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Abstract

In complex geometry, there are few known examples of, and few known results
about, manifolds with metrics of positive curvature. For instance, the geometry of
fiber bundles and total spaces of fibrations over positively-curved complex manifolds
is mysterious and not well-understood. In this dissertation, we study the existence of
(pinched) metrics of positive curvature on a particular type of fiber bundle—mamely
metrics of positive holomorphic sectional curvature on projectivized vector bundles
over compact complex manifolds. We first prove a general theorem for projectivized
vector bundles, then we discuss a curvature pinching result for projectivized rank 2

vector bundles over complex projective space of dimension 1.
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Chapter 1

Introduction

In the world of complex geometry, an often studied phenomenon is the dichotomy
between manifolds of positive curvature and manifolds of negative curvature. In the
positive case, few examples are known of manifolds with metrics of positive curvature.
Additionally, there tend to be fewer known results about positively-curved manifolds
compared with the corresponding situation in negative curvature. This disparity is
due to the many difficulties which arise when dealing with positive curvature.

This dissertation primarily concentrates on the holomorphic sectional curvature
of compact complex manifolds. The holomorphic sectional curvature of a Kahler
manifold is precisely the Riemannian sectional curvature of the holomorphic planes
in the tangent space of the manifold. We focus on this particular curvature because
it has significant relationships to various notions in algebraic geometry which help in
further studying the manifold structure. For instance, a result in [HW15] shows that
projective manifolds which admit a Kahler metric of positive holomorphic sectional
curvature are rationally connected. The holomorphic sectional curvature of a complex

manifold also plays a role in determining its Kodaira dimension. For example, the



CHAPTER 1. INTRODUCTION

relationship between semi-positive holomorphic sectional curvature and the Kodaira
dimension of compact Hermitian manifolds is discussed in [Yanl5]. Furthermore,
results on the Kodaira dimension of projective manifolds of semi-negative holomorphic
sectional curvature are discussed in [HLW15]. The holomorphic sectional curvature
of a complex manifold can also determine the positivity of the canonical bundle
(e.g., whether the canonical bundle is ample, numerically effective (nef), etc.). For
instance, it was shown that a projective manifold which admits a Kahler metric of
semi-negative holomorphic sectional curvature contains no rational curves and has nef
canonical bundle (see [HLW15] and [Shi71]). In addition, the relationship between
negative holomorphic sectional curvature and the ampleness of the canonical bundle
of a projective manifold is discussed in [HLW10] and [WY15]. An extension of the
result in [WY15] can be found in [TY15], which states that a compact Kdhler manifold
with negative holomorphic sectional curvature has ample canonical bundle. More
relationships between curvature and the positivity of the canonical bundle and anti-
canonical bundle are discussed in detail in Section 2.4.

In general, there are few examples known of compact complex manifolds which
carry a Hermitian metric of positively-pinched holomorphic sectional curvature. A
notable exception form the irreducible Hermitian symmetric spaces of compact type,
whose pinching constants for the holomorphic sectional curvature can be found in
[Che77, Table I]. Moreover, many difficulties arise when dealing with positive holomor-
phic sectional curvature. For example, we have the Curvature Decreasing Property of
Subbundles (found in [Gri69], [Kob70], and [Wu73]), which effectively states that any
complex submanifold of a Hermitian manifold of negative holomorphic sectional cur-
vature will also have negative holomorphic sectional curvature. On the other hand,

a complex submanifold of a Hermitian manifold of positive holomorphic sectional
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curvature is not guaranteed to also have positive holomorphic sectional curvature.

Because of these difficulties, it is a worthwhile endeavor to find and investigate
metrics of positive curvature on complex manifolds. In this dissertation, we present
several results on the existence of (pinched) metrics of positive holomorphic sectional
curvature on total spaces of certain fibrations m : P — M, namely where P is a
projectivized vector bundle and M is a compact complex manifold of positive holo-
morphic sectional curvature. We also discuss an explicit curvature pinching constant
for projectivized rank 2 vector bundles over CP" (formally known as the Hirzebruch
surfaces).

The work in this dissertation was motivated by several known results and open
questions in the realm of positive curvature. In particular, this work was partially

inspired by the following result proven by Cheung in negative curvature:

Theorem 1.1 ([Che89]). Let 7 : X — Y be a holomorphic map of a compact complex
manifold X into a complex manifold Y which has a Hermitian metric of negative
holomorphic sectional curvature. Assume that 7 is of mazimal rank everywhere and
there exists a smooth family of Hermitian metrics on the fibers, which all have negative
holomorphic sectional curvature. There there exists a Hermitian metric on X with

negative holomorphic sectional curvature everywhere.

Despite this result, the curvature and geometry of fiber bundles and fibrations are
still mysterious and not well-understood in the positive case. A natural question to
ask is: Does the result of Cheung still hold true for metrics of positive holomorphic
sectional curvature? Arriving at an answer seems to be more involved than in the
negative case—for instance, due to the Curvature Decreasing Property of Subbundles

not being applicable. Hence, the investigation of fibrations and fiber bundles are
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left for a later occasion. As a primary stepping stone, we first consider the case of
projectivized vector bundles on compact complex manifolds. The idea to projectivize
vector bundles was prompted by a result proven by Hitchin in [Hit75] which states
that the Hirzebruch surfaces admit a Kéhler metric of positive holomorphic sectional
curvature. Despite proving positivity, Hitchin’s result did not yield any curvature
pinching constants. Additionally, in [SY10], Yau posed the following open question
from his list of open problems in Riemannian geometry: Do all vector bundles over a
manifold with positive [Riemannian/ sectional curvature admit a complete metric with
nonnegative [Riemannian] sectional curvature? When we transplant Yau’s question
to the complex projective setting, “nonnegative curvature” naturally gets replaced by
“positive curvature”. The layout of this dissertation is as follows:

In Chapter 2, we review relevant definitions and topics from complex geometry,
differential geometry, and algebraic geometry which are necessary for this dissertation.

In Chapter 3, we prove our main theorem on metrics of positive holomorphic
sectional curvature for general projectivized rank k£ € N vector bundles over compact
Kahler manifolds, where the base manifold also has positive holomorphic sectional

curvature. This theorem serves as a generalization of Hitchin’s theorem in [Hit75].

Theorem 1.2 ([AHZ15]). Let M be an n-dimensional compact Kdhler manifold.
Let E be holomorphic vector bundle over M and let m : P = P(E) — M be the
projectivization of E. If M has positive holomorphic sectional curvature, then P

admits a Kahler metric with positive holomorphic sectional curvature.

The proof requires the clever use of normal coordinates in which to do the cur-
vature computations. It should be remarked that our main theorem does not work

analogously for Ricci curvature since the n-th Hirzebruch surfaces F,, do not have
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positive Ricci curvature for n > 2 (see Proposition 4.7).
In Chapter 4, we first discuss an effective curvature pinching result for the holo-

morphic sectional curvature on projectivized rank 2 holomorphic vector bundles over

CP':

Theorem 1.3 ([ACH15]). Let F,,, n € {1,2,3,...}, be the n-th Hirzebruch surface.
Then there exists a Hodge metric on F,, whose holomorphic sectional curvature is
1

m —pmched.

We then generalize the case of the 0-th Hirzebruch surface P* x P! and prove the
following result on products of Hermitian manifolds of positive holomorphic sectional

curvature:

Theorem 1.4 ([ACH15]). Let M and N be Hermitian manifolds whose positive holo-

morphic sectional curvatures are cyr- and cy-pinched, respectively, and satisfy

kCMSKMSkJ and ]’CCNSKNSIC

for a constant k > 0. Then the holomorphic sectional curvature K of the product

metric on M x N satisfies
cpc
TN <K
cy +cen

IN
IA
e

and is “MN__pinched.
cpyten

This product result may seem surprising or unlikely due to the Hopf Conjecture
in Riemannian geometry, which states the product of two real 2-spheres does not
admit a Riemannian metric of positive sectional curvature. Because this conjecture is

on [Riemannian] sectional curvature, the computation considers all planes inside the
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tangent space—not just holomorphic planes. Hence, there is no contradiction with
our product result.

We remark that some of the results in this dissertation have appeared elsewhere.
The work in Chapter 4 has been published in [ACH15] and the work in Chapter 3 is

to appear in [AHZ15].



Chapter 2

Definitions and Preliminaries

2.1 Hermitian and Kahler Metrics

Definition 2.1. Let M be an n-dimensional complex manifold and let p € M. A

Hermitian metric on M is a positive-definite Hermitian inner product
Gp - T;M@TI’,M—HC

which depends smoothly on p € M.

Let U be a small open set in M such that p € U. We say g, “depends smoothly
onpe M if z=(z,..,2,) are local coordinates around p and {8%1, o &} is the

standard basis for the holomorphic tangent space T, M, then the functions

0 0
65 U=C, prrg, (a—%@), a—zj<p>) 21

are smooth for all 4,5 € {1,2,...,n}.



2.1 HERMITIAN AND KAHLER METRICS

Let {dz,...,dz,} be the dual basis of {8%1, 91, Then locally, the Hermitian

ceey 8271

metric can be written as

9= Z 9i5dz ® dz;,

ij=1
where the g;; form an n x n positive definite Hermitian matrix (g,;) of smooth func-

tions defined in (2.1). The metric g can be decomposed into two parts:
1. The real part, denoted by Re(g)
2. The imaginary part, denoted by Im(g).

The real part Re(g) gives an ordinary inner product called the induced Riemannian
metric of g. The imaginary part Im(g) represents an alternating R-differential 2-form.

In particular, it is a (1, 1)-form.

Remark 2.2. If welet h := Re(g), then h is the Riemannian metric of the underlying
smooth manifold Mg of M. Hence, every Hermitian manifold is also a Riemannian
manifold. Unfortunately, not every Riemannian manifold is a Hermitian manifold.
Given a Riemannian metric h on a complex manifold, then A “comes from” a Hermi-
tian metric if it respects the complex structure; i.e., for all vector fields X, Y and the

complex structure J, h(JX,JY) = h(X,Y).

1

We can decompose our metric g as g = Re(g) + v —1Im(g). Let w := —5Im(g).

Definition 2.3. The (1, 1)-form w is called the associated (1,1)-form of g.

In coordinates, the associated (1, 1)-form can be written locally as

e

W=—
2

,j=1



2.1 HERMITIAN AND KAHLER METRICS

Definition 2.4. The Hermitian metric g is called Kahler if w is d-closed, where

d = 0+ 9 is the exterior derivative.

The following proposition summarizes standard equivalences for a Hermitian met-

ric being Kéhler. In the proof of the proposition, we follow the exposition in [Bal06]

and [Zhe00].

Proposition 2.5. Let (M,g) be an n-dimensional Hermitian manifold. Then the

following are equivalent:

(i) g is Kdhler (i.e., dw = 0).

(i) For every point p € M, there ezists a neighborhood U > p and a smooth, real-

valued function F : U — R such that w = /—100F on U. We call F the

Kahler potential.

(i5i) In any local coordinate system,

995 _ Ogx;
= 1 <i,5.k<n,
0z, 0z, — S %=
or equivalently,
99;; _ Ogq
=—",1<14j1<n.
0z 0z, — h=

(iv) For any point p € M, there exist local holomorphic coordinates (21, ...

neighborhood of p such that

9i7(p) = 0;5 and (dg;)(p) = 0.

Such coordinates are called normal coordinates.

,Zn) N a



2.1 HERMITIAN AND KAHLER METRICS

Proof. We first prove that | (i) <= (i) |

“=—=>" Assume g is a Kahler metric; i.e., dw = 0. Because w is closed, then we know
that for a sufficiently small open set U, there exists a 1-form p such that dy = w.
Because p is a 1-form, we can decompose p into a (1, 0)-form and (0, 1)-form, precisely

po=pt0 + p%t Then

w=dp =0+ )0 + ) = 9ur0 + 0t + Ot + pOt = 9t + Op,

where Out? = Ou®! = 0 since they are, respectively, (2,0) and (0, 2)-forms and we
know w is a (1, 1)-form by definition. Because ! is d-closed and u%! is O-closed, we
know that on our sufficiently small open set U, there exist smooth functions f; and

fo such that —0f; = p*? and 0f, = u%'. Because 00 = —00, we get

V—100(fa + f1) = 0(0fs) + O(—0f1) = Ou™ + op™* = dp = w.

Let F':= fo + f1. Because w is a real (1,1)-form, we can assume F' is real-valued.

“«=" Assume there exists a Kéhler potential F'. Then

dw = V—=1d(00F) = /=1(8 + 0)(d0F) = v/—1(d00F — OOOF) = 0

since 9% = 92 = 0.

To show | (i) <= (iii) |, we directly compute the derivatives and see that (iii) is just

the local coordinate version of (i).

Lastly, we show that | (i) <= (iv) | “=" Assume (i) holds. After a possible constant

linear change if necessary, we have that g;;(p) = d;;, for all 4, j € {1,...,n}. Define the

constant matrix A7 by Agk = gif (p), which is a symmetric matrix due to condition

10



2.1 HERMITIAN AND KAHLER METRICS

(iii). Define new holomorphic coordinates (21, ..., Z,) by

. 1 ;
Zi=z;+ 5 Z Al iz (2.3)
i,k=1
Under these new coordinates, the metric can be represented by the matrix g =
B7'g(B™')*, where * denotes the conjugate transpose of B~' and the entries of

B are

k=1
Direct computation shows that (dg)(p) = 0.
“—=" Now assume there exist local holomorphic normal coordinates around each
point p € M. This means that there exist coordinates (z1, ..., z,) such that (dg)(p) =

0. Because all derivatives at p are 0, we clearly must have dw = 0. O

We observe that the equivalence of (i) and (iv) implies that a metric g is Kéhler if
and only if it can have second order approximation to the Euclidean metric at every

point; i.e., g can be written as

n

4,j=1 4,j=1

Additionally, any submanifold N of a Kéhler manifold (M, g) is also Kéhler since
d(w|n) = (dw)|x = 0.

Example 2.6. Let M = CP". Let [w] = [wy, ..., w,] be homogeneous coordinates on
M and let |w]* = Y7, Jw;]*. Note that for A € C*, log(|Aw|?) = log |\|* + log |w|*.

Consider the form
VI

T(’?é log |w?, (2.4)

w =

11



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

which is a well-defined, closed global (1,1)-form on CP". To see that w is positive-

definite, take the standard coordinate charts on CP", {U;}!,, where

In Uy, let z = (z1, ..., z,) be a local affine coordinates where z; = ;”—é, fori=1,... n.

Then |2]? = |21|* + - -+ 4+ |2a]?. In Uy, we have that w is given by

2 = - 1+225i‘—2i2' _
\/—__1w = 8810g(1 + ’2‘2) = Z ( (|1 |—|-)’2T2)2 ]dZZ' AN de. (25)

ij=1

(1+]2])83—Ziz;

EEB Because the determinants of all the k& x k

Let g = (g;;), where g;; =
minors of g are all positive for 1 < k < n, we know by Sylvester’s criterion that g
is a positive-definite Hermitian matrix. Hence, w is positive on Uy. Since Uy can be
replaced any U;, 1 <17 < n, we have that w is positive everywhere on CP". In fact,

w is the associated (1, 1)-form of a Kéhler metric called the Fubini-Study metric of

CPm.

Definition 2.7. A Hermitian metric is called a Hodge metric if it is Kahler and the

cohomology class of its associated (1, 1)-form is rational.

2.2 Connections on Complex Vector Bundles

We first discuss a few preliminary notions on a complex vector bundle £ — M over
a complex manifold M. In the next section, we will let £ = T'M to define our
curvatures. In this section, the notation AP(F) will denote the sheaf of E-valued

p-forms on M. Note that A*(E) = &, ,-xAP4(E), where AP(E) is the sheaf of

12



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

smooth E-valued (p, ¢)-forms on M.

Definition 2.8. Let £ — M be a complex vector bundle. A Hermitian metric on E
is a Hermitian inner product (-, -) on each fiber £, of £ which depends smoothly on

pe M.

Let E — M be a rank n vector bundle, where n € N. Let {ey,...,e,} be a local
frame of F over an open set U C M; i.e., the set {ey, ..., e,} forms a basis of sections
for each fiber. By “depends smoothly”, we mean that the functions h;; = (e;(p), ¢;(p))

are smooth.

Definition 2.9. Let M be a complex manifold and let £ — M be a complex vector
bundle of rank n € N. A connection on E is a linear map D : A°(E) — A'(E) which

satisfies the Leibniz’ rule: For all f € C*°(M) and for all ¢ € A°(E),

D(f&) =df @ ¢+ f - D(§).

Using the local frame {e, ..., e, }, a connection D can be locally written as De,, =

> 51 Oapes, Where the 0,5 are 1-forms.

Definition 2.10. The matrix of 1-forms, § = (6,3), is called the connection matric

of D with respect to the local frame {eq, ..., e,}.

We will focus on a special kind of connection which satisfies two compatibility

criteria.

Definition 2.11. Let D be a connection over a complex vector bundle £. Then D

is compatible with the complex structure if the composition of maps

praoD: AYE) B ANE)E A%Y(E)

13



2.2 CONNECTIONS ON COMPLEX VECTOR BUNDLES

is just equal to 0.

Definition 2.12. Let D be a connection over a complex vector bundle E and let

(-,+) be a Hermitian metric on E. We say D is compatible with the metric structure

if for all £,n € AYE), d(¢, n) = (D&, n) + (£, D).

Proposition 2.13. Let E be a holomorphic vector bundle with Hermitian metric
(-,-) on E. Then there ezists uniquely a connection D that is compatible with both

the complex structure and the metric structure.

Definition 2.14. The unique connection of E compatible with both the complex
structure and the metric is called the canonical metric connection, or the Hermitian

connection.

Furthermore, we can define the following connection for p > 1:
D, : AP(E) — A"™(E)
via the Leibniz rule: For all £ € A°(FE) and for all ¢ € AP(M),

Dy(¢- &) = dyp @ €+ (=1)P A DE.

In particular, we have that the map D* = Do D : A°(E) — A?*(E) is linear over
A°(E). In other words, D*(fo) = fD?*(o), for any f € C*(M) and 0 € A°(E).
Hence, for any local frame {ey,...,e,} over an open set U C M, D? can locally be

written as D?e, = Zgzl Oapes, where the ©,4 are 2-forms.

Definition 2.15. The matrix of 2-forms, © = (6,p), is called the curvature matriz

of D with respect to the local frame {ey, ..., e, }.

14



2.3 THE CURVATURES OF A HERMITTIAN METRIC

Remark 2.16. The curvature matrix © can be decomposed as © = @, 44-20"1
where ©P7 is a matrix of (p, ¢)-forms. If D is compatible with the complex structure,
then ©%% = 0. This is because D®' = 0, and Y5, Opses = D% = (D)2,
Additionally, if D is also compatible with the metric, we can choose a unitary frame
of E such that both 6 and © are skew-Hermitian—that is, * = —f and ©* = —0,
where “*” denotes the conjugate transpose. With © skew-Hermitian and ©%% = 0,

we have that ©20 = —(0%9)* = —(0%%)T = (. Hence, O consists of only (1, 1)-forms.

2.3 The Curvatures of a Hermitian Metric

Let E be a rank n € N holomorphic vector bundle and let v and v be sections of F.
Let {ei,...,e,} be a local frame for E' and assume that © is the curvature matrix of
the canonical metric connection D. Write u = Z?:l u;e; and v = Z:.L:l v;e;. Define

the following (1, 1)-form as follows:

n
Ous = g Oir i UiV;,

igk=1
where g;; is a Hermitian metric on E.

Definition 2.17. Let u and v be sections of ' and let X and Y be tangent vectors

on M. Define the 4-tensor Ryy .z by Rxvus := Ous(X,Y).

We observe that because © is skew-Hermitian and ©,; = —0,;, we have

RX)_/U’T} = RY)_(MT

15



2.3 THE CURVATURES OF A HERMITTIAN METRIC

2.3.1 The Components of the Curvature Tensor

In this section, we discuss the special case of a vector bundle E which is key for defining
our curvatures. Let M be an n-dimensional Hermitian manifold with Hermitian
metric g and canonical metric connection D. Let £ = T'M. Then, for any (1,0)-

tangent vectors X, Y, Z, W, write
R(X,Y,Z,W) = Rxyzw = Ozw(XY).

Let {e1,...,e,} be a local frame for T M, in which case we write Ri5ki = Reiejene;-

Definition 2.18. The R,j;; are called the components of the curvature tensor asso-

ciated with the metric connection.

If we consider holomorphic coordinates (21, ..., z,) and let {e;}; = {a% n, we

can write the components as

(:)294,, n 7(99,_39 =
R —— 99 qpZJP ~74) 2.6
’L]kl = + Z g azk azl ’ ( )

where g% is to be interpreted as (¢71),,. Moreover, when g is Kahler, the R 5 satisty

the following symmetry condition:
Rijii = Rijir = Rinj- (2.7)

Remark 2.19. We have an equivalent definition of the components of the curvature

tensor for an arbitrary tangent vector X. Namely, if X = Y " Xi% is a (1,0)-

16



2.3 THE CURVATURES OF A HERMITTIAN METRIC

tangent vector on M, then
RXXXX = _g(X7X7X7X) + Z gbag(X,d,X)g(b,X,X), (28)
where g(X, X, X, X) is to be considered as the 4-tensor defined as follows: Let

9 6 0 9 —~ &gy
(azz 02, O 6zl> —MZ R (2.9)

By multi-linearity of g, we know

_ o o0 0 0
X X, X, X E XXX X, — .
g( ) Y 7 ljkl . k‘ lg (621 8zj7azk782l)
Hence,
_ 89
X, X, X, X g XXX X 4 2.10
g( ’ 9 ’ k lazkaZl ( )

i,5,k,0=1

Additionally, g(X,a, X) is the 3-tensor defined as follows: Let

9 9 0\ <= g
((%Z 074’ 823) 2;1 0z (2.11)

By multi-linearity, we know

o 0
ZX (021 0z, 82])

3,0=1

Thus,

Z XX, ag’“ (2.12)

1,j=1

The term g(b, X, X) is defined similarly. We will use this equivalent definition in

17



2.3 THE CURVATURES OF A HERMITTIAN METRIC

Chapter 3 since it lends itself better to approximating the curvature from below.

2.3.2 Definitions of Curvatures on a Hermitian Manifold

Using the components of the curvature tensor, we can make the following precise

definitions:

Definition 2.20. If X = 37" | X;-2 is a nonzero (1,0)-tangent vector at p € M,

then the holomorphic sectional curvature in the direction of X, denoted by K(X), is

given by

K(X) = (2 Z Rijkl‘(p)XinXle> /( Z gijngXinXle> . (2.13)
ig ki, l=1 ijk,l=1
Note that the holomorphic sectional curvature of X is invariant under multipli-

cation of X with a real nonzero scalar. As a result, it suffices to use unit vectors for

which the value of the denominator is 1.

Remark 2.21. By (2.8) we have an equivalent (and concise) definition of holomor-
phic sectional curvature: If X = Y7 X,-Z is a (1,0)-tangent vector on M, the
holomorphic sectional curvature in the direction of X is

K(X) = R’);?'{jx, (2.14)

where | - [* is with respect to the metric g. We will use this definition in Chapter 3.

Example 2.22. With the Fubini-Study metric discussed in Example 2.6, CP" has

constant holomorphic sectional curvature equal to 4.

18



2.3 THE CURVATURES OF A HERMITTIAN METRIC

When we consider an orthonormal basis {uy, ..., u, } of T M, we can take the trace

of the components of the curvature tensor and obtain the following curvatures.

Definition 2.23. The Ricci curvature in the direction of X is
Ric(X) = > ryXiX;, (2.15)
ij=1
where TG = 22,1:1 gkle‘jkl' and gkl = (9_1)115-
Remark 2.24. One can compute r;; without the use of the curvature tensors. Given

a Hermitian metric ¢ = (g,7), we have

2

821-8@-

TG = — log (det g47)) - (2.16)

There are actually several ways to define the Ricci curvature of g. Using the
equation in (2.16), we have what is called first Ricci curvature of g. For definitions
of the other two Ricci curvatures, we refer the reader to [Zhe00, Section 7.6]. If M is
a Kahler manifold, all of the different Ricci curvatures coincide.

Using the 7,5 in (2.16), we can define the following real, closed, and globally defined
(1,1)-form on M:

Definition 2.25. The Ricci curvature form of a Hermitian metric g, denoted by

Ric(g) is defined as
Ric(g) :=v—1 Z ri;dz N dZ;. (2.17)

1,7=1

Under the same orthonormal basis, taking the trace of the r;; gives us:

19



2.3 THE CURVATURES OF A HERMITTIAN METRIC

Definition 2.26. The scalar curvature 7 is defined to be
T= Z gijrij = Z gijgklRﬁkl"
1,j=1 i,9,k,0=1

The Ricci form and scalar curvature are related by the following formula:

Proposition 2.27. Let (M, g) be an n-dimensional Kdihler manifold with associated

(1,1)-form w. Then

2
Ric(g) Aw" ™ = Z7w™.
n

One can easily see that Ric(g) > 0 implies that 7 > 0. Lastly, we can consider the

scalar curvature on the whole manifold by defining:

Definition 2.28. The total scalar curvature T is defined to be

T:/ TW",
M

where w is the associated (1, 1)-form of the Hermitian metric g and n = dim M.

In the Kahler case, a result of Berger implies that the holomorphic sectional curvature

and scalar curvature always have the same sign.

Proposition 2.29 ([Ber66]). Let (M, g) be a Kdhler manifold. Let K be the holo-

morphic sectional curvature of M and let T be the scalar curvature of M.
(i) If K >0, then >0
(i) If K >0, then >0

(iii) If K <0, then T <0
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2.3 THE CURVATURES OF A HERMITTIAN METRIC

() If K <0, then 7 <0.

Furthermore, in the negative case, the relationship between holomorphic sectional

curvature and total scalar curvature is discussed in the following theorem.

Theorem 2.30 ([HW12]). Let M be a projective manifold with a Kdhler metric
of negative holomorphic sectional curvature. Then the total scalar curvature of any

Kahler metric on M 1s negative.

2.3.3 Curvature Pinching

Let M be a compact Hermitian manifold with holomorphic sectional curvature K (X).

Definition 2.31. Let ¢ € (0,1]. We say that the holomorphic sectional curvature is

c-pinched if
miny K(X)

maxy K(X) =c (=),

where the maximum and minimum are taken over all (unit) tangent vectors across

M.

The pinching constant of a compact (Hermitian, Kédhler, Riemannian, etc.) man-
ifold can help determine some global properties of the manifold. For instance it was
shown in [SS85] that if the holomorphic sectional curvature of a 6-dimensional con-

nected complete non-Kahler, nearly Kahler manifold M is c-pinched, where ¢ > %,

T

25> Where 7 is the scalar cur-

then M is isometric to the 6-sphere of constant curvature
vature of M. Additionally, results on compact Riemannian manifolds whose sectional

curvature is 3-pinched are discussed in [BS08] and [BS09).
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

2.4 Curvature and the (Anti-)Canonical Bundle

There is a significant interplay between the curvature of a complex manifold and the
various algebraic-geometric notions of positivity of its (anti-)canonical bundle. We

first make the following precise definitions which will be utilized in Chapter 4.

Definition 2.32. Let M be a compact complex manifold and let L — M be a
holomorphic line bundle on M. Then L is positive or ample if there exists a Hermitian

metric h on L such that its curvature form 2%105 log h is a positive-definite (1, 1)-form.

Definition 2.33. Let M be a compact complex manifold. Then M is projective if it

can be embedded into a complex projective space CP".

Using the Kodaira Embedding Theorem, a manifold is projective if and only if
it admits a positive line bundle L. — M. Also, by Chow’s Theorem, a manifold is
projective if and only if it can be defined as the zero locus in projective space of a
finite number of homogeneous polynomials (i.e., it is projective algebraic).

An important special case is when L = Ky, where Ky, = /\dimMTM* is the

highest exterior power of the cotangent bundle of M.

Definition 2.34. We call K, the canonical bundle of M and call its dual — K, the

anti-canonical bundle of M.
Definition 2.35. If — K, is ample, then M is called a Fano manifold.

Definition 2.36. The first Chern class of M is defined to be (M) := cf(—Ky).

Using the usual abuse of notation, we will drop the ®. If K, is ample, then
c1(Kyr) > 0, and if —K) is ample, then ¢;(—Kjs) > 0. By the work of Chern, we
know that the cohomology class of %Ric is equal to ¢;(M). This equality, together

with Yau'’s solution of the Calabi Conjecture found in [YauT78], yields:
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

Theorem 2.37. There exists a Kdhler metric with Ric < 0 if and only if ¢y (Ky) > 0.

There exists a Kahler metric with Ric > 0 if and only if c;(—Ky) > 0.

From the definition of holomorphic sectional curvature, it is clear that the curva-
ture tensor determines the holomorphic sectional curvature. Conversely, from [KN69,
Proposition 7.1], we know that the holomorphic sectional curvature determines the
components of the curvature tensor. Be that as it may, the positivity or negativity
properties of the holomorphic sectional curvature do not necessarily transfer to the
Ricci curvature. In the positive case, the relationship between holomorphic sectional
curvature and Ricci curvature is a bit more subtle and mysterious. In the negative
case, it was proven in [HLW10] that if dim M < 3 and if there exists a Kéhler metric
on M with negative holomorphic sectional curvature, then there exists a Kahler met-
ric on M with negative Ricci curvature. More recently, it was proven by Wu and Yau

that this statement holds true for a projective manifold of any dimension, namely:

Theorem 2.38 ([WY15]). If a projective manifold M admits a Kdhler metric whose
holomorphic sectional curvature is negative everywhere, then the canonical bundle Ky,
15 ample.

Moreover, this result was extended by Tosatti and Yang in [TY15] from the projective

case to the Kahler case:

Theorem 2.39 ([TY15]). Let M be a compact Kdhler manifold with negative holo-

morphic sectional curvature. Then Ky 1s ample.

By Theorem 2.37, Theorem 2.38, and Theorem 2.39, we see that M having nega-
tive holomorphic sectional curvature implies that M also has negative Ricci curvature.
In the positive case, it does not hold true that positive holomorphic sectional cur-

vature implies positive Ricci curvature. For instance, the n-th Hirzebruch surface
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2.4 CURVATURE AND THE (ANTI-)CANONICAL BUNDLE

F,, admits a Kahler metric of positive holomorphic sectional curvature, but does not
admit a metric of positive Ricci curvature for n > 2. In Section 4.1, we briefly discuss
the Ricci curvature of Hirzebruch surfaces using the notion of intersection numbers,

which is defined as follows:

Definition 2.40. Let M be a compact complex manifold and let Dy, ..., Dy be divisors
on M. Then the intersection number of Dy, ..., Dy and a k-dimensional subvariety V'
is

Dy .Dk.V:/cl(Dl)/\---/\cl(Dk) cz.
v
Using intersection numbers, we can state a numerical criterion for ampleness.

Theorem 2.41 ([Kle66], [Moi61], [Mo0i62], [Nak60], [Nak63]). Let M be a projective
manifold and let L be a line bundle on M. Let D be a divisor on M such that
L = [D]. Then L is ample if and only if for all positive-dimensional irreducible
subvarieties V. C M,

DIV = / c(D)™Y > 0.
\%

Note that letting V' = M is allowed in Theorem 2.41. This theorem is called
the Nakai-Moishezon-Kleiman criterion, but we will refer to this theorem as Nakai’s
criterion for the sake of brevity. A complete proof of this result can be found in
[Laz04]. In particular, if M is a smooth projective surface, we have that L is ample if

and only if its self-intersection number L.L is positive, and for any irreducible curve

ConM,LC>0.
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Chapter 3

Metrics of Positive Curvature on

Projectivized Vector Bundles

In this chapter, we prove a generalization of Hitchin’s result on the positive holomor-
phic sectional curvature on Hirzebruch surfaces found in [Hit75]. We also provide a
partial answer to the open question posed by Yau in Riemannian geometry in [SY10,
Problem 6] by considering Yau’s question in a complex setting and by considering
projectivized vector bundles. This allows us to naturally replace “nonnegative sec-
tional curvature” in Yau’s question with “positive holomorphic sectional curvature”.

Under these circumstances, we arrive at our main theorem which is found in [AHZ15].

3.1 Proof of Theorem 1.2

We recall our main theorem on projectivized vector bundles over compact Kahler
manifolds:

Theorem 1.2 ([AHZ15]). Let M be an n-dimensional compact Kdhler manifold.
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3.1 PROOF OF THEOREM 1.2

Let E be holomorphic vector bundle over M and let m1 : P = P(FE) — M be the
projectivization of E. If M has positive holomorphic sectional curvature, then P

admits a Kahler metric with positive holomorphic sectional curvature.

Proof. Let (M, g) be an n-dimensional compact Kéhler manifold with positive holo-
morphic sectional curvature and let w, be the associated (1,1)-form of g. Let E be a
rank (r + 1) vector bundle on M and let h be an arbitrary Hermitian metric on E.
Let (z, [v]) be a moving point on P, where x € M and [v] € P(E). The metrics g and

h naturally induce a closed associated (1,1)-form on P:

we = 7 (wy) + sv/ =100 log h(v,v), (3.1)

which is the associated (1, 1)-form of the metric G := G, on the total space. Write
hys := h(v,0). For s € R sufficiently small, wg is positive-definite everywhere. Thus,
G is a Kahler metric on P.

We claim that for s sufficiently small (depending on g and h), the metric G has
positive holomorphic sectional curvature. Fix an arbitrary point p = (zo, [w]) € P.
Without loss of generality, let us assume that |w| = 1. Since M is assumed to be a
Kéhler manifold, we know by Proposition 2.5 that there exist holomorphic coordinates
z = (21, ..., 2n) centered at xy that are normal with respect to g; i.e., zg = (0,...,0),
and

gi5(0) = 045, (dg;;)(0) =0, forall 1 <i,j <n.

Let ©" be the curvature form for the vector bundle (E,h). Using a constant
unitary change of (21, ..., z,) if necessary, we may assume that the (1,1)-form ©" .=

©"(w, w) is diagonal. This means at o, ©" can be written as O, = >""" | 0,dz; Adz;.
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3.1 PROOF OF THEOREM 1.2

Let {eg,e1,...,e,} be a holomorphic local frame of F near x,. We may assume

that eg(0) = w. We may also assume that

hos(0) = dap, (dh,z)(0) =0, foralll <a,B<r

and
0?h, 3 B

=——0)=0.
8zi8zk

&&chaﬂ- (0)

For [v] in the moving point in P, we can use the holomorphic frame and write
v=eg(2)+ Z ta€a(2). (3.2)
a=1

Thus, (2,t) = (21,---, Zn, t1, ..., &) becomes local holomorphic coordinates in P cen-
tered at p = (xo, [w]) € P. Without loss of generality, we can shift our point p to the

origin 0 and assume that our coordinates (z,t) are equal to (0,0).

We first want to compute G. After direct computation, we obtain

G = Gidz NdzZ; + Gigdz Ndtg + Gozdt N dZ; + G pdt, A dig,

where

G — g " —S 8hmy ahv{) i i th‘UT)
“ g” (hmj)Q 8ZZ 02]- hvg 82282]
—S ahv@ 8hmj S 82hmj

Ci3 = hn)? 0z Oty | B 9520015

G- =3 Ohyy Ohuy | s 0%hyy
o (hyp)? Oty 0Zj  hyp Ot,0Z;

G —5  Ohyy Ohyy n s 0% hys
B (hyp)? Ota Ots  hyy Ot,Ots
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3.1 PROOF OF THEOREM 1.2

Note that because h depends only on 2, and v is linear in ¢, we know that

82}1@5 o a2hm7 0 o a2hm7
8zk855 N 6t582k N 8zk8t5

(0) = 0.

Thus, we have G3(0) = (A — 6;)d5, G;5(0) = G;(0) = 0, and G,5(0) = 6,s. Hence,
G is diagonal at p. In order to compute the components of the curvature tensor of G,
we need to compute the derivatives up to second order. From (3.2), we can see that
v is linear in t,. Hence, any derivative of h,; of second-order or higher with respect

to t, is identically equal to 0. The first derivatives of G are as follows:

% B % s Ohyg s Ohys 0%hys N 25 Ohyy Ohyy Ohys
0z, 0z hyp 02,02;0Z;  (hyp)? 0z 02;0Z;  (hyy)? 0z, 0z 0%
s ?hyy Ohys  Ohyy 0*hyy
" hoo)? <8zkazi 9z, | % azkazj)

0G5 _ s Ohys 0%hys n s P hoyy n 2s  Ohyy Ohyy Ohys
0z (hop)? Oz 02z;0lg  hyp 02,02;0ts — (hyp)® Oz 0z Ot
s Phyy Ohys  Ohyy 0*hys
 (hey)? (8zkazi oty ' 0z azkatﬁ)

0Gy; =5 Ohy 0?hys +i P hys N 25 Ohyy Ohyy Ol
0z (hop)? Oz 0ta0Z;  hyp 02,0t,0Z;  (hyp)3 0z, Oty 0%
s Phyy Ohyy  Ohyy 0*hyy
 (hey)? (azkata dz;  Ot, azkazj)

0Gog =5 Ohyy 0%hyg L8 P hys N 25 Ohyy Ohys Ohyy
0z (hop)? Oz OtaOlg  hyp 0zp0t,0lg — (hyg)? Oz Ot, Otg
S ?hys Ohyy  Ohyy 0%hyy
 (hey)? (8zk8ta dtg 0ty azkatﬁ)
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3.1 PROOF OF THEOREM 1.2

aGaj —S 8hvﬁ thU@ 28 8hvrg 8]’1/1“7 ah,mj S 8thj 82hv@

0t (ho)? O, 01a0z, | (o) OF, Ot 0z,  (hos)? Ot 01,02,

0t (la)? O, 01205 (huo)® Ot Otw 0f5  (hun)? Ote 1015

0Gog  —s Ohyy Ohyy 25 Ohyy Oy Ol s Ohyy hys

. . . 8G;: OG- 8G,; 0G5
Because G is a Kédhler metric, we have that -4 = —2 and 5% = —22. Also,

hys(0) = |w|* =1,

and all first order derivatives of h and g are zero at the origin. By taking another

derivative and evaluating at the origin, we get

GQGZE 0) = 82913 s| — 82}11}6 ahvf) + a4hm7 N thvT} thvﬁ
82]4921 N 82;4921 8zk8§l 8,21-82]- 8zi82j82k821 8zi821 8zk82j
8G15 i 5’4hm—,
020085 " 02,0%,02401 5
aQsz (0 s 84/%5 . 82}1”@ ah2hw
@taafﬂ N 82182]615&855 ataafﬁ 6zl(32]
Coi () — g
6t7821
0°Go5
B () = 0
at,yaZj
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3.1 PROOF OF THEOREM 1.2

62GQB( )_S — thm_’ 82hm_’ . thm‘) thm-;
ot,0ts ' T\ OL0Ls Ot 0ts  Ot,0l; 0L, 0tz )

Let X = >0 X2, U= _Uszr, and V := X + U € T,P. Let R be the

’Lazi7

curvature tensor of G, RY be the curvature tensor of g, and R" be the curvature
tensor of h. Note that because the matrix of G is diagonal at p, the numerator of the

holomorphic sectional curvature in terms of (2.8) is equal to

n+r

Rypyy = —=G(V,V,V,V) +Z o
a=1 aa

(3.3)

n+r
_ _ 1
=—GV.V.V.V)+) ——[G(V.a, V)"

a=1

Because the second summand is always nonnegative, we know

Ryyyy 2 _G<‘/7 V, % ‘7)'

Using the multi-linearity of G, we have that

GV, V,VV)=GX+UX+U,X+UX+U0)
=G(X, X, X, X)+GUX, X, X)+G(X,U,X,X)+GU,U, X, X)
+G(X, X, U, X)+GU,X,U,X)+GX,U,UX)+GU,U,U,X)
FGX, X, X, U)+GU,X,X,U)+G(X,U,X,U) + GU,U, X,U)

+G(X,X,U,0)+GU,X,UU)+GX,U,U,0)+GU,U,U,T).

Note that G(U,U, X, X) and G(X, X, U, U) are real since they are equal to their own
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3.1 PROOF OF THEOREM 1.2

conjugates. Additionally,

which shows that G(U, X, X, U) is also real since it is equal to its conjugate. Hence,

we have

G(V,V,V,V)=G(X,X,X,X) +4G(X,X,U,U) + G(U,U,U,U)
+2Re(G(X,U, X,U)) +2(2Re(G(X, X, X,U)))
+2(2Re(G(U,U,U, X)))
=G(X, X, X, X)+4G(X, X,U,U)+ G(U,U,U,U)

+2Re [G(X,U,X,U) +2G(X, X, X,U) +2G(U,U,U, X)] .

By (2.9) and (2.10), we obtain the following:

Rypyy > —G(V,V,V,V)

= —G(X,X,X,X)—4G(X,X,U,U) — G(U,T,U,U)
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3.1 PROOF OF THEOREM 1.2

o - _ 0 o o 0 o _ 0
—2 X X =) 426 (X=X j——, X
fe {G Jazj’U“ata’ l@zl’U78t7>+ G< "0z 02 0z Batﬁ)l
o _— 0 o - 0
— 2Re |2 — Uy— U, —, X;—
Re[ G(UaatQ’Uﬂatﬁ’U”aty’ Jazjﬂ

irjoked=1 a,B,7,6=1 :

o 0
—4X;X; —
UalsG (8zi "9z Ot

— 2Re {XUXIUG(i 9 9 i>+2)<)(XkUﬂc;< a' i 9 i)}

—2Re[2UU5UXG< 0 0 9 iﬂ

- Enj § XXX)ZaQGﬁ 4X, XU, U, PGy UUUU82
N | ik l@zk(%l e B@ta(‘)t_g v p o
1,5,k,1=1 a,8,7,6=1

0*Gja 0*Gy; 0*G,, ]

— 2R6 |:XjUaXlU

2X: X; X 2 X,
78l8 + kUﬂﬁkc‘) + UUgU

T Ot,0z;

82Gja %G ;5 %Gz
Note that - o and 05 are conjugates. Because 9,05 is 0 at p, we have that 2

ot 82’1

is also 0 at p. Also, we computed BtC;’ to be 0 at p. Hence, we have

RVVV\_/ 2 _G(V7 ‘77 V> ‘7)

- - _ _ 0%°Gj OG5
o Z 2 _X"Xﬂ‘X’“Xlazkaz, XX, Ua Uﬂat Oty (3.4)
1,7,k,l=1 a,8,y,0=1
U, UsU,U, “Cas 4R XXXUaZG
e 68@(‘%5 ‘ ST

Substituting the derivatives of G into (3.4) yields

n r
_ _ 32g;:
Ryyyy > - X; X; X X =
VVVV—'Z Z iGNk laZkazl
l’]’k7l:1 avﬁv')/»(s:l
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- - Phyy 0?hyy 0*hyy Phyy 0hyy
— X, X Xe Xps [ — -
Jk 8 < szazl aZiaZj 8zi82j6’zk8,€l 821'821 8zk82j
- - O*hyy 0?hyy Oh%hyg
—4X,; X;U,U, — — — — —
JYa8s (aziazjataatﬁ 0t 0t aziazj)

Phyy O*hys

— UaU/BU'yU;SS (—

v = a4hvf)
— 4sRe |:XZXJXkUﬁaZ

07;02,0t 5
0? gzg

Z Z —XXXlea

1,7,k,0=1 a,8,y,0=1

ot,0ts Ota0ts

0?hyy 0*has
Ot 01y O, 0L

|

O?hey ?hyy

XX XX
+ s k l@ZkaZl 82182]

Phyy 0*ho oo o Ohyg
XX, X, X XXX XS
e N m07 020z, R 00
o Phyy Oh
A X XU T2y ox X0, 0, 0 e O
R T T, 8 0101, 0207,
Phyy Phuy Phyy Phuy
U 05U, 0, sULU5U,T,
M T T, TR e Al Taw T T 8
_gsRe | XX, Xy
PRIk Bazﬁzjazkaf@

)

Note that v = |[v]? = h,;(0) = 1. Also, because the first derivatives of h and g are

all 0 at p, and the second summands of RY and R" given by (2.8) are equal to zero.
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By

~ __ 82g-
S —XinXleﬁ—gZ{

ijk =1 2072
- \ ¥ a4hvz7
- XXX X —————
. Z e l@zlﬁé-@zkaz
4,9,k 0=1 9
?hys 0%hys
X, X; X, X
Z g l@zzaz] 02,07
i,7,k,[=1
Phys *hyy
Z XXX Ximrs
02,0z 02,0%;
4,9,k 0=1

0?hyy 0*hus
O, 0t; Ot o0t 5

ZUUﬁvé

a,B,v,0=1

a h/’UT} a hU’U

Z UalsUnUs 3yt ot L0ts

a,B,y,0=1

= U =

(2.10), we have the following equalities:

_g(X7X7X7X) Rg(XXX
3 \ \ 82 82hm7
—X; X, X X
i];:l T laziagj (8zk021)

n 9,
ij k=1 Zi0Zj
—h(X, X, X, X) =R ¢ &

n _ a2hmj B 32hm—,
i];:1 ! azlazﬂ) g l( Ozké?zl)
(—h(U, 1_)7 X7 X))Q = (R']UlUXX)2

- . 0*hyg _ 92h,.-

X; i v\ o ¥ [ — -
Z : &zﬁiz) g ]< 8zk82j>

-
"0 ot 0t

)

— OPhyg
U§—7
~ 0t 0ts

)

U’

- 0*hus  hy,
Zl <U U5 —mn T ) (U Doz ot

a,B,7,0=
- 0°h - — 0%h. -
U,U, a U.U, 2
<O‘v%1 58t at5> <a,5%1 ! B8t78t5
= (U = o
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Z Z —X;X;UsU O s En: Z X XU 0 (L
¥ 02:0z,0t,0t 5 IR 207 \ 0taOty

1,j=1 a,f=1 1,j=1 a,f=1

n r - ~ aghaB
= 2{: 2{: )Q)(ﬂjal% (__8z“92j)

ij=1a,8=1

—h(U,U,X,X) = Rloxx

=\ _ Phy Phyg d %Ry = %Ry
XX, z X, X
2 2 XX Ualsgae 9207, (521 UaUs, 8t5> <Z : Jazﬁzj)

i,0=1

For the Re(-) part, we have

n

Z ZR@ X X; XU _ O
F ﬁ@zzazﬁzk@fg

i,7,k=1 =1
0” ?hys
- 3 2 (winig g (5257)

zgk 1p5=1

hy,
- Z ZR@ (XXXkUgazzazj)

i,7,k=1 =1

0?hy,
- (Z > XiX; XUy ZZ&ZJ)

i,7,k=1 =1

= Re(h(X,U, X, X)) = Re(—Rl 5 1)

After substituting the equalities, we have that Ry is bounded below as follows:

Rypyvy > Regyx +5 (R gxx +2(Rixg)?)

+s (Q‘U‘4 + 4RUUXX 4U? vaXX + 4R€(R§(UXX)) .

(3.5)
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3.1 PROOF OF THEOREM 1.2

Let Hy € R™ be the minimum holomorphic sectional curvature of g on M—that is,

g

XXXX > H..
x| =

Due to the compactness of M, we know that there exists C' € Rt such that |[R"| < C.

Under the assumption that h,;(0) = |v|> = 1, we have

Rypvy > Ho| X|* — sO|X|* +2sC? X|* + 2s|U|* + 4s(—C|U|*| X |*)
— 4sC|U*|X|?* + 4sRe(—C| X *|U])

= Ho|X|" + s (=C|X|" + 2C*| X |* + 2|U|* = 8C|UP| X |* — 4C|X *|U]) .

Thus, the holomorphic sectional curvature of P is bounded below by a homogeneous
degree 4 polynomial in variables |X| and |U|. Call this polynomial f := f(|X|,|U]).
We show that when at least one of X and U is nonzero, f is positive for s sufficiently

small. Consider the following two cases:
(i) When X =0 and U # 0: f(0,|U|) = 2s|U|*, which is positive.
(ii) When X # 0: Since f is homogeneous, we know that f(|X|,|U]) = | X|*f(1,0),
where U := % Thus, it suffices to check if f(1, (7) is positive. Note that
FLO) = Hy+ s (2(74 _8CU? — 4CT + (J’) , (3.6)
where C" = 2C? — (. Since the leading term inside the parentheses of (3.6)
guarantees a minimum, we know that for sufficiently small s, f(1, U ) is positive.

Hence, Ry yyy > 0 when V # 0. ]
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3.2 On the Grassmannian Bundle Gj(F)

If we replace P(E) in Theorem 1.2 with the k-Grassmannian bundle Gi(F) of all
k-dimensional subspaces of the fibers of F, then G(FE) also has positive holomorphic
sectional curvature. Let E be a rank r vector bundle over a compact Kéahler manifold
M, where r > k. Let (o, [v]) € G(E) be a moving point and let {e,eq,...,e.} be a

holomorphic local frame of E near xy. The analogue to equation (3.2) is

Thus, (2,t) = (21, .-, Zn, t1, .-, tr—k) becomes local holomorphic coordinates in G (F)
centered at our fixed point p = (x¢, [w]) € Gi(E). By using the methods from the
proof of Theorem 1.2, we would arrive at Gy (F) also having positive holomorphic

sectional curvature.
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Chapter 4

Curvature Pinching for

Projectivized Vector Bundles over

CP!

With the result in Theorem 1.2, it is natural to attempt to determine the pinching
constants of the holomorphic sectional curvature of a projectivized vector bundle
P(E). We first briefly discuss the concepts of decomposable and indecomposable

vector bundles.

Definition 4.1. Let M be a complex manifold. A vector bundle £ — M is inde-
composable if it is not the direct sum of two vector bundles of smaller rank. We say

E is decomposable if it is not indecomposable.

A quintessential example of an indecomposable vector bundle is the tangent bundle
of CP", when n > 2. It was proven by Horrocks in [Hor64] that any vector bundle on

CP",n > 3, is decomposable if and only if its restriction to a hyperplane H = CP"~! C
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CHAPTER 4. CURVATURE PINCHING FOR PROJECTIVIZED VECTOR
BUNDLES OVER CP!

CP" is decomposable. If M is CP!, then any vector bundle on M is decomposable
and is equal to the direct sum of line bundles. More precisely, we have the following

theorem:
Theorem 4.2 ([Bir09], [Gro57]). Let E be a rank k holomorphic vector bundle over
CP!, where k > 1. Then E is isomorphic to a direct sum of line bundles, namely

E B @?:10@}»1 (m), n; € Z,

where Ocpr (n;) represents the line bundle of degree n; over CP!.

As a result, our primary stepping stone consists of studying pinching constants of
P(F) where the base manifold is CP'.
We note that if L a line bundle, then P(E ® L) = P(E). Thus, if E is a vector

bundle of rank k > 1 over CP' and if we tensor E by the line bundle
Ocpr (—min{n; | i =1,...,k}),

the structure of the projectivized vector bundle is not altered. After tensoring by

Ocpi (—min{n; | i = 1,..., k}), the projectivization of F can be written as
P(E) =P (Ocp & (@fz_foml (mq))), m; € Z°°,

where O¢pr denotes the trivial line bundle of CP!. The (optimal) pinching constants
of P(F) will then depend on the nonnegative integers my, ..., my_1, which we call the

“twisting” parameters.
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

4.1 Curvature Pinching for Hirzebruch Surfaces

We consider the projectivization of a rank k& = 2 vector bundle Ocp1 (n) ® Ocpr, where

n € 729,

Definition 4.3. The n-th Hirzebruch Surface is defined to be
Fn =P (O(CIF“ (n) ©® Ocpl) .

Let (s, 1) be a section of Ocp1(n) @ Ocpr. After projectivizing the fibers, we have
a section o of F,,. Let E, be the image of ¢ in [F,,. We then have the special curves

onF,, Ey, E,, and E,,, as shown below.

/
e Ex
/‘\[\

AN

ag

Regarding intersection numbers of these curves, we have

Eo.Eg =n, EOEoo = O, EooEoo = —n. (41)

A more detailed description of this rational ruled surface can be found in [GHTS,
Chapter 4].

Let z; be an inhomogeneous coordinate on CP! and consider the standard Kéhler
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

metric, the Fubini-Study metric

B dzy N\ dzZy
Wrs = m
Using the fact that Ocpi(—2) = Kcep and Ocpi(2) = TCP!, we have a natural
Hermitian metric on Ocpi(n) & Ocpr defined as follows: Let w € Ocpi(n) @& Ocp.
Then w = (21, w;(dz;) "2, ws), where wy, wy are coordinates in the fiber direction and
(dz)~t is a section of Ocpi(2) = TPL. From this, we see that (dz;)~> is a section of

Ocpt (n). In the fiber direction, we have
Jw||? = wiDs(1 + 2121)" + wbs.

Taking local inhomogeneous coordinates zo = wy/w; yields the following form on
Ocp1 (n) © Ocpr
¢ = mrwps + svV/—190log ||w]|?,

where s is a positive real number chosen small enough so that ¢ is positive-definite,
and 7 is the projection map 7 : O¢pr (n) ® Ocpr — CPL.

Projectivizing the fibers of this direct sum of line bundles yields a closed form
¢s. Using the fact that the associated (1,1)-form of the Fubini-Study metric is
V—1901og |2|? = /=100 log(1 + 2,z1) and that z5 = wy/w;, we have

0s = V—190 (log(1 + 2171) + slog((1 + 2121)" + 22%2)) (4.2)

which is globally well-defined on F,,. This is the form of the metric which we will

use in this section. It should be remarked that the metric in (4.2) is Kéhler. When
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

s € Q7, the metric is also a Hodge metric. Furthermore, o, is positive-definite when

5 < # In fact, Hitchin used ¢, to prove the following theorem:

Theorem 4.4 ([Hit75]). For all n > 0, F,, admits [Hodge] metrics of positive holo-

morphic sectional curvature.
Before proving Theorem 4.4, we make the following remarks:

Remark 4.5. Recall that SU(2) acts on CP! as an isometry of the Fubini-Study
metric, preserves the fiber metric when lifted to the vector bundle, and acts transi-
tively on CP!. Hence, without lost of generality, we can simplify our calculations by

restricting our computations along one fiber—say z; = 0.

Remark 4.6. In [Hit75], the R;3; are expressed in terms of a unitary frame field.
The proof of Theorem 4.4 presented below involves the curvature tensors in terms

of the frame {% 91 with respect to the coordinates mentioned above. We use

1) 9z
this frame since it lends itself to the methods utilized when computing the pinching

constant in this section.

Proof. Let G :=log(1 + z121) + slog((1 + z121)™ + 2222). Thus

Ps =V —1(‘)5@ =V —1gl3dzl AN dfj.

Direct computation yields

1+29Z2+sn 0 142020 0
1+29Z 7 1+29z2+sn
)= and (g%) = | T
0 s 0 (1422%22)2
(1+2222)2 s
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

From (2.6), the components of the curvature tensor are

2(—n?s2929 + (1 + 2229)* + n(s + s292))

Rueie — 43
1111 (1 + 22272)2 ( )
ns(1+ns — 23z3)
R 4.4
1122 (1 + 2222)3(1 +ns + 2222)7 ( )
2s
Ryppy = ————— 45
2222 1+ 2272)" (4.5)

while the other terms, except those obtained from symmetry, are equal to zero. Let
§ € T{0,25)[F,, be an arbitrary unit tangent vector such that § = 518%1 + 528%2. When

we substitute the R,z into the formula for holomorphic sectional curvature we obtain

K(¢) = ﬁ(&é)%l + z929) + ﬁ ((G&)°(1+ 202)° + (£62)%) +

4s (—(5151)277/22222(1 + 2222)2 + 2?7/(5151)(5252)(1 + 2252)<1 +ns — Z%Zg))
(14 2925)4 14+ ns+ 292 '

We observe that when £ # 0, we have K (§) > 0 since the first term is positive and we
are letting s be sufficiently small-—particularly s < % Thus, F,, has a metric which

admits positive holomorphic sectional curvature for all n > 0. O

This result of positivity may be considered surprising, as the F,, do not carry
metrics of positive Ricci curvature for certain values of n. To show this, we will use

some results discussed in Section 2.4.
Proposition 4.7. Forn > 2, F,, does not admit a metric of positive Ricci curvature.

Proof. By Theorem 2.37, it suffices to show that — Ky, is not ample for n > 2. By
Nakai’s Criterion in Chapter 2, a line bundle is ample if its self-intersection number

is positive and its intersection with any irreducible curve is positive. Consider the
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

curve E,, on F,. Using the Adjunction Formula IT found in [GH78, Chapter 1], we
have Kg = Kr,|p., ® [Ex]|e,. Then by the self-intersection number of E., from
(4.1), we have

deg K., = deg Ky, |k, + deg[Eu]| k.,
= deg Kr, |p., + (—n)

Since deg Kp_ = 2g—2 and g = 0, we know deg K = —2. Hence, —2 = Ky, .F,,—n,
and

_K]Fn-Eoo =2—-n.

When n > 2, we see that the intersection number is not positive. Thus, —Kp, is not

ample for n > 2. O

Due to the compactness of IF,,, we know that a minimum value and maximum value
of the holomorphic sectional curvature exist. Although Hitchin proved [F,, has positive
holomorphic sectional curvature, his proof did not yield any pinching constants. With

this motivation, we have the following pinching result:

Theorem 4.8 ([ACH15]). Let F,, n € {1,2,3,...}, be the n-th Hirzebruch surface.
Then there exists a Hodge metric on I, whose holomorphic sectional curvature is
1

m —pinched.

Proof. We first consider the case when n > 2. Take

ps = V—100[log(1 + 2121) + slog((1 + 212)" + 222)].
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

From
1+2z02Z0+sn 0
0\ 1+2222
(gij) = )
s
0 (1+z2 22)2

we see that an orthonormal basis for T{g .,)F,, is {ui,u3}, where

i = 1+2222 0 and @ — 1+2222 0
VTV e 5z s 02 2 Vs 0z

Therefore, an arbitrary unit tangent vector, § € T{g.,)F,, can be written as

1+2222 8 —|—Cl+2222 8
1+ 292 +ns 0z @ ° NG 0z

§=a

where ¢y, ¢y € C such that |¢;|? + |ca]|? = 1. Define the following:

f 1—}-2222 d f 1+2222
=c D — an =cC .
! W1+ 22 +ns’ 2 2 NG

Substituting the values of R from (4.3), (4.4), and (4.5), and the values of £ and

&5 into the definition of holomorphic sectional curvature gives us

K(€) = 2R111161616061 + 8R1122616160€0 + 2Ro900£062606s

_ 4((14—2222)2—1-718(14—2222 —712222))|c |4 16
(1 + 2929 + ns)? ! (4.6)
8n(1+ns — 2523)

(1 + 292 + ns)?

4
lc1[?|ea]® + ;’CQ\4-

Since this expression of K (&) only depends on the modulus squared of z3, we let

r = 29%5. Also, because |c;|? and |cp]? are nonnegative real numbers, we can let
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

a:=|ci|* and b := |co)?. Let

4((1+7)*+ns(1+r—nr)) 3 8n(1 + ns —r?) 4
o= = ==
(14 7+ ns)? ’ (1+7r+mns)?’ T

be the coefficients in (4.6).
With these substitutions, and for fixed values of r and s, the holomorphic sectional
curvature takes the form of the following degree 2 homogeneous polynomial in a and

b with real coefficients:

K, s(a,b) = aa® + Bab + yb*. (4.7)

This is the function we want to maximize and minimize in order to find the pinching
constant for ¢, subject to the constraint a + b = 1. We find the extrema utilizing

the method of Lagrange Multipliers. Keeping r fixed, we have the equations

0 0
%Km(a, b) = A, %Km(a, b)=X a+b—1=0.

Solving this system of equations for a and b yields a unique stationary solution in the

interior

o - yv=-8 (14+7)(1+ ns)

T 2(v=B4a) 1+s—(—1+n)ns®+r(l+ s+ 2ns)
; 200 — 3 s(=1+n—r—nr—ns+n?s)
0: pu—

2y=B+4+a) —1—r—s—rs—2nrs—ns>+n?s*
We then observe the holomorphic sectional curvature in three cases:
1. At the interior stationary point (ag, b)

2. At the boundary point (0, 1)
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

3. At the boundary point (1,0).

In each case, after substituting the values of (a,b) into (4.7) with s fixed, we obtain

the following functions, some of which depend on r:
1. fs:[0,00) — R*, where
fs(r) = Kr,s(a'Ov bO)

4(3r*(1 +ns) + +3r(1 +ns)* — r3(=1 4+ n?s) — (1 + ns)*(—1 — ns + n%s))
(1+7r+ns)2(l+s—(—1+n)ns>+r(l+s+2ns))

2. K. 4(0,1)=1
3. hs:[0,00) = R*, where

4((1+7)*+ns(1+7r— m“))

hs(T) = Kns(l’ 0) = (1 +r 4 n5)2

We then determine the extrema of each function in the interior (0,00) and at the

endpoints 0 and oo.

1. For fi(r) = K,s(ap,by), we see that fI(r) = 0 if and only if r = —1 or if

_ (n=1)(1+ns)

r 1+n

. Since r = —1 ¢ (0, 00), we only regard the second critical point

since it is inside (0, 00) for n > 2. Note that

‘ ((n— 1)(1+ns)) _d-sn—1?

14+n I +ns
At the endpoints of the interval [0, c0), we see that

4(1 4 ns — n?s) , 4 — 4n?s
(0) = o and  lim fi(r) = —— %
/5(0) 14+s—(n—1)ns? o Tgﬁlof(r) 1+ s+ 2ns

47
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The latter expression makes it clear that we need to choose s < % in order to

obtain positive holomorphic sectional curvature. Furthermore, for s < n%,
4(1 + ns — n?s) 4 —4n?s 45(3n — s(2n3 — 3n?) — s*(n* — n?))

— = >0
I+s—(n—1)ns> 1+s+2ns (1+s+2ns)(1+s(l—s(n?>—n)) ’

and

4—s(n—1  4(1+ns—ns) :_s(n—1)2(3+s(n—l)) -0
1+ns 1+s—(n—1)ns? (=14 s(n—1))(1+ns) '

Thus, we have

4 —s(n—1)> 4(1 + ns — n?s) - 4 — 4n’s
1+ ns l+s—(n—1)ns? = 1+ s+ 2ns’
and
4 — 4n?s 4 —s(n—1)>
DTS c K (ag, by) < — T T
I+s+2ns — (a0, bo) I+mns

2. For K, 4(0,1) = %, the curvature is independent of r and is constant.

3. For hy(r) := K,4(1,0), we see that hl(r) = 0 if and only if r = %,
which is inside (0,00) for n > 2. We observe that hs(r) and f(r) have a
common critical point, although there does not appear to be a clear geometric

reason for this coincidence. Note that

he <(n_ 1)(1+ns)) _d-sn-1?

1+n 1+ ns
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4.1 CURVATURE PINCHING FOR HIRZEBRUCH SURFACES

At the endpoints, we have

hs(0) = , and  lim hy(r) =4.

1+ ns r—00

By comparing these values while taking s < %, we arrive at

4—s(n—1)?2
s g o)< 4
1+ ns ’

When we compare the infima from each case, we have

4 — 4n’s <4—s(n—1)2 4
1+s+2ns — 1+ns ~ s

Comparing the suprema from each case, we have

4 — _ 2
Aostn 1) 4
1+ mns - T s
Thus, the smallest value attained for the holomorphic sectional curvature is li;‘f:‘;;s

4

s°

and the largest value is

To find the best value of s with the best pinching constant, we define the function

2
1 ming K,(§)  Tros s(1 —n?s)
(0.=) = (0.1 — _ Tisvons _
p ( ’TLQ) ( ) )7 p(S HlaX5K5(£) % 1+ s+ 2ns’

where the minimum and maximum are taken over all (unit) tangent vectors across
the entire manifold. This is the function we want to maximize.
We see that p/(s) = 0 if and only if s = — or if s = 55—. Since the first

critical point is not inside (O, #), we only consider the latter value. Calculus-style
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4.2 PRODUCTS OF MANIFOLDS WITH POSITIVE CURVATURE

1

computation tells us that p has a global maximum at s = 5>—.

This gives us the

optimal pinching of

1 1
b (2n2 +n) (1 +2n)2

Next, we consider the case when n = 1. When n = 1, the functions f, and h,
have their critical points at » = 0. Using a very similar argument as above, we see

that the pinching constant is equal to % for s = % O]

4.2 Products of Manifolds with Positive Curvature

In the case of the 0-th Hirzebruch surface, we have that Fy = P! x[P!. With the Fubini-
Study product metric, it was computed that the holomorphic sectional curvature is
%—pinched. Additionally, for a general product of projective spaces, P" x P™ for
m,n € {1,2,...}, the pinching constant of the holomorphic sectional curvature is also
%. In particular, it was observed that % = ﬁ, where 1 is equal to the pinching
constant of CP™ (since CP™ has constant holomorphic sectional curvature equal to 4).

For general products of Hermitian manifolds of positive holomorphic sectional

curvature, we have the following result:

Theorem 4.9 ([ACH15)). Let M and N be Hermitian manifolds whose positive holo-

morphic sectional curvatures are cy- and cy-pinched, respectively, and satisfy
]CCMSKMSI{Z and /{ZCNSKNSIC

for a constant k > 0. Then the holomorphic sectional curvature K of the product
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4.2 PRODUCTS OF MANIFOLDS WITH POSITIVE CURVATURE

metric on M x N satisfies
p_SMEN
cy +cen

IA
IA
e

and s CCMféV -pinched.

Proof. Let g =>1"._, g;;dzi®dZ;, and h = ZZ"JJ:; +1 hijdz;®dZ; be Hermitian metrics

on M and N, respectively, each with positive holomorphic sectional curvature. Then

m+n
Z 9i5dz; @ dzj + Z hizdz; @ dz;
i,7=1 1,0=m+1

gives the product metric in a neighborhood of (P,Q) € M x N. It should be ob-

served that the g;; are functions of only z1,..., 2y, and the h;; are functions of only
Zmaly - -+ Zmin- Using (2.6) we obtain
(., )
0%g9;3 m 5095 0945 .o
_azkajzl +Zp,q:1 gqu:a_glj7 1< Za]akal <m

27 - -
ikl 0z1,0Z; + Zp,q:m+1 h Oz, 0z m+ 1 S Z"]7 k’ l S m+n

0, otherwise.
\

Let ¢ = > " Za be a unit tangent vector in T(po)(M x N). Then the holo-

morphic sectional curvature on M x N along £ is

= -00i5 0945 e
- qp ZIW 7J4) ) ¢ ¢
S ( azkazﬁpqzlg s 8%)5@@%

4,4,k =1
m-+n m+n
d%hi; 5Ohip Oh
2 hap “ihp ‘U :
2 3 (gt X 1l Jeesd
2,5,k l=m+1 p,g=m+1
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82gi3

Because — 5on0n

+ Z;‘q:l g %f%g—g and — 8(12;;; + Z?;jm L1 hP %};’f aah—;f are equal to
the components of the curvature tensor on M and N, respectively, the two sums
on the right-hand side above are just the numerators of the holomorphic sectional
curvatures on M and N with respect to the tangent vectors (&1, ...,&,) € TpM and
(Ems1s - &man) € ToN. Because both curvatures are assumed to be positive, we
can conclude that K (&) > 0.

In order to find the pinching constant, we need to take into consideration the

(nonzero) norms of (&,...,&,) € TpM and ({41, - - -, Emtn) € TN with respect to

their respective metrics in the two spaces. We do this as follows:

m m-+n
K@) = > 2Rp&&&&a+ Y. 2R5u&668
ik,jl=1 ik,j,l=m+1

ZTk,j,l:l 2Ri§k[§igj§k€l in: -
= m = = 17 9K1SiSiSkST
> ik 959055k N s
ZTk—t_ﬁl:m-&-l 2R 517€€;61& "fl

m+n _ s =
Zi,j,k,l=m+1 hijhklgifjfkgl i,3,k,l=m+1

=Ky -y* + Ky - (1-y)*,

+ hii i€

where K is the holomorphic sectional curvature of M in the direction of (&1, ..., &),
K the holomorphic sectional curvature of N in the direction of ({41, - - -, Eman), and

Y= Zzljzl 9:5&:€;. Since € is a unit tangent vector in T(pg)(M x N), we have that

m m+n
> ggb&i+ Y hg&éi =1
i,j=1 i, j=m-+1
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Hence,
m-+n B m B
D hg&di=1-) g5k =1-y.
i j=m+1 ij=1

Furthermore, the assumption
key < Ky <k and key < Ky <k
provides the following inequality:
F(y) = keary® + ken(1 = y)* < Ky + Kn(1—y)* < ky* + k(1 —y)* = F(y).
Finally, calculus-style computation yields

. _ 5. CMCN F(r) —
B W SRy s =

In particular, k222 < K({) < k, and the pinching constant for the holomorphic
sectional curvature on the product manifold is obtained as
inff K (5 ) CMCN

N T Spe K(6) e +en

]

This pinching result may come as surprising due to the following conjecture in

Riemannian geometry:

Conjecture 4.10. (The Hopf Conjecture) The product of two real 2-spheres S? x S?

does not admit a Riemannian metric of positive sectional curvature.

Some remarks on this conjecture can be found in [Wil07]. Since the conjecture
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is considering (full) Riemannian sectional curvature and we are only considering sec-
tional curvature along complex real 2-planes, the conjecture does not contradict with
Theorem 4.9. Hence, Theorem 4.9 shows that holomorphic sectional curvature is

¢

actually more “well-behaved” than Riemannian sectional curvature.
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