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Abstract

In complex geometry, there are few known examples of, and few known results

about, manifolds with metrics of positive curvature. For instance, the geometry of

fiber bundles and total spaces of fibrations over positively-curved complex manifolds

is mysterious and not well-understood. In this dissertation, we study the existence of

(pinched) metrics of positive curvature on a particular type of fiber bundle—namely

metrics of positive holomorphic sectional curvature on projectivized vector bundles

over compact complex manifolds. We first prove a general theorem for projectivized

vector bundles, then we discuss a curvature pinching result for projectivized rank 2

vector bundles over complex projective space of dimension 1.
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Chapter 1

Introduction

In the world of complex geometry, an often studied phenomenon is the dichotomy

between manifolds of positive curvature and manifolds of negative curvature. In the

positive case, few examples are known of manifolds with metrics of positive curvature.

Additionally, there tend to be fewer known results about positively-curved manifolds

compared with the corresponding situation in negative curvature. This disparity is

due to the many di�culties which arise when dealing with positive curvature.

This dissertation primarily concentrates on the holomorphic sectional curvature

of compact complex manifolds. The holomorphic sectional curvature of a Kähler

manifold is precisely the Riemannian sectional curvature of the holomorphic planes

in the tangent space of the manifold. We focus on this particular curvature because

it has significant relationships to various notions in algebraic geometry which help in

further studying the manifold structure. For instance, a result in [HW15] shows that

projective manifolds which admit a Kähler metric of positive holomorphic sectional

curvature are rationally connected. The holomorphic sectional curvature of a complex

manifold also plays a role in determining its Kodaira dimension. For example, the
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CHAPTER 1. INTRODUCTION

relationship between semi-positive holomorphic sectional curvature and the Kodaira

dimension of compact Hermitian manifolds is discussed in [Yan15]. Furthermore,

results on the Kodaira dimension of projective manifolds of semi-negative holomorphic

sectional curvature are discussed in [HLW15]. The holomorphic sectional curvature

of a complex manifold can also determine the positivity of the canonical bundle

(e.g., whether the canonical bundle is ample, numerically e↵ective (nef), etc.). For

instance, it was shown that a projective manifold which admits a Kähler metric of

semi-negative holomorphic sectional curvature contains no rational curves and has nef

canonical bundle (see [HLW15] and [Shi71]). In addition, the relationship between

negative holomorphic sectional curvature and the ampleness of the canonical bundle

of a projective manifold is discussed in [HLW10] and [WY15]. An extension of the

result in [WY15] can be found in [TY15], which states that a compact Kähler manifold

with negative holomorphic sectional curvature has ample canonical bundle. More

relationships between curvature and the positivity of the canonical bundle and anti-

canonical bundle are discussed in detail in Section 2.4.

In general, there are few examples known of compact complex manifolds which

carry a Hermitian metric of positively-pinched holomorphic sectional curvature. A

notable exception form the irreducible Hermitian symmetric spaces of compact type,

whose pinching constants for the holomorphic sectional curvature can be found in

[Che77, Table I]. Moreover, many di�culties arise when dealing with positive holomor-

phic sectional curvature. For example, we have the Curvature Decreasing Property of

Subbundles (found in [Gri69], [Kob70], and [Wu73]), which e↵ectively states that any

complex submanifold of a Hermitian manifold of negative holomorphic sectional cur-

vature will also have negative holomorphic sectional curvature. On the other hand,

a complex submanifold of a Hermitian manifold of positive holomorphic sectional

2



CHAPTER 1. INTRODUCTION

curvature is not guaranteed to also have positive holomorphic sectional curvature.

Because of these di�culties, it is a worthwhile endeavor to find and investigate

metrics of positive curvature on complex manifolds. In this dissertation, we present

several results on the existence of (pinched) metrics of positive holomorphic sectional

curvature on total spaces of certain fibrations ⇡ : P ! M , namely where P is a

projectivized vector bundle and M is a compact complex manifold of positive holo-

morphic sectional curvature. We also discuss an explicit curvature pinching constant

for projectivized rank 2 vector bundles over CPn (formally known as the Hirzebruch

surfaces).

The work in this dissertation was motivated by several known results and open

questions in the realm of positive curvature. In particular, this work was partially

inspired by the following result proven by Cheung in negative curvature:

Theorem 1.1 ([Che89]). Let ⇡ : X ! Y be a holomorphic map of a compact complex

manifold X into a complex manifold Y which has a Hermitian metric of negative

holomorphic sectional curvature. Assume that ⇡ is of maximal rank everywhere and

there exists a smooth family of Hermitian metrics on the fibers, which all have negative

holomorphic sectional curvature. There there exists a Hermitian metric on X with

negative holomorphic sectional curvature everywhere.

Despite this result, the curvature and geometry of fiber bundles and fibrations are

still mysterious and not well-understood in the positive case. A natural question to

ask is: Does the result of Cheung still hold true for metrics of positive holomorphic

sectional curvature? Arriving at an answer seems to be more involved than in the

negative case—for instance, due to the Curvature Decreasing Property of Subbundles

not being applicable. Hence, the investigation of fibrations and fiber bundles are
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CHAPTER 1. INTRODUCTION

left for a later occasion. As a primary stepping stone, we first consider the case of

projectivized vector bundles on compact complex manifolds. The idea to projectivize

vector bundles was prompted by a result proven by Hitchin in [Hit75] which states

that the Hirzebruch surfaces admit a Kähler metric of positive holomorphic sectional

curvature. Despite proving positivity, Hitchin’s result did not yield any curvature

pinching constants. Additionally, in [SY10], Yau posed the following open question

from his list of open problems in Riemannian geometry: Do all vector bundles over a

manifold with positive [Riemannian] sectional curvature admit a complete metric with

nonnegative [Riemannian] sectional curvature? When we transplant Yau’s question

to the complex projective setting, “nonnegative curvature” naturally gets replaced by

“positive curvature”. The layout of this dissertation is as follows:

In Chapter 2, we review relevant definitions and topics from complex geometry,

di↵erential geometry, and algebraic geometry which are necessary for this dissertation.

In Chapter 3, we prove our main theorem on metrics of positive holomorphic

sectional curvature for general projectivized rank k 2 N vector bundles over compact

Kähler manifolds, where the base manifold also has positive holomorphic sectional

curvature. This theorem serves as a generalization of Hitchin’s theorem in [Hit75].

Theorem 1.2 ([AHZ15]). Let M be an n-dimensional compact Kähler manifold.

Let E be holomorphic vector bundle over M and let ⇡ : P = P(E) ! M be the

projectivization of E. If M has positive holomorphic sectional curvature, then P

admits a Kähler metric with positive holomorphic sectional curvature.

The proof requires the clever use of normal coordinates in which to do the cur-

vature computations. It should be remarked that our main theorem does not work

analogously for Ricci curvature since the n-th Hirzebruch surfaces Fn do not have
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CHAPTER 1. INTRODUCTION

positive Ricci curvature for n � 2 (see Proposition 4.7).

In Chapter 4, we first discuss an e↵ective curvature pinching result for the holo-

morphic sectional curvature on projectivized rank 2 holomorphic vector bundles over

CP1:

Theorem 1.3 ([ACH15]). Let Fn, n 2 {1, 2, 3, . . .}, be the n-th Hirzebruch surface.

Then there exists a Hodge metric on Fn whose holomorphic sectional curvature is

1
(1+2n)2 -pinched.

We then generalize the case of the 0-th Hirzebruch surface P1 ⇥ P1 and prove the

following result on products of Hermitian manifolds of positive holomorphic sectional

curvature:

Theorem 1.4 ([ACH15]). Let M and N be Hermitian manifolds whose positive holo-

morphic sectional curvatures are cM - and cN -pinched, respectively, and satisfy

kcM  KM  k and kcN  KN  k

for a constant k > 0. Then the holomorphic sectional curvature K of the product

metric on M ⇥N satisfies

k
cMcN

cM + cN
 K  k

and is cM cN
cM+cN

-pinched.

This product result may seem surprising or unlikely due to the Hopf Conjecture

in Riemannian geometry, which states the product of two real 2-spheres does not

admit a Riemannian metric of positive sectional curvature. Because this conjecture is

on [Riemannian] sectional curvature, the computation considers all planes inside the

5



CHAPTER 1. INTRODUCTION

tangent space—not just holomorphic planes. Hence, there is no contradiction with

our product result.

We remark that some of the results in this dissertation have appeared elsewhere.

The work in Chapter 4 has been published in [ACH15] and the work in Chapter 3 is

to appear in [AHZ15].
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Chapter 2

Definitions and Preliminaries

2.1 Hermitian and Kähler Metrics

Definition 2.1. Let M be an n-dimensional complex manifold and let p 2 M . A

Hermitian metric on M is a positive-definite Hermitian inner product

gp : T
0
pM ⌦ T 0

pM ! C

which depends smoothly on p 2 M .

Let U be a small open set in M such that p 2 U . We say gp “depends smoothly

on p 2 M” if z = (z1, ..., zn) are local coordinates around p and { @
@z1

, ..., @
@zn

} is the

standard basis for the holomorphic tangent space T 0
pM , then the functions

gij̄ : U ! C, p 7! gp

✓
@

@zi
(p),

@

@z̄j
(p)

◆
(2.1)

are smooth for all i, j 2 {1, 2, ..., n}.
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2.1 HERMITIAN AND KÄHLER METRICS

Let {dz1, ..., dzn} be the dual basis of { @
@z1

, ..., @
@zn

}. Then locally, the Hermitian

metric can be written as

g =
nX

i,j=1

gij̄dzi ⌦ dz̄j,

where the gij̄ form an n⇥ n positive definite Hermitian matrix
�
gij̄
�
of smooth func-

tions defined in (2.1). The metric g can be decomposed into two parts:

1. The real part, denoted by Re(g)

2. The imaginary part, denoted by Im(g).

The real part Re(g) gives an ordinary inner product called the induced Riemannian

metric of g. The imaginary part Im(g) represents an alternating R-di↵erential 2-form.

In particular, it is a (1, 1)-form.

Remark 2.2. If we let h := Re(g), then h is the Riemannian metric of the underlying

smooth manifold MR of M . Hence, every Hermitian manifold is also a Riemannian

manifold. Unfortunately, not every Riemannian manifold is a Hermitian manifold.

Given a Riemannian metric h on a complex manifold, then h “comes from” a Hermi-

tian metric if it respects the complex structure; i.e., for all vector fields X, Y and the

complex structure J , h(JX, JY ) = h(X, Y ).

We can decompose our metric g as g = Re(g) +
p�1Im(g). Let ! := �1

2Im(g).

Definition 2.3. The (1, 1)-form ! is called the associated (1, 1)-form of g.

In coordinates, the associated (1, 1)-form can be written locally as

! =

p�1

2

nX

i,j=1

gij̄dzi ^ dz̄j. (2.2)

8



2.1 HERMITIAN AND KÄHLER METRICS

Definition 2.4. The Hermitian metric g is called Kähler if ! is d-closed, where

d = @ + @̄ is the exterior derivative.

The following proposition summarizes standard equivalences for a Hermitian met-

ric being Kähler. In the proof of the proposition, we follow the exposition in [Bal06]

and [Zhe00].

Proposition 2.5. Let (M, g) be an n-dimensional Hermitian manifold. Then the

following are equivalent:

(i) g is Kähler (i.e., d! = 0).

(ii) For every point p 2 M , there exists a neighborhood U 3 p and a smooth, real-

valued function F : U ! R such that ! =
p�1@@̄F on U . We call F the

Kähler potential.

(iii) In any local coordinate system,

@gij̄
@zk

=
@gkj̄
@zi

, 1  i, j, k  n,

or equivalently,

@gij̄
@z̄l

=
@gil̄
@z̄j

, 1  i, j, l  n.

(iv) For any point p 2 M , there exist local holomorphic coordinates (z1, ..., zn) in a

neighborhood of p such that

gij̄(p) = �ij and (dgij̄)(p) = 0.

Such coordinates are called normal coordinates.

9



2.1 HERMITIAN AND KÄHLER METRICS

Proof. We first prove that (i) () (ii) .

“=)” Assume g is a Kähler metric; i.e., d! = 0. Because ! is closed, then we know

that for a su�ciently small open set U , there exists a 1-form µ such that dµ = !.

Because µ is a 1-form, we can decompose µ into a (1, 0)-form and (0, 1)-form, precisely

µ = µ1,0 + µ0,1. Then

! = dµ = (@ + @̄)(µ1,0 + µ0,1) = @µ1,0 + @µ0,1 + @̄µ0,1 + @̄µ0,1 = @µ0,1 + @̄µ1,0,

where @µ1,0 = @̄µ0,1 = 0 since they are, respectively, (2, 0) and (0, 2)-forms and we

know ! is a (1, 1)-form by definition. Because µ1,0 is @-closed and µ0,1 is @̄-closed, we

know that on our su�ciently small open set U , there exist smooth functions f1 and

f2 such that �@f1 = µ1,0 and @̄f2 = µ0,1. Because @@̄ = �@̄@, we get

p�1@@̄(f2 + f1) = @(@̄f2) + @̄(�@f1) = @µ0,1 + @̄µ1,0 = dµ = !.

Let F := f2 + f1. Because ! is a real (1, 1)-form, we can assume F is real-valued.

“(=” Assume there exists a Kähler potential F . Then

d! =
p�1d(@@̄F ) =

p�1(@ + @̄)(@@̄F ) =
p�1(@@@̄F � @@̄@̄F ) = 0

since @2 = @̄2 = 0.

To show (i) () (iii) , we directly compute the derivatives and see that (iii) is just

the local coordinate version of (i).

Lastly, we show that (i) () (iv) . “=)” Assume (i) holds. After a possible constant

linear change if necessary, we have that gij̄(p) = �ij, for all i, j 2 {1, ..., n}. Define the
constant matrix Aj by Aj

ik =
@gij̄
@zk

(p), which is a symmetric matrix due to condition

10



2.1 HERMITIAN AND KÄHLER METRICS

(iii). Define new holomorphic coordinates (z̃1, ..., z̃n) by

z̃j = zj +
1

2

X

i,k=1

Aj
ikzizk. (2.3)

Under these new coordinates, the metric can be represented by the matrix g̃ =

B�1g(B�1)⇤, where ⇤ denotes the conjugate transpose of B�1, and the entries of

B are

Bij = �ij +
nX

k=1

Aj
ikzk.

Direct computation shows that (dg̃)(p) = 0.

“(=” Now assume there exist local holomorphic normal coordinates around each

point p 2 M . This means that there exist coordinates (z1, ..., zn) such that (dg)(p) =

0. Because all derivatives at p are 0, we clearly must have d! = 0.

We observe that the equivalence of (i) and (iv) implies that a metric g is Kähler if

and only if it can have second order approximation to the Euclidean metric at every

point; i.e., g can be written as

g =
nX

i,j=1

gij̄dzi ⌦ dz̄j =
nX

i,j=1

(�ij +O(2))dzi ⌦ dz̄j.

Additionally, any submanifold N of a Kähler manifold (M, g) is also Kähler since

d(!|N) = (d!)|N = 0.

Example 2.6. Let M = CPn. Let [w] = [w0, ..., wn] be homogeneous coordinates on

M and let |w|2 =
Pn

i=0 |wi|2. Note that for � 2 C⇤, log(|�w|2) = log |�|2 + log |w|2.
Consider the form

! =

p�1

2
@@̄ log |w|2, (2.4)

11



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

which is a well-defined, closed global (1, 1)-form on CPn. To see that ! is positive-

definite, take the standard coordinate charts on CPn, {Ui}ni=0, where

Ui = {[w0, ..., wn] | wi 6= 0}.

In U0, let z = (z1, ..., zn) be a local a�ne coordinates where zi =
wi
w0
, for i = 1, ..., n.

Then |z|2 = |z1|2 + · · ·+ |zn|2. In U0, we have that ! is given by

2p�1
! = @@̄ log(1 + |z|2) =

nX

i,j=1

(1 + |z|2)�ij � z̄izj
(1 + |z|2)2 dzi ^ dz̄j. (2.5)

Let g = (gij̄), where gij̄ = (1+|z|2)�ij�z̄izj
(1+|z|2)2 . Because the determinants of all the k ⇥ k

minors of g are all positive for 1  k  n, we know by Sylvester’s criterion that g

is a positive-definite Hermitian matrix. Hence, ! is positive on U0. Since U0 can be

replaced any Ui, 1  i  n, we have that ! is positive everywhere on CPn. In fact,

! is the associated (1, 1)-form of a Kähler metric called the Fubini-Study metric of

CPn.

Definition 2.7. A Hermitian metric is called a Hodge metric if it is Kähler and the

cohomology class of its associated (1, 1)-form is rational.

2.2 Connections on Complex Vector Bundles

We first discuss a few preliminary notions on a complex vector bundle E ! M over

a complex manifold M . In the next section, we will let E = TM to define our

curvatures. In this section, the notation Ap(E) will denote the sheaf of E-valued

p-forms on M . Note that Ak(E) = �p+q=kAp,q(E), where Ap,q(E) is the sheaf of

12



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

smooth E-valued (p, q)-forms on M .

Definition 2.8. Let E ! M be a complex vector bundle. A Hermitian metric on E

is a Hermitian inner product h·, ·i on each fiber Ep of E which depends smoothly on

p 2 M .

Let E ! M be a rank n vector bundle, where n 2 N. Let {e1, ..., en} be a local

frame of E over an open set U ✓ M ; i.e., the set {e1, ..., en} forms a basis of sections

for each fiber. By “depends smoothly”, we mean that the functions hij̄ = hei(p), ej(p)i
are smooth.

Definition 2.9. Let M be a complex manifold and let E ! M be a complex vector

bundle of rank n 2 N. A connection on E is a linear map D : A0(E) ! A1(E) which

satisfies the Leibniz’ rule: For all f 2 C1(M) and for all ⇠ 2 A0(E),

D(f⇠) = df ⌦ ⇠ + f ·D(⇠).

Using the local frame {e1, ..., en}, a connection D can be locally written as De↵ =
Pn

�=1 ✓↵�e�, where the ✓↵� are 1-forms.

Definition 2.10. The matrix of 1-forms, ✓ = (✓↵�), is called the connection matrix

of D with respect to the local frame {e1, ..., en}.

We will focus on a special kind of connection which satisfies two compatibility

criteria.

Definition 2.11. Let D be a connection over a complex vector bundle E. Then D

is compatible with the complex structure if the composition of maps

pr2 �D : A0(E)
D! A1(E)

pr2! A0,1(E)

13



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

is just equal to @̄.

Definition 2.12. Let D be a connection over a complex vector bundle E and let

h·, ·i be a Hermitian metric on E. We say D is compatible with the metric structure

if for all ⇠, ⌘ 2 A0(E), dh⇠, µi = hD⇠, ⌘i+ h⇠, D⌘i.

Proposition 2.13. Let E be a holomorphic vector bundle with Hermitian metric

h·, ·i on E. Then there exists uniquely a connection D that is compatible with both

the complex structure and the metric structure.

Definition 2.14. The unique connection of E compatible with both the complex

structure and the metric is called the canonical metric connection, or the Hermitian

connection.

Furthermore, we can define the following connection for p � 1:

Dp : Ap(E) ! Ap+1(E)

via the Leibniz rule: For all ⇠ 2 A0(E) and for all  2 Ap(M),

Dp( · ⇠) = d ⌦ ⇠ + (�1)p ^D⇠.

In particular, we have that the map D2 = D �D : A0(E) ! A2(E) is linear over

A0(E). In other words, D2(f�) = fD2(�), for any f 2 C1(M) and � 2 A0(E).

Hence, for any local frame {e1, ..., en} over an open set U ✓ M , D2 can locally be

written as D2e↵ =
Pn

�=1 ⇥↵�e�, where the ⇥↵� are 2-forms.

Definition 2.15. The matrix of 2-forms, ⇥ = (⇥↵�), is called the curvature matrix

of D with respect to the local frame {e1, ..., en}.

14



2.3 THE CURVATURES OF A HERMITIAN METRIC

Remark 2.16. The curvature matrix ⇥ can be decomposed as ⇥ = �p+q=2⇥p,q

where ⇥p,q is a matrix of (p, q)-forms. If D is compatible with the complex structure,

then ⇥0,2 = 0. This is because D0,1 = @̄, and
Pn

�=1 ⇥
0,2
↵�e� = D0,2e↵ = (D0,1)2e↵.

Additionally, if D is also compatible with the metric, we can choose a unitary frame

of E such that both ✓ and ⇥ are skew-Hermitian—that is, ✓⇤ = �✓ and ⇥⇤ = �⇥,

where “⇤” denotes the conjugate transpose. With ⇥ skew-Hermitian and ⇥0,2 = 0,

we have that ⇥2,0 = �(⇥2,0)⇤ = �(⇥0,2)T = 0. Hence, ⇥ consists of only (1, 1)-forms.

2.3 The Curvatures of a Hermitian Metric

Let E be a rank n 2 N holomorphic vector bundle and let u and v be sections of E.

Let {e1, ..., en} be a local frame for E and assume that ⇥ is the curvature matrix of

the canonical metric connection D. Write u =
Pn

i=1 uiei and v =
Pn

i=1 viei. Define

the following (1, 1)-form as follows:

⇥uv̄ =
nX

i,j,k=1

⇥ikgkj̄uiv̄j,

where gkj̄ is a Hermitian metric on E.

Definition 2.17. Let u and v be sections of E and let X and Y be tangent vectors

on M . Define the 4-tensor RXȲ uv̄ by RXȲ uv̄ := ⇥uv̄(X, Ȳ ).

We observe that because ⇥ is skew-Hermitian and ⇥vū = �⇥uv̄, we have

RXȲ uv̄ = RY X̄vū.
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2.3 THE CURVATURES OF A HERMITIAN METRIC

2.3.1 The Components of the Curvature Tensor

In this section, we discuss the special case of a vector bundleE which is key for defining

our curvatures. Let M be an n-dimensional Hermitian manifold with Hermitian

metric g and canonical metric connection D. Let E = TM . Then, for any (1, 0)-

tangent vectors X, Y, Z,W , write

R(X, Ȳ , Z, W̄ ) := RXȲ ZW̄ = ⇥ZW̄ (XȲ ).

Let {e1, ..., en} be a local frame for TM , in which case we write Rij̄kl̄ := Reiējek ēl .

Definition 2.18. The Rij̄kl̄ are called the components of the curvature tensor asso-

ciated with the metric connection.

If we consider holomorphic coordinates (z1, ..., zn) and let {ei}ni=1 = { @
@zi

}ni=1, we

can write the components as

Rij̄kl̄ = � @2gij̄
@zk@z̄l

+
nX

p,q=1

gqp̄
@gip̄
@zk

@gqj̄
@z̄l

, (2.6)

where gqp̄ is to be interpreted as (g�1)pq. Moreover, when g is Kähler, the Rij̄kl̄ satisfy

the following symmetry condition:

Rij̄kl̄ = Rkj̄il̄ = Ril̄kj̄. (2.7)

Remark 2.19. We have an equivalent definition of the components of the curvature

tensor for an arbitrary tangent vector X. Namely, if X =
Pn

i=1 Xi
@
@zi

is a (1, 0)-

16



2.3 THE CURVATURES OF A HERMITIAN METRIC

tangent vector on M , then

RXX̄XX̄ = �g(X, X̄,X, X̄) +
nX

a,b=1

gbāg(X, ā,X)g(b, X̄, X̄), (2.8)

where g(X, X̄,X, X̄) is to be considered as the 4-tensor defined as follows: Let

g

✓
@

@zi
,
@̄

@zj
,
@

@zk
,
@̄

@zl

◆
:=

nX

i,j,k,l=1

@2gij̄
@zk@̄z̄l

. (2.9)

By multi-linearity of g, we know

g(X, X̄,X, X̄) =
nX

i,j,k,l=1

XiX̄jXkX̄lg

✓
@

@zi
,
@̄

@zj
,
@

@zk
,
@̄

@zl

◆
.

Hence,

g(X, X̄,X, X̄) :=
nX

i,j,k,l=1

XiX̄jXkX̄l
@2gij̄
@zk@̄z̄l

. (2.10)

Additionally, g(X, ā,X) is the 3-tensor defined as follows: Let

g

✓
@

@zi
,
@̄

@za
,
@

@zj

◆
:=

nX

i,j=1

@giā
@zj

. (2.11)

By multi-linearity, we know

g(X, ā,X) =
nX

i,j=1

XiXjg

✓
@

@zi
,
@̄

@za
,
@

@zj

◆
.

Thus,

g(X, ā,X) :=
nX

i,j=1

XiXj
@giā
@zj

. (2.12)

The term g(b, X̄, X̄) is defined similarly. We will use this equivalent definition in

17



2.3 THE CURVATURES OF A HERMITIAN METRIC

Chapter 3 since it lends itself better to approximating the curvature from below.

2.3.2 Definitions of Curvatures on a Hermitian Manifold

Using the components of the curvature tensor, we can make the following precise

definitions:

Definition 2.20. If X =
Pn

i=1 Xi
@
@zi

is a nonzero (1, 0)-tangent vector at p 2 M ,

then the holomorphic sectional curvature in the direction of X, denoted by K(X), is

given by

K(X) =

 
2

nX

i,j,k,l=1

Rij̄kl̄(p)XiX̄jXkX̄l

!
/

 
nX

i,j,k,l=1

gij̄gkl̄XiX̄jXkX̄l

!
. (2.13)

Note that the holomorphic sectional curvature of X is invariant under multipli-

cation of X with a real nonzero scalar. As a result, it su�ces to use unit vectors for

which the value of the denominator is 1.

Remark 2.21. By (2.8) we have an equivalent (and concise) definition of holomor-

phic sectional curvature: If X =
Pn

i=1 Xi
@
@zi

is a (1, 0)-tangent vector on M , the

holomorphic sectional curvature in the direction of X is

K(X) =
RXX̄XX̄

|X|4 , (2.14)

where | · |4 is with respect to the metric g. We will use this definition in Chapter 3.

Example 2.22. With the Fubini-Study metric discussed in Example 2.6, CPn has

constant holomorphic sectional curvature equal to 4.
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2.3 THE CURVATURES OF A HERMITIAN METRIC

When we consider an orthonormal basis {u1, ..., un} of TM , we can take the trace

of the components of the curvature tensor and obtain the following curvatures.

Definition 2.23. The Ricci curvature in the direction of X is

Ric(X) =
nX

i,j=1

rij̄XiX̄j, (2.15)

where rij̄ =
Pn

k,l=1 g
kl̄Rij̄kl̄ and gkl̄ = (g�1)lk̄.

Remark 2.24. One can compute rij̄ without the use of the curvature tensors. Given

a Hermitian metric g = (gkl̄), we have

rij̄ = � @2

@zi@z̄j
log (det gkl̄)) . (2.16)

There are actually several ways to define the Ricci curvature of g. Using the

equation in (2.16), we have what is called first Ricci curvature of g. For definitions

of the other two Ricci curvatures, we refer the reader to [Zhe00, Section 7.6]. If M is

a Kähler manifold, all of the di↵erent Ricci curvatures coincide.

Using the rij̄ in (2.16), we can define the following real, closed, and globally defined

(1, 1)-form on M :

Definition 2.25. The Ricci curvature form of a Hermitian metric g, denoted by

Ric(g) is defined as

Ric(g) :=
p�1

nX

i,j=1

rij̄dzi ^ dz̄j. (2.17)

Under the same orthonormal basis, taking the trace of the rij̄ gives us:
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2.3 THE CURVATURES OF A HERMITIAN METRIC

Definition 2.26. The scalar curvature ⌧ is defined to be

⌧ =
nX

i,j=1

gij̄rij̄ =
nX

i,j,k,l=1

gij̄gkl̄Rij̄kl̄.

The Ricci form and scalar curvature are related by the following formula:

Proposition 2.27. Let (M, g) be an n-dimensional Kähler manifold with associated

(1, 1)-form !. Then

Ric(g) ^ !n�1 =
2

n
⌧!n.

One can easily see that Ric(g) > 0 implies that ⌧ > 0. Lastly, we can consider the

scalar curvature on the whole manifold by defining:

Definition 2.28. The total scalar curvature T is defined to be

T =

Z

M

⌧!n,

where ! is the associated (1, 1)-form of the Hermitian metric g and n = dimM .

In the Kähler case, a result of Berger implies that the holomorphic sectional curvature

and scalar curvature always have the same sign.

Proposition 2.29 ([Ber66]). Let (M, g) be a Kähler manifold. Let K be the holo-

morphic sectional curvature of M and let ⌧ be the scalar curvature of M .

(i) If K > 0, then ⌧ > 0

(ii) If K � 0, then ⌧ � 0

(iii) If K < 0, then ⌧ < 0
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2.3 THE CURVATURES OF A HERMITIAN METRIC

(iv) If K  0, then ⌧  0.

Furthermore, in the negative case, the relationship between holomorphic sectional

curvature and total scalar curvature is discussed in the following theorem.

Theorem 2.30 ([HW12]). Let M be a projective manifold with a Kähler metric

of negative holomorphic sectional curvature. Then the total scalar curvature of any

Kähler metric on M is negative.

2.3.3 Curvature Pinching

Let M be a compact Hermitian manifold with holomorphic sectional curvature K(X).

Definition 2.31. Let c 2 (0, 1]. We say that the holomorphic sectional curvature is

c-pinched if
minX K(X)

maxX K(X)
= c ( 1),

where the maximum and minimum are taken over all (unit) tangent vectors across

M .

The pinching constant of a compact (Hermitian, Kähler, Riemannian, etc.) man-

ifold can help determine some global properties of the manifold. For instance it was

shown in [SS85] that if the holomorphic sectional curvature of a 6-dimensional con-

nected complete non-Kähler, nearly Kähler manifold M is c-pinched, where c > 2
5 ,

then M is isometric to the 6-sphere of constant curvature ⌧
30 , where ⌧ is the scalar cur-

vature of M . Additionally, results on compact Riemannian manifolds whose sectional

curvature is 1
4 -pinched are discussed in [BS08] and [BS09].
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

2.4 Curvature and the (Anti-)Canonical Bundle

There is a significant interplay between the curvature of a complex manifold and the

various algebraic-geometric notions of positivity of its (anti-)canonical bundle. We

first make the following precise definitions which will be utilized in Chapter 4.

Definition 2.32. Let M be a compact complex manifold and let L ! M be a

holomorphic line bundle onM . Then L is positive or ample if there exists a Hermitian

metric h on L such that its curvature form 1
2⇡i@@̄ log h is a positive-definite (1, 1)-form.

Definition 2.33. Let M be a compact complex manifold. Then M is projective if it

can be embedded into a complex projective space CPn.

Using the Kodaira Embedding Theorem, a manifold is projective if and only if

it admits a positive line bundle L ! M . Also, by Chow’s Theorem, a manifold is

projective if and only if it can be defined as the zero locus in projective space of a

finite number of homogeneous polynomials (i.e., it is projective algebraic).

An important special case is when L = KM , where KM :=
VdimM TM⇤ is the

highest exterior power of the cotangent bundle of M .

Definition 2.34. We call KM the canonical bundle of M and call its dual �KM the

anti-canonical bundle of M .

Definition 2.35. If �KM is ample, then M is called a Fano manifold.

Definition 2.36. The first Chern class of M is defined to be cR1 (M) := cR1 (�KM).

Using the usual abuse of notation, we will drop the R. If KM is ample, then

c1(KM) > 0, and if �KM is ample, then c1(�KM) > 0. By the work of Chern, we

know that the cohomology class of 1
2⇡Ric is equal to c1(M). This equality, together

with Yau’s solution of the Calabi Conjecture found in [Yau78], yields:
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

Theorem 2.37. There exists a Kähler metric with Ric < 0 if and only if c1(KM) > 0.

There exists a Kähler metric with Ric > 0 if and only if c1(�KM) > 0.

From the definition of holomorphic sectional curvature, it is clear that the curva-

ture tensor determines the holomorphic sectional curvature. Conversely, from [KN69,

Proposition 7.1], we know that the holomorphic sectional curvature determines the

components of the curvature tensor. Be that as it may, the positivity or negativity

properties of the holomorphic sectional curvature do not necessarily transfer to the

Ricci curvature. In the positive case, the relationship between holomorphic sectional

curvature and Ricci curvature is a bit more subtle and mysterious. In the negative

case, it was proven in [HLW10] that if dimM  3 and if there exists a Kähler metric

on M with negative holomorphic sectional curvature, then there exists a Kähler met-

ric on M with negative Ricci curvature. More recently, it was proven by Wu and Yau

that this statement holds true for a projective manifold of any dimension, namely:

Theorem 2.38 ([WY15]). If a projective manifold M admits a Kähler metric whose

holomorphic sectional curvature is negative everywhere, then the canonical bundle KM

is ample.

Moreover, this result was extended by Tosatti and Yang in [TY15] from the projective

case to the Kähler case:

Theorem 2.39 ([TY15]). Let M be a compact Kähler manifold with negative holo-

morphic sectional curvature. Then KM is ample.

By Theorem 2.37, Theorem 2.38, and Theorem 2.39, we see that M having nega-

tive holomorphic sectional curvature implies thatM also has negative Ricci curvature.

In the positive case, it does not hold true that positive holomorphic sectional cur-

vature implies positive Ricci curvature. For instance, the n-th Hirzebruch surface
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

Fn admits a Kähler metric of positive holomorphic sectional curvature, but does not

admit a metric of positive Ricci curvature for n � 2. In Section 4.1, we briefly discuss

the Ricci curvature of Hirzebruch surfaces using the notion of intersection numbers,

which is defined as follows:

Definition 2.40. LetM be a compact complex manifold and letD1, ..., Dk be divisors

on M . Then the intersection number of D1, ..., Dk and a k-dimensional subvariety V

is

D1. · · · .Dk.V =

Z

V

c1(D1) ^ · · · ^ c1(Dk) 2 Z.

Using intersection numbers, we can state a numerical criterion for ampleness.

Theorem 2.41 ([Kle66], [Moi61], [Moi62], [Nak60], [Nak63]). Let M be a projective

manifold and let L be a line bundle on M . Let D be a divisor on M such that

L = [D]. Then L is ample if and only if for all positive-dimensional irreducible

subvarieties V ✓ M ,

DdimV .V =

Z

V

c1(D)dimV > 0.

Note that letting V = M is allowed in Theorem 2.41. This theorem is called

the Nakai-Moishezon-Kleiman criterion, but we will refer to this theorem as Nakai’s

criterion for the sake of brevity. A complete proof of this result can be found in

[Laz04]. In particular, if M is a smooth projective surface, we have that L is ample if

and only if its self-intersection number L.L is positive, and for any irreducible curve

C on M , L.C > 0.
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Chapter 3

Metrics of Positive Curvature on

Projectivized Vector Bundles

In this chapter, we prove a generalization of Hitchin’s result on the positive holomor-

phic sectional curvature on Hirzebruch surfaces found in [Hit75]. We also provide a

partial answer to the open question posed by Yau in Riemannian geometry in [SY10,

Problem 6] by considering Yau’s question in a complex setting and by considering

projectivized vector bundles. This allows us to naturally replace “nonnegative sec-

tional curvature” in Yau’s question with “positive holomorphic sectional curvature”.

Under these circumstances, we arrive at our main theorem which is found in [AHZ15].

3.1 Proof of Theorem 1.2

We recall our main theorem on projectivized vector bundles over compact Kähler

manifolds:

Theorem 1.2 ([AHZ15]). Let M be an n-dimensional compact Kähler manifold.
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3.1 PROOF OF THEOREM 1.2

Let E be holomorphic vector bundle over M and let ⇡ : P = P(E) ! M be the

projectivization of E. If M has positive holomorphic sectional curvature, then P

admits a Kähler metric with positive holomorphic sectional curvature.

Proof. Let (M, g) be an n-dimensional compact Kähler manifold with positive holo-

morphic sectional curvature and let !g be the associated (1, 1)-form of g. Let E be a

rank (r + 1) vector bundle on M and let h be an arbitrary Hermitian metric on E.

Let (x, [v]) be a moving point on P , where x 2 M and [v] 2 P(E). The metrics g and

h naturally induce a closed associated (1, 1)-form on P :

!G = ⇡⇤(!g) + s
p�1@@̄ log h(v, v̄), (3.1)

which is the associated (1, 1)-form of the metric G := Gs on the total space. Write

hvv̄ := h(v, v̄). For s 2 R+ su�ciently small, !G is positive-definite everywhere. Thus,

G is a Kähler metric on P .

We claim that for s su�ciently small (depending on g and h), the metric G has

positive holomorphic sectional curvature. Fix an arbitrary point p = (x0, [w]) 2 P .

Without loss of generality, let us assume that |w| = 1. Since M is assumed to be a

Kähler manifold, we know by Proposition 2.5 that there exist holomorphic coordinates

z = (z1, ..., zn) centered at x0 that are normal with respect to g; i.e., x0 = (0, ..., 0),

and

gij̄(0) = �ij, (dgij̄)(0) = 0, for all 1  i, j  n.

Let ⇥h be the curvature form for the vector bundle (E, h). Using a constant

unitary change of (z1, ..., zn) if necessary, we may assume that the (1, 1)-form ⇥h
ww̄ :=

⇥h(w, w̄) is diagonal. This means at x0, ⇥h can be written as ⇥h
ww̄ =

Pn
i=1 ⇥idzi^dz̄i.
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3.1 PROOF OF THEOREM 1.2

Let {e0, e1, ..., er} be a holomorphic local frame of E near x0. We may assume

that e0(0) = w. We may also assume that

h↵�̄(0) = �↵�, (dh↵�̄)(0) = 0, for all 1  ↵, �  r

and

@i@kh↵�̄(0) =
@2h↵�̄

@zi@zk
(0) = 0.

For [v] in the moving point in P , we can use the holomorphic frame and write

v = e0(z) +
rX

↵=1

t↵e↵(z). (3.2)

Thus, (z, t) = (z1, ..., zn, t1, ..., tr) becomes local holomorphic coordinates in P cen-

tered at p = (x0, [w]) 2 P . Without loss of generality, we can shift our point p to the

origin 0 and assume that our coordinates (z, t) are equal to (0, 0).

We first want to compute G. After direct computation, we obtain

G = Gij̄dzi ^ dz̄j +Gi�̄dzi ^ dt̄� +G↵j̄dt↵ ^ dz̄j +G↵�̄dt↵ ^ dt̄�,

where

Gij̄ = gij̄ +
�s

(hvv̄)2
@hvv̄

@zi

@hvv̄

@z̄j
+

s

hvv̄

@2hvv̄

@zi@z̄j

Gi�̄ =
�s

(hvv̄)2
@hvv̄

@zi

@hvv̄

@ t̄�
+

s

hvv̄

@2hvv̄

@zi@ t̄�

G↵j̄ =
�s

(hvv̄)2
@hvv̄

@t↵

@hvv̄

@z̄j
+

s

hvv̄

@2hvv̄

@t↵@z̄j

G↵�̄ =
�s

(hvv̄)2
@hvv̄

@t↵

@hvv̄

@ t̄�
+

s

hvv̄

@2hvv̄

@t↵@ t̄�
.
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Note that because h depends only on zk and v is linear in t�, we know that

@2hvv̄

@zk@ t̄�
(0) =

@2hvv̄

@t�@z̄k
(0) =

@2hvv̄

@zk@t�
(0) = 0.

Thus, we have Gij̄(0) = (��⇥i)�ij, Gi�̄(0) = G↵j̄(0) = 0, and G↵�̄(0) = �↵�. Hence,

G is diagonal at p. In order to compute the components of the curvature tensor of G,

we need to compute the derivatives up to second order. From (3.2), we can see that

v is linear in t↵. Hence, any derivative of hvv̄ of second-order or higher with respect

to t↵ is identically equal to 0. The first derivatives of G are as follows:

@Gij̄

@zk
=
@gij̄
@zk

+
s

hvv̄

@3hvv̄

@zk@zi@z̄j
� s

(hvv̄)2
@hvv̄

@zk

@2hvv̄

@zi@z̄j
+

2s

(hvv̄)3
@hvv̄

@zk

@hvv̄

@zi

@hvv̄

@z̄j

� s

(hvv̄)2

✓
@2hvv̄

@zk@zi

@hvv̄

@z̄j
+
@hvv̄

@zi

@2hvv̄

@zk@z̄j

◆

@Gi�̄

@zk
=

�s

(hvv̄)2
@hvv̄

@zk

@2hvv̄

@zi@ t̄�
+

s

hvv̄

@3hvv̄

@zk@zi@ t̄�
+

2s

(hvv̄)3
@hvv̄

@zk

@hvv̄

@zi

@hvv̄

@ t̄�

� s

(hvv̄)2

✓
@2hvv̄

@zk@zi

@hvv̄

@ t̄�
+
@hvv̄

@zi

@2hvv̄

@zk@ t̄�

◆

@G↵j̄

@zk
=

�s

(hvv̄)2
@hvv̄

@zk

@2hvv̄

@t↵@z̄j
+

s

hvv̄

@3hvv̄

@zk@t↵@z̄j
+

2s

(hvv̄)3
@hvv̄

@zk

@hvv̄

@t↵

@hvv̄

@z̄j

� s

(hvv̄)2

✓
@2hvv̄

@zk@t↵

@hvv̄

@z̄j
+
@hvv̄

@t↵

@2hvv̄

@zk@z̄j

◆

@G↵�̄

@zk
=

�s

(hvv̄)2
@hvv̄

@zk

@2hvv̄

@t↵@ t̄�
+

s

hvv̄

@3hvv̄

@zk@t↵@ t̄�
+

2s

(hvv̄)3
@hvv̄

@zk

@hvv̄

@t↵

@hvv̄

@ t̄�

� s

(hvv̄)2

✓
@2hvv̄

@zk@t↵

@hvv̄

@ t̄�
+
@hvv̄

@t↵

@2hvv̄

@zk@ t̄�

◆
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@G↵j̄

@t�
=

�s

(hvv̄)3
@hvv̄

@t�

@2hvv̄

@t↵@z̄j
+

2s

(hvv̄)3
@hvv̄

@t�

@hvv̄

@t↵

@hvv̄

@z̄j
� s

(hvv̄)2
@hvv̄

@t↵

@2hvv̄

@t�@z̄j

@G↵�̄

@t�
=

�s

(hvv̄)2
@hvv̄

@t�

@2hvv̄

@t↵@ t̄�
+

2s

(hvv̄)3
@hvv̄

@t�

@hvv̄

@t↵

@hvv̄

@ t̄�
� s

(hvv̄)2
@hvv̄

@t↵

@2hvv̄

@t�@ t̄�
.

Because G is a Kähler metric, we have that
@Gij̄

@t↵
=

@G↵j̄

@zi
and

@Gi�̄

@z↵
=

@G↵�̄

@zi
. Also,

hvv̄(0) = |w|2 = 1,

and all first order derivatives of h and g are zero at the origin. By taking another

derivative and evaluating at the origin, we get

@2Gij̄

@zk@z̄l
(0) =

@2gij̄
@zk@z̄l

+ s

✓
� @2hvv̄

@zk@z̄l

@hvv̄

@zi@z̄j
+

@4hvv̄

@zi@z̄j@zk@z̄l
� @2hvv̄

@zi@z̄l

@2hvv̄

@zk@z̄j

◆

@Gij̄

@zk@ t̄�
(0) = s

@4hvv̄

@zi@z̄j@zk@ t̄�

@2Gij̄

@t↵@ t̄�
(0) = s

✓
@4hvv̄

@zi@z̄j@t↵@ t̄�
� @2hvv̄

@t↵@ t̄�

@h2hvv̄

@zi@z̄j

◆

@2G↵j̄

@t�@z̄l
(0) = 0

@2G↵�̄

@t�@z̄j
(0) = 0
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@2G↵�̄

@t�@ t̄�
(0) = s

✓
� @2hvv̄

@t�@ t̄�

@2hvv̄

@t↵@ t̄�
� @2hvv̄

@t↵@ t̄�

@2hvv̄

@t�@ t̄�

◆
.

Let X =
Pn

i=1 Xi
@
@zi

, U =
Pr

↵=1 U↵
@

@t↵
, and V := X + U 2 TpP . Let R be the

curvature tensor of G, Rg be the curvature tensor of g, and Rh be the curvature

tensor of h. Note that because the matrix of G is diagonal at p, the numerator of the

holomorphic sectional curvature in terms of (2.8) is equal to

RV V̄ V V̄ = �G(V, V̄ , V, V̄ ) +
n+rX

a=1

1

Gaā
G(V, ā, V )G(a, V̄ , V )

= �G(V, V̄ , V, V̄ ) +
n+rX

a=1

1

Gaā
|G(V, ā, V )|2.

(3.3)

Because the second summand is always nonnegative, we know

RV V̄ V V̄ � �G(V, V̄ , V, V̄ ).

Using the multi-linearity of G, we have that

G(V, V̄ , V, V̄ ) = G(X + U, X̄ + Ū , X + U, X̄ + Ū)

= G(X, X̄,X, X̄) +G(U, X̄,X, X̄) +G(X, Ū,X, X̄) +G(U, Ū ,X, X̄)

+G(X, X̄, U, X̄) +G(U, X̄, U, X̄) +G(X, Ū, U, X̄) +G(U, Ū , U, X̄)

+G(X, X̄,X, Ū) +G(U, X̄,X, Ū) +G(X, Ū,X, Ū) +G(U, Ū ,X, Ū)

+G(X, X̄, U, Ū) +G(U, X̄, U, Ū) +G(X, Ū, U, Ū) +G(U, Ū , U, Ū).

Note that G(U, Ū ,X, X̄) and G(X, X̄, U, Ū) are real since they are equal to their own
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conjugates. Additionally,

G(U, X̄,X, X̄) = G(X, Ū,X, X̄), G(X, X̄, U, X̄) = G(X, X̄,X, Ū),

G(U, Ū ,X, Ū) = G(U, Ū , U, X̄), G(X, Ū, U, Ū) = G(U, X̄, U, Ū),

G(U, X̄, U, X̄) = G(X, Ū,X, Ū), G(U, X̄,X, Ū) = G(X, Ū, U, X̄).

Using Proposition 2.5 (iii), we also have that

G(U, X̄,X, X̄) = G(X, X̄, U, X̄), G(U, Ū , X̄, Ū) = G(X, Ū, U, Ū),

G(U, X̄,X, Ū) = G(X, X̄, U, Ū) = G(U, Ū ,X, X̄) = G(X, Ū, U, X̄),

which shows that G(U, X̄,X, Ū) is also real since it is equal to its conjugate. Hence,

we have

G(V, V̄ , V, V̄ ) = G(X, X̄,X, X̄) + 4G(X, X̄, U, Ū) +G(U, Ū , U, Ū)

+ 2Re(G(X, Ū,X, Ū)) + 2(2Re(G(X, X̄,X, Ū)))

+ 2(2Re(G(U, Ū , U, X̄)))

= G(X, X̄,X, X̄) + 4G(X, X̄, U, Ū) +G(U, Ū , U, Ū)

+ 2Re
⇥
G(X, Ū,X, Ū) + 2G(X, X̄,X, Ū) + 2G(U, Ū , U, X̄)

⇤
.

By (2.9) and (2.10), we obtain the following:

RV V̄ V V̄ � �G(V, V̄ , V, V̄ )

= �G(X, X̄,X, X̄)� 4G(X, X̄, U, Ū)�G(U, Ū , U, Ū)

31
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� 2Re
⇥
G(X, Ū,X, Ū) + 2G(X, X̄,X, Ū) + 2G(U, Ū , U, X̄)

⇤

� 2Re


G

✓
Xj

@

@zj
, Ū↵

@̄

@t↵
, Xl

@

@zl
, Ū�

@̄

@t�

◆
+ 2G

✓
Xi

@

@zi
, X̄j

@̄

@zj
, Xk

@

@zk
, Ū�

@̄

@t�

◆�

� 2Re


2G

✓
U↵

@

@t↵
, Ū�

@̄

@t�
, U�

@

@t�
, X̄j

@̄

@zj

◆�

=
nX

i,j,k,l=1

rX

↵,�,�,�=1

�XiX̄jXkX̄lG

✓
@

@zi
,
@̄

@zj
,
@

@zk
,
@̄

@zl

◆

� 4XiX̄jU↵Ū�G

✓
@

@zi
,
@̄

@zj
,
@

@t↵
,
@̄

@t�

◆
� U↵Ū�U�Ū�G

✓
@

@t↵
,
@̄

@t�
,
@

@t�
,
@̄

@t�

◆

� 2Re


XjŪ↵XlŪ�G

✓
@

@zj
,
@̄

@t↵
,
@

@zl
,
@̄

@t�

◆
+ 2XiX̄jXkŪ�G

✓
@

@zi
,
@̄

@zj
,
@

@zk
,
@̄

@t�

◆�

� 2Re


2U↵Ū�U�X̄jG

✓
@

@t↵
,
@̄

@t�
,
@

@t�
,
@̄

@zj

◆�

=
nX

i,j,k,l=1

rX

↵,�,�,�=1

�XiX̄jXkX̄l
@2Gij̄

@zk@z̄l
� 4XiX̄jU↵Ū�

@2Gij̄

@t↵@ t̄�
� U↵Ū�U�Ū�

@2G↵�̄

@t�@ t̄�

� 2Re


XjŪ↵XlŪ�

@2Gj↵̄

@zl@ t̄�
+ 2XiX̄jXkŪ�

@2Gij̄

@zk@ t̄�
+ 2U↵Ū�U�X̄j

@2G↵�̄

@t�@z̄j

�
.

Note that @2Gj↵̄

@zl@ t̄�
and

@2G↵j̄

@t�@z̄l
are conjugates. Because

@2G↵j̄

@t�@z̄l
is 0 at p, we have that

@2G↵j̄

@t�@z̄l

is also 0 at p. Also, we computed
@2G↵�̄

@t�@z̄j
to be 0 at p. Hence, we have

RV V̄ V V̄ � �G(V, V̄ , V, V̄ )

=
nX

i,j,k,l=1

rX

↵,�,�,�=1

�XiX̄jXkX̄l
@2Gij̄

@zk@z̄l
� 4XiX̄jU↵Ū�

@2Gıj̄

@t↵@ t̄�

� U↵Ū�U�Ū�
@2G↵�̄

@t�@ t̄�
� 4Re


XiX̄jXkŪ�

@2Gij̄

@zk@ t̄�

�
.

(3.4)

Substituting the derivatives of G into (3.4) yields

RV V̄ V V̄ �
nX

i,j,k,l=1

rX

↵,�,�,�=1

�XiX̄jXkX̄l
@2gij̄
@zk@z̄l
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�XiX̄jXkX̄ls

✓
� @2hvv̄

@zk@z̄l

@2hvv̄

@zi@z̄j
+

@4hvv̄

@zi@z̄j@zk@z̄l
� @2hvv̄

@zi@z̄l

@2hvv̄

@zk@z̄j

◆

� 4XiX̄jU↵Ū�s

✓
@4hvv̄

@zi@z̄j@t↵@ t̄�
� @2hvv̄

@t↵@ t̄�

@h2hvv̄

@zi@z̄j

◆

� U↵Ū�U�Ū�s

✓
� @2hvv̄

@t�@ t̄�

@2hvv̄

@t↵@ t̄�
� @2hvv̄

@t↵@ t̄�

@2hvv̄

@t�@ t̄�

◆

� 4sRe


XiX̄jXkŪ�

@4hvv̄

@zi@z̄j@zk@ t̄�

�

=
nX

i,j,k,l=1

rX

↵,�,�,�=1

�XiX̄jXkX̄l
@2gij̄
@zk@z̄l

+ sXiX̄jXkX̄l
@2hvv̄

@zk@z̄l

@2hvv̄

@zi@z̄j

+ sXiX̄jXkX̄l
@2hvv̄

@zi@z̄l

@2hvv̄

@zk@z̄j
� sXiX̄jXkX̄l

@4hvv̄

@zi@z̄j@zk@z̄l

� 4sXiX̄jU↵Ū�
@4hvv̄

@zi@z̄j@t↵@ t̄�
+ 4sXiX̄jU↵Ū�

@2hvv̄

@t↵@ t̄�

@2hvv̄

@zi@z̄j

+ sU↵Ū�U�Ū�
@2hvv̄

@t�@ t̄�

@2hvv̄

@t↵@ t̄�
+ sU↵Ū�U�Ū�

@2hvv̄

@t↵@ t̄�

@2hvv̄

@t�@ t̄�

� 4sRe


XiX̄jXkŪ�

@4hvv̄

@zi@̄zj@zk@ t̄�

�
.

Note that vv̄ = |v|2 = hvv̄(0) = 1. Also, because the first derivatives of h and g are

all 0 at p, and the second summands of Rg and Rh given by (2.8) are equal to zero.
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By (2.10), we have the following equalities:

nX

i,j,k,l=1

�XiX̄jXkX̄l
@2gij̄
@zk@z̄l

= �g(X, X̄,X, X̄) = Rg
XX̄XX̄

nX

i,j,k,l=1

�XiX̄jXkX̄l
@4hvv̄

@zi@z̄j@zk@z̄l
=

nX

i,j,k,l=1

�XiX̄jXkX̄l
@2

@zi@z̄j

✓
@2hvv̄

@zk@z̄l

◆

=
nX

i,j,k,l=1

XiX̄jXkX̄l

✓
� @2hkl̄

@zi@z̄j

◆

= �h(X, X̄,X, X̄) = Rh
XX̄XX̄

nX

i,j,k,l=1

XiX̄jXkX̄l
@2hvv̄

@zi@z̄j

@2hvv̄

@zk@z̄l
=

nX

i,j,k,l=1

XiX̄j

✓
� @2hvv̄

@zi@z̄j

◆
XkX̄l

✓
� @2hvv̄

@zk@z̄l

◆

= (�h(v, v̄, X, X̄))2 = (Rh
vv̄XX̄)

2

nX

i,j,k,l=1

XiX̄jXkX̄l
@2hvv̄

@zi@z̄l

@2hvv̄

@zk@z̄j
=

nX

i,j,k,l=1

XiX̄l

✓
� @2hvv̄

@zi@z̄l

◆
XkX̄j

✓
� @2hvv̄

@zk@z̄j

◆

= (�h(v, v̄, X, X̄))2 = (Rh
vv̄XX̄)

2

rX

↵,�,�,�=1

U↵Ū�U�Ū�
@2hvv̄

@t�@ t̄�

@2hvv̄

@t↵@ t̄�
=

rX

↵,�,�,�=1

✓
U↵Ū�

@2hvv̄

@t↵@ t̄�

◆✓
U�Ū�

@2hvv̄

@t�@ t̄�

◆

=

 
rX

↵,�=1

U↵Ū�
@2hvv̄

@t↵@ t̄�

! 
rX

�,�=1

U�Ū�
@2hvv̄

@t�@ t̄�

!

= |U |2|U |2 = |U |4
rX

↵,�,�,�=1

U↵Ū�U�Ū�
@2hvv̄

@t↵@ t̄�

@2hvv̄

@t�@ t̄�
=

rX

↵,�,�,�=1

✓
U↵Ū�

@2hvv̄

@t↵@ t̄�

◆✓
U�Ū�

@2hvv̄

@t�@ t̄�

◆

=

 
rX

↵,,�,�=1

U↵Ū�
@2hvv̄

@t↵@ t̄�

! 
rX

↵,�,�,�=1

U�Ū�
@2hvv̄

@t�@ t̄�

!

= |U |2|U |2 = |U |4
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nX

i,j=1

rX

↵,�=1

�XiX̄jU↵Ū�
@4hvv̄

@zi@z̄j@t↵@ t̄�
=

nX

i,j=1

rX

↵,�=1

�XiX̄jU↵Ū�
@2

@zi@z̄j

✓
@2hvv̄

@t↵@ t̄�

◆

=
nX

i,j=1

rX

↵,�=1

XiX̄jU↵Ū�

✓
� @2h↵�̄

@zi@z̄j

◆

= �h(U, Ū ,X, X̄) = Rh
UŪXX̄

nX

i,j=1

rX

↵,�=1

XiX̄jU↵Ū�
@2hvv̄

@t↵@ t̄�

@2hvv̄

@zi@z̄j
=

 
rX

↵,�=1

U↵Ū�
@2hvv̄

@t↵@ t̄�

! 
nX

i,j=1

XiX̄j
@2hvv̄

@zi@z̄j

!

= |U |2h(v, v̄, X, X̄) = �|U |2Rh
vv̄XX̄ .

For the Re(·) part, we have

nX

i,j,k=1

rX

�=1

Re

✓
XiX̄jXkŪ�

@4hvv̄

@zi@z̄j@zk@ t̄�

◆

=
nX

i,j,k=1

rX

�=1

Re

✓
XiX̄jXkŪ�

@2

@zi@z̄j

✓
@2hvv̄

@zk@ t̄�

◆◆

=
nX

i,j,k=1

rX

�=1

Re

✓
XiX̄jXkŪ�

@2hk�̄

@zi@z̄j

◆

= Re

 
nX

i,j,k=1

rX

�=1

XiX̄jXkŪ�
@2hk�̄

@zi@z̄j

!

= Re(h(X, Ū,X, X̄)) = Re(�Rh
XŪXX̄).

After substituting the equalities, we have that RV V̄ V V̄ is bounded below as follows:

RV V̄ V V̄ � Rg
XX̄XX̄

+ s
�
Rh

XX̄XX̄ + 2(Rh
vv̄XX̄)

2
�

+ s
�
2|U |4 + 4Rh

UŪXX̄ � 4|U |2Rh
vv̄XX̄ + 4Re(Rh

XŪXX̄)
�
.

(3.5)

35



3.1 PROOF OF THEOREM 1.2

Let H0 2 R+ be the minimum holomorphic sectional curvature of g on M—that is,

Rg
XX̄XX̄

|X|4 � H0.

Due to the compactness of M , we know that there exists C 2 R+ such that |Rh|  C.

Under the assumption that hvv̄(0) = |v|2 = 1, we have

RV V̄ V V̄ � H0|X|4 � sC|X|4 + 2sC2|X|4 + 2s|U |4 + 4s(�C|U |2|X|2)

� 4sC|U |2|X|2 + 4sRe(�C|X|3|U |)

= H0|X|4 + s
��C|X|4 + 2C2|X|4 + 2|U |4 � 8C|U |2|X|2 � 4C|X|3|U |� .

Thus, the holomorphic sectional curvature of P is bounded below by a homogeneous

degree 4 polynomial in variables |X| and |U |. Call this polynomial f := f(|X|, |U |).
We show that when at least one of X and U is nonzero, f is positive for s su�ciently

small. Consider the following two cases:

(i) When X = 0 and U 6= 0: f(0, |U |) = 2s|U |4, which is positive.

(ii) When X 6= 0: Since f is homogeneous, we know that f(|X|, |U |) = |X|4f(1, Ũ),

where Ũ := |U |
|X| . Thus, it su�ces to check if f(1, Ũ) is positive. Note that

f(1, Ũ) = H0 + s
⇣
2Ũ4 � 8CŨ2 � 4CŨ + C 0

⌘
, (3.6)

where C 0 = 2C2 � C. Since the leading term inside the parentheses of (3.6)

guarantees a minimum, we know that for su�ciently small s, f(1, Ũ) is positive.

Hence, RV V̄ V V̄ > 0 when V 6= 0.
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3.2 On the Grassmannian Bundle Gk(E)

If we replace P(E) in Theorem 1.2 with the k-Grassmannian bundle Gk(E) of all

k-dimensional subspaces of the fibers of E, then Gk(E) also has positive holomorphic

sectional curvature. Let E be a rank r vector bundle over a compact Kähler manifold

M , where r � k. Let (x0, [v]) 2 Gk(E) be a moving point and let {e1, e1, ..., er} be a

holomorphic local frame of E near x0. The analogue to equation (3.2) is

v = e1(z) + ...+ ek(z) +
r�kX

↵=1

t↵e↵(z).

Thus, (z, t) = (z1, ..., zn, t1, ..., tr�k) becomes local holomorphic coordinates in Gk(E)

centered at our fixed point p = (x0, [w]) 2 Gk(E). By using the methods from the

proof of Theorem 1.2, we would arrive at Gk(E) also having positive holomorphic

sectional curvature.
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Chapter 4

Curvature Pinching for

Projectivized Vector Bundles over

CP1

With the result in Theorem 1.2, it is natural to attempt to determine the pinching

constants of the holomorphic sectional curvature of a projectivized vector bundle

P(E). We first briefly discuss the concepts of decomposable and indecomposable

vector bundles.

Definition 4.1. Let M be a complex manifold. A vector bundle E ! M is inde-

composable if it is not the direct sum of two vector bundles of smaller rank. We say

E is decomposable if it is not indecomposable.

A quintessential example of an indecomposable vector bundle is the tangent bundle

of CPn, when n � 2. It was proven by Horrocks in [Hor64] that any vector bundle on

CPn, n � 3, is decomposable if and only if its restriction to a hyperplaneH = CPn�1 ⇢
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CPn is decomposable. If M is CP1, then any vector bundle on M is decomposable

and is equal to the direct sum of line bundles. More precisely, we have the following

theorem:

Theorem 4.2 ([Bir09], [Gro57]). Let E be a rank k holomorphic vector bundle over

CP1, where k � 1. Then E is isomorphic to a direct sum of line bundles, namely

E = �k
i=1OCP1(ni), ni 2 Z,

where OCP1(ni) represents the line bundle of degree ni over CP1.

As a result, our primary stepping stone consists of studying pinching constants of

P(E) where the base manifold is CP1.

We note that if L a line bundle, then P(E ⌦ L) ⇠= P(E). Thus, if E is a vector

bundle of rank k � 1 over CP1 and if we tensor E by the line bundle

OCP1(�min{ni | i = 1, ..., k}),

the structure of the projectivized vector bundle is not altered. After tensoring by

OCP1(�min{ni | i = 1, ..., k}), the projectivization of E can be written as

P(E) = P
�OCP1 � ��k�1

i=1OCP1(mi)
��

, mi 2 Z�0,

where OCP1 denotes the trivial line bundle of CP1. The (optimal) pinching constants

of P(E) will then depend on the nonnegative integers m1, ...,mk�1, which we call the

“twisting” parameters.
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4.1 Curvature Pinching for Hirzebruch Surfaces

We consider the projectivization of a rank k = 2 vector bundle OCP1(n)�OCP1 , where

n 2 Z�0.

Definition 4.3. The n-th Hirzebruch Surface is defined to be

Fn := P (OCP1(n)�OCP1) .

Let (sn, 1) be a section of OCP1(n)�OCP1 . After projectivizing the fibers, we have

a section � of Fn. Let E� be the image of � in Fn. We then have the special curves

on Fn, E0, E�, and E1, as shown below.

Regarding intersection numbers of these curves, we have

E0.E0 = n, E0.E1 = 0, E1.E1 = �n. (4.1)

A more detailed description of this rational ruled surface can be found in [GH78,

Chapter 4].

Let z1 be an inhomogeneous coordinate on CP1 and consider the standard Kähler
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

metric, the Fubini-Study metric

!FS =
dz1 ^ dz̄1
(1 + z1z̄1)2

.

Using the fact that OCP1(�2) = KCP1 and OCP1(2) = TCP1, we have a natural

Hermitian metric on OCP1(n) � OCP1 defined as follows: Let w 2 OCP1(n) � OCP1 .

Then w = (z1, w1(dz1)�
n
2 , w2), where w1, w2 are coordinates in the fiber direction and

(dz1)�1 is a section of OCP1(2) = TP1. From this, we see that (dz1)�
n
2 is a section of

OCP1(n). In the fiber direction, we have

||w||2 = w1w̄2(1 + z1z̄1)
n + w2w̄2.

Taking local inhomogeneous coordinates z2 = w2/w1 yields the following form on

OCP1(n)�OCP1

'̂ = ⇡⇤!FS + s
p�1@@̄ log ||w||2,

where s is a positive real number chosen small enough so that '̂ is positive-definite,

and ⇡ is the projection map ⇡ : OCP1(n)�OCP1 ! CP1.

Projectivizing the fibers of this direct sum of line bundles yields a closed form

's. Using the fact that the associated (1, 1)-form of the Fubini-Study metric is
p�1@@̄ log |z|2 = p�1@@̄ log(1 + z1z̄1) and that z2 = w2/w1, we have

's =
p�1@@̄ (log(1 + z1z̄1) + s log((1 + z1z̄1)

n + z2z̄2)) , (4.2)

which is globally well-defined on Fn. This is the form of the metric which we will

use in this section. It should be remarked that the metric in (4.2) is Kähler. When
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s 2 Q+, the metric is also a Hodge metric. Furthermore, 's is positive-definite when

s < 1
n2 . In fact, Hitchin used 's to prove the following theorem:

Theorem 4.4 ([Hit75]). For all n � 0, Fn admits [Hodge] metrics of positive holo-

morphic sectional curvature.

Before proving Theorem 4.4, we make the following remarks:

Remark 4.5. Recall that SU(2) acts on CP1 as an isometry of the Fubini-Study

metric, preserves the fiber metric when lifted to the vector bundle, and acts transi-

tively on CP1. Hence, without lost of generality, we can simplify our calculations by

restricting our computations along one fiber—say z1 = 0.

Remark 4.6. In [Hit75], the Rij̄kl̄ are expressed in terms of a unitary frame field.

The proof of Theorem 4.4 presented below involves the curvature tensors in terms

of the frame { @
@z1

, @
@z2

} with respect to the coordinates mentioned above. We use

this frame since it lends itself to the methods utilized when computing the pinching

constant in this section.

Proof. Let G := log(1 + z1z̄1) + s log((1 + z1z̄1)n + z2z̄2). Thus

's =
p�1@@̄G =

p�1gij̄dzi ^ dz̄j.

Direct computation yields

(gij̄) =

0

B@
1+z2z̄2+sn
1+z2z̄2

0

0 s
(1+z2z̄2)2

1

CA and (gij̄) =

0

B@
1+z2z̄2

1+z2z̄2+sn 0

0 (1+z2z̄2)2

s

1

CA .
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From (2.6), the components of the curvature tensor are

R11̄11̄ =
2(�n2sz2z̄2 + (1 + z2z̄2)2 + n(s+ sz2z̄2))

(1 + z2z̄2)2
(4.3)

R11̄22̄ =
ns(1 + ns� z22 z̄

2
2)

(1 + z2z̄2)3(1 + ns+ z2z̄2)
, (4.4)

R22̄22̄ =
2s

(1 + z2z̄2)4
, (4.5)

while the other terms, except those obtained from symmetry, are equal to zero. Let

⇠ 2 T(0,z2)Fn be an arbitrary unit tangent vector such that ⇠ = ⇠1
@

@z1
+ ⇠2

@
@z2

. When

we substitute the Rıj̄kl̄ into the formula for holomorphic sectional curvature we obtain

K(⇠) =
4

(1 + z2z̄2)4
(⇠1⇠̄1)

2(1 + z2z̄2) +
4s

(1 + z2z̄2)4
�
(⇠1⇠̄1)

2(1 + z2z̄2)
3 + (⇠2⇠̄2)

2
�
+

4s

(1 + z2z̄2)4

✓�(⇠1⇠̄1)2n2z2z̄2(1 + z2z̄2)2 + 2n(⇠1⇠̄1)(⇠2⇠̄2)(1 + z2z̄2)(1 + ns� z22 z̄
2
2)

1 + ns+ z2z̄2

◆
.

We observe that when ⇠ 6= 0, we have K(⇠) > 0 since the first term is positive and we

are letting s be su�ciently small—particularly s < 1
n2 . Thus, Fn has a metric which

admits positive holomorphic sectional curvature for all n � 0.

This result of positivity may be considered surprising, as the Fn do not carry

metrics of positive Ricci curvature for certain values of n. To show this, we will use

some results discussed in Section 2.4.

Proposition 4.7. For n � 2, Fn does not admit a metric of positive Ricci curvature.

Proof. By Theorem 2.37, it su�ces to show that �KFn is not ample for n � 2. By

Nakai’s Criterion in Chapter 2, a line bundle is ample if its self-intersection number

is positive and its intersection with any irreducible curve is positive. Consider the
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curve E1 on Fn. Using the Adjunction Formula II found in [GH78, Chapter 1], we

have KE1 = KFn |E1 ⌦ [E1]|E1 . Then by the self-intersection number of E1 from

(4.1), we have

degKE1 = degKFn |E1 + deg[E1]|E1

= degKFn |E1 + E1.E1

= degKFn |E1 + (�n)

= KFn .E1 � n.

Since degKE1 = 2g�2 and g = 0, we know degKE1 = �2. Hence, �2 = KFn .E1�n,

and

�KFn .E1 = 2� n.

When n � 2, we see that the intersection number is not positive. Thus, �KFn is not

ample for n � 2.

Due to the compactness of Fn, we know that a minimum value and maximum value

of the holomorphic sectional curvature exist. Although Hitchin proved Fn has positive

holomorphic sectional curvature, his proof did not yield any pinching constants. With

this motivation, we have the following pinching result:

Theorem 4.8 ([ACH15]). Let Fn, n 2 {1, 2, 3, . . .}, be the n-th Hirzebruch surface.

Then there exists a Hodge metric on Fn whose holomorphic sectional curvature is

1
(1+2n)2 -pinched.

Proof. We first consider the case when n � 2. Take

's =
p�1@@̄[log(1 + z1z̄1) + s log((1 + z1z̄1)

n + z2z̄2)].
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From

�
gij̄
�
=

0

B@
1+z2z̄2+sn
1+z2z̄2

0

0 s
(1+z2z̄2)2

1

CA ,

we see that an orthonormal basis for T(0,z2)Fn is { ~u1, ~u2}, where

~u1 :=

r
1 + z2z̄2

1 + z2z̄2 + ns
· @

@z1
, and ~u2 :=

1 + z2z̄2p
s

· @

@z2
.

Therefore, an arbitrary unit tangent vector, ⇠ 2 T(0,z2)Fn, can be written as

⇠ = c1

r
1 + z2z̄2

1 + z2z̄2 + ns
· @

@z1
+ c2

1 + z2z̄2p
s

· @

@z2
,

where c1, c2 2 C such that |c1|2 + |c2|2 = 1. Define the following:

⇠1 := c1

r
1 + z2z̄2

1 + z2z̄2 + ns
, and ⇠2 := c2

1 + z2z̄2p
s

.

Substituting the values of Rij̄kl̄ from (4.3), (4.4), and (4.5), and the values of ⇠1 and

⇠2 into the definition of holomorphic sectional curvature gives us

K(⇠) = 2R1111⇠1⇠̄1⇠1⇠̄1 + 8R1122⇠1⇠̄1⇠2⇠̄2 + 2R2222⇠2⇠̄2⇠2⇠̄2

=
4((1 + z2z̄2)2 + ns(1 + z2z̄2 � nz2z̄2))

(1 + z2z̄2 + ns)2
|c1|4

+
8n(1 + ns� z22 z̄

2
2)

(1 + z2z̄2 + ns)2
|c1|2|c2|2 + 4

s
|c2|4.

(4.6)

Since this expression of K(⇠) only depends on the modulus squared of z2, we let

r := z2z̄2. Also, because |c1|2 and |c2|2 are nonnegative real numbers, we can let
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a := |c1|2 and b := |c2|2. Let

↵ :=
4((1 + r)2 + ns(1 + r � nr))

(1 + r + ns)2
, � :=

8n(1 + ns� r2)

(1 + r + ns)2
, � :=

4

s

be the coe�cients in (4.6).

With these substitutions, and for fixed values of r and s, the holomorphic sectional

curvature takes the form of the following degree 2 homogeneous polynomial in a and

b with real coe�cients:

Kr,s(a, b) = ↵a2 + �ab+ �b2. (4.7)

This is the function we want to maximize and minimize in order to find the pinching

constant for 's, subject to the constraint a + b = 1. We find the extrema utilizing

the method of Lagrange Multipliers. Keeping r fixed, we have the equations

@

@a
Kr,s(a, b) = �,

@

@b
Kr,s(a, b) = �, a+ b� 1 = 0.

Solving this system of equations for a and b yields a unique stationary solution in the

interior

a0 =
2� � �

2(� � � + ↵)
=

(1 + r)(1 + ns)

1 + s� (�1 + n)ns2 + r(1 + s+ 2ns)

b0 =
2↵� �

2(� � � + ↵)
=

s(�1 + n� r � nr � ns+ n2s)

�1� r � s� rs� 2nrs� ns2 + n2s2
.

We then observe the holomorphic sectional curvature in three cases:

1. At the interior stationary point (a0, b0)

2. At the boundary point (0, 1)
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3. At the boundary point (1, 0).

In each case, after substituting the values of (a, b) into (4.7) with s fixed, we obtain

the following functions, some of which depend on r:

1. fs : [0,1) ! R+, where

fs(r) := Kr,s(a0, b0)

=
4 (3r2(1 + ns) + +3r(1 + ns)2 � r3(�1 + n2s)� (1 + ns)2(�1� ns+ n2s))

(1 + r + ns)2(1 + s� (�1 + n)ns2 + r(1 + s+ 2ns))

2. Kr,s(0, 1) =
4
s

3. hs : [0,1) ! R+, where

hs(r) := Kr,s(1, 0) =
4((1 + r)2 + ns(1 + r � nr))

(1 + r + ns)2
.

We then determine the extrema of each function in the interior (0,1) and at the

endpoints 0 and 1.

1. For fs(r) := Kr,s(a0, b0), we see that f 0
s(r) = 0 if and only if r = �1 or if

r = (n�1)(1+ns)
1+n . Since r = �1 /2 (0,1), we only regard the second critical point

since it is inside (0,1) for n � 2. Note that

fs

✓
(n� 1)(1 + ns)

1 + n

◆
=

4� s(n� 1)2

1 + ns
.

At the endpoints of the interval [0,1), we see that

fs(0) =
4(1 + ns� n2s)

1 + s� (n� 1)ns2
, and lim

r!1
fs(r) =

4� 4n2s

1 + s+ 2ns
.

47



4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

The latter expression makes it clear that we need to choose s < 1
n2 in order to

obtain positive holomorphic sectional curvature. Furthermore, for s < 1
n2 ,

4(1 + ns� n2s)

1 + s� (n� 1)ns2
� 4� 4n2s

1 + s+ 2ns
=

4s(3n� s(2n3 � 3n2)� s2(n4 � n3))

(1 + s+ 2ns)(1 + s(1� s(n2 � n)))
> 0,

and

4� s(n� 1)2

1 + ns
� 4(1 + ns� n2s)

1 + s� (n� 1)ns2
= � s(n� 1)2(3 + s(n� 1))

(�1 + s(n� 1))(1 + ns)
> 0.

Thus, we have

4� s(n� 1)2

1 + ns
>

4(1 + ns� n2s)

1 + s� (n� 1)ns2
>

4� 4n2s

1 + s+ 2ns
,

and
4� 4n2s

1 + s+ 2ns
 Kr,s(a0, b0)  4� s(n� 1)2

1 + ns
.

2. For Kr,s(0, 1) =
4
s , the curvature is independent of r and is constant.

3. For hs(r) := Kr,s(1, 0), we see that h0
s(r) = 0 if and only if r = (n�1)(1+ns)

1+n ,

which is inside (0,1) for n � 2. We observe that hs(r) and fs(r) have a

common critical point, although there does not appear to be a clear geometric

reason for this coincidence. Note that

hs

✓
(n� 1)(1 + ns)

1 + n

◆
=

4� s(n� 1)2

1 + ns
.
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At the endpoints, we have

hs(0) =
4

1 + ns
, and lim

r!1
hs(r) = 4.

By comparing these values while taking s < 1
n2 , we arrive at

4� s(n� 1)2

1 + ns
 Kr,s(1, 0)  4.

When we compare the infima from each case, we have

4� 4n2s

1 + s+ 2ns
 4� s(n� 1)2

1 + ns
 4

s
.

Comparing the suprema from each case, we have

4� s(n� 1)2

1 + ns
 4  4

s
.

Thus, the smallest value attained for the holomorphic sectional curvature is 4�4n2s
1+s+2ns

and the largest value is 4
s .

To find the best value of s with the best pinching constant, we define the function

p :

✓
0,

1

n2

◆
! (0, 1), p(s) :=

min⇠ Ks(⇠)

max⇠ Ks(⇠)
=

4�4n2s
1+s+2ns

4
s

=
s(1� n2s)

1 + s+ 2ns
,

where the minimum and maximum are taken over all (unit) tangent vectors across

the entire manifold. This is the function we want to maximize.

We see that p0(s) = 0 if and only if s = � 1
n or if s = 1

2n2+n . Since the first

critical point is not inside
�
0, 1

n2

�
, we only consider the latter value. Calculus-style
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computation tells us that p has a global maximum at s = 1
2n2+n . This gives us the

optimal pinching of

p

✓
1

2n2 + n

◆
=

1

(1 + 2n)2
.

Next, we consider the case when n = 1. When n = 1, the functions fs and hs

have their critical points at r = 0. Using a very similar argument as above, we see

that the pinching constant is equal to 1
9 for s = 1

3 .

4.2 Products of Manifolds with Positive Curvature

In the case of the 0-th Hirzebruch surface, we have that F0 = P1⇥P1. With the Fubini-

Study product metric, it was computed that the holomorphic sectional curvature is

1
2 -pinched. Additionally, for a general product of projective spaces, Pn ⇥ Pm for

m,n 2 {1, 2, ...}, the pinching constant of the holomorphic sectional curvature is also

1
2 . In particular, it was observed that 1

2 = 1
(1+1) , where 1 is equal to the pinching

constant of CPn (since CPn has constant holomorphic sectional curvature equal to 4).

For general products of Hermitian manifolds of positive holomorphic sectional

curvature, we have the following result:

Theorem 4.9 ([ACH15]). Let M and N be Hermitian manifolds whose positive holo-

morphic sectional curvatures are cM - and cN -pinched, respectively, and satisfy

kcM  KM  k and kcN  KN  k

for a constant k > 0. Then the holomorphic sectional curvature K of the product
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metric on M ⇥N satisfies

k
cMcN

cM + cN
 K  k

and is cM cN
cM+cN

-pinched.

Proof. Let g =
Pm

i,j=1 gij̄dzi⌦dz̄j, and h =
Pm+n

i,j=m+1 hij̄dzi⌦dz̄j be Hermitian metrics

on M and N , respectively, each with positive holomorphic sectional curvature. Then

mX

i,j=1

gij̄dzi ⌦ dz̄j +
m+nX

i,j=m+1

hij̄dzi ⌦ dz̄j

gives the product metric in a neighborhood of (P,Q) 2 M ⇥ N . It should be ob-

served that the gij̄ are functions of only z1, . . . , zm, and the hij̄ are functions of only

zm+1, . . . , zm+n. Using (2.6) we obtain

Rij̄kl̄ =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

� @2gij̄
@zk@z̄l

+
Pm

p,q=1 g
qp̄ @gip̄

@zk

@gqj̄
@z̄l

, 1  i, j, k, l  m

� @2hij̄

@zk@z̄l
+
Pm+n

p,q=m+1 h
qp̄ @hip̄

@zk

@hqj̄

@z̄l
, m+ 1  i, j, k, l  m+ n

0, otherwise.

Let ⇠ =
Pm+n

i=1 ⇠i
@
@zi

be a unit tangent vector in T(P,Q)(M ⇥ N). Then the holo-

morphic sectional curvature on M ⇥N along ⇠ is

K(⇠) = 2
mX

i,j,k,l=1

✓
� @2gij̄
@zk@z̄l

+
mX

p,q=1

gqp̄
@gip̄
@zk

@gqj̄
@z̄l

◆
⇠i⇠̄j⇠k⇠̄l

+ 2
m+nX

i,j,k,l=m+1

✓
� @2hij̄

@zk@z̄l
+

m+nX

p,q=m+1

hqp̄@hip̄

@zk

@hqj̄

@z̄l

◆
⇠i⇠̄j⇠k⇠̄l.
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Because � @2gij̄
@zk@z̄l

+
Pm

p,q=1 g
qp̄ @gip̄

@zk

@gqj̄
@z̄l

and � @2hij̄

@zk@z̄l
+
Pm+n

p,q=m+1 h
qp̄ @hip̄

@zk

@hqj̄

@z̄l
are equal to

the components of the curvature tensor on M and N , respectively, the two sums

on the right-hand side above are just the numerators of the holomorphic sectional

curvatures on M and N with respect to the tangent vectors (⇠1, . . . , ⇠m) 2 TPM and

(⇠m+1, . . . , ⇠m+n) 2 TQN . Because both curvatures are assumed to be positive, we

can conclude that K(⇠) > 0.

In order to find the pinching constant, we need to take into consideration the

(nonzero) norms of (⇠1, . . . , ⇠m) 2 TPM and (⇠m+1, . . . , ⇠m+n) 2 TQN with respect to

their respective metrics in the two spaces. We do this as follows:

K(⇠) =
mX

i,k,j,l=1

2Rij̄kl̄⇠i⇠̄j⇠k⇠̄l +
m+nX

i,k,j,l=m+1

2Rij̄kl̄⇠i⇠̄j⇠k⇠̄l

=

Pm
i,k,j,l=1 2Rij̄kl̄⇠i⇠̄j⇠k⇠̄lPm
i,j,k,l=1 gij̄gkl̄⇠i⇠̄j⇠k⇠̄l

·
mX

i,j,k,l=1

gij̄gkl̄⇠i⇠̄j⇠k⇠̄l

+

Pm+n
i,k,j,l=m+1 2Rij̄kl̄⇠⇠̄j⇠k⇠̄lPm+n
i,j,k,l=m+1 hij̄hkl̄⇠i⇠̄j⇠k⇠̄l

·
m+nX

i,j,k,l=m+1

hij̄hkl̄⇠i⇠̄j⇠k⇠̄l

= KM · y2 +KN · (1� y)2,

whereKM is the holomorphic sectional curvature ofM in the direction of (⇠1, . . . , ⇠m),

KN the holomorphic sectional curvature of N in the direction of (⇠m+1, . . . , ⇠m+n), and

y :=
Pm

i,j=1 gij̄⇠i⇠̄j. Since ⇠ is a unit tangent vector in T(P,Q)(M ⇥N), we have that

mX

i,j=1

gij̄⇠i⇠̄j +
m+nX

i,j=m+1

hij̄⇠i⇠̄j = 1.
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Hence,
m+nX

i,j=m+1

hij̄⇠i⇠̄j = 1�
mX

i,j=1

gij̄⇠i⇠̄j = 1� y.

Furthermore, the assumption

kcM  KM  k and kcN  KN  k

provides the following inequality:

F (y) := kcMy2 + kcN(1� y)2  KMy2 +KN(1� y)2  ky2 + k(1� y)2 =: eF (y).

Finally, calculus-style computation yields

min
0y1

F (y) = k
cMcN

cM + cN
and max

0y1
eF (y) = k.

In particular, k cM cN
cM+cN

 K(⇠)  k, and the pinching constant for the holomorphic

sectional curvature on the product manifold is obtained as

cM⇥N =
inf⇠ K(⇠)

sup⇠ K(⇠)
=

cMcN
cM + cN

.

This pinching result may come as surprising due to the following conjecture in

Riemannian geometry:

Conjecture 4.10. (The Hopf Conjecture) The product of two real 2-spheres S2 ⇥S2

does not admit a Riemannian metric of positive sectional curvature.

Some remarks on this conjecture can be found in [Wil07]. Since the conjecture
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is considering (full) Riemannian sectional curvature and we are only considering sec-

tional curvature along complex real 2-planes, the conjecture does not contradict with

Theorem 4.9. Hence, Theorem 4.9 shows that holomorphic sectional curvature is

actually more “well-behaved” than Riemannian sectional curvature.
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