apply again the Fast Marching routine using the new

boundary curves for each initial set. This method is run automatically and, as shown

by numerical tests in the Results section, reliably separates contiguous somas.

2.4 Specimen Preparation and Imaging

Images used in our studies are primary hippocampal neuronal cultures that were pre-

pared in Dr. Laezza’s Laboratory at the Department of Pharmacology & Toxicology

of the University of Texas Medical Branch.

Confocal images were acquired with a Zeiss LSM-510 Meta confocal microscope

with either a 63X or a 40X oil immersion objective (1.4 NA). Multi-track acquisition

was done with excitation lines at 488 nm for Alexa 488, 543 nm for Alexa 568 and 633

nm for Alexa 647. Respective emission filters were band-pass 505-530 nm, band-pass

560-615 nm and low-pass 650. Stacks were collected at z-steps of 1 µm with a frame

size of 512 × 512, pixel time of 2.51 µs, pixel size 0.28 × 0.28 µm (63X objective) or

0.44 × 0.44 µm (40X objective) and a 4-frame Kallman averaging.

Banker’s style hippocampal neuron cultures were prepared from embryonic day

18 (E18) rat embryos as described in [49]. Briefly, following trituration through a

Pasteur pipette, neurons were plated at low density (105 × 105 cells/dish) on poly-

L-lysine-coated coverslips in 60 mm culture dishes in MEM supplemented with 10%

horse serum. After 24 h, coverslips (containing neurons) were inverted and placed

over a glial feeder layer in serum-free MEM with 0.1% ovalbumin and 1 mM pyruvate

50



2.5. RESULTS AND DISCUSSION

(N2.1 media; Invitrogen, Carlsbad, CA) separated by approx. 1 mm wax dot spacers.

To prevent the overgrowth of the glia, cultures were treated with cytosine arabinoside

at day 3 in vitro (DIV).

Hippocampal neurons (DIV14) were fixed in fresh 4% paraformaldehyde and 4%

sucrose in phosphate-buffered saline (PBS) for 15 min. Following permeabilization

with 0.25% Triton X-100 and blocking with 10% BSA for 30 min at 37 ◦C, neurons

were incubated overnight at room temperature with the following primary antibodies:

mouse anti-FGF14 (monoclonal 1:100; Sigma Aldrich, St Louis, MO), rabbit anti-

PanNav (1:100; Sigma, St Louis, MO) and chicken anti-MAP2 (polyclonal 1:25000;

Covance, Princeton, NJ) diluted in PBS containing 3% BSA. Neurons were then

washed 3 times in PBS and incubated for 45 min at 37 ◦C with appropriate secondary

antibodies as described for brain tissue staining. Coverslips were then washed 6 times

with PBS and mounted on glass slides with Prolong Gold anti-fade reagent.

All the animal procedures were performed in accordance to the University of

Texas Medical Branch at Galveston IACUC approved protocols.

2.5 Results and Discussion

In this section, we illustrate the application of our improved soma detection and

extraction algorithm on multiple fluorescent images of neurons both in 2D and 3D

settings. Imaging data, as indicated above, were provided by Dr. Laezza at the De-

partment of Pharmacology & Toxicology of the University of Texas Medical Branch.
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Our numerical code is written in Matlab and includes the routine for the computa-

tion of anisotropic Gaussian filters and Fast Marching propagation described above.

All numerical experiments were run using a MacBook with Intel Core i5 2.4GHz

processor and 16 GB RAM. Data and open source code used to generate our results

are publicly available at

https://github.com/cihanbilge/SomaExtraction.

2.5.1 Performance metric

To assess the performance of our algorithm on soma extraction, we adopt the fol-

lowing standard statistical measures of the performance of a binary classification

test [5]. The True Positive Rate TPR (or Sensitivity) measures the proportion of

correctly identified soma pixels with respect to the total number of true soma pixels,

which are manually identified by a domain-expert (without knowledge of the algo-

rithm results). Denoting by TP (= true positive) the number of correctly identified

soma pixels and by FN (= false negative) the number of true soma pixels incorrectly

rejected, we define:

TPR =
TP

TP + FN
.

The False Positive Rate FPR (this is the complement of the Specificity) measures

the proportion of pixels incorrectly identified as soma pixels with respect to the total

number of true soma pixels. That is, denoting by FP (= false positive) the pixels
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incorrectly selected as soma pixels, we define

FPR =
FP

TP + FN
.

This rate is a penalty akin to wrong soma pixel detections. When our FPR is

compared with the traditional definition (FP )/(TN + FP ), one notices that this

last expression would be very close to zero in our neuronal images since false soma

detections are much less than the number of background pixels, because of the low

neuronal density in our images. Hence, we adopted a new modified definition which

describes false soma detections as a percentage of soma volume measured in pixels.

Finally, the Dice Coefficient DC is used to compare the similarity between two

samples or measures and is given by

DC =
2TP

2TP + FN + FP
.

Note that the denominator 2TP + FN + FP = TP + FP + FN + TP is the sum of

the detected pixels and the true soma pixels. DC can be considered as a measure of

the overall effectiveness of the soma extraction algorithm.

2.5.2 2D soma analysis

Due to the difficulty of processing an image stack in 3D resolution, in several studies

stacks are converted into 2D images by computing projections along the axis perpen-

dicular to the image plane (the z axis). The maximum intensity projection (MIP)
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for instance maps an image stack into a 2D image where each pixel contains the

maximum value over all images in the stack at that pixel location.

For our 2-dimensional tests, we considered 20 MIP images obtained from 20 stan-

dard field-of-view confocal image stacks of low-density neuronal cultures, as com-

monly used in phenotypic screenings of analytes for drug-discovery or biomarker

identification (cf. [14, 38, 48, 49]). Each image stack comprises between 10 and 25

images and contains between 1 and 10 neurons, for a total of 71 somas in the 20 data

sets we considered. According to the processing pipeline described in the Materials

and Methods section, images were first preprocessed and segmented; the Directional

Ratio was computed; an initial region was obtained by thresholding the Directional

Ratio with threshold = 0.85; finally, by applying the Fast Marching algorithm to the

initial region, somas were extracted and contiguous somas separated, if needed.
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Figure 2.7: Sensitivity on scale parameter. Plots illustrate the soma extraction
performance, according to the Dice Coefficient, as a function of the filter length for our
algorithm (above) and as a function of the radius of the structuring element for an algorithm
using the morphological opening operator (below).

For the implementation of the Directional Ratio, we considered the two types

of directional filters described above, i.e., rectangular and anisotropic Gaussian fil-

ters. As this method requires to compute the filtered image for multiple orientations

at an appropriate scale, we need to select the scale parameter and the number of

orientations.
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According to the theory, the scale parameter must be such that filter length is

close to the radius of the somas, say 85% of it. Our data include images acquired at

magnification 40X and 63X, and on such data the expected radius of a soma is about

32 and 48 pixels, respectively. Hence, for our rectangular filters we set filter length

equal to 27 and 40 pixels, respectively. Similarly, for the anisotropic Gaussian filters,

we set σx equal to 9 and 13 pixels, respectively (here we assume that the length of the

filter is approximately 3σx). Fig. 2.7 shows that the performance of our algorithm

is clearly dependent on the selection of the scale parameter but not too sensitive to

its value. Even though, for the image considered here, our method performs better

when filter length is near 40 pixels, yet the algorithm performance is overall very

consistent in the range 5-45 pixels. By contrast, the figure shows that a method

based on conventional morphological operators is typically much more sensitive to

the scale parameter.

Figure 2.8: Sensitivity on the number of orientations. The plot illustrates the
sensitivity of our algorithm performance, according to the Dice Coefficient, as a function
of the number of orientations of the directional filters.
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For the selection of the number of orientations, it is expected that the algorithm

performance would improve (or at least would not worsen) by increasing the number

of orientations since the Directional Ratio would become potentially more able to

detect changes in geometry. On the other hand, computing time increases with the

number of orientations as more filtered images are being computed; thus, we wish to

keep this number relatively low. The analysis of the sensitivity of the algorithm as a

function of this parameter, as illustrated in Fig 2.8, shows that the performance of the

algorithm stabilizes very rapidly when the number of orientations increases and there

is essentially no performance improvement choosing more than 7 or 8 orientations.

Therefore, in all our experiments we selected 10 uniformly spaced orientations.
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Figure 2.9: 2D soma detection and extraction. (A) Denoised image obtained using
a shearlet-based routine on the MIP of the image stack. Image size = 512 × 512 pixels
(1 pixel = 0.28 × 0.28µm). (B) Segmented binary image from SVM based segmentation.
Segmented cell is shown in red while the background is shown as blue. (C) Directional Ratio
plot; values are real numbers range between 1, in red color (most isotropic regions), and
0, in blue color (least isotropic regions); the Directional Ratio is only computed inside the
segmented region, i.e., the red region in Panel B. Anisotropic Gaussian filters are used for
directional filtering. (D) Detection of initial soma region obtained by thresholding values
below 0.85 in Panel C. (E) Soma segmentation obtained by applying the Fast Marching
method with the initialization curve determined by the boundary of the initial soma region
in Panel D. (F) Separation of contiguous somas.

Figure 2.9 illustrates the application of our algorithm using anisotropic Gaussian

filters (with default parameters σx = 9 and 10 orientations) on a representative MIP

image of a neuronal culture of size 512×512 pixels containing five somas. The figure

shows that the algorithm correctly detects somas and separates contiguous ones.
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To benchmark the performance of our algorithm, we applied it to our 20 images

and compared it against multiple state-of-the-art algorithms. For the comparison, we

considered: the method based on Directional Ratio and level set by Ozcan et al. [42],

henceforth denoted as DR-Lev; the algorithms based on conventional morphological

operator by Vallotton et al. [51] and by Schmitz et al. [46], henceforth denoted as

Morph1 and Morph2, respectively. For our algorithm, we consider two variants where

the directional filters are rectangular or anisotropic Gaussian functions; henceforth

we refer to these two versions of the algorithm as DR-Rec and DR-Gau, respectively.

For Morph1 and Morph2, we need to set the value of the radius of the structuring

element associated with the morphological opening operator. Based on the indication

from the original papers, for two types of images considered in our tests, we set this

value to 15 and 23 pixels, respectively. For DR-Rec, DR-Gau, DR-Lev, we used

default scale parameter and number of orientations, as described above.

The performance of our algorithm and its baseline comparison with the various

competing methods is reported in Table 2.3. The table lists the soma detection rate

in terms of True Positive (TP), False Positive (FP) and False Negative( FN), the per-

formance metrics FPR, TPR and DC for soma extraction, and the computing times

for soma detection and extraction. The table shows that methods based on Direc-

tional Ratio provide overall very competitive performance for both soma detection

and extraction. They have perfect or excellent detection rate and best extraction

performance. By contrast, the soma detection and extraction performance of Morph1

and Morph2 is significantly lower; Morph2 performs better than Morph1. Concerning

computing time, DR-Gau has the fastest computing time for soma detection, thanks
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to the implementation of directional filters by separable convolution; computing time

is about 4 times longer for all other methods, including DR-Rec, where filtering is

implemented by regular 2D convolution. As Morph1 and Morph2 have no separate

routines for detection and extraction, the reported computing times are the same.

These methods exhibit the fastest computing time for extraction. Among methods

based on Directional Ratio, DR-Gau is the fastest one, whereas Dr-Lev is about 40

times slower. As argued in the Materials and Methods section, this difference is due

mostly to the significant difference in computational cost between the Level Set and

Fast Marching routines. Results in the table show that, despite the huge difference

in computing time, the use of either one of the two routines has negligible impact on

soma extraction performance hence it is a major advantage to use the Fast Marching

method in this algorithm.

Table 2.3: Performance analysis of different soma detection and extraction algorithms
using 20 images containing 71 somas in total.

DR-Gau DR-Rec Morph1 Morph2 DR-Lev
Detection rate

71, 0, 0 71, 0, 0 54, 6, 17 69, 16, 2 70, 0, 1
(TP, FP, FN)
TPR (extraction) 0.95 0.99 0.83 0.95 0.95
FPR (extraction) 0.28 0.40 1.72 1.15 0.23
DC (extraction) 0.86 0.84 0.52 0.77 0.87
Comp. time: detect 0.21 s 0.86 s 0.90 s 0.90 s 0.86 s
Comp. time: detect+extract 4.01 s 4.45 s 0.90 s 0.90 s 157.76 s

The performance of each algorithm presented above depends on the combined

performances of their segmentation and soma extraction subroutines. As observed

in the Materials and Methods section, intensity thresholding is not expected to per-

form as effectively as our SVM-based segmentation routine but the former method is

60



2.5. RESULTS AND DISCUSSION

significantly faster than the other one. Similarly, conventional morphological opera-

tors as those used in Morph2 to extract somas are faster than our method combining

Directional Ratio and Fast Marching routine. To better illustrate the impact of each

subroutine, we report in Table 2.4 the values of detection rate, DC and computing

time obtained from various combinations of segmentation (SVM = SVM-based seg-

mentation; Thr = intensity thresholding segmentation as in MORPH2) and soma

extraction subroutines (DR = Directional Ratio and Fast Marching; Morph = mor-

phological opening operator as in MORPH2).

Table 2.4: Computational cost for different combinations of image segmentation and soma
extraction routines using 20 images containing 71 somas in total.

SVM + DR SVM + Morp Thr + DR Thr + Morp
Detection rate

71, 0, 0 69, 6, 2 67, 0, 4 69, 16, 2
(TP, FP, FN)
DC (extraction) 0.86 0.77 0.81 0.77
Comp. time 8.21 s 8.9 s 0.91 s 1.6 s

The table shows that our Directional Ratio routine for soma extraction con-

sistently improves the algorithm performance. If the segmentation routine is imple-

mented using our SVM-based segmentation, then a better DC value (the best overall)

and a faster computing time is achieved using Directional Ratio rather than morpho-

logical opening operator. Similarly, if the segmentation routine is implemented using

the morphological opening operator, again a better DC value and a faster computing

time (the best overall) is achieved using the Directional Ratio.

Another observation is that the SVM-based segmentation routine has the largest

impact in the overall computing time of the algorithm. By replacing this routine with

a method based on intensity thresholding, the total computing time decreases from
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8.21 to 0.91 s. However, this comes with a significant downgrade in performance

as DC decreases from 0.86 to 0.81 and the detection rate worsens (4 somas are

missed). This observation is consistent with the segmentation result shown in Fig 2.1

using a representative MIP image of a neuronal culture. The figure shows that the

segmentation result based on intensity thresholding may miss regions inside a soma

or produce over-segmented images leading to false positive or false positives, as is in

fact observed in Table 2.3.

2.5.3 3D soma analysis

We tested our 3D algorithm for soma detection and extraction on two sets containing

different types of imaging data: Set1 consists of three confocal image stacks of brain

tissue, each stack containing 1-2 somas; Set2 consists of 3 confocal image stacks of

neural cultures, each stack containing 7-8 somas.

Figure 2.10: 3D soma extraction. Soma detection and extraction using our algorithm
based on Directional Ratio and anisotropic Gaussian filters of a confocal image stack of a
brain tissue (left) and a neuronal culture (right). Image size = 1024× 1024 pixels (1 pixel
= 0.28× 0.28µm).
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Computational cost is a major issue for the analysis of 3D data due to the im-

pact of 3D filtering. As discussed above, the application of our method based on

Directional Ratio to the analysis of 3D data using conventional 3D filters would be

highly impractical; on an image of size 512 × 512 × 512, using 40 orientations, it

would take over 100 hours. Therefore, in our tests of our algorithm, we only con-

sidered anisotropic Gaussian directional filters which are implemented via separable

convolution and not rectangular filters. We used 40 orientations for our experiments.

For the soma extraction process we applied Fast Marching method instead of Level

Set method. This modification changes the computational cost of method enormu-

ously especially in multi-soma data. Table 2.5 and Table 2.6 shows comparison of

two soma extraction methods on both single and multi soma images. In a single

soma image soma segmentation cost reduces from 30 seconds to 2.8 seconds when

the level set method is switched to Fast Marching method. In case the image has

seven somas cost reduces from 390 seconds to almost 7 seconds, Table 2.5. Although

the comparison bases only on two representative images, these results shows that the

save from computational effort could be huge occasionally with the Fast Marching

method. Fig. 2.10 illustrates the application of our algorithm for 3D soma extraction

on representative image stacks.

Table 2.5: Comparison of level set and Fast Marching methods on a single soma image

method DC Time

Level Set Method .92 30 seconds

Fast Marching Method .90 2.8 seconds
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Table 2.6: Comparison of level set and Fast Marching methods on multi soma(7 somas)
image

method DC Time

Level Set Method .85 390.81 seconds

Fast Marching Method .84 7.65 seconds

To assess the performance of our approach, we employed the same metrics we

adopted in 2D setting. As baseline comparison, we implemented a 3D extension

of the method based on the morphological opening operator proposed by [46] (the

method is only applied in 2D in the original paper). To adapt the method to the

different geometry of the dataset, for the structuring element we used either a sphere,

when processing Set1, or a cylinder, when processing Set2. We remark that using a

sphere on Set2 would produce very poor results due to the small number of pixels

available along the z direction. On the other hand, our method using Directional

Ratio requires no ad hoc modifications for the two data sets.

The performance results of our method, denoted as 3D-DR, and the method based

on the morphological opening operator, denoted as 3D-Mo are reported in Table 2.7.
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Table 2.7: Performance analysis of our 3D soma detection and extraction algorithms
(3D-DR) and 3D-Mo, a method based on morphological operators. Results in the table
are averages from image stacks of brain tissue (Set 1 = 3 stacks, 3 somas) and neuronal
cultures (Set 2 = 3 stacks, 16 somas).

3D-DR 3D-Mo 3D-DR 3D-Mo 3D-DR 3D-Mo

Sets 1+2 Sets 1+2 Set 1 Set 1 Set 2 Set 2

Detection rate 100% 100% 100% 100% 100% 100%

TPR (extraction) 0.91 0.89 0.93 0.95 0.89 0.83

FPR (extraction) 0.21 0.20 0.11 0.17 0.18 0.24

DC (extraction) 0.89 0.86 0.90 0.90 0.88 0.81

Comput. time 78 s 20 s 106 s 13 s 35 s 5 s

Figure 2.11: 3D soma extraction. Soma detection and extraction using our algorithm
based on Directional Ratio and anisotropic Gaussian filters of a confocal image stack of a
neuronal culture. Image size = 1024× 1024 pixels (1 pixel = 0.28× 0.28µm).
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Figure 2.12: 3D soma extraction. Soma detection and extraction using our algorithm
based on Directional Ratio and anisotropic Gaussian filters of a confocal image stack of a
brain tissue. Image size = 1024× 1024 pixels (1 pixel = 0.28× 0.28µm).

Table 2.7 shows that 3D-RD, our method based on Directional Ratio, provides

overall a modest performance improvement with respect to 3D-Mo (DC: 0.89 vs.

0.86) at the expense of a higher computational cost (78 vs. 20 s). However, a closer

examination of the results shows that 3D-DR exhibits a rather significant better

performance with respect to 3D-Mo when the analysis is restricted to the image

stacks of neuronal cultures (DC: 0.88 vs. 0.81). As observed above, confocal image

stacks of neuronal cultures are more challenging to process since they contain a

relatively small number of images, typically about 10-20 images, so that only 10-20

pixels is available along the z-direction. Unlike conventional morphological operators,

the method based on Directional Ratio performs in this situation about as efficiently

as for the other data. Even though, processing time is faster for 3D-Mo, computing
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time is very reasonable for 3D-DR.
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CHAPTER 3

Automated Extraction of Neuronal Trees

Digital reconstruction of the graph connectivity of neuronal structures in fluorescence

microscopy images is an especially critical task as this reconstruction provides the

backbone for building a geometrical representation of a neuron. A major effort in

improving the tracing and reconstruction of dendritic arbors emerged during the

last decade in response to the DIADEM Challenge [35] and again more recently

as part of the ambitious BigNeuron project [44]. As a result of these initiatives,

several powerful algorithms were proposed delivering robust and accurate neuronal

tracing. Those methods can be categorized in two classes as local tracing methods and

global tracing methods [2]. Global tracing approaches mostly base on skeletonization.
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Therefore trace does not start from cell body but instead starts from ”key points”

detected by algorithm which are not necessarily cell body [56]. There may be several

key points and at the end all traces are combined to have the complete skeleton of

input. Hence, traces from all cell bodies are united as one, and this trace does not

have any information regarding cell bodies. Although there are successful global

tracing methods, they are not useful for our studies since these methods does not

present the tree structures of cells. In contrast, local tracing methods start from cell

body, trace through each neurites [10] and they are capable of satisfying the tree

structure of neurons. However existing methods in that categorization, are poor on

tracing through intersecting branches. This is a critical drawback of those methods

especially in analysis of neural cultures. As such data typically consist of stacks

containing 10-25 images (only 10-25 pixels are available along the z-direction, as

compared with the x and y directions where length can be 512 pixels or more), the

‘data cube’ is very thin along one of its axes and, as a result, it is very inefficient or

even impossible to process these imaging data as true volumes. Instead, maximum

projection is applied and analysis of these data types done in 2D projected images

which causes many intersecting branches. Therefore a method which is unable to

discriminate intersecting branches is not suitable for analysis of neuronal cultures.

As a result, despite of many studies based on various methods, there is no efficient

method to extract tree structure of neural cultures accurately.

In order to overcome this need for analysis of neural cultures, we proposed a

method which detects the neurites and extracts the tree structure with high accuracy.

Our method can be categorized in local tracing approaches, which is not necessarily
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attempting to fully trace every neurite in an image. Instead, starting from the soma

locations, that we detected in the preprocessing step, our method aims to extract the

trees associated to each neuron in the image by computing front-propagated traces.

To carry out this task, the major challenge, as it is said before, is to resolve crossing

and/or partially overlapping neurites. For that purpose algorithm tries to keep the

orientation of corresponding neurite as stable as possible throughout the propagation,

which is a reasonable assumption based on the natural images from neuronal cultures.

Method is tailored to the previous project and it is fully automated.It is designed

to work on 2D binary (segmented) images with segmented soma regions predefined.

Our numerical experiments show that the method handles with intersecting branches

efficiently with the help of a novel well designed seed search process. Performance of

the method highly depends on the accurate segmentation of input. The algorithm

then proceeds as follows.

3.1 Method

3.1.1 Seeding

We determine seeding points along the centerlines of the neurites by finding those

points inside a neurite that are the farthest from its boundary with an adaptation

of [26, 24].

For x ∈ R2, we define Df(x) = miny{ ‖x − y‖ : f(y) = 0}, where f is a binary

segmented image. The local maxima of Df inside the structure are the points that

70



3.1. METHOD

are furthest away from the boundary of the neuron, since f(y) = 0 if y belongs

to the image background. To enhance the magnitude of those local maxima, the

function Df is next convolved with the filter
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. After this step, we use

a thresholding filter to select candidate seeding points along the centerline. Clearly,

the lower the threshold, the more the seed points we derive. However, if the threshold

value is too small, one may find more than one seed along the centerline resulting

in irregular or inaccurate traces. On the other hand, if the threshold value is too

large, then seeds may be very sparse and the distance between consecutive seeds

might be so large that the tracing routine connecting potential seed points may

terminate earlier than expected. We remark that the selection of the ‘best’ threshold

value is dependent on the thickness and tortuosity of the neurite, therefore it is very

difficult to determine this value automatically. Therefore, after seeds are generated

using a reasonable threshold value (we set the value 0.16 in our experiments), we

proceed as follows. For each generated seed s, we compute a ball centered at s with

radius Df(s) and eliminate all other seeds found within this ball. If this process

generates gaps along the centerline (since balls associated with different seed points

do not intersect), then we generate additional seeds by computing again the distance

function, Df , locally within that gap region. Within this region, we proceed as above

by eliminating candidate seeds potentially accumulated near the same centerline

location. As shown in [26, 24], this method is very reliable and efficient in generating

centerline traces.
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3.1.2 Initialization

We applied successive dilation operators with rates r = 1.1, 1.2, 1.3 on each soma

mask (Figure 3.1, panel B). Let us denote by S0 the soma mask and by Si, i =

1, 2, 3, the three dilated masks, ordered by increasing size. Next take the symmetric

differences S14S0 and S34S2 and its intersection with the segmented structure.

For each neurite, this operation will identify two short neuritic segments in the

proximity of the soma (Figure 3.1, panel C). Next we find the centroids of these

regions and connect each one of them to its nearest Si only proximal. Thus we find

the starting location of each neurite and its initial orientation, which is given by the

line connecting the centroids (Figure 3.1, panel D). The closest seed point to the

centroid of S14S0 is chosen as the starting neurite seed. However, tracing should

start as close as possible to the corresponding soma. Therefore another line segment

is drawn from the neurite starting seed to the soma on opposite direction of the

neurite. The intersection of the line segment and soma is determined as the starting

point of the tracing along the neurite.
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Figure 3.1: Initialization. (A) Idealized model of a binary segmented soma with three
emanating neurites, (B) Soma boundary is dilated three times with increasing dilation
factor and (C) the intersection of the symmetric difference of the successive masks with
the structure produces the black regions shown in the panel. (D) By computing the
centroids of the six black regions from panel C and connecting the centroids located on the
same branches to the soma regions, we find the starting location of each neurite and its
initial orientation, as indicated by the black arrows.

3.1.3 Tracing

Starting from the initial location of a neurite found in Step (i), the algorithm searches

for the closest seed location within a small search window which gives proximity to

points in the direction of initial direction of neurite. It then connects the two seed

points. This process is repeated after each new seed is connected to the trace and it

stops when no more seed is located within each regarding window.

The search window plays a key role in this task, because it determines that the
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tracing continues on the same branch. When branches intersect in a maximum in-

tensity projected image, the risk of switching to another branch becomes significant.

The process for choosing where to continue is illustrated in panels A and B of Fig-

ure 3.2. The main idea is that neuritic processes change orientation in a smooth

way. Therefore abrupt changes of orientation of the tracing process are likely to

lead a turn into a different branch. Hence, first the algorithm searches for the next

seed within a long rectangular region whose long side is aligned with the expected

orientation of neurite (Figure 3.2, panel A). For the initial location of each neurite,

such orientation is estimated according to Step (i); for successive locations, the ex-

pected orientation of the neurite is estimated by measuring the direction of the two

preceding seeds in the trace. If no seeds are found within this rectangle, then a pair

of rectangular windows are generated with orientations forming a small angle with

respect to the expected orientation of the neurite (Figure 3.2, panel B). The length

of those new rectangles is slightly smaller than the previous rectangular region. This

process continues (Figure 3.2, panel C) until either a seed is found or the orientation

of the new rectangles exceeds a given angle (4π/5 in our experiments). This searching

process is repeated multiple times generating every time a new approximate circular

sector region of larger radius. That is, every time the searching process is repeated,

longer rectangles are used to generate the new window region (Figure 3.2, panel D).

If this process does not find a new seed after a number of attempts, we terminate

the search and assume that the neurite is completely traced. This tracing routine

is illustrated in Figure 3.2. In our numerical experiments we set the length of the

initial rectangle to be 10 pixels. The searching process is repeated up to 10 times,
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3.2. COMPUTATION OF FLUORESCENT INTENSITY PROFILES

Figure 3.2: Tree tracing. (A) The search for the next node in the trace is initially
restricted within a long rectangle whose main axis is oriented according to the local orien-
tation of the neurite (black arrow). (B) If no seed is found, two additional rectangles are
generated with orientations forming a small angle with respect to the local orientation of
the neurite. This process ensures that the trace follows the given neurite and not the inter-
secting one. (C-D) If no seed is found within the approximately circular sector region, the
search is repeated over a larger region obtained by increasing the length of the rectangular
windows.

every time increasing the length by 2 pixels. In our algorithm we choose the radius

of the circular sector to be 30 and the central angle to be equal to 4π/5.

3.2 Computation of Fluorescent Intensity Profiles

The trace extracted in the previous section provides a spatial reference system to

compute the local fluorescent intensity signal along each neurite. As the background

intensity of a fluorescent image is typically non-zero, this background value needs

to be subtracted in order to get a reliable measure of the fluorescent signal along

a neurite. Furthermore, this value varies spatially. Therefore, to estimate its local

value at a location near a neurite, we average the background signal computed on

a pair of small windows (3 × 3 pixels) centered on a segment perpendicular to the

neurite trace and displaced slightly away from the neurite (2 pixels away in our
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3.2. COMPUTATION OF FLUORESCENT INTENSITY PROFILES

experiments) as shown in Figure 3.5. This estimated value is subtracted from the

fluorescent intensity value computed at the neurite location and the difference is the

fluorescent intensity value at the particular location.
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3.2. COMPUTATION OF FLUORESCENT INTENSITY PROFILES

Figure 3.3: Tracing of neurites part 1. Algorithm requires segmented image with
each soma regions determined. For each soma firstly neurites are detected and each of
the neurites is traced individually. (A): denoised image, (A): overlap of segmented Image
with segmented soma regions, (C-F): traces for first soma. Image size = 512× 512 pixels
(1 pixel = 0.28× 0.28µm).
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3.2. COMPUTATION OF FLUORESCENT INTENSITY PROFILES

Figure 3.4: Tracing of neurites part 2. Process continues until all detected neurites
for each somas are traced. (G-K): traces for soma 2, (L): Result shows the somas with
the corresponding traces. Image size = 512× 512 pixels (1 pixel = 0.28× 0.28µm).
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3.3. RESULTS AND DISCUSSION

Figure 3.5: Collecting fluorescent intensity. Three rectangles, which lie on a line
perpendicular to direction of neurite, are generated to estimate the correct intensity at a
seed point. Two (yellow) rectangles B1 and B3, 2 pixels away from the boundary of neurite,
are to estimate average intensity of background, orange rectangle B2 is to estimate average
intensity inside neurite. Difference between estimated average intensity of background and
the average intensity of neurite will be assigned as the corrected intensity value for seed.

3.3 Results and Discussion

Accurate and efficient neurite tracing is one of the foremost challenges in neuro-

science. Although existing local tracing methods are not able to handle the in-

tersecting neurites problem, our propagation algorithm is remarkably successful to

handle with such issues as it is seen in Figure 3.6.
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3.3. RESULTS AND DISCUSSION

Figure 3.6: Tracing of neurites on multi cell image. Automated tree structure
extraction is illustrated on multi soma image. Image size = 512 × 512 pixels (1 pixel =
0.28× 0.28µm).

Our method is proved to be accurate in the detection of neurites in the numerical

tests. The test are done on 10 images from neural cultures. Those images contain 2-8

somas, which yields lots of intersecting neurites with a few clustered somas, hence

our dataset is a realistic choice to test our method. The performance, is given in

Table 3.1 which shows that overall neurite detection accuracy is sufficiently high. For

the validation, detected neurites with accurate or inaccurate traces, are accepted as

true positive. Branches which are traced although they are not a dendrite or axon are

accepted as false positive. Missed branches which are actually neurites are accepted

as false negative . Our method on 10 images with more than 190 neurites had no

false positive detection and 90% of the neurites detected accurately.

Table 3.1: Overall performance

number of somas number of neurites number of detected neurites accuracy percentage

49 191 171 0.90
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One major problem is high dependence of our method on the image segmentation

quality. Even one incorrectly segmented pixel can effect the performance of the result.

We have seen this effect considerable especially on node of the intersecting neurites.

These nodes are relatively large areas and show features of blob-like but not vessel-like

structure. Therefore our seeding algorithm can not generate seeds along a centerline

of neurites in those nodes but it generates one seed at centers of each node. At these

situations, because of the missing seeds, traces are highly dependent on the image

segmentation even though our trace algorithm tries to minimize these artifacts. It

is because the location of that one seed, at the center of node, is determined by the

boundary of neurites around the seed. When the boundary is shifted one pixel, it will

cause this seed, at the center of node, to shift one pixel as well, which would affect

the trace dramatically. Another problem is the neurites with irregular widths. If a

neurite gets very thin at some region, seeds will be distributed with large intervals

for that part. This situation creates a large region without any seed, which causes

trace to stop earlier than expected. In order to overcome these drawbacks, we may

modify our seeding algorithm to generate seeds along the major axes of such nodes

or introduce a user intervention to force trace continue when it stops unexpectedly.

These possible issues are illustrated in synthetic image in Figure 3.7.
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3.3. RESULTS AND DISCUSSION

Figure 3.7: Tracing of intersecting neurites. At the intersection of neurites, only
one seed is generated at the center of intersecting region. Since the distance which is
shown in orange dashed arrow is large, trace can not continue and stops at the start point
of orange arrow.

During the trace, in each step of the propagation, whole image is processed with

computationally expensive calculations such as convolution. Hence cost of method

increases with the size of input. In the large images, although the accuracy of the

method is not affected, the cost is insuperable. In order to reduce the cost for such

cases, we partitioned the large size inputs into small subregions, which are determined

by user, and processed them in parallel loops. After the traces of all subregions

are completed, they are collected and unified. In Figure 3.8 and Figure 3.9 two

subregions from a large image (with over 40 cells) are shown which are processed by

our algorithm.
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3.3. RESULTS AND DISCUSSION

Figure 3.8: Tracing of neurites in large images part 1. Application of the method
on image with large number of cells. The method is applied on manually chosen subregions
in order to save from computational cost. Each cell and their corresponding neurite tracings
are given in different colors. Image size = 1894× 1894 pixels (1 pixel = 0.28× 0.28µm).
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Figure 3.9: Tracing of neurites in large images part 2. Application of the method
on input with large number of cells. The method is applied on manually chosen subregions
in order to save from computational cost. Each cell and their corresponding neurite tracings
are given in different colors.Image size = 1894× 1894 pixels (1 pixel = 0.28× 0.28µm).
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CHAPTER 4

Neuronal Classification

This part of my work focused on developing an algorithm to infer molecular mecha-

nism relevant in models of neural plasticity in brain circuits.

Neuronal plasticity is the ability of neurons to modify output signal and signaling

pathways according to external stimuli. That adaptation is done through varying

distribution and composition of some specialized molecular complexes in the axonal

compartment and dendritic spines of neuron [10]. Although there is a significant

progress in revealing mechanism of neural plasticity in the dendritic spines, plastic-

ity at the axon initial segment (AIS) is still not well understood. AIS is the membrane

component of axon of neurons where the action potentials are initiated and it plays
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a critical role in neuronal communication. Voltage-gated sodium (Nav) channels in

particular are fundamental constituents of the AIS. They form a large macromolec-

ular complex with scaffolding proteins, such as ankyrin, spectrin, that regulate AIS

plasticity, and fibroblast growth factors that are critically important in regulation,

localization and activity [7]. The distribution and composition of AIS proteins are

determined by kinases, but the explicit relation between kinase signaling and the AIS

proteins is still not fully understood. Besides there is no quantitative tools to analyze

correlation between the composition of those proteins and the cell morphology, neu-

ronal firing and eventually synaptic communication. To address this knowledge gap,

our goal was to establish what perturbations associated with kinase inhibitors are

explanatory variables of changes in cell network architecture and expression levels of

macromolecular complexes of the AIS. In order to correlate the kinase inhibitors to

composition of AIS proteins we analysed expression levels of macromolecular compo-

nents through dendritic component and AIS. By applying our method to images of

neural cultures exposed with different kinase inhibitors, we measured the expression

levels along AIS and dendrites together with the morphological features of somas

were collected. The major problem to address is the variability in the measurements

due to cellular noise and noise caused by acquisition method. Although data were

denoised and measurements were normalized to eliminate the misleading effects of

data acquisition methods and natural noise, we observed variability among classes

possibly caused by the feature extraction step. In order to eliminate irrelevant infor-

mation from the features we applied shift-invatiant wavelet transform to the features

which lead to a significant benefit in data classification. We applied support vector
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machines classification to data. Our results revealed how perturbations associated

with kinase inhibitors are correlated with the expression levels of macromolecular

complexes in AIS. Our neuroscientist collaborators were particularly interested to

discover that some protein pairs are more sensitive to the perturbations than ex-

pected, leading to important implications for the formulation of the biological model

[4].

Figure 4.1: A raw feature vector sample. Example of a raw feature vector. Feature
vectors for each sample is 1004 pixels as shown in the horizontal axis. Blue plot shows
the intensity values collected from the fluorescent images. Intensities are collected from
neurites of each cell both from red and green color channels.
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4.1. FEATURES: TRANSLATION INVARIANT WAVELET TRANSFORM
COEFFICIENTS

4.1 Features: Translation Invariant Wavelet Trans-

form Coefficients

Wavelet transform is frequently used as a feature extraction method because of its

useful properties. However traditional wavelet transform is not sufficient to eliminate

some artifacts caused by preprocessing steps. Therefore we employed the translation-

invariant wavelet transform to modify feature vectors and minimize the errors caused

by the feature extraction process.

The mechanism of translation invariant wavelet transform is slightly different than

the usual wavelet transform. Other than the input, circular shift of the input is also

used during the transformation, and coefficients from both of them are concatenated

at the end, where circular right shift of a vector is basically shifting all elements to

right by one step and moving the last input of vector to the first place. On each

layer low pass and high pass filters are applied to each of the input and circular

right shifted input. On each layer after filtered data coefficients are downsampled.

At the end of each layer, coefficients of high pass filtered data, form both raw input

and circular right shift of the input, are concatenated as the coefficients of wavelet

transform as the corresponding layer, where first layer as assumed to be the raw input

as seen in Figure 4.2 . These coefficients are separated and the low pass filtered data,

from both raw input and circular right shift of the input, is used as input for the next

layer. This process is repeated for each layer until the last layer. In the last layer,

as previously done, high pass filtered data coefficients are concatenated as wavelet

coefficients of last layer, while the low pass filtered data coefficients are concatenated
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as the first layer wavelet coefficients. The illustration of the transformation is given

in Figure 4.2. For the implementation of translation invariant wavelet transform we

used Wavelab850 [15].

Figure 4.2: Translation invariant wavelet transform scheme. orange arrows: low
pass filter convolution, orange dashed arrows: low pass filter convolution with the circular
right shifted input, green arrows: high pass filter convolution, green dashed arrows: high
pass filter convolution with the circular right shifted input, blue arrows: downsampling,
W (:,m) : m th order coefficients of the translation invariant wavelet transform of input
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4.2 Support Vector Machine

Support vector machine (SVM) is a supervised pattern recognition technique. The

main idea of SVM is generating a linear subspace which separates the samples of two

different class with maximum margin. Support vectors are the data points which

are closest to the separating subspace. When any sample other than support vectors

is removed, the separating subspace does not change location, however removing

any of the support vectors would affect the location of subspace directly. Since

this separating subspace is determined by the support vectors, method is called as

Support Vector Machine. After the support vectors are determined, the separating

subspace is located to keep the margin, which is the minimum distance from the

support vectors to subspace, maximum. Linear SVM aims to find a linear separator,

but if data is not linearly separable then non-linear SVM is employed. In nonlinear

SVM chosen kernel function maps the data to an infinite dimensional Hilbert Space

and data is assumed to be linearly separable in that space. After that, as happened in

Linear SVM, data is separated by linear hyperplane. SVM is a model based method.

It generates a model according to given training data, labels and kernel function, and

classifies the samples according to the generated model. In origin, SVM is a two-class

method. In order to use SVM for multi class cases a modification is necessary. In

our case, we used one-against-all SVM method. This method creates a binary-class

problem for each of the classes. In each time it separates samples of corresponding

class from all other samples associated with other classes.

For our numerical tests, we applied multi-class non-linear SVM. As a kernel we
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used radial basis function. All SVM parameters are determined through grid search

and density of radial basis function is fixed to 0.0017, the cost parameter is fixed to

C = 7.5938. libsvm Matlab toolbox is used during the numerical tests.

4.3 Results and Discussion

In this project, our goal was to establish what perturbations associated with kinase

inhibitors are explanatory variables of changes in cell network architecture and ex-

pression levels of macromolecular complexes of the AIS. For each of the cells we

received two color channels, each of them associated with one macromolecular com-

plex. The expression levels of macromolecular components are measured through the

intensity values along the centerline of dendritic components and AIS in these im-

ages. We collected intensities from two dendritic components and one AIS from each

of two color channels. Those values are concatenated for each cell and considered as

the feature vector of corresponding cell. Since the lengths of those components are

not necessarily same, the size of feature vectors varied. Because of that, the feature

vector values are interpolated and at the end all feature vectors are organized to be

in the same size, 1004.

Before the pattern recognition step, data had long processing steps. The noise

caused by data acquisition techniques and the errors caused by our feature extraction

method would create an artifact which can possibly effect the classification process.

In order to eliminate these artifacts, we applied translation invariant wavelet trans-

form. For that, we needed dyadic vectors therefore we zero padded the original
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feature vector in order to reach 1024. The order of the coarsest scale is determined

as 8, through the grid search. When we realized the positive effect of translation

invariant transform on the feature vector to increase discrimination between classes,

we investigated other invariant transforms. However since the discriminations be-

tween samples are already small, transformations such as scattering transform which

are stable under small deformations do not positively effect the classification results.

After the feature extraction process is concluded, we analyzed several classifi-

cation methods. Even though we attempted to use multi-kernel SVM, it gives the

highest discrimination when the kernel is same for each sources (sources are consid-

ered as dendritic components and AIS from each of the color channels, which makes

four sources). We wanted to apply sophisticated machine learning techniques as well,

but the sample size were too small to apply those methods. Since the feature space

is large, we analyzed feature reduction methods with the linear classifiers, but those

combinations could not overcome nonlinear SVM. As a result we concluded to use

nonlinear SVM for the classification process.

For the numerical tests we had samples associated with ten different couple of

macromolecules. Samples from each of these ten sets are exposed with 3 or 4 pertur-

bations. The classification result for the sample sets exposed with 4 perturbations

is shown in Figure 4.3, where it is visible that some of the molecular pairs are more

sensitive to the perturbations. In order to see the sensitivity to the perturbations,

tests are done individually and separately for each of the molecular pairs. Results

can be seen in Figure 4.4
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Figure 4.3: Classification of data. Translation-invariant wavelet transform is applied
to raw feature vectors.

For the future direction of the project, we are planning to increase the sample size

which would let us to apply machine learning methods efficiently. We are considering

to expand the feature vectors too by including morphological features of neurites.
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Figure 4.4: Sensitivity of channel pairs to the perturbations. These plots show
the sensitivity of each of the channel pairs to the perturbations. Red plot is the control
group, Blue plot is the perturbation CHIR, and Green plot is the perturbation Wee1
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CHAPTER 5

Appendix

5.1 Infinite Impulse Filtering of Gaussian Func-

tion

*This material is referenced from [55]

The discrete convolution of the image f with the gaussian function g at the point

x is given as f(x) =
∑k=K

k=−K f [x − k]g[k] where K → ∞. Since limx→∞ g(x) =

0 the error will be negligible if summation is truncated at a proper finite point.

This point is taken as K = 3σ or K = 5σ [55]. However operation required to

95
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calculate that summation will be O(K) per pixel which is linearly dependent on the

density of Gaussian function. Therefore the cost of filtering process will be enormous

when filter size is large. Young and Vliet [55] proposed a new approach to reduce

the cost of gaussian filtering implementation. This approach is called as infinite

impulse filtering. Method approximates the gaussian filtering response of one line

of sample with a two step procedure. The advantage of this implementation is that

the computational effort is independent of the density of gaussian function and it is

O(1) for each pixel.

ω[x] = f [x] +
3∑

n=1

bnω[x− n]

F [x] = Bω[x] +
3∑
1

bng[x+ n]

where F is the filtering response.

For that purpose, 6th order Taylor expansion of Gaussian function is used to ap-

proximate to its Fourier transform. The 6th order Taylor approximation of 1√
2πσ

e−
−x2
2

is given by as (a0 + a1x
2 + a2x

4 + a3x
6)−1 + ε(t) with ε(t) ≤ 2.7 × 10−3 where

a0 = 2.490895, a1 = 1.466003, a2 = −0.024393, a3 = 0.178257 in [1]. For g(t) =

1
σ
√
2π
e−t

2/(2σ2) the Fourier transform is Gσ(ω) = e−ω
2σ2/2. By the above given ap-

proximation we have

Gσ(ω) ∼==

√
2π

a0 + a1(ωσ)2 + a2(ωσ)4 + a3(ωσ)6
.
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The Laplace transform of it is

LGσ(ω) ∼==

√
2π

a0 − a1(sσ)2 + a2(sσ)4 − a3(sσ)6
.

This can be factorized into two fractions:

G1 =
(
√

2π
1/4

)

(1.1668 + σs)(3.20373 + 2.21567.σs+ (σs)2)

and

G2 =
(
√

2π
1/4

)

(1.1668− σs)(3.20373− 2.21567.σs+ (σs)2)
.

G1 and G2 represent two differential equations and can be transformed to difference

equation. For that, forward difference technique is used for G1 and backward differ-

ence technique is used for G2. For that, one needs to substitute s = (1− z−1)/T in

G1 and s = (z − 1)/T in G2 where T is the time step and is assumed to be 1 from

now on. Hence forward and backward difference equations will be:

G1 =
A

b0 − b1z−1 − b2z−2 − b3z−3

and

G2 =
A

b0 − b1z1 − b2z2 − b3z3
.

where

b0 = 1.57825 + 2.44413σ + 1.4281σ2 + 0.422205σ3,

b1 = 2.44413σ + 2.85619σ2 + 1.26661σ3,
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b2 = −1.4281σ2 − 1.26661σ3,

b3 = 0.422205σ3.

G1 and G2 correspond to difference equations. Therefore above calculation sug-

gests the following: filtering the input with a gaussian function can be implemented

as combination of filters correspond to these forward and backward difference equa-

tions. Therefore firstly input is filtered according to G1 then the response is filtered

according to G2 which yields a recursive relation. The difference equations corre-

spond to G1 and G2 are following:

forward:

w[n] = (1− b1 + b2 + b3
b0

)input[n] +
b1w[n− 1] + b2w[n− 2] + b3w[n− 3]

b0

backward:

output[n] = (1−b1 + b2 + b3
b0

)w[n]+
b1output[n+ 1] + b2output[n+ 2] + b3output[n+ 3]

b0

Numerical experiments in [19] show that this implementation gives a very accu-

rate approximation to Gaussian function with σ ≤ 20. Since this upper bound is

reasonable for our dataset we used this implementation safely. However for larger

magnification factored images the error would be larger.
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5.2 Characterization of Neuronal Components

Through Multiscale Analysis

In order to examine the multiscale directional analysis methods on characterizing

the neural images, we used pattern recognition techniques. Firstly we filtered the

synthetic neural image with filters at 10 orientations. This process is repeated with

a set of filters with increasing scales. The smallest filter scale is chosen slightly larger

than radius of thinnest neurite and scales are increased with step size equals to radius

of thinnest neurite. Filtering responses associated with each point are concatenated

at the end to create feature vectors. Then machine learning methods are applied

to see how discriminating the directional filtering responses for neuronal images.

Training sample size is determined as 1 percent. Average classification accuracy over

10 trials was 81%. The classification result of one trial is given in figure 5.1. The

figure shows that the classification accuracy is overall good but central part of one

neurite is classified as soma. Then the same test is done with multiscale directional

filters. The image is convolved with filters at 10 orientation and 10 scale, where the

difference between two consecutive scale is larger than radius of neurite. Training

sample size kept same and average classification accuracy over 10 trials was 97%t.

This test shows that multiscale directional representation of neural images would be

very efficient to characterize components of neurons. By using the same svm model,

which is created on same synthetic data, we labeled the components of neurons in

real data. The result overall is satisfactory and given in figure 5.2.
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Figure 5.1: Directional analysis of neural images. Left One scale directional filter-
ing responses are used as features to classify, blue points are training data, yellow points
are classified as neurite and red points re classified as soma.Right Multi scale directional
filtering responses are used as features to classify, blue points are training data, yellow
points are classified as neurite and red points re classified as soma.

Figure 5.2: Multiscale directional analysis. By using directional filtering responses
as features soma regions are detected through SVM based classification method. SVM
model is generated on a basic single soma synthetic data, Figure 5.1. Model works surpris-
ingly well on real data. Red regions are detected soma locations, red regions are detected
neurites. Image size = 512× 512 pixels (1 pixel = 0.28× 0.28µm).
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5.3 Algorithms

Algorithm 5.1 Scale selection

Input: Following inputs are required.

• S - Segmented binary image.

Output: • The domain for orientation, Dl is determined as [π/4, 3∗π/4]. In nu-

merical tests it is seen that two perpendicular orientation would be enough

to approximate the scale.

• The domain for scale, Dj is determined as [2 : 20] This interval works for all

images that we worked on. However if one works on image with very small

or very large cells this interval could be changed accordingly.

1: for l ∈ Dl do

2: for j ∈ Dj do

3: Convolve S with φjl.

4: end for

5: end for

6: Find the points in S which gives maximum filtering response, 1 ,for each direc-

tions l at the smallest scale j = 2. This step basically determines the points

which are locally isotropic at minimum scale in the range. (For that step a

tolerance value is given as 0.001)
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7: For the each of the remaining points and for each of the directions, find scale
where the filtering response start decreasing. For each point p ∈ S 2 scale
value will be determined. Then for each point p ∈ S choose the minimum of 2
determined scales. For any point p this scale will give the information about the
radius of the smallest circle which is completely inside of the cell and centered
at p.

8: In the previous step the scale of local isotropy of each point is determined. The
maximum of those scales will be returned as output of the algorithm.

Output: The output will be the largest radius of circle completely contained in cell.

Algorithm 5.2 Soma detection and segmentation

Input: • Segmented Image S,

• Filter size which is determined in algorithm 5.1.

1: Anisotropic Gaussian filters are generated with rotations of 10 equally distanced

angles.

2: Convolve S with each of the rotated filters.

3: For each p ∈ S find minimum and maximum filtering response among 10 filtering

responses.

4: Calculate Directional Ratio = minimum filtering response/maximum filtering response.

5: The points where Directional Ratio ≥ 0.85 are detected soma regions.

6: Soma segmentation process starts here. Velocity map for Fast Marching method

is minimum filtering response3/maximum filtering response. Starting curve for

the evolution is the boundary of the detected soma regions. Evolution will start

when the growth rate is smaller than 0.1.

Output: Segmented somas
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Algorithm 5.3 Neurite Tracing-seed generation

Input: • Segmented Image S,

• Segmented Somas I.

1: D = the distance transform of S, which assigns the value of the shortest distance

from each point to the background.

2: Convolve D with matrix


−1/8 −1/8 −1/8

−1/8 2 −1/8

−1/8 −1/8 −1/8

 to emphisize values the center-

line of neurite on D.

3: Threshold D with value 0.16 to pick seed points.

4: Find the local maximum of each region of 3x3 squares.

5: Process for second round seeding:

6: for each point p in S do

7: Find seeds on BD(p)(p). If there is no seed pick the one farthest from the

boundary as extra seed and add it to generated seeds.

8: end for

9: Process to eliminate extra seeds

10: for each of the seeds generated do

11: Find the deleted neighbor of seed with radius 2. If there is any other seed in

the neighborhood eliminate the one closer to boundary.

12: end for

Output: • Coordinates of seeds P ,

• Distance map D.
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Algorithm 5.4 Neurite Tracing

Input: • Segmented Image S,

• Segmented Somas I.

1: for each of the somasIi in I do

2: S(Ij) = 0 for each j 6= i, this ensures that tracing will not continue through

other soma regions.

3: Process to find starting seed for trace

4: SD0 = Ii,

5: SD1 = Dilate Ii with disk structure elements whose radius is 6,

6: SD2 = Dilate SD1 with disk structure elements whose radius is 10,

7: SD3 = Dilate SD2 with disk structure elements whose radius is 8,

8: Calculate symmetric difference SD14SD0 and SD34SD2. This step will cre-

ate two rings around Ii where R1 is inner ring, R2 is outer ring.

9: R1 = R1 ∩ S and R2 = R2 ∩ S. Number of connected components in R2 is the

number of number of possible neurites of Ii.

10: The line from centroid of R1 to centroid of R2 gives the direction of neurite, d.

11: Starting from centroid of R2 generate a line with direction −d with large

enough length. The intersection with Ii is the starting of trace s.
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12: for each neurites of Ii do
13: while search for next seed returns at least one seed do
14: Start the trace from soma starting point s. Search for the next seed,

algorithm 5.5 along the direction of neurite d. Connect next seed point to trace
and update s as end point of trace.

15: end while
16: end for
17: end for
Output: Traced path for each neurite of each soma in I.

Algorithm 5.5 Search for the next seed

Input: • initial seed s,

• Segmented Image S,

• Generated seeds P ,

• Direction of neurite d.

• Number of the directions nBand
1: Rotation angle, α = 0, subpath=[s], thickness of rectangular search region,

thk=4, length of rectangular search region, l=30, number of line length, l, in-
crement steps, inc,

2: inc = 1,
3: while inc ≤ 18 do
4: l and thk are directly dependent on s. Therefore while s increasing l and thk

increase linearly. Update thk and l,
5: while α ≤ 2π/3 or subpath is empty do
6: d1 = d+α, d2 = d−α, according to rotation angle direction of the rectangle

is changed in both clockwise and counterclockwise.
7: Create two rectangles with direction d1 and d2, thickneess thk and length l,
8: Set sn as the closest one among all seeds covered by at least one of the

rectangles generated in the previous step.
9: if sn is nonempty then

10: Connect s with sn, update subpath as the trace from s to sn and s = sn.
11: else
12: inc = inc+ 1, α = α + π/nBands,
13: end if
14: end while
15: end while
Output: Next seed to add to path
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5.4. SOMA SEGMENTATION ACCURACY TABLE

5.4 Soma Segmentation Accuracy Table

Table 5.1: Detailed soma segmentation performance of our method with and without
automated scale selection algorithm for 20 images

Image DC DC autoScale Scale Auto Scale #soma #continugous Somas

1 0.91 0.87 9 7 7 0

2 0.92 0.86 9 11 6 1

3 0.84 0.84 9 11 7 0

4 0.90 0.88 9 10 7 1

5 0.89 0.85 9 10 4 0

6 0.70 0.65 9 11 7 0

7 0.78 0.86 9 10 5 0

8 0.76 0.82 13 9 2 0

9 0.88 0.80 13 7 1 0

10 0.90 0.88 13 15 1 0

11 0.92 0.86 13 8 1 0

12 0.84 0.83 13 14 1 0

13 0.89 0.91 9 8 1 0

14 0.92 0.81 9 12 2 0

15 0.89 0.91 9 10 5 0

16 0.77 0.77 9 9 4 0

17 0.74 0.74 9 10 5 0

18 0.77 0.81 9 8 2 0

19 0.74 0.85 9 3 2 0

20 0.79 0.86 9 6 1 0
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5.4. SOMA SEGMENTATION ACCURACY TABLE

Table 5.2: Detailed soma segmentation performance of morphological methods with and
without automated scale selection algorithm for 20 images

Image DC DC autoScale Scale Auto Scale #soma #continugous Somas

1 0.91 0.91 15 12 7 0

2 0.92 0.91 15 18 6 1

3 0.92 0.91 15 18 7 0

4 0.85 0.87 15 17 7 1

5 0.85 0.76 15 17 4 0

6 0.90 0.80 15 18 7 0

7 0.86 0.86 15 17 5 0

8 0.37 0.40 23 16 2 0

9 0.70 0.23 23 12 1 0

10 0.49 0.53 23 27 1 0

11 0.89 0.80 23 14 1 0

12 0.88 0.55 23 25 1 0

13 0.70 0.39 15 13 1 0

14 0.48 0.70 15 20 2 0

15 0.92 0.90 15 17 5 0

16 0.74 0.74 15 15 4 0

17 0.81 0.71 15 17 5 0

18 0.70 0.76 15 13 2 0

19 0.40 0.38 15 5 2 0

20 0.47 0.65 15 10 1 0
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5.5. NEURITE DETECTION ACCURACY TABLE

5.5 Neurite Detection Accuracy Table

Table 5.3: Neurite detection accuracy: images1-4

imageName SomaNumber number of detected neurites number of neurites

image1 soma1 3 4

image1 soma2 4 4

image1 soma3 4 4

image1 soma4 3 4

image2 soma1 3 3

image2 soma2 3 3

image2 soma3 5 5

image2 soma4 2 4

image2 soma5 5 5

image2 soma6 2 3

image2 soma7 4 4

image3 soma1 6 6

image3 soma2 2 3

image3 soma3 5 6

image3 soma4 2 2

image3 soma5 3 3

image3 soma6 5 7

image3 soma7 4 5
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5.5. NEURITE DETECTION ACCURACY TABLE

Table 5.4: Neurite detection accuracy: images5-10

imageName SomaNumber number of detected neurites number of neurites
image4 soma1 4 4
image4 soma2 4 4
image4 soma3 5 5
image4 soma4 2 2
image4 soma5 2 3
image4 soma6 3 3
image4 soma7 2 2
image5 soma1 2 2
image5 soma2 5 5
image5 soma3 3 5
image5 soma4 3 4
image6 soma1 3 3
image6 soma2 5 5
image7 soma1 4 5
image7 soma2 3 4
image8 soma1 4 5
image8 soma2 5 5
image8 soma3 4 4
image8 soma4 4 5
image8 soma5 4 4
image8 soma6 3 3
image8 soma7 1 1
image9 soma1 4 4
image9 soma2 3 3
image9 soma3 4 4
image9 soma4 4 4
image9 soma5 3 3
image10 soma1 2 3
image10 soma2 6 6
image10 soma3 4 4
image10 soma4 1 2
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