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Abstract

Under certain conditions on the codimension and curvature, the image of

a Cauchy-Riemann (CR) hypersurface of revolution under a CR embedding is

proved to be totally geodesic. We also prove a similar statement for the image

of a Kähler manifold under a holomorphic conformal embedding.
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1 Introduction

The invariant properties under biholomorphic mappings of a real hypersurface

into complex spaces are one of the primary objectives in Cauchy-Riemann (CR)

geometry. These manifolds possess an integrable, non-degenerate subbundle of

the tangent bundle, known simply as its CR structure bundle.

The study of CR geometry originated from a paper by H. Poincaré (cf.

[14]), who showed that certain non-constant holomorphic maps ∂B2 → ∂B2

must be automorphisms. N. Tanaka (cf. [16]) later extended this result to

higher dimensional cases. By the works of E. Cartan (cf. [1]) and S. S. Chern-J.

Moser (cf. [2]), complete sets of invariants were constructed for local Levi non-

degenerate real hypersurfaces. S. M. Webster, [17], later gave formulas for the

fourth-order curvature tensor of Chern-Moser by use of a real, non-vanishing

one-form which annihilates the CR bundle on the hypersurface.

More recently, the study of CR geometry has concentrated towards the em-

beddability of CR manifolds, which continues to be an outstanding challenge.

S.-Y. Kim and J.-W. Oh, (cf. [15]) gave necessary and sufficient conditions for

local embeddability into a sphere of a strictly pseudoconvex pseudohermitian

CR manifold in terms of its pseudoconformal curvature tensors. The studies of

P. Ebenfelt, X. Huang, and D. Zaitsev (see [5]) found rigidity results of CR em-

beddings of CR manifolds, with CR codimension of less than n/2, into spheres,

which generalized the result of S. M. Webster’s of codimension one (cf. [18]). S.

Ji and Y. Yuan, [13], recently showed that if the CR second fundamental form

is zero, then a CR hypersurface is the image of a sphere by a linear map. In

addition, around the same time as [5], F. Forstneric’s argument (cf. [8]) has

shown that most analytic CR manifolds are not holomorphically embeddable

into algebraic ones of the same CR codimension.

We will concentrate on a particular kind of CR manifold - those hypersurfaces
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admitting unitary symmetry, or real hypersurfaces of revolution. Formally, we

will focus on hypersurfaces of the form

M = {(z, w) ∈ Cn × C : r(z, z, w,w) = 0}, (1.1)

where the defining function r satisfies

r = p(z, z) + q(w,w),

p = ztHz, q = q,

with the n×n matrix H being (constant) hermitian positive definite. Examples

of these types of hypersurfaces include spheres and ellipsoids.

Associated to each hypersurface M is the domain D0, defined by

D0 = {w ∈ C : q(w,w) < 0}. (1.2)

Here, we will need to assume that qw 6= 0 and dq 6= 0 whenever q = 0. As it

turns out, the function

h =
qwqw − qqww

q2

defines a hermitian metric on D0.

In [19], S. M. Webster studied the case when the Gaussian curvature K of

h is equal to -2, proving the following:

Theorem 1.1 (Webster; [19], Theorem 1). Let w ∈ D0 and (z, w) ∈M . Then,

at points where dq 6= 0, S(z, w) = 0 if and only if K(w) = −2.

Here, S is the pseudoconformal curvature of M . In addition, if we assume

this case, then the result of Chern-Moser (see [2]) shows that M is spherical;

that is, it is locally embeddable into the sphere Sn̂.
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By making use of the pseudoconformal Gauss equation, we can extend this

result:

Theorem 1.2. Let M be a real hypersurface of Cn+1 defined by (1.1). Let

(D0, h) be the associated domain of M . If 1 < n ≤ n̂ < 2n − 1 and the

Gaussian curvature of h satisfies K > −2, then there does not exists a smooth

CR embedding of M into the sphere Sn̂.

By combining the two theorems, we obtain the following corollary:

Corollary 1.3. Let M be a real hypersurface of Cn+1 defined by (1.1) and

(D0, h) its associated domain. Let 1 < n ≤ n̂ < 2n − 1 and f : M → Sn̂ be

a smooth CR embedding. If the Gaussian curvature K of h satisfies K ≥ −2,

then f is totally geodesic and K ≡ −2.

This joint work of Huang-Ji-Lee has been accepted and will appear soon in [11].

The K > −2 condition in Theorem 1.2 is needed because of the following

example. Let ε > 0 and

q(w,w) = |w|2 + ε|w|4 − 1.

By (5.33) and direct calculation, the Gaussian curvature K is given by

K = −2− 4ε+ o(1) < −2.

The mapping given by

F : M → Sn̂, (z, w) 7→ (z, w,
√
εw2)

is a CR embedding that is not totally geodesic by the pseudoconformal Gauss

equation (4.7).
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In addition to the above, by using similar techniques from the CR case, we

will also prove the Kähler version of Theorem 1.2:

Theorem 1.4. Let f : (X,ωX) → (Y, ωY ) be a holomorphic conformal em-

bedding between Kähler manifolds. Let dimCX = n and dimC Y = n̂, and

suppose that the curvature tensors of X and Y are pseudoconformally flat. If

1 < n ≤ n̂ < 2n− 1, then f(X) is a totally geodesic submanifold of Y .

2 Preliminaries

2.1 CR Manifolds

If M is a real submanifold of Cn, the tangent space of M may then inherit some

of the complex structure from the larger space Cn. The idea of a CR structure

is based on the real hypersurface case, which we will review briefly.

2.1.1 Tangent Bundles

Let us denote by TCn to be the (real) tangent bundle of Cn and by

CTCn = TCn ⊗ C

to denote the complexification of TCn.

A smooth section X of CTCn is called a complex vector field on Cn. Lo-

cally, a complex vector field can be written as a linear combination of the basis

operators ∂/∂zj and ∂/∂z̄k:

X =

n∑
j=1

aj
∂

∂zj
+

n∑
k=1

bk
∂

∂z̄k
, (2.1)

where the coefficient functions are assumed to be smooth and complex-valued.

Here, we write z = (z1, . . . , zn) for the local coordinates of Cn. (2.1) shows that
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we may write CTCn as a direct sum:

CTCn = T 1,0Cn + T 0,1Cn, (2.2)

where T 1,0Cn denotes the subbundle whose sections are linear combinations of

the ∂/∂zj and T 0,1Cn denotes its complex conjugate bundle.

2.1.2 Real Hypersurfaces and CR Manifolds

A primary interest in CR geometry is in the boundaries of domains in Cn. If

such a boundary is a smooth manifold, then it is a real hypersurface; that is, it

can be considered as a real submanifold with real codimension one.

Let us first suppose that M is a smooth real hypersurface in Cn. For any

point p ∈M , let us define T 1,0
p M , which we will call the bundle of (1, 0)-vectors

of M over p, to be the intersection

T 1,0
p M = CTpM ∩ T 1,0

p Cn. (2.3)

We define its complex conjugate bundle by T 0,1
p M := T 1,0

p M .

For any point p ∈M , T 1,0
p M is a complex vector space with complex dimen-

sion

dimC T
1,0
p M = n− 1.

In addition, the subbundle T 1,0M satisfies the following properties:

• T 1,0M is integrable; that is, it is closed under the Lie bracket operation,

[T 1,0M,T 1,0M ] ⊆ T 1,0M ;

• T 1,0M ∩ T 0,1M = {0};
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• HM = T 1,0M + T 0,1M is a subbundle of codimension one in CTM ; that

is, at each point p ∈M , the complex vector space HpM has codimension

one in CTpM .

A CR manifold is a real differentiable manifold together with a geometric

structure modeled on that of a real hypersurface in Cn. More precisely, we make

the following definition:

Definition 2.1. A CR manifold is a real differentiable manifold M whose com-

plexified tangent bundle CTM contains a subbundle T 1,0M that satisfies:

(i) T 1,0M is integrable; that is, it is closed under the Lie bracket operation;

(ii) T 1,0M ∩ T 0,1M = {0}.

Here, we define the conjugate subbundle by T 0,1M = T 1,0M . We call such a

subbundle T 1,0M the CR structure (bundle) of M .

The complex dimension dimC T
1,0M , which is independent of p, is called

the CR dimension of M . The CR codimension of the CR structure is the

codimension of HM = T 1,0M + T 0,1M in CTM . In the case that the CR

codimension is one, we say that the CR manifold is of hypersurface type, or

that it is a CR hypersurface.

A smooth section of T 1,0M is called a CR vector field over M . A C1-smooth

function f is called a CR function if it is locally annihilated by any CR vector

field. A CR mapping is a smooth mapping F between CR manifolds M and N

whose differential satisfies dF (T 1,0M) ⊆ T 1,0N .

2.1.3 Contact Forms

A real, non-vanishing smooth one-form θ over a CR manifold M is called a

contact form if

θ ∧ (dθ)n 6= 0.
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Equivalently, a contact form is a real, non-vanishing smooth section of

T 0M := HM⊥.

Associated with any contact form θ over M , one has the uniquely defined

characteristic, or Reeb, vector field T . T is a real vector field defined by

Tydθ = 0, 〈θ, T 〉 = 1, (2.4)

where y denotes contraction (or interior multiplication). Since dθ is a degenerate

two-form on TM , but non-degenerate on the hyperplane defined by θ = 0 in

TM , we can always find such a T in the kernel of dθ.

2.1.4 Levi Form

For a CR manifold M , and for any point p ∈M , the Levi form at p is a mapping

hp : T 1,0
p M → (CTpM)/(HpM), vp 7→

1

2i
πp([v, v]), (2.5)

where v is any vector field in T 1,0M that equals vp at p and

πp : CTpM → (CTpM)/(HpM)

is the natural projection. This definition of hp is independent of the choice of

v.

2.1.5 Levi and Contact Forms

The Levi form of a CR manifold can be defined in terms of a given contact form.

By fixing a contact form θ on a CR manifold M , we define the Levi form of
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(M, θ) by

hθ(v, w) := −dθ(v, w) = θ([v, w]), (2.6)

for all v, w ∈ HM . Here, we used Cartan’s formula

〈dθ, v ∧ w〉 = v〈θ, w〉 − w〈θ, v〉 − 〈θ, [v, w]〉 (2.7)

and the fact that 〈θ, V 〉 = 0 for all V ∈ HM , which implies

〈θ, v〉 = 〈θ, w〉 = 0.

Observe that the Levi form of M can be regarded as a hermitian metric on

the subbundle T 1,0M . This metric can be defined by

hθ : T 1,0M ⊗ T 1,0M → C, (v, v) 7→ hθ(v, v) = θ([v, v]) = 〈θ, [v, v]〉.

Definition 2.2. We say that (M, θ) is Levi non-degenerate at p if

hθ(vp, wp) = 0

for all wp implies vp = 0. (M, θ) is Levi non-degenerate if M is Levi non-

degenerate at every point p ∈M .

(M, θ) is called pseudoconvex if hθ is (positive) semidefinite. It is called

strongly pseudoconvex if hθ is (positive) definite.

2.1.6 Levi Form of Hypersurfaces

Let M be a smooth real hypersurface of Cn. Then, around any point p ∈ M ,

there exists a neighborhood Up of p in Cn and a smooth real-valued function ρ
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defined in Up such that

M ∩ Up = {(z, w) ∈ U ∩ (Cn−1 × C) : ρ(z, w, z, w) = 0}

with dρ 6= 0 in Up. The function ρ is called a defining function of M at p.1 In

this case, the one-form θ = −i∂ρ is a contact form of M . From (2.6), we obtain

hθ(v, w) = −〈dθ, v ∧ w〉;

that is, the Levi form with respect to θ satisfies

hθ = −dθ = −i∂∂ρ = i∂∂ρ.

2.2 Pseudohermitian Structures

Throughout this section, we follow the summation convention laid out in [5]. In

particular, lowercase Greek indices will run over the set {1, . . . , n}. A general

tensor will be written as Tα
β
µν , where the indices without conjugation will

indicate C-linear dependence in the corresponding argument and indices with

conjugation will indicate C-antilinear dependence. Recall that such a tensor

Tα
β
µν can be considered as an R-multilinear complex-valued function on V ×

V ∗ × V × V .

We will not assume that a tensor is symmetric in its indices. Hence, the

ordering of the indices may carry important information. Simultaneous conju-

gation of all the indices of a given tensor will correspond to conjugation of that

tensor. For example,

Tα
β
µν = Tα

β
µν .

1Note that the defining function ρ is not unique. For any non-zero smooth function h, hρ
is also a defining function for the manifold.
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The Levi form matrix (gαβ) of M (with respect to a given contact form θ),

and its inverse (gβα), will be used to raise and lower indices (without changing

their ordering):

θα = gαβθ
β , Aαβ = gαγAγβ .

2.2.1 Admissible Coframes

Let M be a CR manifold and θ a given contact form on M . Let us suppose that

{Lα}α=1,...,n is a basis of (1, 0)-vector fields on T 1,0M such that (T, Lα, Lα) is

a frame on CTM . Here, T will be the characteristic vector field associated to

θ. Then, the first equation in (2.4) is equivalent to

dθ = igαβθ
α ∧ θβ , (2.8)

where (gαβ) is the Levi form matrix and (θ, θα, θα) is the coframe dual to

(T, Lα, Lα) (for convenience of notation, we will usually say that (θ, θα) is the

coframe dual to the frame (T, Lα)). Note that θ and T are real, whereas θα and

Lα always have non-trivial real and imaginary parts.

In general, (2.8) will not always be the case. Hence, we define:

Definition 2.3. If θ is a contact form on M , we call a coframe (θ, θα) (and its

dual frame (T, Lα)) admissible if

dθ = igαβθ
α ∧ θβ ,

holds; or equivalently, if T is the characteristic vector field for θ with respect to

(2.4).
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2.2.2 Pseudohermitian Structures

A choice of contact form θ on a CR manifold M is referred to as a pseudoher-

mitian structure. This defines a hermitian metric on T 1,0M via the (positive

definite) Levi form.

For every pseudohermitian structure θ, [5] (and [17]) defines a pseudohermi-

tian connection ∇ on T 1,0M (and also on CTM) which is expressed relative to

an admissible coframe (θ, θα) by

∇Lα := ωα
β ⊗ Lβ , (2.9)

where the one-forms ωα
β on M are uniquely determined by the following equa-

tions:

dθβ = θα ∧ ωαβ (mod θ ∧ θα),

dgαβ = ωαβ + ωβα. (2.10)

The first equation of (2.10) can be rewritten as

dθβ = θα ∧ ωαβ + θ ∧ τβ , τβ = Aβνθ
ν , Aαβ = Aβα, (2.11)

for a suitable, uniquely determined, torsion matrix (Aβα) (cf. [17], [5]).

2.2.3 Pseudohermitian Curvature

The curvature of the pseudohermitian connection ∇ is given by

dωα
β − ωαγ ∧ ωγβ = Rα

β
µν̄θ

µ ∧ θν̄ +Wα
β
µθ
µ ∧ θ

−W β
αν̄θ

ν̄ ∧ θ + iθα ∧ τβ − iτα ∧ θβ , (2.12)
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where the functions Rα
β
µν̄ and Wα

β
ν represent the pseudohermitian curvature

of (M, θ).

As can be seen in [5], the components Wα
β
µ can be obtained as covariant

derivatives of the torsion matrix Aβᾱ (see (2.11)). Following [5], we denote the

covariant differentiation operator with respect to the pseudohermitian connec-

tion ∇ also by ∇, and its components by indices preceeded by a semicolon. An

index of 0 will be used to denote the covariant derivative with respect to T .

Thus, for example,

∇Aβᾱ = dAβᾱ +Aµᾱωµ
β −Aβν̄ωᾱν̄

= Aβᾱ;0θ +Aβᾱ;νθ
ν +Aβᾱ;ν̄θ

ν̄ . (2.13)

In this notation, the above mentioned relation reads (see [5]):

Wα
β
µ = Aαµ;

β ,W β
αν̄ = Aβν̄;α. (2.14)

2.2.4 Pseudoconformal Connection

Recall (see [2], [17], and [5]) that the Chern-Moser coframe bundle Y over M

is defined as the bundle of the coframes (ω, ωα, ωᾱ, ϕ) on the real line bundle

πE : E →M of all contact forms that satisfies

dω = igαβ̄ω
α ∧ ωβ̄ + ω ∧ ϕ,

where ωα is in π∗E(T ′M)2 and ω is the canonical form on E given by ω(θ)(X) :=

θ((πE)∗X), for θ ∈ E, X ∈ TθE. The canonical forms ω, ωα, ωᾱ, ϕ are similarly

defined on Y (following [5], the same notation is also used for this coframe).

It was shown in [2] and [5] that these forms can be completed to a natural

2Note that T ′M := (T 0,1M)⊥ will be used later in the second fundamental form.
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parallelism on Y given by the coframe of 1-forms

(ω, ωα, ωᾱ, ϕ, ϕβ
α, ϕα, ϕᾱ, ψ) (2.15)

defining the pseudoconformal connection on Y and satisfying the following equa-

tions:

gαβ̄ϕ = ϕαβ̄ + ϕβ̄α,

dω = iωµ + ωµ + ω ∧ ϕ,

dωα = ωµ ∧ ϕµα + ω ∧ ϕα,

dϕ = iων̄ ∧ ϕν̄ + iϕν̄ ∧ ων̄ + ω ∧ ψ,

dϕβ
α = ϕβ

µ ∧ ϕµα + iωβ ∧ ϕα − iϕβ ∧ ωα

− iδβαϕµ ∧ ωµ −
δβ
α

2
ψ ∧ ω + Φβ

α,

dϕα = ϕ ∧ ϕα + ϕµ ∧ ϕµα −
1

2
ψ ∧ ωα + Φα,

dψ = ϕ ∧ ψ + 2iϕµ ∧ ϕµ + Ψ, (2.16)

where the curvature two-forms Φβ
α, Φα, Ψ can be decomposed as

Φβ
α = Sβ

α
µν̄ω

µ ∧ ων̄ + Vβ
α
µω

µ ∧ ω + V αβν̄ω ∧ ων̄ ,

Φα = V αµν̄ω
µ ∧ ων̄ + Pµ

αωµ ∧ ω +Qν̄
αων̄ ∧ ω,

Ψ = −2iPµν̄ω
µ ∧ ων̄ +Rµω

µ ∧ ω +Rν̄ω
ν̄ ∧ ω. (2.17)

The functions Sβ
α
µν̄ , Vβ

α
µ, Pµ

α, Qν̄
α, Rµ together represent the pseudoconfor-

mal curvature of M .

As in [2] and [5], we will restrict our attention to coframes (θ, θα) for which

the Levi form (gαβ̄) is constant. The one-forms ϕα, ϕᾱ, ϕβ
α, ψ are uniquely

determined by requiring the coefficients in (2.17) to satisfy certain symmetry

13



and trace condition; for example,

Sαβ̄µν̄ = Sµβ̄αν̄ = Sµν̄αβ̄ = Sν̄µβ̄α,

Sµ
µ
αβ̄ = Vα

µ
µ = Pµ

µ = 0. (2.18)

2.2.5 Pseudoconformal Formula

Let us fix any contact form θ on M . Then, any admissible coframe (θ, θα)

defines a unique section M → Y for which the pull-backs of (ω, ωα) coincide

with (θ, θα), and the pull-back of ϕ vanishes. As in [17] and [5], this section is

used to pull back the forms in (2.15) to M . Following [5], the same notation is

used for the pulled-back forms on M (however, these forms will now depend on

the choice of the admissible coframe (θ, θα)). With this convention, we have

θ = ω, θα = ωα, ϕ = 0, (2.19)

on M .

In view of [17] (cf. [5]), the (pulled-back tangential) pseudoconformal cur-

vature tensor Sα
β
µν̄ can then be obtained from the tangential pseudohermitian

curvature tensor Rα
β
µν̄ in (2.12) by

Sαβ̄µν̄ = Rαβ̄µν̄ −
Rαβ̄gµν̄ +Rµβ̄gαν̄ +Rαν̄gµβ̄ +Rµν̄gαβ̄

n+ 2

+
R(gαβ̄gµν̄ + gαν̄gµβ̄)

(n+ 1)(n+ 2)
, (2.20)

where

Rαβ̄ := Rµ
µ
αβ̄ , R := Rµ

µ (2.21)

are, respectively, the pseudohermitian Ricci and scalar curvature of (M, θ).
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2.2.6 Traceless Components

Equation (2.20) expresses the pseudoconformal curvature tensor Sαβ̄µν̄ as the

traceless component of the pseudohermitian curvature tensor Rαβ̄µν̄ , with re-

spect to the decomposition of the space of all tensors Tαβ̄µν̄ with the symmetry

condition in (2.18) into the direct sum of the subspace of such tensors of trace

zero (i.e., those tensors such that Tµ
µ
αβ̄ = 0) and the subspace of tensors of the

form

Tαβ̄µν̄ = Hαβ̄gµν̄ + Ĥµβ̄gαν̄ + H̃αν̄gµβ̄ + Ȟµν̄gαβ̄ , (2.22)

where (Hαβ̄), (Ĥµβ̄), (H̃αν̄), and (Ȟµν̄) are hermitian matrices.

We will call two tensors, as above, conformally equivalent if their difference

is of the form (2.22). In this terminology, the right-hand side of (2.20) (together

with (2.21)) gives, for any tensor Tαβ̄µν̄ with the symmetry relation (2.18), its

traceless component, which is the unique tensor of trace zero that is conformally

equivalent to Tαβ̄µν̄ .

Proposition 2.4. (Webster, [17]; [5], Proposition 3.1.) Let M be a stricty

pseudoconvex CR manifold of hypersurface type of CR dimension n. Let ωβ
α, τα

be defined by (2.10)-(2.11) with respect to an admissible coframe (θ, θα), and,

let ϕβ
α, ϕα, ψ be the forms in (2.15), pulled back to M using (θ, θα) as above.

Then we have the following relations:

ϕβ
α = ωβ

α +Dβ
αθ,

ϕα = τα +Dµ
αθµ + Eαθ,

ψ = iEµθ
µ − iEν̄θν̄ +Bθ, (2.23)
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where

Dαβ̄ :=
iRαβ̄
n+ 2

−
iRgαβ̄

2(n+ 1)(n+ 2)
,

Eα :=
2i

2n+ 1
(Aαµ;µ −Dν̄α

;ν̄),

B :=
1

n
(Eµ;µ + Eν̄ ;ν̄ − 2AβµAβµ + 2Dν̄αDν̄α). (2.24)

Proof. The formulas for ϕβ
α and Dαβ were proved in [17]. The formula for ϕα

follows from the third equation in (2.16) and (2.11). Indeed, these two equations

yield

θα ∧ ωαβ + θ ∧ τβ = θα ∧ ϕαβ + θ ∧ ϕβ .

Substituting the formula for ϕβ
α in (2.23), we obtain

θ ∧ τβ = Dα
βθα ∧ θ + θ ∧ ϕβ , (2.25)

which implies the formula for ϕα in (2.23), with some Eα. Similarly, the formula

for ψ in (2.23), with some B, follows from equating the coefficients of θ in the

pulled-back fourth equation of (2.16) and using (2.19) (whence dϕ = 0 on M).

To obtain the formula for Eα in (2.24), we substitute the formulas (2.23)

for ϕβ
α, ϕα, and ψ in the pulled-back sixth equation of (2.16) and use (2.8),

(2.11), the covariant derivative (2.13), the analogues for Dβ
α, and the formula

for Φα in (2.17):

∇Aαν∧θν+∇Dβ
α∧θβ+igµνE

αθµ∧θν = −1

2
ψ∧θα+V αµνθ

µ∧θν mod θ. (2.26)

By identifying the coefficient in front of θµ∧ θν in (2.26), and using the formula
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for ψ in (2.23), we obtain

Aαν;µ −Dµ
α

;ν + igµνE
α = −1

2
iEνδµ

α + V αµν .

The formula for Eα in (2.24) is now obtained by summing over µ and ν and

using the trace condition V αµ
µ = 0. Similarly, the formula for B follows by

substituting the formula for ψ in the pulled-back last equation of (2.16) (mod

θ) and using the trace condition Pν
ν = 0.

3 CR Second Fundamental Form

In this section, we will let M be a strictly pseudoconvex CR manifold of (real)

dimension 2n+ 1 and f : M → M̂ a CR embedding of M into another strictly

pseudoconvex CR manifold M̂ of (real) dimension 2n̂+1 with rank n̂ CR bundle.

We will also use the ·̂ symbol to denote objects associated to M̂ .

We continue to use the summation convention from the previous section. In

addition, capital Latin indices A,B, . . ., will run over the set {1, . . . , n̂} whereas

lowercase Greek indices α, β, . . ., will run over {1, 2, . . . , n}. Lowercase Latin

indices a, b, . . ., will run over the complementary set {n+ 1, . . . , n̂}.

3.1 Admissible for the Pair

Since M̂ is strictly pseudoconvex and f an embedding, according to [5], for every

contact form θ̂ on M̂ , the pull-back f∗θ̂ is non-vanishing, and hence, a contact

form on M . In general, f∗θ̂ may vanish (an example is when f(M) is contained

in a complex-analytic subvariety of M̂). Hence, we follow [5] by always choosing

the coframe (θ̂, θ̂A) on M̂ such that the pull-back of (θ̂, θ̂α) is a coframe for M .

Because of this, the ·̂ will sometimes be dropped over the frames and coframes.

We also follow [5] by identifying M with the submanifold f(M) of M̂ , and
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write M ⊂ M̂ . Hence, T 1,0M becomes a rank n subbundle of T 1,0M̂ along

M . It then follows that the (real) codimension of M in M̂ is 2(n̂− n) and that

there is a rank n̂− n subbundle N ′M of T ′M̂ along M consisting of one-forms

on M̂ whose pull-backs to M (under f) vanish. N ′M is called the holomorphic

conormal bundle of M in M̂ .

Definition 3.1. We say that the pseudohermitian structure (M̂, θ̂) (or simply

that of θ̂) is admissible for the pair (M,M̂) if the characteristic vector field T̂

of θ̂ is tangent to M , and hence, coincides with the characteristic vector field of

the pull-back of θ̂.

3.2 Adapted Coframes

It can easily be seen that not all contact forms θ̂ on M̂ are admissible for the

pair (M,M̂). However, we do have the following:

Lemma 3.2 ([5], Lemma 4.1). Let M ⊂ M̂ be as above. Then any contact form

on M can be extended to a contact form θ in a neighborhood M in M̂ such that

θ is admissible for (M,M̂).

Proof. Let θ be any fixed extension of the given contact form on M to a neigh-

borhood of M in M̂ . Any other extension is clearly of the form θ̃ = uθ, where

u is a smooth function on M̂ near M with u|M ≡ 1. Let T be the characteristic

vector field of the restriction of θ to M . Then θ̃ is admissible for (M, M̂) if and

only if Tydθ̃ = 0. That is, if Tydθ − du = 0 along M . By the assumptions, the

latter identity holds when pulled back to M . Now it is clear that there exists

a unique choice of du along M for which it holds also in the normal direction.

The required function u can now be constructed in local coordinate charts and

glued together via a partition of unity, completing the proof.

By taking admissible coframes and using the Gram-Schmidt algorithm, we
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can obtain the following corollary:

Corollary 3.3 ([5], Corollary 4.2). Let M and M̂ be strictly pseudoconvex CR

manifolds of dimension 2n + 1 and 2n̂ + 1, respectively, and suppose that f :

M → M̂ is a CR embedding. If (θ, θα) is any admissible coframe on M , then in

a neighborhood of any point p̂ ∈ f(M) in M̂ , there exists an admissible coframe

(θ̂, θ̂A) on M̂ with f∗(θ̂, θ̂α, θ̂a) = (θ, θα, 0). In particular, θ̂ is admissible for

the pair (f(M), M̂); that is, the characteristic vector field T̂ is tangent to f(M).

If the Levi form of M with respect to (θ, θα) is (δαβ̄), then (θ̂, θ̂A) can be chosen

such that the Levi form of M̂ relative to it is also (δAB̄). With this additional

property, the coframe (θ̂, θ̂A) is uniquely determined along M up to unitary

transformations in U(n)× U(n̂− n).

Definition 3.4. If we fix an admissible coframe (θ, θα) on M , and let (θ̂, θ̂A)

be an admissible coframe on M̂ near f(M), we say that (θ̂, θ̂A) is adapted to

(θ, θα) on M (or simply to M if the coframe on M is understood) if it satisfies

the conclusion of Corollary 3.3, with the requirement for the Levi form.

3.3 CR Second Fundamental Form - Intrinsic Version

The fact that (θ, θA) (here, we omit the ·̂) is adapted to M implies, in view of

(2.10), that if the pseudohermitian connection matrix of (M̂, θ) is ω̂AB , then that

of (M, θ) is the pull-back of ω̂αβ . A similar statement holds for the pulled-back

torsion matrix τ̂α. Hence, we follow [5] by omitting the ·̂ over these pull-backs.

Theorem 3.5 (Webster, [17]). Let (M2n+1, θ) be a strictly pseudoconvex pseu-

dohermitian manifold and let (θ, θα) be an admissible coframe. Then there exists

a unique way to write

dθα =

n∑
γ=1

θγ ∧ ωαγ + θ ∧ τα, (3.1)
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where τα are (0, 1)-forms over M that are linear combinations of θᾱ = θα, and

ωβα are one-forms over M such that

0 = dgαβ̄ − gγβ̄ωγα − gαγ̄ωᾱβ̄ . (3.2)

We may write ωαβ̄ = gγβ̄ω
γ
α and ωβᾱ = gαγ̄ω

γ̄

β̄
by lowering the indices via

the Levi matrix. In particular, by the normalization of the Levi form (that is,

gαβ = δαβ) the second equation in (2.10) reduces to

ωBĀ + ωĀB = 0, (3.3)

where ωĀB = ωAB̄ .

Now, if (θ̂, θ̂A) is adapted to (θ, θα), by (3.3), we have θ = f∗θ̂, θα = f∗θ̂α,

dθα =

n∑
γ=1

θγ ∧ ωαγ + θ ∧ τα, 0 = ωβα + ωᾱβ̄ , 1 ≤ α, β ≤ n,

and

dθ̂A =

n̂∑
C=1

θ̂C ∧ ω̂AC + θ̂ ∧ τ̂A, 0 = ω̂BA + ω̂ĀB̄ , 1 ≤ A,B ≤ N.

For simplicity, we will denote f∗ω̂AB by ωAB . We also denote f∗ω̂AB̄ by ωAB̄ ,

where ωAB̄ = ωBA .

Let us write ωα
a = ωα

a
βθ
β . The matrix (ωα

a
β), 1 ≤ α, β ≤ n, n+1 ≤ a ≤ n̂,

defines the (intrinsic) CR second fundamental form of M , or, more precisely, of

the embedding f . It was used in [18] and [7].

Note that, since θb is 0 on M , we deduce by using (2.11) that, on M ,

ωα
b ∧ θα + τ b ∧ θ = 0, (3.4)
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which implies that

ωα
b = ωα

b
βθ
β , ωα

b
β = ωβ

b
α, τ

b = 0. (3.5)

3.4 CR Second Fundamental Form - Extrinsic Version

This version of the CR second fundamental form was used in [5]. Let M be a

CR hypersurface of dimension 2n + 1, and we denote by V = T 0,1M ⊂ CTM

its (0,1)-vector bundle and T ′M = V⊥ ⊂ CT ∗M . Recall that a mapping

f = (f1, . . . , fk) : M → Ck

is called a CR mapping if f∗(T
0,1
p M) ⊂ T 0,1

f(p)C
k, for all p ∈M . This is equivalent

to saying that Lfj = 0, for all j = 1, . . . , k, and every (0, 1)-vector field L.

Let M̂ ⊂ Cn̂+1 be another real hypersurface (and hence, a CR manifold)

and f : M → Cn̂+1 a CR mapping sending M into M̂ . We let d = n̂− n be the

codimension of f . Thus, M̂ is a real hypersurface in Cn+d+1.

Let p ∈ M and ρ̂ a local defining function for M̂ near p̂ := f(p) ∈ M̂ .

Define an increasing sequence of subspaces Ek(p) of the space T ′pCn+d+1 of

(1, 0)-covectors as follows. Let L1̄, . . . , Ln̄ be a basis of (0, 1)-vector fields on M

near p and define

Ek(p) := spanC{LJ̄(ρ̂Z′ ◦ f)(p) : J ∈ (Z+)n, 0 ≤ |J | ≤ k}

⊂ T ′pCn+d+1, (3.6)

where ρ̂Z′ = ∂ρ̂ is represented by vectors in Cn+d+1 in some local coordinate

system Z ′ near ρ̂. Here, we used multi-index notation LJ̄ := LJ̄1
1̄
. . . LJ̄nn̄ and

|J | := J1 + . . .+ Jn. It was shown in [5] that Ek(p) is independent of the choice

of local defining function ρ̂ and coordinates Z ′, as well as the choice of basis
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L1̄, . . . , Ln̄.

The (extrinsic) CR second fundamental form for a CR mapping f : M → M̂

between real hypersurfaces M ⊂ Cn+1 and M̂ ⊂ Cn+d+1 can be defined (up to

a scalar factor) by

Π(Xp, Yp) := π(XY (ρ̂Z′ ◦ f)(p)) ∈ T ′p̂M̂/E1(p), (3.7)

where π : T ′p̂M̂ → T ′p̂M̂/E1(p) is the projection and X,Y are any (1, 0)-vector

fields on M extending given vectors Xp, Yp ∈ T 1,0
p M .

In the case when M̂ (and hence also M) is strictly pseudoconvex, the Levi

form of M̂ (at p̂) with respect to ρ̂ defines an isomorphism T ′p̂M̂/E1(p) ∼=

T 1,0
p̂ M̂/f∗T

1,0
p M , and hence, the second fundamental form can be viewed as

a C-bilinear symmetric form

Πp : T 1,0
p M × T 1,0

p M → T 1,0
p̂ M̂/f∗T

1,0
p M (3.8)

that does not depend on the choice of ρ̂. We say that the second fundamental

form of f is nondegenerate at p if its values span the target space.

3.5 Relationship Between Extrinsic and Intrinsic

We now want to relate the (intrinsic) second fundamental form (ωα
b
β) with the

(extrinsic) second fundamental form ΠM , in the case that M̂ is embedded as a

real hypersurface in Cn̂+1. This calculation is due to [5], which we review here.

Given any admissible contact form θ for the pair (M, M̂), and a point p ∈M ,

let us choose a defining function ρ̂ of M̂ near a point p̂ = f(p) ∈ M such that

θ = i∂ρ̂ on M̂ . That is, in local coordinates Z ′ in Cn̂+1 vanishing at p̂, we have

θ = i

n̂+1∑
k=1

∂ρ̂

∂Z
′
k

dZ
′
k, (3.9)
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where we pull back the forms dZ
′
1, . . . , dZ

′
n̂+1 to M̂ . Given further a coframe

(θ, θA) on M̂ near p̂ adapted to M and its dual frame (T, LA), we have

Lβ(ρ̂Z′ ◦ f) = −iLβydθ = gβCθ
C = gβγ̄θ

γ̄ . (3.10)

Recall that we are assuming that the Levi form matrix has been normalized,

i.e., (gAB̄) = (δAB̄). Following [5], we will continue to use the notation gAB̄ .

After conjugating (3.10), we see that the subspace E1(p) ⊂ T ′pCn̂+1 in (3.6) is

spanned by (θ, θα), where we use the standard identification T ′pM̂
∼= T ′pCn̂+1.

Applying Lα to both sides of (3.10), and using the analogue of (2.10) for M̂

and (3.5), we conclude that

LαLβ(ρ̂Z′ ◦ f) = gβγ̄Lαydθ
γ̄ = −ωāβαθā = ωαāβθ

ā,modθ, θᾱ, (3.11)

where we have used (3.3) for the last identity. Comparing with the extrinsic

definition of the second fundamental form (3.7), and identifying the spaces in

(3.7) and (3.8) via the Levi form of M̂ , we conclude that

Π(Lα, Lβ) = ωα
a
βLa, (3.12)

where we have identified La with its equivalence class in T 1,0
p̂ M̂/T 1,0

p M . By

conjugating (3.11) and comparing with (3.6), we see that the space E2 = E2(p)

is spanned (via the identification above) by the forms

θ, θα, ωᾱaβ̄θ
a. (3.13)

By this relation, the second fundamental form can now be viewed as a bilin-

ear mapping

Πp : T 1,0
p M × T 1,0

p M → T 1,0
p M̂/T 1,0

p M,
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defined by (ωα
a
β). It is independent of the choice of adapted coframe when M̂

is locally CR embeddable in Cn̂+1.

4 Gauss Equations and Applications

The Gauss equation of Riemannian geometry relates the Riemannian curvature

tensors of a manifold and its submanifold with the second fundamental form

of a function composed with the Riemannian metric. In this section, we will

review the process laid out in [5] in order to establish pseudohermitian and

pseudoconformal analogues of the Gauss equation.

4.1 Pseudohermitian Gauss Equation

Let M ⊂ M̂ be as in the previous section. Let us fix a coframe (θ, θA) on

M̂ and we suppose that this coframe is adapted to M . We first compare the

pseudohermitian curvature tensors Rα
β
µν̄ and R̂A

B

CD̄ of (M, θ) and (M̂, θ),

respectively.

By comparing (2.12), and the corresponding equation for R̂A
B

CD̄ pulled

back to M , and using ω̂βα = ωα
β , τ̂α = τα, and Ŵα

β

µ = Wα
β
µ, as a consequence

of (2.14), we conclude that, on M ,

R̂α
β

µν̄θ
µ ∧ θν̄ + ωα

a ∧ ωaβ = Rα
β
µν̄θ

µ ∧ θν̄ . (4.1)

By using the symmetry (3.3), we conclude that, on M , we have

R̂αβ̄µν̄θ
µ ∧ θν̄ − ωαa ∧ ωβ̄α = Rαβ̄µν̄θ

µ ∧ θν̄ . (4.2)

This can also be written, in view of (3.5), after equating the coefficients of

24



θµ ∧ θν̄ as

R̂αβ̄µν̄ = Rαβ̄µν̄ + gab̄ωα
a
µωβ̄

b̄
ν̄
. (4.3)

The identity (4.3) relates the pseudohermitian curvature tensors of M and

M̂ with the second fundamental form of the embedding f of M into M̂ , and

hence, this equation can be considered as a pseudohermitian analogue of the

Gauss equation. As in [5], we state it in an invariant form using the previously

established relation (3.12) between the extrinsic and intrinsic second fundamen-

tal forms Π and (ωα
a
β), given respectively by (3.7)-(3.8) and (3.5). For this, we

view the pseudohermitian curvature tensors as R-multilinear functions

R, R̂ : T 1,0M × T 1,0M × T 1,0M × T 1,0M → C.

We further identify the quotient space T 1,0
p M̂/T 1,0

p M for p ∈ M with the or-

thogonal complement of T 1,0
p M in T 1,0

p M̂ with respect to the Levi form of M̂

relative to θ, and then use this Levi form to define a canonical hermitian scalar

product 〈·, ·〉 on T 1,0
p M̂/T 1,0

p M . The identity (4.3) now yields the following:

Proposition 4.1 (Pseudohermitian Gauss Equation; [5], Proposition 5.1). Let

M ⊂ M̂ be as above and θ be a contact form on M̂ that is admissible for the

pair (M,M̂). Then, for all p ∈M , the following holds:

R̂(X,Y, Z, V ) = R(X,Y, Z, V ) + 〈Π(X,Z),Π(Y, V )〉, (4.4)

for X,Y, Z, V ∈ T 1,0
p M .

4.2 Pseudoconformal Gauss Equation

The pseudoconformal analogue of the Gauss equation follows immediately from

(4.3) and (4.4) by taking traceless components (see [5]). Let us denote by [Tαβ̄µν̄ ]
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to be the traceless component of a tensor Tαβ̄µν̄ , that can be computed by the

analogue of the equations (2.20)-(2.21). Hence, (2.20) can be rewritten as

Sαβ̄µν̄ = [Rαβ̄µν̄ ]. (4.5)

By taking traceless components of both sides in (4.3), and using (4.5) we now

obtain

[R̂αβ̄µν̄ ] = Sαβ̄µν̄ + [gab̄ωα
a
µωβ̄

b̄
ν̄
]. (4.6)

As noted in [5], the left-hand side of (4.6) may not be, in general, equal to

Ŝαβ̄µν̄ , which is the (restriction to M of the) traceless component of R̂AB̄CD̄

However, [5] showed that

[R̂αβ̄µν̄ ] = [Ŝαβ̄µν̄ ].

Indeed, by the decomposition into trace zero components and multiples of the

Levi form matrix (gAB̄) on M̂ , the tensors R̂AB̄CD̄ and ŜAB̄CD̄ are conformally

equivalent with respect to the Levi form (gAB̄); that is, their difference is of

the form similar to (2.22), with lowercase Greek indices replaced by capital

Latin indices. Since the Levi form of M̂ restricts to that of M , the restrictions

R̂αβ̄µν̄ and Ŝαβ̄µν̄ are conformally equivalent with respect to (gαβ̄). Hence, the

claim holds. Now (4.6) immediately yields the desired relation between the

pseudoconformal curvature tensors of M and M̂ and the second fundamental

form:

[Ŝαβ̄µν̄ ] = Sαβ̄µν̄ + [gab̄ωα
a
µωβ̄

b̄
ν̄
], (4.7)

or using formulas (2.20)-(2.21) for the traceless part,

Sαβ̄µν̄ = Ŝαβ̄µν̄ −
Ŝγ

γ

αβ̄gµν̄ + Ŝγ
γ

µβ̄gαν̄ + Ŝγ
γ

αν̄gµβ̄ + Ŝγ
γ

µν̄gαβ̄

n+ 2

+
Ŝγ

γ

δ

δ

(n+ 1)(n+ 2)
− gab̄ωαaµωβ̄ b̄ν̄
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+
ωγ

a
αω

γ
aβ̄gµν̄ + ωγ

a
µω

γ
aβ̄gαν̄ + ωγ

a
αω

γ
aν̄gµβ̄ + ωγ

a
µω

γ
aν̄gαβ̄

n+ 2

−
ωγ

a
δω

γ
a
δ(gαβ̄gµν̄ + gαν̄gµβ̄)

(n+ 1)(n+ 2)
. (4.8)

As for the pseudohermitian curvature, we follow [5] by viewing the pseu-

doconformal curvature tensors, as well as their trace zero components, as R-

multilinear functions

S, Ŝ : T 1,0M × T 1,0M × T 1,0M × T 1,0M → C,

but now they are independent of θ. Then, with the above notation, (4.7) yields

the following:

Proposition 4.2 (Pseudoconformal Gauss Equation; [5], Proposition 5.2). For

M ⊂ M̂ as above and every p ∈M , the following holds:

[Ŝ(X,Y, Z, V )] = S(X,Y, Z, V ) + [〈Π(X,Z),Π(Y, V )〉], (4.9)

for X,Y, Z, V ∈ T 1,0
p M .

4.3 Rigidity Lemmas

We now state the rigidity lemmas needed for the proof of Theorem 1.2:

Lemma 4.3 ([10], Lemma 3.2). Let {ψj}kj=1 and {χj}kj=1 be holomorphic func-

tions in z ∈ Cn near the origin. Assume that ψj(0) = χj(0) = 0. Let H(z, z)

be a real analytic function for z ≈ 0 such that

k∑
j=1

ψj(z)χj(z) = |z|2H(z, z). (4.10)

Then when k ≤ n− 1, H(z, z) ≡ 0.
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Proof. By complexifying (4.10), we have

k∑
j=1

ψj(z)χj(ξ) = 〈z, ξ〉H(z, ξ),

where z, ξ are treated as independent variables. Without loss of generality, we

may assume that ψj 6≡ 0 for every j. Hence, we can find a point z0 sufficiently

close to the origin such that ψj(z0) = εj 6= 0, for each j. By the assumption on

k, we see that

Vz0 = {z : ψj(z) = ψj(z0), j = 1, . . . , k}

defines a complex analytic variety of dimension at least one near z0. By the

choice of z0, and by ψj(0) = 0, Vz0 cannot contain a complex line passing

through the origin. Hence, there exists a point z′ ∈ Vz0 such that Vz0 contains

a complex curve C near z′ parametrized by an equation of the form

z(t) = z′ + vt+ o(t), (4.11)

where {z′, v} are independent vectors, and |t| < 1. Note that for each z ∈ C

and a ξ close to 0 with 〈z, ξ〉 = 0, we have

∑
εjχj(ξ) = 0.

Also, we note that a direction computation based on (4.11) shows that all such ξ

fill in an open subset of Cn. Hence, we conclude that
∑
εjχj(ξ) ≡ 0. Therefore,

(4.10) can be reduced to

k−1∑
j=1

(ψj(z)−
εj
εk
ψk(z))(χj(z)) = 〈z, z〉H(z, z).

Applying an induction argument, it follows that
∑
ψjχj ≡ 0 and H ≡ 0.
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Now, we show the tensor version that will be used. For the sake of readability,

we define

Hl
αβµν

:= H l
αβ
gµν + Ĥ l

µβ
gαν + H̃ l

ανgµβ + Ȟ l
µνgαβ .

Corollary 4.4 ([11], Lemma 2.1). Let Aα
a
β and Bα

a
β be complex numbers,

where 1 ≤ α, β ≤ n, n + 1 ≤ a ≤ n̂, and n ≤ n̂. Let (gαβ) and (Gab) be

hermitian matrices with (gαβ) positive definite. Let (H l
αβ

), (Ĥ l
αβ

), (H̃ l
αβ

), and

(Ȟ l
αβ

) be hermitian matrices where 1 ≤ l ≤ k. Suppose that n̂− n ≤ n− 1 and

that

n̂∑
a,b=n+1

GabAα
a
βX

αXβBµ
b
νX

µXν =

k∑
l=1

Hl
αβµν

XαXβXµXν (4.12)

holds for any X = (Xα) = (Xβ) = (Xµ) = (Xν) ∈ Cn. Then

n̂∑
a,b=n+1

GabAα
a
βX

αXβBµ
b
νX

µXν ≡ 0

for all X ∈ Cn.

Proof. Note that the right-hand side of (4.12) is equal to

k∑
l=1

Hl
αβµν

XαXβXµXν =

k∑
l=1

(
H l
αβ
XαXβ |X|2 + Ĥ l

µβ
XµXβ |X|2

)
+

k∑
l=1

(
H̃ l
ανX

αXν |X|2 + Ȟ l
µνX

µXν |X|2
)

= |X|2
k∑
l=1

(
H l
αβ
XαXβ + Ĥ l

µβ
XµXβ

)
+ |X|2

k∑
l=1

(
H̃ l
ανX

αXν + Ȟ l
µνX

µXν
)

= |X|2A(X,X),
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where A(X,X) is some real analytic function of X and |X|2 = gαβX
αXβ . The

left-hand side is equal to

n̂∑
a,b=n+1

GabAα
a
βX

αXβBµ
b
νX

µXν =

n̂∑
a=n+1

ga(X)ha(X),

where

ga(X) =
∑
a,b

Aα
a
βX

αXβ ,

ha(X) =

n̂∑
b=n+1

∑
a,b

GabBα
b
βX

αXβ

are holomorphic functions. Hence, (4.12) becomes

n̂∑
a=n+1

ga(X)ha(X) = |X|2A(X,X)

for all X ∈ Cn. By the assumption n̂ − n < n and Lemma 4.3, we have that

A(X,X) ≡ 0.

5 Proof of Theorem 1.2

At this time, we would like to set up some of the notation that we will use

throughout the rest of this section. Let us denote the coordinates of Cn × C

by (z, w), where we denote by z = (z1, . . . , zn) to be the coordinates of Cn.

In addition, we will continue to use the same summation convention from the

previous sections. We also follow the partial derivative conventions of [19],

setting

fα = ∂f
∂zα , fw = ∂f

∂w , etc.
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We will denote by D to be the domain defined by

D = {(z, w) ∈ Cn × C : r(z, z̄, w, w̄) < 0},

where the defining function r is given by

r(z, z̄, w, w̄) = p(z, z̄) + q(w, w̄),

p(z, z̄) = z̄tHz

q(w, w̄) = q(w, w̄),

such that H = (hαβ̄) is a (constant) hermitian positive definite matrix. The

boundary M of D is the real hypersurface

M = {(z, w) ∈ Cn × C : r(z, z̄, w, w̄) = 0},

For our calculations below, we will assume that qw 6= 0.

The associated domain D0, and its boundary M0, are given by

D0 = {w ∈ C : q(w,w) < 0},

M0 = {w ∈ C : q(w,w) = 0}.

In this case, we assume that dq 6= 0 whenever q = 0.

5.1 Admissible Coframe on M

For our calculations, we choose to use the one-form θ defined by

θ = −i∂r = −i(pαdzα + qwdw), (5.1)

31



which is a contact form on M . Note that, since θ is a real one-form on M , we

have that θ = θ. This implies that

−i∂r = θ = θ = i∂r;

that is,

−i(pαdzα + qwdw) = i(pβdz
β + qwdw). (5.2)

Rearranging (5.2), we obtain, on M ,

pαdz
α + pβdz

β = −(qwdw + qwdw). (5.3)

By definition of the exterior derivative, we have that

dθ = −i∂∂r

= −i∂(pαdz
α + qwdw)

= −i
(
pαβdz

β ∧ dzα + pawdw ∧ dzα

+qwβdz
β ∧ dw + qwwdw ∧ dw

)
. (5.4)

Since p is only a function of z and q a function of only w, we have that

pαw = qwβ = 0.

Hence, (5.4) becomes

dθ = −i(pαβdz
β ∧ dzα + qwwdw ∧ dw)

= i(pαβdz
α ∧ dzβ + qwwdw ∧ dw). (5.5)
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By using the equality in (5.3), (5.5) becomes the following:

dθ = ipαβdz
α ∧ dzβ + iqwwdw ∧ dw

= ipαβdz
α ∧ dzβ + i

qwwqw
qw

dw ∧ dw + iqwwdw ∧ dw

= ipαβdz
α ∧ dzβ + iqwwdw ∧

(
qw
qw
dw + dw

)
= ipαβdz

α ∧ dzβ + i
qww
qw

dw ∧ (qwdw + qwdw)

= ipαβdz
α ∧ dzβ − i qww

qw
dw ∧

(
pαdz

α + pβdz
β
)
. (5.6)

Let us define

Q =
qww
qwqw

. (5.7)

(5.6) can now be written as

dθ = ipαβdz
α ∧ dzβ + iQqwpαdz

α ∧ dw + iQqwpβdz
β ∧ dw

= ipαβdz
α ∧ dzβ + iQqwpαdz

α ∧ dw + iQqwpβdz
β ∧ dw

+ iQpαpβdz
α ∧ dzβ − iQpαpβdz

α ∧ dzβ + iQpαpαdz
α ∧ dzα

= igαβdz
α ∧ dzβ + iQpαdz

α ∧ (pαdz
α + qwdw)

+ iQpβdz
β ∧ (pαdz

α + qwdw)

= igαβdz
α ∧ dzβ −Qpαdzα ∧ θ −Qpβdz

β ∧ θ, (5.8)

where we set the Levi form matrix to be

gαβ = pαβ +Qpαpβ . (5.9)

If we set ηα = −Qpα and ηβ = ηβ , (5.8) becomes

dθ = igαβdz
α ∧ dzβ + ηαdz

α ∧ θ + ηβdz
β ∧ θ
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= igαβ

(
dzα ∧ dzβ − iηβdzα ∧ θ − iηαdzβ ∧ θ

)
= igαβ

(
dzα ∧ dzβ − dzα ∧ (iηβθ) + (iηαθ) ∧ dzβ − (iηαθ) ∧ (iηβθ)

)
= igαβ

(
(dzα + iηαθ) ∧ (dzβ − iηβθ)

)
. (5.10)

Now we define

θα = dzα + iηαθ,

θβ = θβ . (5.11)

Thus, by (5.10), dθ = igαβθ
α ∧ θβ . By definition, (θ, θα, θβ) is an admissible

coframe on M .

5.2 A Metric on D0

Let us define

h =
qwqw − qqww

q2
.

Then we have the following:

Lemma 5.1 (Webster, [19]). M is strictly pseudoconvex if and only if, on D0,

qwqw − qqww
q2

> 0.

Proof. Let w ∈ D0 and (z, w) ∈ M . By definition, w ∈ D0 implies that

q(w,w) < 0. Hence, by definition of the defining function r, p(z, z) > 0 at

(z, w). By the definiteness of H, we have that z 6= 0. In addition, we recall that

these calculations are only valid where qw 6= 0.

(⇒) Let us suppose that M is strictly pseudoconvex. By definition, the

Levi matrix (gαβ) is positive definite. Thus, for every non-zero X = Xα ∂
∂zα ∈

T 1,0
(z,w)M , we have that gαβX

αXβ > 0. By definition of the Levi matrix (gαβ),
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and the partial derivatives of p, we have that

0 < (pαβ +Qpαpβ)XαXβ

= hαβX
αXβ +Q|hαεXαzε|2

= p(x, x) +Q|p(x, z)|2,

where we write x = (X1, . . . , Xn)t. Taking Xα = zα for all α, we obtain

0 < p(z, z) +Q|p(z, z)|2 = −q(w,w) +Q(q(w,w))2.

By definition of Q, this implies qqwqw < q2qww. Since q < 0 on D0, we have

qwqw − qqww > 0.

Hence,

h =
qwqw − qqww

q2
> 0

on D0.

(⇐) Conversely, suppose that

h =
qwqw − qqww

q2
> 0

on D0. Then,

qwqw − qqww > 0.

Hence, by definition of Q, we have that Qq < 1. Let X = Xα ∂
∂zα be a non-zero

vector in T 1,0
(z,w)M . By the previous argument,

gαβX
αXβ = p(x, x) +Q|p(x, z)|2,
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where we again write x = (X1, . . . , Xn)t.

When Q ≥ 0, then

gαβX
αXβ = p(x, x) +Q|p(x, z)|2 > 0

by the definiteness of H.

When Q < 0, then by the Cauchy-Schwarz inequality3,

|p(x, z)|2 ≤ p(x, x)p(z, z).

This implies that

0 > Q|p(x, z)|2 ≥ Qp(x, x)p(z, z) = −Qqp(x, x).

Thus,

gαβX
αXβ = p(x, x) +Q|p(x, z)|2

≥ p(x, x)−Qqp(x, x)

> 0,

because Qq < 1. Hence, the Levi matrix (gαβ) is positive definite, and by

definition, M is strictly pseudoconvex.

Remarks. From now on, we will assume that M is strictly pseudoconvex;

that is, we assume that the Levi matrix (gαβ) is positive definite. In this case,

h =
qwqw − qqww

q2
> 0

3Cauchy-Schwarz Inequality: For all vectors x and y in an inner product space
(X, 〈·, ·〉), we have that

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉.

36



and h defines a hermitian metric on D0.

5.3 Curvature Formulas for M

Let us first define the following:

Σml =

m∑
γ=l

pγpγ ,

Σml,k =

m∑
γ=l,γ 6=k

pγpγ ,

where pα = ∂
∂zα p as before. If In is the n × n identity matrix, we will denote

the augmented matrix obtained by deleting the first α rows and β columns by4

Iα,βn := In({1, . . . , α}′, {1, . . . , β}′),

with Iαn := Iα,αn . These will ease the readability of the following identities

concerning the inverse of the Levi matrix that will appear throughout the rest

of this paper.

Lemma 5.2. For n > 1, let g be the n× n matrix defined by

gαβ = δαβ +Qpαpβ ,

The (α, β)-minors, Aαβ, of g satisfy

Aαβ =


1 +QΣn1,α, α = β,

−Qpβpα, α 6= β, α+ β even,

+Qpβpα, α 6= β, α+ β odd.

4By deleting the first α rows and the first β columns, the first row of Iα,βn will have an

index of α+ 1 and the first column of Iα,βn will have index β + 1
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In particular, det(g) = 1 +Q
∑n
γ=1 pγpγ and the entries of the adjugate matrix

adj(g) of g satisfy

adj(g)αβ =


1 +QΣn1,α, α = β,

−Qpαpβ , α 6= β.

Proof. We prove this by induction. For n = 2,

g =

1 +Qp1p1 Qp1p2

Qp2p1 1 +Qp2p2

 .

The minors of g are

A11 = 1 +Qp2p2, A12 = Qp2p1,

A21 = Qp1p2, A22 = 1 +Qp1p1.

In addition, by definition,

adj(g) =

1 +Qp2p2 −Qp1p2

−Qp2p1 1 +Qp1p1

 ,

and by Laplace’s formula5, det(g) = 1 + Qp1p1 + Qp2p2. Hence, the lemma

holds for n = 2.

Now we assume that the statement holds for 1 < k ≤ n − 1 and prove the

nth case. We will need to break this into three subcases.

When α = β, the augmented matrix of g, obtained by deleting the α-row

5Laplace’s Formula: Suppose that B = (bij) is an n× n matrix and fix any index i0 or
j0. Then the determinant of B is given by

det(B) =
n∑
j=1

bi0,jCi0,j =
n∑
i=1

bi,j0Ci,j0 .

Here, Cij = (−1)i+jMij and Mij is the (i, j)-minor of B.
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and β-column, can be blocked off in the following manner:

g̃ = g({α}′, {β}′)

=


1+Qp1p1 ... Qp1pα−1

...
...

Qpα−1p1 ... 1+Qpα−1pα−1

Qp1pα+1 ... Qp1pn

...
...

Qpα−1pα+1 ... Qpα−1pn
Qpα+1p1 ... Qpα+1pα−1

...
...

Qpnp1 ... Qpnpα−1

1+Qpα+1pα+1 ... Qpα+1pn

...
...

Qpnpα+1 ... 1+Qpnpn


=

 A B

C D

 .

By the induction hypothesis, A is invertible and det(A) = 1 + QΣα−1
1 . Hence,

by block matrices,

det(g̃) = det(A) det(D − CA−1B).

In addition, by Cramer’s rule6,

CA−1B = C
adj(A)

det(A)
B

=
QΣα−1

1

det(A)

Qpα+1pα+1 ... Qpα+1pn

...
...

Qpnpα+1 ... Qpnpn


=

det(A)− 1

det(A)
E.

Note that D = Iαn + E. Hence, we have

D − CA−1B = Iαn + E − det(A)− 1

det(A)
E

6Cramer’s Rule: Let A be an n×n matrix. Then adj(A) ·A = det(A) · I, where adj(A)
denotes the adjugate matrix of A and I is the identity matrix. If A is invertible, then the
inverse matrix of A satisfies

A−1 =
1

det(A)
adj(A).
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= Iαn +
1

det(A)
E

= Iαn + E′,

where we set E′ = 1
det(A)E and Q′ = Q

det(A) . Let

F =

(
1+Q′pαpα ... Q′pαpn

...
...

Q′pnpα ... 1+Q′pnpn

)
.

Then D − CA−1B = F ({α}′, {β}′), and by the induction hypothesis,

det(D − CA−1B) = 1 +Q′Σnα,α.

Therefore,

det(g̃) = det(A) det(D − CA−1B)

= det(A)(1 +Q′Σnα,α)

= det(A) +QΣnα,α

= 1 +QΣn1,α.

If α < β, the augmented matrix of g, obtained by deleting the α-row and

β-column, can be blocked off in the following manner:

g̃ = g({α}′, {β}′)

=



1+Qp1p1 ... Qp1pα−1

...
...

Qpα−1p1 ... 1+Qpα−1pα−1

Qp1pα ... Q̂p1pβ ... Qp1pn

...
...

...
Qpα−1pα ... ̂Qpα−1pβ ... Qpα−1pn

Qpα+1p1 ... Qpα+1pα−1

...
...

Qpnp1 ... Qpnpα−1

Qpα+1pα ... ̂Qpα+1pβ ... Qpα+1pn

...
...

...
Qpnpα ... Q̂pnpβ ... 1+Qpnpn
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=

 A B

C D

 ,

where ·̂ denotes the deleted entries. By the induction hypothesis, A is invertible

and det(A) = 1 +QΣα−1
1 . Hence,

det(g̃) = det(A) det(D − CA−1B).

In addition, by Cramer’s rule,

CA−1B = C
adj(A)

det(A)
B

=
QΣα−1

1

det(A)

Qpα+1pα ... ̂Qpα+1pβ ... Qpα+1pn

...
...

...
Qpnpα ... Q̂pnpβ ... Qpnpn


=

det(A)− 1

det(A)
E.

Note that D = Iα−1
n ({α}′, {β}′) + E. Hence, we have

D − CA−1B = Iα−1
n ({α}′, {β}′) + E − det(A)− 1

det(A)
E

= Iα−1
n ({α}′, {β}′) +

1

det(A)
E

= Iα−1
n ({α}′, {β}′) + E′,

where we set E′ = 1
det(A)E and Q′ = Q

det(A) . Let

F =

(
1+Q′pαpα ... Q′pαpn

...
...

Q′pnpα ... 1+Q′pnpn

)
.
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Then D − CA−1B = F ({α}′, {β}′), and by the induction hypothesis,

det(D − CA−1B) =


−Q′pβpα, α 6= β, α+ β even,

+Q′pβpα, α 6= β, α+ β odd.

Therefore,

det(g̃) = det(A) det(D − CA−1B)

=


−Qpβpα, α 6= β, α+ β even,

+Qpβpα, α 6= β, α+ β odd.

Lastly, if α > β, the augmented matrix of g, obtained by deleting the α-row

and β-column, can be blocked off in the following manner:

g̃ = g({α}′, {β}′)

=



1+Qp1p1 ... Qp1pβ−1

...
...

Qpβ−1p1 ... 1+Qpβ−1pβ−1

Qp1pβ+1 ... Qp1pn

...
...

Qpβ−1pβ+1 ... Qpβ−1pn
Qpβp1 ... Qpβpβ−1

...
...

Q̂pαp1 ...
̂Qpαpβ−1

...
...

Qpnp1 ... Qpnpβ−1

Qpβpβ+1 ... Qpβpn

...
...

̂Qpαpβ+1 ... Q̂pαpn

...
...

Qpnpβ+1 ... 1+Qpnpn


=

 A B

C D

 ,

where ·̂ denotes the deleted entry. By the induction hypothesis, A is invertible

and det(A) = 1 +QΣβ−1
1 . Hence,

det(g̃) = det(A) det(D − CA−1B).
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In addition, by Cramer’s rule,

CA−1B = C
adj(A)

det(A)
B

=
QΣβ−1

1

det(A)


Qpβpβ+1 ... Qpβpn

...
...

̂Qpαpβ+1 ... Q̂pαpn

...
...

Qpnpβ+1 ... Qpnpn


=

det(A)− 1

det(A)
E.

Note that D = Iβ−1
n ({α}′, {β}′) + E. Hence, we have

D − CA−1B = Iβ−1
n ({α}′, {β}′) + E − det(A)− 1

det(A)
E

= Iβ−1
n ({α}′, {β}′) +

1

det(A)
E

= Iβ−1
n ({α}′, {β}′) + E′,

where we set E′ = 1
det(A)E and Q′ = Q

det(A) . Let

F =

 1+Q′pβpβ ... Q′pβpn

...
...

Q′pnpβ ... 1+Q′pnpn

 .

Then D − CA−1B = F ({α}′, {β}′), and by the induction hypothesis,

det(D − CA−1B) =


−Q′pβpα, α 6= β, α+ β even,

+Q′pβpα, α 6= β, α+ β odd.

Therefore,

det(g̃) = det(A) det(D − CA−1B)

43



=


−Qpβpα, α 6= β, α+ β even,

+Qpβpα, α 6= β, α+ β odd.

For the final statements, by definition of the adjugate matrix, we have that

adj(g) =



1 +QΣn1,1 −Qp1p2 . . . −Qp1pn

−Qp2p2 1 +QΣn1,2 . . . −Qp2pn
...

...
...

−Qpnp1 −Qpnp2 . . . 1 +QΣn1,n


.

By Laplace’s formula, det(g) = 1 +QΣn1 .

Corollary 5.3. Suppose that the Levi matrix g of the hypersurface M is given

by

gαβ = δαβ +Qpαpβ .

Then at every point of M ,

gαβpαpβ = − q

1−Qq
,

where (gαβ) is the inverse of (gαβ).

Proof. Set

p̂ =

( p1

...
pn

)
.

Then by Lemma 5.2 and Cramer’s rule,

p̂∗g−1p̂ = p̂∗
adj(g)

det(g)
p̂ =

p̂∗p̂

det(g)
=

Σn1
1 +QΣn1

= − q

1−Qq
.

Here we used the fact that p(z, z) + q(w,w) = 0 on M and p(z, z) = Σn1 when
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hαβ = δαβ .

Corollary 5.4. Suppose that the Levi matrix g of the hypersurface M is given

by

gαβ = hαβ +Qpαpβ ,

for some n×n hermitian positive definite matrix (hαβ). Then at every point of

M ,

gαβpαpβ = − q

1−Qq
,

where (gαβ) is the inverse of (gαβ).

Proof. By Sylvester’s law of inertia7, there exists an invertible n × n matrix

S = (sαβ) such that In = S(hαβ)S∗. Hence,

g = (hαβ +Qpαpβ)

= S−1(In +Q(p′αp
′
β
))(S−1)∗

= S−1g′(S−1)∗.

Here, g′ = In +Q(p′αp
′
β
) and p′α =

∑n
γ=1 sαγpγ . Let

p̂ =

( p1

...
pn

)

and p̂′ = Sp̂ = (p′1, . . . , p
′
n)t. By Corollary 5.3,

p̂∗g−1p̂ = p̂∗(S∗(g′)−1S)p̂ = (Sp̂)∗(g′)−1(Sp̂)

7Recall: Two square matrices A and B are ∗-congruent if there is an invertible matrix
S such that SAS∗ = B. Also, the inertia of a Hermitian matrix A is defined to be the tuple
(n+, n0, n−), where n+ is the number of positive eigenvalues of A, n0 is the number of zero
eigenvalues of A, and n− is the number of negative eigenvalues of A.

Sylvester’s law of inertia (Hermitian Version): Let A and B be Hermitian square
matrices. Then A and B are ∗-congruent if and only if they have the same inertia.
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= (p̂′)∗(g′)−1p̂′ = − q

1−Qq
.

Lemma 5.5 (Webster; [17], [19]). For the real hypersurface M with contact

form θ = −i∂r, the pseudohermitian curvature tensor Rαβµν can be written as

Rαβµν = −A(gαβgµν + gµβgαν)−Bpαpβpµpν , (5.12)

where we set

A = − Q

1−Qq
(5.13)

and

B =
Qww
qwqw

+ 2Q

((
Qw
qw

)
+

(
Qw
qw

))
+ 3Q3 +

∣∣∣∣(Qwqw
)

+Q2

∣∣∣∣2 · q

1−Qq
. (5.14)

Proof. Recall that this calculation holds only when qw 6= 0.

The dual frame (X,Xα, Xα) of (θ, θα, θα) can be obtained from the differ-

ential of a function f on M as follows:

df = fαdz
α + fwdw + fβdz

β + fwdw

= fαdz
α + fwdw + fβdz

β + fwdw

+
pα
qw
fwdz

α − pα
qw
fwdz

α +
pβ
qw
fwdz

β −
pβ
qw
fwdz

β

= fαdz
α − pα

qw
fwdz

α + fβdz
β −

pβ
qw
fwdz

β

+
fw
qw

(pαdz
α + qwdw)− fw

qw

(
pβdz

β + qwdw
)

= fαdz
α − pα

qw
fwdz

α + fβdz
β −

pβ
qw
fwdz

β
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+
i

qw
fwθ −

i

qw
fwθ. (5.15)

Since θ = θ on M , (5.15) becomes

df = fαdz
α + iηαfαθ −

pα
qw
fwdz

α − i

qw
pαη

αfwθ + fβdz
β − iηβfβθ

−
pβ
qw
fwdz

β +
i

qw
pβη

βfwθ +
i

qw
fwθ −

i

qw
fwθ − iηαfαθ + iηβfβθ

+
i

qw
pγη

γfwθ −
i

qw
pγη

γfwθ

=

(
fα −

pα
qw
fw

)
(dzα + iηαθ)

(
fβ −

pβ
qw
fw

)(
dzβ − iηβθ

)
+

(
−iηαfα + iηβfβ +

i

qw
(1 + pγη

γ)fw −
i

qw
(1 + pγη

γ)fw

)
θ

= Xαfθ
α +Xβfθ

β +Xfθ, (5.16)

where we set

X = −iηα∂α + iηα∂α +
i

qw
(1 + pγη

γ)∂w −
i

qw
(1 + pγη

γ)∂w (5.17)

and

Xα = ∂α −
pα
qw
∂w,

Xα = Xα. (5.18)

The procedure of [17] then shows that

Rαβµν = −XνXµgαβ + gγεXµgαεXνgγβ + gµνη
γ
(
Xαgγβ −Xγgαβ

)
− gµβXνηα − gανXµηβ − gµνXαηβ − ηαηβgµν − ηγη

γgανgµβ .

(5.19)

By expanding (5.19), we can express Rαβµν in terms of the pα, the Levi matrix
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gαβ , and with coefficients only in terms of w and w.

Recall that, by definition of the Levi matrix, we have that

pαβ = gαβ −Qpαpβ .

By Corollary 5.4,

C = gγεpγpε = − q

1−Qq
. (5.20)

Here, (gγε) is the inverse of (gγε).

Since pαβ = hαβ is constant, and by definition of the pα and Q, we have that

Xµgαβ =

(
∂µ −

pµ
qw
∂w

)(
pαβ +Qpαpβ

)
= Qpαpµβ −

Qw
qw

pαpβpµ.

Hence, (5.19) can be expanded thusly:

−XνXµgαβ = −
(
∂ν −

pν
qw
∂w

)(
Qpαpµβ −

Qw
qw

pαpβpµ

)
= −Qgανgµβ +Q2gανpµpβ +Q2gµβpαpν −Q

3pαpβpµpν

+
Qw
qw

gανpβpµ −Q
Qw
qw

pαpβpµpν +
Qw
qw

gµνpαpβ

+
Qw
qw

gµβpαpν −Q
Qw
qw

pαpβpµpν −
Qww
qwqw

pαpβpµpν ; (5.21)

gγεXµgαεXνgγβ = gγε
(
Qpαpµε −

pµ
qw
Qwpαpε

)(
Qpγνpβ −

pν
qw
Qwpγpβ

)
= Q2gµνpαpβ − 2Q3pαpβpµpν −Q

Qw
qw

pαpβpµpν

−QQw
qw

pαpβpµpν +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 pαpβpµpνC; (5.22)
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gµνη
γ
(
Xαgγβ −Xγgαβ

)
= gµνη

γ
(
Qgαβpγ −Qgγβpα

)
= −gµνgγεQpε

(
Qgαβpγ −Qgγβpα

)
= −Q2gαβgµνC +Q2gµνpαpβ ; (5.23)

−gµβXνηα = −gµβ

(
−Qpαν +

pν
qw
Qwpα

)
= −gµβ

(
−Qgαν +Q2pαpν +

Qw
qw

pαpν

)
= Qgανgµβ −Q

2gµβpαpν −
Qw
qw

gµβpαpν ; (5.24)

−gανXµηβ = Qgανgµβ −Q
2gανpµpβ −

Qw
qw

gανpβpµ; (5.25)

−gµνXαηβ = Qgαβgµν −Q
2gµνpαpβ −

Qw
qw

gµνpαpβ ; (5.26)

−ηαηβgµν = −Q2gµνpαpβ ; (5.27)

−ηγηγgανgµβ = −Q2gανgµβC. (5.28)
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By combining (5.21)-(5.28) and replacing the C’s with (5.20), we obtain the

following formula for the pseudohermitian curvature tensor:

Rαβµν = −2Q
Qw
qw

pαpβpµpν − 2Q
Qw
qw

pαpβpµpν −
Qww
qwqw

pαpβpµpν

− 3Q3pαpβpµpν +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 pαpβpµpνC −Q2gαβgµνC

+Qgανgµβ +Qgαβgµν −Q
2gανgµβC

=

(
Q2q

1−Qq
+Q

)(
gαβgµν + gανgµβ

)
−
(
Qww
qwqw

+ 2Q

(
Qw
qw

+
Qw
qw

)
+3Q3 +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 · q

1−Qq

)
pαpβpµpν+

= −
(
− Q

1−Qq

)(
gαβgµν + gανgµβ

)
−
(
Qww
qwqw

+ 2Q

(
Qw
qw

+
Qw
qw

)
+3Q3 +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 · q

1−Qq

)
pαpβpµpν

= −A
(
gαβgµν + gανgµβ

)
−Bpαpβpµpν , (5.29)

where we set

A = − Q

1−Qq

and

B =
Qww
qwqw

+ 2Q

((
Qw
qw

)
+

(
Qw
qw

))
+ 3Q3 +

∣∣∣∣(Qwqw
)

+Q2

∣∣∣∣2 q

1−Qq
.

Corollary 5.6 (Webster; [17], [19]). For the real hypersurface M , the pseudo-

hermitian Ricci curvature tensor Rµν and the pseudohermitian scalar curvature
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tensor R can be written, respectively, as

Rµν = −(n+ 1)Agµν +Bpµpν
q

1−Qq
(5.30)

and

R = −n(n+ 1)A−B
(

q

1−Qq

)2

. (5.31)

Proof. By definition (2.21), in addition to (5.20) and (5.12), we have that

Rµν = Rα
α
µν = gααRααµν

= gαα (−A(gααgµν + gανgµα)−Bpαpαpµpν)

= −Aδααgµν −Aδανgµα +Bpµpν
q

1−Qq

= −(n+ 1)Agµν +Bpµpν
q

1−Qq

and

R = Rµ
µ = gµµRµµ

= gµµ
(
−(n+ 1)Agµµ +Bpµpµ

q

1−Qq

)
= −(n+ 1)Aδµµ −B

(
q

1−Qq

)2

= −n(n+ 1)A−B
(

q

1−Qq

)2

.

Corollary 5.7 (Webster; [19]). For the real hypersurface M , the pseudoconfor-

mal curvature tensor Sαβµν can be written as

Sαβµν = − Bq2

(n+ 1)(n+ 2)(1−Qq)2

(
gαβgµν + gµβgαν

)
−Bpαpβpµpν
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− Bq

(n+ 2)(1−Qq)

(
gαβpµpν + gµβpαpν + gανpµpβ + gµνpαpβ

)
.

(5.32)

Proof. Recall from (2.20) that Sαβµν can be written as

Sαβ̄µν̄ = Rαβ̄µν̄ −
Rαβ̄gµν̄ +Rµβ̄gαν̄ +Rαν̄gµβ̄ +Rµν̄gαβ̄

n+ 2

+
R(gαβ̄gµν̄ + gαν̄gµβ̄)

(n+ 1)(n+ 2)
.

By Lemma 5.5 and Corollary 5.6, we have that

Rµνgαβ = −(n+ 1)Agαβgµν +Bgαβpµpν
q

1−Qq
.

Hence,

Sαβµν = −A(gαβgµν + gανgµβ)−Bpαpβpµpν

+
2(n+ 1)A

(n+ 2)
(gαβgµν + gανgµβ)− n(n+ 1)A

(n+ 1)(n+ 2)
(gαβgµν + gανgµβ)

− Bq

(n+ 2)(1−Qq)

(
gαβpµpν + gµβpαpν + gανpµpβ + gµνpαpβ

)
− B

(n+ 1)(n+ 2)

(
q

1−Qq

)2

(gαβgµν + gανgµβ)

= − Bq2

(n+ 1)(n+ 2)(1−Qq)2
(gαβgµν + gανgµβ)−Bpαpβpµpν

− Bq

(n+ 2)(1−Qq)

(
gαβpµpν + gµβpαpν + gανpµpβ + gµνpαpβ

)
+

(
−A+

2(n+ 1)A

n+ 2
− nA

n+ 2

)
(gαβgµν + gανgµβ)

= − Bq2

(n+ 1)(n+ 2)(1−Qq)2
(gαβgµν + gανgµβ)−Bpαpβpµpν

− Bq

(n+ 2)(1−Qq)

(
gαβpµpν + gµβpαpν + gανpµpβ + gµνpαpβ

)
.
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5.4 Gaussian Curvature K

Now we will compute the Gaussian curvature of D0 with respect to the hermitian

metric h:

Lemma 5.8 (Webster, [19]). The Gaussian curvature K of the metric ds2 =

hdwdw on D0 is given by

K = −2 +
q3

k3
(kqwwww + qqwwwqwww − qwqwwqwww

−qwqwwqwww + qwwqwwqww) , (5.33)

where k = qwqw − qqww.

Proof. By definition,

K =
K0

h
,

where ∂w∂w log(h) = K0dw∧dw. Recall that the hermitian metric h on D0 was

defined by

h =
qwqw − qqww

q2
=

k

q2
.

By definition of the partial derivatives and direct calculation,

kw = qwqww − qqwww,

kw = qwqww − qqwww,

kww = qwwqww − qqwwww.

Hence, we have that

∂w∂w log(h) = ∂w

(
kw
k
dw − 2qw

q
dw

)
=
(
kkwwq

2 − kwkwq2 − 2k2qqww + 2k2qwqw
) dw ∧ dw

k2q2
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=
(
−q3qwqwqwwww − q3qwwqwwqww + q4qwwqwwww

+ q3qwqwwqwww + q3qwqwwqwww − q4qwwwqwww

+ 6q2qwqwqww
2 − 2q3qww

3 + 2qw
3qw

3

−6qqw
2qw

2qww
) dw ∧ dw

k2q2

= (−kqwwww − qwwqwwqww + qwqwwqwww

+qwqwwqwww − qqwwwqwww)
q

k2
dw ∧ dw

+
2k

q2
dw ∧ dw.

Now we set

K0 = (kqwwww + qwwqwwqww − qwqwwqwww

−qwqwwqwww + qqwwwqwww)
q

k2
− 2k

q2
.

Hence,

K =
K0

h
= K0

q2

k

= −2 +
q3

k3
(kqwwww + qwwqwwqww − qwqwwqwww

−qwqwwqwww + qqwwwqwww) .

Corollary 5.9 (Webster, [19]).

B =
(K + 2)k2

q3(qwqw)2
. (5.34)
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Proof. Recall that B was defined earlier to be

B =
Qww
qwqw

+ 2Q

(
Qw
qw

+
Qw
qw

)
+ 3Q3 +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 · q

1−Qq
,

where

Q =
qww
qwqw

.

By definition, we have that

Qw =
qwqwqwwww − qwqwwqww − qwqww2

qw2qw2
,

Qw =
qwqwqwwww − qwqww2 − qwqwwqww

qw2qw2
,

and

Qww =
(
qw

3qw
3qwwww − 2qw

2qw
3qwwqwww − qw3qw

2qwwqwww

− qw2qw
3qwwqwww + 2qwqw

3qwwqww
2 + qw

2qw
2qwwqwwqww

−2qw
3qw

2qwwqwww + qw
2qw

2qww
3 + 2qw

3qwqww
2qww

) 1

qw4qw4
.

Hence, we can expand each term of B as follows:

Qww
qwqw

=
(
qw

3qw
3qwwww − 2qw

2qw
3qwwqwww − qw3qw

2qwwqwww

− qw2qw
3qwwqwww + 2qwqw

3qwwqww
2 + qw

2qw
2qwwqwwqww

−2qw
3qw

2qwwqwww + qw
2qw

2qww
3 + 2qw

3qwqww
2qww

) 1

qw5qw5
;

(5.35)

2Q

(
Qw
qw

+
Qw
qw

)
=
(
2qwqw

2qwwqwww − 2qw
2qwwqww

2 − 4qwqwqww
3
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+2qw
2qwqwwqwww − 2qw

2qww
2qww

) 1

qw4qw4
; (5.36)

3Q3 =
3q3
ww

q3
wq

3
w

; (5.37)

∣∣∣∣Qwqw +Q2

∣∣∣∣2 · q

1−Qq
=
(
qw

2qw
2qwwwqwww − qw2qwqwwqwwqwww

−qwqw2qwwqwwqwww + qwqwqwwqww
2qww

) q

kqw4qw4
.

(5.38)

Adding (5.35)-(5.38) together gives us

B =
Qww
qwqw

+ 2Q

(
Qw
qw

+
Qw
qw

)
+ 3Q3 +

∣∣∣∣Qwqw +Q2

∣∣∣∣2 · q

1−Qq

=
(
kqw

3qw
3qwwww − kqw3qw

2qwwqwww − kqw2qw
3qwwqwww

+ kqw
2qw

2qwwqwwqww + qqw
3qw

3qwwwqwww − qqw3qw
2qwwqwwqwww

−qqw2qw
3qwwqwwqwww + qqw

2qw
2qwwqww

2qww
) 1

kqw5qw5

=
(
kqw

3qw
3qwwww − qw4qw

3qwwqwww − qw3qw
4qwwqwww

+qw
3qw

3qwwqwwqww + qqw
3qw

3qwwwqwww
) 1

kqw5qw5

=

(
(K + 2)qw

3qw
3k3

q3

)
1

kqw5qw5

=
(K + 2)k2

q3qw2qw2
.

5.5 Proof of Theorem 1.2

With the above formulas, we can now prove Theorem 1.2:

Proof of Theorem 1.2. We prove the theorem by way of contradiction. Let w ∈
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D0 and (z, w) ∈M . Let us assume that f : M → Sn̂ is a smooth CR embedding

of M into Sn̂ such that 1 < n ≤ n̂ < 2n− 1. We give D0 the hermitian metric

h =
qwqw − qqww

q2
.

and assume that the Gaussian curvature K of the metric h satisfies K > −2 at

w.

Denote by (ωα
a
µ) to be the second fundamental form matrix of f rela-

tive to an admissible coframe (θ̂, θ̂A, θ̂A) on Sn̂ near f(M) which is adapted to

(θ, θα, θα) on M . We follow [5] by identifying f(M) ∼= M in Sn̂. In addition,

we identify T 1,0
f(z,w)S

n̂/f∗T
1,0
(z,w)M

∼= (T 1,0
(z,w)M)⊥ with respect to the Levi form

relative to θ̂ and we consider the second fundamental form as a C-bilinear map

T 1,0
(z,w)M × T

1,0
(z,w)M → T 1,0

f(z,w)S
n̂/f∗T

1,0
(z,w)M.

By the pseudoconformal Gauss equation (4.7), we have that

[Ŝαβµν ] = Sαβµν + [gab̄ωα
a
µωβ̄

b̄
ν̄
], (5.39)

where Ŝαβµν denotes the pseudoconformal curvature tensor of Sn̂ restricted to

M . The square bracket notation, [·], will again denote the traceless component

of a tensor. Since Sn̂ is a sphere, by the results of Chern-Moser [2], Ŝαβµν ≡ 0,

implying

Sαβµν + [gab̄ωα
a
µωβ̄

b̄
ν̄
] = 0 (5.40)

By the definition of the traceless component,

Sαβµν + gab̄ωα
a
µωβ̄

b̄
ν̄

= Hαβ̄gµν̄ + Ĥµβ̄gαν̄ + H̃αν̄gµβ̄ + Ȟµν̄gαβ̄ , (5.41)

57



for hermitian matrices (Hαβ̄), (Ĥµβ̄), (H̃αν̄), and (Ȟµν̄). Replacing Sαβµν with

(5.32), we obtain

gab̄ωα
a
µωβ̄

b̄
ν̄
−Bpαpβpµpν = Tαβµν , (5.42)

where we set

Tαβµν = Hαβ̄gµν̄ + Ĥµβ̄gαν̄ + H̃αν̄gµβ̄ + Ȟµν̄gαβ̄

+
Bq2

(n+ 1)(n+ 2)(1−Qq)2

(
gαβgµν + gµβgαν

)
+

Bq

(n+ 2)(1−Qq)

(
gαβpµpν + gµβpαpν + gανpµpβ + gµνpαpβ

)
.

(5.43)

So, for all (non-zero) X = Xα ∂
∂zα ∈ T

1,0
(z,w)M ,

TαβµνX
αXβXµXν = gab̄

(
ωα

a
µX

αXµ
) (
ωβ̄

b̄
ν̄
XβXν

)
−BpαpβpµpνX

αXβXµXν . (5.44)

Note that the left-hand side is of the form H(X,X)|X|2. Hence, by the restric-

tions on the dimensions n and n̂, Corollary 4.4 implies

gab̄
(
ωα

a
µX

αXµ
) (
ωβ̄

b̄
ν̄
XβXν

)
−BpαpβpµpνX

αXβXµXν ≡ 0. (5.45)

By definiteness,

gab̄
(
ωα

a
µX

αXµ
) (
ωβ̄

b̄
ν̄
XβXν

)
> 0. (5.46)

Since w ∈ D0, we have that q < 0. Therefore, by (5.34), K > −2 implies that

B < 0. Thus,

−BpαpβpµpνX
αXβXµXν > 0. (5.47)
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(5.45) combined with (5.46) and (5.47) is a contradiction. Hence, the assumption

is false and no smooth CR embedding f : M → Sn̂ exists.

6 Further Results

The techniques used in the previous section can be used to prove a Kähler

version of Theorem 1.2.

Recall that a holomorphic mapping f : (X, gX)→ (Y, gY ) between hermitian

manifolds is called conformal if f∗gY = hgX , where h is some positive function

on X. Note that, when X and Y are both Kähler and dimX > 1, the conformal

coefficient h is a positive constant (which we will assume so in this case).

A tensor Tαβµν over a complex manifold is called pseudoconformally flat if,

in any holomorphic chart, we have

Tαβµν = Hαβgµν + Ĥµβgαν + H̃ανgµβ + Ȟµνgαβ ,

where (Hαβ), (Ĥµβ), (H̃αν), and (Ȟµν) are smoothly-varying hermitian matrices

and (gαβ) is the local representation of the hermitian metric over the chart.

Proof of Theorem 1.4. Pick an arbitrary point p ∈ X in a holomorphic coordi-

nate neighborhood (U, φ) of X, where the coordinates are given by

φ = (z1, . . . , zn).

Let (V, ψ) be the holomorphic coordinate neighborhood of Y such that

f(U) ⊂ V , f(p) ∈ V , and ψ = (w1, . . . , wn̂).
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By the Gauss-Codazzi equation8,

R̂αβµν −Rαβµν = gabωα
a
µωβ

b

ν
, (6.1)

where R̂αβµν is the curvature tensor of Y restricted to f(X), Rαβµν is the

curvature tensor of X, gab is the local representation of the hermitian metric on

Y , and ωα
a
µ is the local representation of the second fundamental form of f .

By assumption, Y is pseudoconformally flat, and hence,

R̂αβµν = Hαβgµν + Ĥµβgαν + H̃ανgµβ + Ȟµνgαβ , (6.2)

where (Hαβ), (Ĥµβ), (H̃αν), and (Ȟµν) are smoothly-varying hermitian matri-

ces. Since f is conformal and X pseudoconformally flat, we also have that

Rαβµν = Jαβgµν + Ĵµβgαν + J̃ανgµβ + J̌µνgαβ , (6.3)

where (Jαβ), (Ĵµβ), (J̃αν), and (J̌µν) are smoothly-varying hermitian matrices.

For a non-zero Z = Zα ∂
∂zα ∈ T

1,0
p X, (6.1)-(6.3) gives us

gabωα
a
µωβ

b

ν
ZαZβZµZν = TαβµνZ

αZβZµZν , (6.4)

where

Tαβµν := Hαβgµν + Ĥµβgαν + H̃ανgµβ + Ȟµνgαβ

− Jαβgµν − Ĵµβgαν − J̃ανgµβ − J̌µνgαβ .

8Gauss-Codazzi Equation. From Riemannian geometry, let M be an n-dimensional
submanifold of the n+ p-dimensional manifold P . Then, for all X,Y, Z,W ∈ TM ,

〈RP (X,Y )Z,W 〉 = 〈RM (X,Y )Z,W 〉+ 〈II(X,Z), II(Y,W )〉 − 〈II(Y, Z), II(X,W )〉,

where R· is the Riemannian curvature tensor and II is the second fundamental form tensor
of a mapping M → P .
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Since the right-hand side of (6.4) is of the form |Z|2h, for some hermitian

function h, and by the assumption on the dimensions of X and Y , Corollary 4.4

implies that

gabωα
a
µωβ

b

ν
ZαZβZµZν ≡ 0.

Since ga,b is positive definite, we must have that ωα
a
µ ≡ 0. Hence, f is geodesic

at p ∈ X. Since p are chosen arbitrarily, f is totally geodesic on X.
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