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Abstract

In medical 3D-imaging, one of the main goals of image registration is to accurately

compare two observed 3D-shapes. In this dissertation, we consider optimal match-

ing of surfaces by a variational approach based on Hilbert spaces of diffeomorphic

transformations. We first formulate, in an abstract setting, the optimal matching as

an optimal control problem, where a vector field flow is sought to minimize a cost

functional that consists of the kinetic energy and the matching quality. To make the

problem computationally accessible, we then incorporate reproducing kernel Hilbert

spaces with the Gaussian kernels and weighted sums of Dirac measures. We pro-

pose a second order method based the Bellman’s optimality principle and develop a

dynamic programming algorithm. We apply successfully the second order method

to diffeomorphic matching of anterior leaflet and posterior leaflet snapshots. We

obtain a quadratic convergence for data sets consisting of hundreds of points. To

further enhance the computational efficiency for large data sets, we introduce new

representations of shapes and develop a multi-scale method. Finally, we incorporate

a stretching fraction in the cost function to explore the elastic model and provide

a computationally feasible algorithm including the elasticity energy. The perfor-

mance of the algorithm is illustrated by numerical results for examples from medical

3D-imaging of the mitral valve to reduce excessive contraction and stretching.
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CHAPTER 1

Introduction

As the medical imaging advances in the past few decades, 3D-imaging modalities,

such as MRS (Magnetic Resonance Spectroscopy), PET (Positron Emission Tomo-

graph), SPECT (Single Photon Emission Computed Tomograph) for functional in-

formation, and CT (Computed Tomography), MRI (Magnetic Resonance Imaging),

Ultrasound Echography, and X-Ray, for anatomical visualization, have greatly in-

creased the knowledge of normal and diseased anatomy and therefore been increas-

ingly used to support clinical diagnosis and treatment planning. The growing size

and number of these medical images have necessitated the use of computers to facil-

itate processing and analysis.
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Image registration is a process of aligning two images acquired by same or different

sensors, at different times or from different viewpoint. It is desirable to compare

or integrate the data obtained from two or more studies of the same patient. For

instance, in a radiation therapy planning, a CT scan is needed for dose distribution

calculations, while the contours of the target lesion are often best outlined on MRI

(e.g., [79]). In [18], Brown gives a broad overview of image registration problems in

various contexts. A comprehensive survey of image registration methods is presented

by Barbara Zitova and Jan Flusser [80].

Medical image matching is a difficult task due to the distinct physical realities re-

sulting from different imaging modalities, the differences in patient positioning, and

varying acquisition techniques. To establish correspondence for a pair of images, it

requires geometric transformation of one image into another. Given reference and

target shapes S0 and S1, image matching is generally achieved by an transformation

F such that F (S0) = S1. The most common transformations are rigid, affine, pro-

jective, perspective, and global ([18, 80]).

One method of computing transformations is known as the small deformations ap-

proach. Valid transformations are computed using linearized model via displacement

vector fields when the images are separated by small deformations. However, the

transformations computed are not guaranteed to be one-to-one or invertible. One

limitation as shown in [23] is that the neighborhood structure could be destroyed in

some cases when folding the grid over itself.

For the study of anatomy, it is essential to preserve properties such as smoothness

of curves, surfaces, or other features associated to anatomy. It is a natural choice
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constraining the transformations to be diffeomorphisms, since they are smooth in-

vertible transformations with smooth inverse.

An variational approach has been developed by G. Dupuis, J. Glaunès, U. Grenan-

der, M. Miller, D. Mumford, A. Trouvé, and L. Younes [27, 36, 73] and subsequently

explored in [10, 34, 55, 21, 32, 56] for comparisons of key anatomic parts of human

brains such as the hippocampus, the temporal lobes, etc.

Within this framework, several gradient descent algorithms with respect to the land-

mark trajectories have been developed in [42, 10, 20]. The gradient method can be

easily implemented, but it can be inefficient. On the other hand, it has been well

received that Newton steps (cf., e.g., [17, 25]) are typically much more efficient than

nonlinear conjugate gradient steps. Unfortunately, because of the numerical cost of

computing and inverting the Hessian in large size problems, the second order opti-

mization strategies have rarely been explored.

The main contribution of the thesis is to develop Newton descent steps based on the

Bellman’s optimality principle and the second order information. To further improve

the convergence, we properly discretize some of the components of the diffeomorphic

machinery and open a way to well-defined and computationally robust multi-scale

procedures. Moreover, to establish a more natural mathematical model, we incorpo-

rate an elasticity energy into the cost functional. For applications, the performance

is illustrated by numerical deformation results from 3D echocardiographic data of

the mitral valve.

The dissertation is organized as follows: in Chapter 2, we start off by providing a
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brief history of diffeomorphic matching problems. After that, to set up the varia-

tional framework for diffeomorphic matching, we introduce the mathematical tools

needed for this subject, namely reproducing kernel Hilbert spaces, dynamic system,

and distances of shapes. Moreover, the variational formulation and the existence of

a solution to the optimal control problem are discussed. Lastly, we apply the frame-

work to Dirac measure and the first order optimality conditions involving an adjoint

equation are derived.

In the spirit of the Hamilton-Jacobi-Bellman equation, we derive the continuous-time

Riccati equations for nonlinear optimal control problem in Chapter 3. We take the

discrete-then-optimize approach later in Chapter 4 and focus on developing a fast

computing algorithm using the second order information. With the Bellman’s opti-

mality principle and local quadratic approximation, we derive the feedback control

law. The dynamic programming algorithm involving the final state condition is care-

fully developed for general discrete nonlinear optimal control problems. Moreover,

we prove and present the continuous-time Riccati equations related to the HJB equa-

tion. Lastly, we apply the Newton descent method to the diffeomorphic matching

problem.

The following chapters are concerned with the numerical solutions to the optimal

control problem. In Chapter 5, we apply the second order method to diffeomorphic

matching of anterior leaflet and posterior leaflet snapshots. Moreover, one example

of diffeomorphic matching for multiple anterior leaflet snapshots is illustrated.

Indeed, we discover that the second order method converges extremely fast for data

sets consisting of around two or three hundreds of points. However, its disadvantage
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is noticeable when applied to larger data sets. So in Chapter 6, we come up with the

multi-scale method to enhance the computing speed. The updates between different

scales are developed and the improved algorithm is outlined. We present two exper-

iments. Among them, we compare one to the numerical results we get in Chapter 5.

With the exact same initializations, only less than one-third of the computing time

is needed to obtain similar matching quality.

Finally in Chapter 7, we introduce a stretching fraction to explore the elastic model.

The mitral valve is essential an elastic body which stretches and contracts within a

certain limitation. According to doctors, the tissue can not tolerate more than 25

percent stretching or contraction. We outline the algorithm including the elasticity

energy and apply to two examples. In particular, for the last experiment we place

extra weighting parameters to reduce excessive contraction.
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CHAPTER 2

Diffeomorphic Matching of Dynamic Shapes

2.1 Brief History

Motivated by the development of image acquisition methods (e.g., [61, 51, 58]) and

segmentations algorithms (e.g., [62, 38]), the mathematical analysis of shapes has

been a significant area of interest.

For incompressible fluid obeying Euler equations, let Ft(x) be the position of a fluid

particle at time t starting at position x. Pioneers Arnold, Ebin, and Marsden showed

(e.g., [3]) that the spatial displacement Ft(x) between time 0 and t minimize the

integral in time and space of the fluid kinetic energy. The continuous path defined
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2.1. BRIEF HISTORY

by the time dependent R
3-diffeomorphisms Ft is a geodesic t → Ft of an infinitely

dimensional Lie group of R3-diffeomorphisms. In the past few decades, geodesics in

groups of diffeomorphisms have provided a fertile framework for optimal matching

of curves and surfaces (e.g., [27, 36, 73, 33, 54]).

Let U be a Hilbert subspace with strong Lipschitz-continuity in t, consisting of vector

field flows v : t → vt, 0 ≤ t ≤ 1, where vt tends zero at infinity in R
3. Consider

∂tFt = vt(Ft), t ∈ (0, 1] (2.1)

F0 = Id (2.2)

where Id is the identity map. G. Dupuis, U. Grenander, M. Miller, and A. Trouvé

have shown in [27, 72], F v generated by integration each time dependent flow v = vt

between times 0 and 1 of the O.D.E. is a group of diffeomorphisms. Furthermore,

for two smooth shapes S0, S1 with k ∈ {1, 2, 3} in R
3, as shown by M. Miller, L.

Younes, and A. Trouvé in [56, 72, 55], inf
´ 1

0
‖vt‖Udt, the length of the shortest path

connecting S0 and S1 defines a metric. With all these great contributions, the basic

variational problem seeking minimizer in the velocity vector fields U to the cost

functional

J(v) =

ˆ 1

0

‖vt‖2Udt+ λdis(F (S0), S1), for some fixed constant λ > 0

is introduced in [10, 27, 33, 34]. In these papers, the regularization is achieved

through replacement the rigid constraint F (S0) = S1 by a soft constraint using suit-

ably chosen geometric surface matching distances, dis(F (S0), S1). Several important
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2.1. BRIEF HISTORY

metrics have been discussed in publication [76, 77, 50, 52, 41, 78].

In Berg et al. [10], the Euler-Lagrange equations are derived and the large deforma-

tion metric mappings algorithm is developed. Most importantly, they have shown

that the metric distance between given shapes is computed by a geodesic path on the

manifold of diffeomorphisms connecting the images. Following the geometric view

outlined above, Glaunes et al. [33] have introduced weighted sums of Dirac mea-

sures to compare two arbitrary shapes which are considered as unlabeled landmarks.

Both deformations fields and measures are modeled as linear combinations of kernels

functions (e.g., [4]). By their synthetic experiments, measure matching demonstrates

robustness against noise and outliers, or against different resamplings of the shapes.

To incorporate both location and first order geometric structure, Glaunès et al. [32]

represent curves as vector-valued measures and integrate curve matching into the

variational framework. Numerical results from 2D and 3D curve mappings indicate

better matching quality compared to landmark matching algorithms [42].

As discussed above, for the diffeomorphic matching of two static shapes S0 and S1,

the variational approach has been intensively explored, and numerically implemented

for quantified comparisons of key anatomic parts of human brains [10, 33]. Inspired

by the general framework outlined above, Azencott et al. [6, 8] have extended the

framework to finding an optimal matching for multiple sub-manifolds in R
3. Given

an arbitrary number of snapshots Stj , j = 0, · · · , q of a deforming object available

at time instances t0 < t1 · · · < tq, an optimal time dependent R3-diffeomorphism Ft

is obtained such that Ftj (St0) = Stj . Unlike [33], Gaussian kernels have been chosen

for reproducing kernel Hilbert spaces [27]. It has been numerically implemented to
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2.2. MATHEMATICAL BACKGROUND

the reconstruction of the deformations of the mitral valve apparatus.

For many shape matching applications, the gradient descent method is commonly

used and produces good numerical results as seen in [6, 10, 33]. However, the conver-

gence of the gradient descent method is slow. A fast algorithm is in great demand so

that medical data can be processed in a timely manner. It is well known that New-

ton steps (e.g., [17, 25]) are typically much more efficient than nonlinear conjugate

gradient steps. Our aim is to follow the variational approach in [33, 6] and devel-

op improved numerical optimization strategies based on the Bellman’s optimality

principle [11] and the second order information.

2.2 Mathematical Background

In this section, we provide the mathematical tools needed to formulate the variational

problem for dynamical matching.

2.2.1 Reproducing Kernel Hilbert Space

Reproducing kernel Hilbert spaces (RKHS) arise in a number of areas. The basic

mathematical properties were studied by Moore (1935), Bergman (1950) and Aron-

szajn (1950). Aside from the shape-matching applications, RKHS have been found

incredibly useful in other fields such as machine learning ([19, 67, 69]), statistical

signal analysis ([75, 59]), image analysis ([63, 70, 49]), etc.

Definition 2.1. Let H be an inner product space ([39]) over Rd with the norm ‖·‖H.

9



2.2. MATHEMATICAL BACKGROUND

If this space is complete, it is a Hilbert space.

With inner product 〈·, ·〉H the associated norm is

‖h‖H =
√

〈h, h〉H , for h ∈ H.

A metric space H is complete if every Cauchy sequence in H converges in H . In

other words, Hilbert spaces are Banach spaces endowed with a norm induced by an

inner product. Now we refer to [4] for the definition of reproducing kernel Hilbert

space.

Definition 2.2. Let H be a class of functions defined in R
d, forming a Hilbert space.

The function K : Rd × R
d → R is called a reproducing kernel of H if

1. For every x ∈ Rd, the function Kx belongs to H . i.e.,

Kx(y) = K(y, x) for all y ∈ Rd. (2.3)

2. The reproducing property: for every x ∈ Rd and every h ∈ H ,

h(x) = 〈h,Kx〉H . (2.4)

Definition 2.3. If there exists a reproducing kernel K on a Hilbert space H , then

H is a Reproducing Kernel Hilbert Space (RKHS).

A kernel K(x, y) may be characterized as a function of two points according to

[53] and it has several interesting properties. First, for y ∈ R
3, applying (2.4) to

10



2.2. MATHEMATICAL BACKGROUND

h = Ky yields

K(x, y) = Ky(x) = 〈Ky, Kx〉H .

Since the last term is symmetric, we have

K(x, y) = K(y, x).

Additionally, for any x ∈ Rd we have

‖Kx‖H =
√

〈Kx, Kx〉H =
√

K(x, x).

A second property is the fact that K(x, y) is a positive matrix in the sense of E.H.

Moore ([57]) shown in the theorem below.

Theorem 2.4. Let {x1, x2, · · · , xn} be a finite set in R
d, and then the quadratic form

in ξ1, ξ2, · · · , ξn ∈ R,
n

∑

i,j=1

ξiξjK(xi, xj), (2.5)

is nonnegative and vanishes if and only if all ξi equals 0.

Proof. Apply the reproducing property (2.4) to the summation (2.5) and we have

n
∑

i,j=1

ξiξjK(xi, xj) =
n

∑

i,j=1

ξiξj〈Kxi
, Kxj

〉H

= 〈
n

∑

i=1

ξiKxi
,

n
∑

i=1

ξiKxi
〉H

= ‖
n

∑

i=1

ξiKxi
‖2H ≥ 0.

11



2.2. MATHEMATICAL BACKGROUND

If it vanishes, then
∑n

i=1 ξiKxi
= 0. By the equation (2.4), for every h ∈ H ,

n
∑

i=1

ξih(xi) = 0,

and therefore ξ1 = · · · = ξn = 0.

Additionally, it follows naturally that if ξ1 = · · · = ξn = 0, then

n
∑

i,j=1

ξiξjK(xi, xj) = 0.

We have defined a kernel function in terms of a reproducing kernel Hilbert space

and discovered that the kernel is symmetric positive definite. Now we introduce

the Moore-Aronszajn theorem to explore the converse direction: to every positive

matrix K(x, y) there corresponds one and only one class of functions with a uniquely

determined quadratic form in it, forming a Hilbert space and admitting K(x, y) as a

reproducing kernel. The theorem was first brought up in [4] by Aronszajn although

he attributes it to E. H. Moore.

Theorem 2.5. (Moore-Aronszajn theorem) Let K : Rd ×R
d → R be a positive

definite kernel. There is a unique reproducing kernel Hilbert space with reproducing

kernel K.

Proof. Let H0 = span{Kx|x ∈ R
d} endowed with the inner product

〈f, g〉H0
=

n
∑

i=1

m
∑

j=1

aibjK(xi, yj), (2.6)

12



2.2. MATHEMATICAL BACKGROUND

where f =
∑n

i=1 aiKxi
, ai ∈ R, i = 1, · · · , n, and g =

∑m
j=1 bjKyj , bj ∈ R, j =

1, · · · , m. We first have to show (2.6) indeed defines a valid inner product. First it

is independent of ai, bj used to define f, g since

〈f, g〉H0
= 〈

n
∑

i=1

aiKxi
, g〉H0

=
n

∑

i=1

ai〈Kxi
, g〉H0

=
n

∑

i=1

aig(xi),

and similarly

〈f, g〉H0
=

n
∑

i=1

aig(xi) =

m
∑

j=1

bjf(yj).

Next for any x ∈ R
d, by the Cauchy-Schwarz inequality

f(x) = 〈f,Kx〉H0
≤ ‖f‖H0

K
1

2 (x, x),

so if 〈f, f〉H0
= 0, then f = 0.

Let H be the completion of H0, i.e. for h ∈ H ,

h =
∞
∑

i=1

aiKxi
where

∞
∑

i=1

a2iK(xi, xi) < ∞.

Consider two Cauchy sequences {fl}, {gk} in H0 converging to f, g ∈ H respectively

and define the inner product in H as

〈f, g〉H = lim
l,k→∞

〈fl, gk〉H0
.

13



2.2. MATHEMATICAL BACKGROUND

By the Cauchy-Schwarz inequality,

〈f, g〉H ≤ lim
l,k→∞

‖fl‖H0
‖gk‖H0

< ∞,

and hence the inner product is well defined.

Now we may verify the equation (2.4), for x ∈ R
d,

〈f,Kx〉H = 〈 lim
l→∞

fl, Kx〉H = lim
l→∞

〈fl, Kx〉H0
= lim

l→∞
fl(x) = f(x).

As to the uniqueness, let G be another Hilbert space with K being a reproducing

kernel. For any x, y ∈ R
d,

〈x, y〉H = K(x, y) = 〈x, y〉G,

and 〈·, ·〉H = 〈·, ·〉G on the span of {Kx, x ∈ R
d}. By the uniqueness of completion,

G = H .

(One may refer to [60] for the proof on complex Hilbert spaces.)

There are quite a few well-known examples of kernels and RKHS in R
d. Schoen-

berg shows in [66] that

K(x, y) = exp(−‖x− y‖p
σ2

), x, y ∈ R
d,

is positive definite if and only if 0 ≤ p ≤ 2. When p = 1, we have the Laplacian

14



2.2. MATHEMATICAL BACKGROUND

kernel

K(x, y) = exp(−a|x− y|), a > 0. (2.7)

The most popular kernel in practice is the Gaussian kernel when p = 2,

K(x, y) = exp(−‖x− y‖2
σ2

), x, y ∈ R
d. (2.8)

For our research, we choose the Gaussian kernel. To begin with, the positive defi-

nite kernel K in our context is assumed to be bounded, smooth and invariant under

translations and the Gaussian Kernel (2.8) provides more smoothing effects than the

Laplacian kernel given in (2.7). Besides, it appears to be a good choice for diffeo-

morphic shape matching in [6, 36, 40].

2.2.2 Dynamic System

In this section, we formally introduce the dynamic system with diffeomorphisms and

then define the kinetic energy.

Definition 2.6. Given two manifolds X and Y , a map F from X to Y is called a

diffeomorphism if it is a bijection (one-to-one correspondence) and both

F : X → Y

and its inverse

F−1 : Y → X
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2.2. MATHEMATICAL BACKGROUND

are differentiable.

For the study of anatomy, it is essential to preserve properties such as smooth-

ness of curves, surfaces or other features associated to anatomy. It is a natural choice

constraining the transformations to be diffeomorphisms, since they are smooth in-

vertible transformations with smooth inverse.

Choose a Hilbert space U of smooth vector fields on R
d with norm ‖ · ‖U and con-

sider the associated Hilbert space L2(I, U) of vector field flows where I = [0, 1].

Any time-dependent vector field flows: v : t 7→ vt ∈ U, t ∈ I is associated the flow

equation

∂tFt = vt(Ft), t ∈ I, (2.9)

F0 = Id, (2.10)

where Id refers to the identity map of Rd.

It is shown in [27, 33] that the dynamic system has a unique solution when t 7→ ‖vt‖U
is integrable under suitable regularity condition on the elements of U . Thus we

assume that the Hilbert space U of Rd-vector fields is continuously embedded in a

Sobolev space W s,2(R3) for some s > 5/2 and define the finite kinetic energy Kin(v)

as

Kin(v) :=
1

2
‖v‖2L2(I,U) =

1

2

ˆ 1

0

‖vt‖2Udt. (2.11)

Theorem 2.7. Assume v ∈ L2(I, U) where U is continuously embedded in W s,2(R3)

for some s > 5/2. Then, the dynamic system (2.9),(2.10) admits a unique solution

Ft with each Ft being an R
3-diffeomorphism of smoothness class 1 ≤ r ≤ s− 3/2.

16



2.2. MATHEMATICAL BACKGROUND

Proof. We refer to [27].

2.2.3 Distance of Two Shapes

It is common sense to calculate the distance of two points in the Euclidean space.

However, comparing two curves or surfaces is much more complex. One commonly

used distance is the classic Hausdorff distance ([65]).

Definition 2.8. Let x be a point and S be a non-empty set in R
d, then,

d(x, S) = min
(y∈S)

|x− y|,

is the distance of x to S.

Definition 2.9. Let S and S ′ be two non-empty subsets in R
d, we define the Haus-

dorff distance dH(S, S
′) by

dH(S, S
′) = max{max

x∈S
dist(x, S ′),max

y∈S′

dist(y, S)}.

Even though Hausdorff distances are quite useful in comparison of numerical re-

sults, in the variational framework, they introduce theoretical difficulties because

dH(X, Y ) is not smooth in general. To apply the gradient descent method to diffeo-

morphic matching problems, [6] introduces a global Hausdorff disparity, a smoothed

version of the Hausdorff disparity. Several important metrics have been discussed in

publication [76, 77, 50, 52, 41, 78].

Here we introduce a positive measure as used in many shape-matching applications
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2.2. MATHEMATICAL BACKGROUND

(see [33, 54]). For submanifold S regularly embedded in R
3, let µ be a bounded Borel

measure induced on S. For two positive measures µ1 and µ2, define the Hilbert scalar

product as

〈µ1, µ2〉H =

ˆ ˆ

K(x, y)dµ1dµ2,

with norm

‖µ‖2H =

ˆ ˆ

K(x, y)dµdµ,

where K : Rd × R
d → R is a reproducing kernel. Thus the disparity of µ1 and µ2 is

φ(µ1, µ2) = ‖µ1 − µ2‖2H.

In our context, we choose the Gaussian kernel in (2.8) for K(x, y) with a scale

parameter σ′. In Chapter 5, we will discuss the choice of σ′ more in detail.

For two shapes, the reference S0 and the target S1 in R
d, the geometric disparity

between F v
1 (S0) and ST can be defined as

φ(F v
1 ) = ‖F v

1 (µ(S0))− (µ(ST )‖2, (2.12)

where F v
1 is the final diffeomorphism of Rd reached at time 1.
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2.3 Variational Formulations

Following [7, 35] we define the penalized unconstrained function J : L2(I, U) → R

using the kinetic energy Kin(v) in (2.11) and the disparity function φ(F v
1 ) in (2.12),

J(v) := Kin(v) + λφ(F v
1 ), v ∈ L2(I, V ), (2.13)

where F v
1 is the solution of the ODE (2.9) with initial condition (2.10) and λ being

large is a trade-off parameter.

Theorem 2.10. The minimization problem

inf
v∈L2(I,U)

J(v),

associated with the dynamic system (2.9), (2.10) has a solution v∗ ∈ L2(I, U).

Proof. We refer to [6].

2.4 Application to Point Sets

Recall the dynamic system and denote xi(t) as the trajectory starting at xi, 1 ≤ i ≤

N . Then the ODE (2.9) and (2.10) can be translated as

dxi(t)

dt
= vt(xi(t)), t ∈ (0, 1], (2.14)

xi(0) = xi, (2.15)
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2.4. APPLICATION TO POINT SETS

for i = 1, · · · , N . Take V = VK with a Gaussian kernel K = Kσ. It is shown in

[20, 42] that the search for vt ∈ U of lowest energy is restricted to linear combinations

of K(xi(t), ·), i = 1, · · · , N , i.e.,

vt(x) =

N
∑

n=1

Kσ(xi(t), x)αi(t), for any x ∈ R
d.

With control αi introduced, we limit the search for optimal solution in a finite di-

mension space, RN specifically.

By the definition of Hilbert norm, we have

‖vt(x)‖2V =
N
∑

i=1

N
∑

j=1

Kσ(xi(t), xj(t))α
T
i (t)αj(t).

With the kinetic energy taken care of, we look into the disparity function. For any

piecewise smooth compact surfaces S in R
d, let µ be a positive measure of S which

can be approximated by linear combination of Dirac measures,

µ =
∑

i

ciδxi
, (2.16)

where δxi
is the Dirac mass at nodes xi. Naturally, for any diffeomorphism F of Rd

acting on µ, we have

Fµ =
∑

i

ciδF (xi). (2.17)
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2.4. APPLICATION TO POINT SETS

Consider the reference shape S0 = {xi}Ni=1 and the target shape S1 = {yj}Mj=1. When

weighted sums of the Dirac measures are used as in (2.16), let

µ(S0) =
N
∑

i=1

aiδxi
, µ(S1) =

M
∑

j=1

bjδyj .

Consider the diffeomorphism F v
t associated with the trajectory xi(t). Then by (2.17)

at t = 1,

µ(F v
1 (S0)) =

N
∑

i=1

aiδxi(1),

which represents the Borel distance between the shape F v
1 (S0) and S1. Finally,

associated with Gaussian kernel Kσ′ for some suitable scale parameter σ′ > 0, the

disparity function in (2.12) is,

φ(x(1)) = φ(F v
1 ) = ‖

N
∑

i=1

aiδxi(1) −
N
∑

j=1

bjδyj‖2H

= 〈
N
∑

i=1

aiδxi(1) −
N
∑

j=1

bjδyj ,
N
∑

i=1

aiδxi(1) −
N
∑

j=1

bjδyj〉H

= 〈
N
∑

i=1

aiδxi(1),

N
∑

i=1

aiδxi(1)〉H − 2〈
N
∑

i=1

aiδxi(1),

N
∑

j=1

bjδyj〉H + 〈
N
∑

j=1

bjδyj ,

N
∑

j=1

bjδyj〉H

=

N
∑

i=1

N
∑

j=1

aiajKσ′(xi(1), xj(1))− 2

N
∑

i=1

M
∑

j=1

aibjKσ′(xi(1), yj) +

M
∑

i=1

M
∑

j=1

bibjKσ′(yi, yj).

(2.18)
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2.5 Necessary Optimality Conditions

Now we introduce the matrix-vector notations and derive the necessary optimality

conditions for the minimization problem. Consider the reference set S0 = {xi}Ni=1

and the target set S1 = {yj}Mj=1, for any t ∈ (0, 1], denote

x(0) = (x1, · · · , xN )
T ∈ R

Nd, x(t) = (x1(t), · · · , xN(t))
T ∈ R

Nd, (2.19)

α(t) = (α1(t), · · · , αN(t))
T ∈ R

Nd, (2.20)

A(x(t)) = (Aij(x(t))) ∈ R
Nd×Nd, (Aij(x(t))) = Kσ(xi(t), xj(t))Id ∈ R

d×d. (2.21)

It follows that the kinetic energy in (2.11) is now

Kin(v) =
1

2

ˆ 1

0

α(t)TA(x(t))α(t)dt. (2.22)

Furthermore, the cost function in (2.13) takes the form

J(α) =
1

2

ˆ 1

0

α(t)TA(x(t))α(t)dt+ λφ(x(1)), (2.23)

for α(t) ∈ L2(I,RNd), where φ(x(1)) is the measure disparity between x(1) and

target set S1 given in (2.18).

The diffeomorphic matching problem is now transformed into the optimal control
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2.5. NECESSARY OPTIMALITY CONDITIONS

problem,

inf
α∈L2(I,RNd)

J(α),

subject to
dx

dt
= A(x(t))α(t), t ∈ I,

x(0) = x0.

(2.24)

Based on the theorem 2.10, there exists an optimal solution α∗ ∈ L2(I,RNd).

Theorem 2.11. Assume that α∗(·) is the solution of the optimal control problem

(2.24), and that x∗(·) is the corresponding trajectory. Then there exists a function

p∗(·), called the adjoint state, such that the triple (x∗, p∗, α∗) satisfies

dx∗(t)

dt
= A(x∗(t)) α∗(t), t ∈ (0, 1], (2.25)

x∗(0) = x(0), (2.26)

A(x∗(t))(α∗(t) + p∗(t)) =0, t ∈ (0, 1]. (2.27)

− dp∗(t)

dt
= B(x∗(t), α∗(t))T (p∗(t) +

1

2
α∗(t)), t ∈ (0, 1], (2.28)

p∗(1) = λ∇φ(x∗(1)), (2.29)

where

B(x∗(t), α∗(t)) = ∇x (A(x
∗(t)) α∗(t)) ,
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2.5. NECESSARY OPTIMALITY CONDITIONS

is given by

B(x∗(t), α∗(t)) = Bij(x
∗(t), α∗(t)))Nn,m=1 ∈ R

Nd×Nd,

Bij(x
∗(t), α∗(t)) := α∗

j (t)(∇2Kσ0
(x∗

i (t), x
∗
j (t)))

T + δij

N
∑

k=1

α∗
k(t)(∇1Kσ0

(x∗
i (t), x

∗
k(t)))

T .

Proof. Letting p(t) = (p1(t), · · · , pN(t))T ∈ R
Nd be Lagrange multipliers ([17]), the

Lagrangian associated with the optimal control problem (2.24) is

L(α, x, p) := J(α)−
ˆ 1

0

p ·
(dx(t)

dt
− A(x(t))α(t)

)

dt

= −
ˆ 1

0

p · dx(t)
dt

dt+

ˆ 1

0

(p +
1

2
α) · A(x(t))α(t)dt + λφ(x(1)).

For (α∗, x∗, p∗) to be a critical point of L(α, x, p), the optimality conditions are

Lα(α
∗, x∗, p∗) = 0, (2.30)

Lx(α
∗, x∗, p∗) = 0, (2.31)

Lp(α
∗, x∗, p∗) = 0. (2.32)

(2.30) gives

A(x∗(t))p∗ + A(x∗(t))α∗ = 0,

and therefore implies (2.27). Moreover, (2.32) indicates the dynamic system (2.25)

and (2.26). As to condition (2.31), we first rewrite

−
ˆ 1

0

p · dx
dt

dt =

ˆ 1

0

dp

dt
· xdt− p(1) · x(1) + p(0) · x(0),
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2.5. NECESSARY OPTIMALITY CONDITIONS

and it implies (2.28) and (2.29).
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CHAPTER 3

The Continuous-time Nonlinear Optimal Control Problem

In this chapter, we will introduce the dynamic programming and derive continuous-

time Riccati equations with the second order information for nonlinear optimal con-

trol problems. At the end, we briefly review the two different optimization approach-

es, optimize-then-discretize and discretize-then-optimize.

For many shape-matching applications, the gradient descent method is commonly

used and produces good numerical results as seen in [6, 10, 33]. However, clinician-

s and medical researchers, as natural users for automated 3D images registration,

demands faster computing algorithms. It is well known that Newton steps (e.g.,

[17, 25]) are typically much more efficient than nonlinear conjugate gradient steps.
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3.1. DYNAMIC PROGRAMMING

Unfortunately, because of the numerical cost of computing and inverting Hessian ma-

trices of the objective function in large size problems, the second order optimization

strategies have rarely been used so far for diffeomorphic matching. Considering that

we mostly deal with medium size problems, it shows great strength.

In the imaging field, dynamic programming has been used as in [47, 64, 31] and

appears to be a fast and elegant method on finding the global solution. We also co-

operate dynamic programming into the numerical algorithms so that the computing

time increases linearly with respect to time steps and the errors stay controllable

even for a longer time window.

3.1 Dynamic Programming

Dynamic programming ([28]) is originally brought up by Richard Bellman ([12]) and

later refined to specifically referring to nesting smaller decision problems inside larger

decisions. The crucial concept of the dynamic programming method is to break down

a complex problem into a few consecutive overlapping subproblems, which often are

really the same, and then combine the solutions of the subproblems to reach an

overall solution. For a rigorous treatment on dynamic programming, see [13].

In continuous-time optimization problems, let us consider the controlled dynamics,

dx

dt
= F(x(t),α(t)), t ∈ (0, 1],

x(0) = x0,
(3.1)
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3.1. DYNAMIC PROGRAMMING

with the associated cost functional (i.e., payoff function),

J(α(·)) =
ˆ 1

0

g(x(t),α(t))dt+ φ(x(1)), (3.2)

where we call g(x(t),α(t)) the running payoff and φ(x(1)) the terminal payoff.

Definition 3.1. For x ∈ R
d, 0 ≤ t ≤ 1, define the value function V (x, t) to be the

least payoff possible if we start at x ∈ R
d at time t. That is,

V (x, t) = inf
α(·)

(

ˆ 1

t

g(x(s),α(s))ds+ φ(x(1))
)

.

The value function V (x, t) represents the cost incurred from starting in state x

at time t and controlling the system optimally from then until final time t = 1.

The definition is in fact very natural, and by this definition we notice some very

interesting facts.

First, the value function at final time t = 1 is essentially the terminal function, i.e.,

given x ∈ R
d,

V (x, 1) = inf
α(·)

(

ˆ 1

1

g(x(t),α(t))dt+ φ(x)
)

= φ(x).

Also, at starting time t = 0,

V (x, 0) = inf
α(·)

J(α(·)),

which reveals the original cost functional.
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3.1. DYNAMIC PROGRAMMING

Theorem 3.2. (HAMILTON-JACOB-BELLMAN EQUATION). For the dynamic

system 3.1, assume that the value function V is a C1 function of the variable (x, t).

Then V solves the nonlinear partial differential equation

Vt(x, t) + min
a

{F(x, a) · ∇xV (x, t) + g(x, a)} = 0, (3.3)

with final state condition for x ∈ R
d,

V (x, 1) = φ(x).

Proof. Let x ∈ R
d, 0 ≤ t < 1 and h > 0 such that t + h < 1, and use the constant

control α(·) = a for times t ≤ s ≤ t+ h.

Now, consider the following dynamic system for times t ≤ s ≤ t+ h,

dx

ds
= F(x(s), a), s ∈ [t, t+ h],

x(t) = x,
(3.4)

where the dynamics starts at given x at time t and then arrives at the point x(t +

h). Furthermore, starting at time t + h, we switch to an optimal control and use

V (x(t+ h), t+ h) for the remaining times t+ h ≤ s ≤ 1. Combining those two time

intervals, we should have the total payoff as

ˆ t+h

t

g(x(s), a)ds+ V (x(t+ h), t + h).

On the other hand, by definition 3.1, V (x, t) is the least possible payoff if we start
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from (x,t). Therefore,

V (x, t) ≤
ˆ t+h

t

g(x(s), a)ds+ V (x(t+ h), t+ h). (3.5)

To convert the inequality (3.5) into a differential form, we rearrange it and divide by

h,

V (x(t + h), t+ h)− V (x, t)

h
+

1

h

ˆ t+h

t

g(x(s), a)ds ≥ 0.

Let h go to 0, and then we have

∇xV (x, t) · ẋ(t) + Vt(x, t) + g(x, a) ≥ 0.

Besides, since x solve the differential equation system 3.4, we discover

∇xV (x, t) · F(x, a) + Vt(x, t) + g(x, a) ≥ 0.

The inequality holds for all control parameters, so

min
a

{Vt(x, t) + g(x, a) +∇xV (x, t) · F(x, a)} ≥ 0.

We now want to show the minimum above is actually equal to zero. Assume α∗,x∗(·)

are optimal for the minimization problem. Thus, for times t ≤ s ≤ t+ h, the payoff

is
ˆ t+h

t

g(x∗(s),α∗(s))ds

and the remaining payoff for times t + h ≤ s ≤ 1 is V (x∗(t + h), t + h). Therefore,
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the total payoff is

V (x, t) =

ˆ t+h

t

g(x∗(s),α∗(s))ds+ V (x∗(t + h), t+ h).

Again let us rearrange the equation and divide by h. Thus,

1

h

ˆ t+h

t

g(x∗(s),α∗(s))ds+
V (x∗(t+ h), t+ h)− V (x∗, t)

h
= 0.

Take h go to 0 and suppose α
∗ = a∗ for the time interval t ≤ s ≤ t+ h, and then

g(x, a∗) +∇xV (x, t) · F(x, a∗) + Vt(x, t) = 0,

for some parameter a∗. Therefore,

min
a

{Vt(x, t) + g(x, a) +∇xV (x, t) · F(x, a)} = 0,

and consequently the Hamilton-Jacobi-Bellman equation is proved.

As shown in [14], the HJB equation is a sufficient condition for an optimum. The

solution of the HJB equation is the value function, which gives the optimal cost-to-go

for the corresponding controlled dynamical system.
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3.2 The Continuous-time Riccati Equations

To solve the nonlinear optimal control problem, we now seek for a value function

that satisfies the HJB equation (3.3). Since the partial differential equation is highly

nonlinear, we first introduce variations from nominal values,

x = x̄ + δx, α = ᾱ+ δα.

Then we develop quadratic linear approximations to all the functions involved, that

is,

F(x,α) =
1

2
δxTFxxδx +

1

2
δαTFααδα+ δαTFαxδx+ Fxδx+ Fαδα + F(x̄, ᾱ),

g(x,α) =
1

2
δxTgxxδx +

1

2
δαTgααδα+ δαTgαxδx + gT

x δx+ gT
αδα+ g(x̄, ᾱ),

V (x, t) =
1

2
δxTP(t)δx + q(t)T δx +Θ(t),

where the Hessian is P(t) = Vxx and q(t) = Vx. Thus,

Vt(x, t) =
1

2
δxT Ṗ(t)δx + q̇(t)T δx + Θ̇(t), (3.6)

∇xV (x, t) = P(t)δx+ q(t). (3.7)
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Substitute all the terms above into equation (3.3), and we have

1

2
δxT Ṗ(t)δx + q̇(t)T δx+ Θ̇(t)

+ min
δα

{(P(t)δx+ q(t))T (
1

2
δxTFxxδx +

1

2
δαTFααδα+ δαTFαxδx + Fxδx + Fαδα+ F(x̄, ᾱ))

+ (
1

2
δxTgxxδx +

1

2
δαTgααδα + δαTgαxδx + gT

x δx + gT
αδα + g(x̄, ᾱ))} = 0.

Keeping all quadratic linear terms, we obtain

1

2
δxT Ṗ(t)δx + q̇(t)T δx + Θ̇(t) + min

δα
{δxTP(t)(Fxδx + Fαδα+ F(x̄, ᾱ))

+ q(t)T (
1

2
δxTFxxδx +

1

2
δαTFααδα+ δαTFαxδx + Fxδx + Fαδα+ F(x̄, ᾱ))

+ (
1

2
δxTgxxδx +

1

2
δαTgααδα+ δαTgαxδx + gT

x δx+ gT
αδα+ g(x̄, ᾱ))} = 0. (3.8)

To solve the equation above, we first need to attain the minimizer. It can be done

by computing the gradient with respect to α. Thus, letting the gradient equal 0,

FT
αP(t)δx+ Fααq(t)δα+ Fαxq(t)δx + FT

αq(t) + gααδα+ gαxδx + gα = 0.

Therefore,

δα = (gαα + Fααq(t))
−1(gα + FT

αq(t))

− (gαα + Fααq(t))
−1(gαx + Fαxq(t) + FT

αP(t))δx. (3.9)

The equation (3.9) is crucial to dynamical programming and referred to as the feed-

back control law. For any variation of the state information x, the optimal control
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α can be correspondingly updated using the feedback control law.

Plug the equation above back to (3.8) and gather the terms of the same order. We

have

1

2
δxT (Ṗ(t)− (gαx + Fαxq(t) + FT

αP(t))T (gαα + Fααq(t))
−1(gαx + Fαxq(t) + FT

αP(t))

+ gxx + Fxxq(t) + 2FT
xP(t))δx

+ ( ˙q(t)− (gαx + Fαxq(t) + FT
αP(t))T (gαα + Fααq(t))

−1(gα + FT
αq(t))

+P(t)F(x̄, ᾱ) + gx + FT
xq(t))

T δx

+ Θ̇(t)− 1

2
(gα + FT

αq(t))
T (gαα + Fααq(t))

−1(gα + FT
αq(t)) + F(x̄, ᾱ)q(t) + g(x̄, ᾱ) = 0.

Therefore, we obtain the Riccati equations as follows,

Ṗ(t)− (gαx + Fαxq(t) + FT
αP(t))T (gαα + Fααq(t))

−1(gαx + Fαxq(t) + FT
αP(t))

+ gxx + Fxxq(t) + 2FT
xP(t) = 0, (3.10)

˙q(t)− (gαx + Fαxq(t) + FT
αP(t))T (gαα + Fααq(t))

−1(gα + FT
αq(t))

+P(t)F(x̄, ᾱ) + gx + FT
xq(t) = 0, (3.11)

Θ̇(t)− 1

2
(gα + FT

αq(t))
T (gαα + Fααq(t))

−1(gα + FT
αq(t)) + F(x̄, ᾱ)q(t) + g(x̄, ᾱ) = 0,

(3.12)
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with final conditions,

P(1) = ∇xxφ(x(1)),

q(1) = ∇xφ(x(1)),

Θ(1) = φ(x(1)).

Explicit Euler time discretization method can be applied to the system of the Riccati

equations to reveal the value function backward in time.

3.3 Discretization in Time

We introduce time partition

0 = t0 < t1 < t2 < · · · < tL−1 < tL = 1, (3.13)

and define the step size accordingly τk = tk+1 − tk, k = 0, 1, · · · , L− 1. Also, notate

xk = x(tk), αk = α(tk),

Pk = P(tk), qk = q(tk), Θk = Θ(tk),

Fk = F(xk,αk), gk = g(x,α).
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Then, applying the Euler method to the Riccati equations (3.10)-(3.10), we have

Pk+1 −Pk

τk
− (gk

αx + Fk
αxqk+1 + FkT

α Pk)
T (gk

αα + Fk
ααqk+1)

−1(gk
αx + Fk

αxqk+1 + FkT
α Pk+1)

+ gk
xx + Fk

xxqk+1 + 2FkT
x Pk+1 = 0,

qk+1 − qk

τk
− (gk

αx + Fk
αxqk+1 + FkT

α Pk+1)
T (gk

αα + Fk
ααqk+1)

−1(gk
α + FkT

α qk+1)

+Pk+1F
k(x̄, ᾱ) + gk

x + FkT
x qk+1 = 0,

Θk+1 −Θk

τk
− 1

2
(gk

α + FkT
α qk+1)

T (gk
αα + Fk

ααqk+1)
−1(gk

α + FkT
α qk+1)

+ Fk(x̄, ᾱ)qk+1 + gk(x̄, ᾱ) = 0.

Therefore, the discrete Riccati equations are

Pk = Pk+1 − τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk)

T (gk
αα + Fk

ααqk+1)
−1(gk

αx + Fk
αxqk+1 + FkT

α Pk+1)

+ τk(g
k
xx + Fk

xxqk+1 + 2FkT
x Pk+1), (3.14)

qk = qk+1 − τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk+1)

T (gk
αα + Fk

ααqk+1)
−1(gk

α + FkT
α qk+1)

+ τk(Pk+1F
k(x̄, ᾱ) + gk

x + FkT
x qk+1),

Θk = Θk+1 −
1

2
τk(g

k
α + FkT

α qk+1)
T (gk

αα + Fk
ααqk+1)

−1(gk
α + FkT

α qk+1)

+ τk(F
k(x̄, ᾱ)qk+1 + gk(x̄, ᾱ)),
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with final conditions,

PL = ∇xxφ(xL),

qL = ∇xφ(xL),

ΘL = φ(xL).

We will further compare the discrete Riccati equations from the continuous-time set-

ting to those from solving the discrete nonlinear optimal control problem in Chapter

4.

3.4 The Discretize-then-optimize Approach

There are two approaches to solve optimal control problems, optimize-then-discretize

and discretize-then-optimize. The first approach is to find the necessary continuous

optimality conditions analytically and then optimize the resulting equivalent system.

This technique is employed in [15, 16].

For the latter approach, standard discretization techniques are used to transform the

original problem into an optimization problem. Then, discrete optimality conditions

are derived from the fully discretized optimization problem. This approach has been

gaining more attention [1, 16, 43, 30].

In this thesis, we choose to follow the discretize-then-optimize approach. We present

the discrete nonlinear optimal control problem and derive optimality conditions in

the next chapter.
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CHAPTER 4

The Discrete Nonlinear Optimal Control Problem

In this chapter, we focus on developing the dynamic programming for discrete non-

linear optimal control problems. We first discretize the continuous problem using the

explicit Euler method and introduce local quadratic approximation around nominal

values. Following the Bellman’s principle of optimality, the feedback control law will

be carefully derived.
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4.1. TIME DISCRETIZATION

4.1 Time Discretization

The Bellman’s principle usually refers to the dynamic system associated with discrete-

time optimization problems and is considered as the discrete form of the HJB equa-

tion. Richard Bellman descries the principle of optimality in [11] as

Theorem 4.1. Bellman’s Principle of Optimality: An optimal policy has the

property that whatever the initial state and initial decision are, the remaining deci-

sions must constitute an optimal policy with regard to the state resulting from the

first decision.

For the time discretization of the optimal control problem (3.1), we introduce

time partition

0 = t0 < t1 < t2 < · · · < tL−1 < tL = 1, (4.1)

and define the step size accordingly τk = tk+1 − tk, k = 0, 1, · · · , L− 1. Also, notate

xk = x(tk) and αk = α(tk). Discretize the ordinary equation (3.1) as

xk+1 − xk = τkF(xk,αk; tk), k = 0, · · · , L− 1,

and for the matter of simplicity, introduce new notation

f(xk,αk; tk) = xk + τkF(xk,αk; tk).
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4.1. TIME DISCRETIZATION

Now let us consider the generalized discrete nonlinear optimal control problem

xk+1 = f(xk,αk; tk) k = 0, · · · , L− 1,

x0 = x̄0,
(4.2)

with the cost function

J({αk}L−1
k=0 ; x̄0) =

L−1
∑

k=0

G(xk,αk; tk) + φ(xL), (4.3)

where

G(xk,αk; tk) = τkg(xk,αk; tk).

Thus, by the definition 3.1, the cost-to-go function at stage k is

J({αl}L−1
l=k ;xk) =

L−1
∑

l=k

G(xl,αl; tl) + φ(xL), (4.4)

and the value function is

Vk(xk) = min
{αl}

L−1

l=k

J({αl}L−1
l=k ;xk).

Extracting the running payoff at time tk in (4.4),

J({αl}L−1
l=k ;xk) = G(xk,αk; tk) +

L−1
∑

l=k+1

G(xl,αl; tl) + φ(xL),
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4.1. TIME DISCRETIZATION

and we have

J({αl}L−1
l=k ;xk) = G(xk,αk; tk) + J({αl}L−1

l=k+1;xk+1). (4.5)

We may rewrite (4.5) as

Vk(xk) = min
αk

{

G(xk,αk; tk) + min
{αl}

L−1

l=k+1

J({αl}L−1
l=k+1;xk+1)

}

.

By Bellman’s principle of optimality, Theorem 4.1,

Vk(xk) = min
αk

{

G(xk,αk; tk) + Vk+1(xk+1)
}

, (4.6)

with final condition

VNt(xL) = φ(xL). (4.7)

Therefore, the cost function (4.3) is now reformed as optimal cost from state x̄0 at

time 0 which is

V0(x̄0) = min
{αk}

L−1

k=0

J({αk}L−1
k=0 ; x̄0),

with respect to the dynamic system (4.2).

4.1.1 Quadratic Approximation

To complete the dynamic programming procedure, now we want to derive the quadrat-

ic approximation for both sides of equation (4.6) and reveal the feedback control law.
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Introduce variations from nominal values

xk = x̄k + δxk, αk = ᾱk + δαk,

where

x̄k+1 = f(x̄k, ᾱk; tk).

Let αk = α
∗
k + δαk, where α

∗
k the optimal solution to the value function at tk,

Vk(x̄k) = min
αk

{

G(x̄k,αk; tk) + Vk+1(xk+1)
}

. (4.8)

In order to obtain the update δαk,we first develop linear quadratic expansions at

(x̄k,α
∗
k). In equation (4.8), there are two functions involved, Vk(x̄k) andG(x̄k,αk; tk).

They are approximated as follows.

QP
[

Vk(x̄k + δxk)
]

=
1

2
δxT

kV
k
xxδxk +VkT

x δxk +Θk + V̄k(x̄k),

QP
[

G(x̄k + δxk,α
∗
k + δαk; tk)

]

=
1

2
δxT

kG
k
xxδxk +

1

2
δαT

kG
k
ααδαk + δαT

kG
k
αxδxk

+GkT
x δxk +GkT

α δαk +∆Gk +G(x̄k, ᾱk; tk),

where

∆Gk = G(x̄k,α
∗
k; tk)−G(x̄k, ᾱk; tk),

V̄k(x̄k) = J({ᾱl}N−1
l=k ; x̄k), (4.9)

Θk = Vk(x̄k)− V̄k(x̄k). (4.10)
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Furthermore, expand Vk+1(xk+1) at (x̄k+1,α
∗
k+1) which is

QP
[

Vk+1(x̄k+1 + δxk+1)
]

=
1

2
δxT

k+1V
k+1
xx δxk+1 +Vk+1T

x δxk+1 +Θk+1 + V̄k+1(x̄k+1),

where Θk+1 and V̄k+1(x̄k+1) follow the notation in (4.9), (4.10) respectively. With

linear quadratic expansions, equation (4.6) is equivalent to the statement below.

QP
[

Vk(x̄k + δxk)
]

≈ min
δαk

{

QP
[

G(x̄k + δxk,α
∗
k + δαk; tk) + Vk+1(x̄k+1 + δxk+1)

]}

,

which is organized as

1

2
δxT

kV
k
xxδxk +VkT

x δxk +Θk + V̄k(x̄k)

≈ min
δαk

{

1

2
δxT

kG
k
xxδxk +

1

2
δαT

kG
k
ααδαk + δαT

kG
k
αxδxk

+GkT
x δxk +GkT

α δαk +∆Gk +G(x̄k, ᾱk; tk)

+
1

2
δxT

k+1V
k+1
xx δxk+1 +Vk+1T

x δxk+1 +Θk+1 + V̄k+1(x̄k+1)

}

.

Since we need to minimize the objective function over δαk, we want to substitute

δxk+1 with information at time k. Consider

δxk+1 = xk+1 − x̄k+1 = f(x̄k + δxk,α
∗
k + δαk; tk)− f(x̄k, ᾱk; tk)

= δfk +∆fk (4.11)
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where

δfk = f(x̄k + δxk,α
∗
k + δαk; tk)− f(x̄k,α

∗
k; tk)

≈ 1

2
δxT

k f
k
xxδxk +

1

2
δαT

k f
k
ααδαk + δαT

k f
k
αxδxk + fkx δxk + fkαδαk, (4.12)

∆fk = f(x̄k,α
∗
k; tk)− f(x̄k, ᾱk; tk) = f(x̄k,α

∗
k; tk)− x̄k+1. (4.13)

Substitute δxk+1 with equation (4.11), we have

1

2
δxT

kV
k
xxδxk +VkT

x δxk +Θk + V̄k(x̄k)

≈ min
δαk

{

1

2
δxT

kG
k
xxδxk +

1

2
δαT

kG
k
ααδαk

+ δαT
kG

k
αxδxk +GkT

x δxk +GkT
α δαk +∆Gk +G(x̄k, ᾱk; tk)

+
1

2
δfTk V

k+1
xx δfk +∆fTk V

k+1
xx δfk +Vk+1T

x δfk

+
1

2
∆fTk V

k+1
xx ∆fk +Vk+1T

x ∆fk +Θk+1 + V̄k+1(x̄k+1)

}

. (4.14)

To get the complete form of quadratic expansion, we still need to take care of terms

involving δfk, i.e., expand them with respect to δαk and δxk. For the sake of simplicity,

introduce

Pk = Vk
xx, qk = Vk

x,

wk = Pk+1∆fk + qk+1,

h(xk,αk; tk) = wT
k f(xk,αk; tk),
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and thus

δhk = h(x̄k + δxk,α
∗
k + δαk; tk)− h(x̄k,α

∗
k; tk) = wT

k δfk.

Since we are only deriving quadratic approximation, to expand the term on the right

hand side of (4.14), 1
2
δfTk V

k+1
xx δfk, we only need use partial terms as in (4.12), namely

(

fkx δxk + fkαδαk

)

. Thus, with new notations we have

1

2
δfTk V

k+1
xx δfk =

1

2
δfTk Pk+1δfk

≈ 1

2

(

fkx δxk + fkαδαk

)T
Pk+1

(

fkx δxk + fkαδαk

)

=
1

2
δxT

k f
kT
x Pk+1f

k
x δxk +

1

2
δαT

k f
kT
α Pk+1f

k
αδαk + δαT

k f
kT
α Pk+1f

k
x δxk.

Furthermore,

∆fTk V
k+1
xx δfk +Vk+1T

x δfk = ∆fTk Pk+1δfk + qT
k+1δfk = wT

k δfk

= δhk ≈ 1

2
δxT

kh
k
xxδxk +

1

2
δαT

kh
k
ααδαk + δαT

kh
k
αxδxk + hkT

x δxk + hkT
α δαk.

Finally, we rewrite equation (4.14) as

1

2
δxT

kPkδxk + qT
k δxk +Θk ≈ min

δαk

{

1

2
δxT

kAkδxk +
1

2
δαT

kCkδαk + δαT
kBkδxk

+ eTk δxk + dT
k δαk +Θk+1 +∆gk + qT

k+1∆fk +
1

2
∆fTkPk+1∆fk

}

, (4.15)
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where we define

Ak = Gk
xx + hk

xx + fkTx Pk+1f
k
x , (4.16)

Ck = Gk
αα + hk

αα + fkTα Pk+1f
k
α, (4.17)

Bk = Gk
αx + hk

αx + fkTα Pk+1f
k
x , (4.18)

ek = Gk
x + hk

x, (4.19)

dk = Gk
α + hk

α. (4.20)

4.1.2 Feedback Control Law and Algorithm

In the preceding sections, we have the expansion work done and now we may develop

the feedback control law. By inspecting the right-hand side of equation (4.15), we

discover that only three terms depend on δαk and δαk is in fact the minimizer of

min
δαk

{1
2
δαT

kCkδαk + δαT
kBkδxk + dT

k δαk}.

Letting the gradient of the minimizing function above equal 0, we have δαk satisfying

Ckδαk +Bkδxk + dk = 0.

Therefore the feedback control law is

δαk = zk −Kkδxk, (4.21)
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where

Kk = C−1
k Bk, (4.22)

zk = −C−1
k dk. (4.23)

Plugging equation (4.21) into equation (4.15) and grouping the terms of the same

order, we get all the information at time k which are

Pk = Ak −BT
kC

−1
k Bk, (4.24)

qk = ek +BT
k zk, (4.25)

Θk = Θk+1 +
1

2
dT
k zk. (4.26)

Also we have the final conditions

PL = ∇xx

[

φ(x̄L)
]

, (4.27)

qL = ∇x

[

φ(x̄L)
]

, (4.28)

ΘL = 0, (4.29)

VL(x̄L) = φ(x̄L). (4.30)

Differential Dynamic Programming (DDP) ensures an improvement at each iteration

under the condition that the Hessian matrix of the cost function, i.e., the matrix Ck

is positive definite. The procedure based on Pareto-curve continuation can be also

implemented to enforce the convexity.

Now we outline the algorithm for the discrete nonlinear optimal control problem.
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Given a tolerance ǫ > 0.

I. Initialization: For k from 0 to L− 1, set ᾱk = 0 and use (4.2) to compute x̄k.

Repeat

II. Backward recursion:

1. Use (4.46)-(4.29) to compute final conditions PL,qL,ΘL.

2. For k from L− 1 to 0, compute Ak,Bk,Ck, ek using (4.16)-(4.19). Then compute

the feedback information Kk, zk using (4.22) and (4.23) and update Pk,qk,Θk using

(4.24)-(4.26).

3. Stopping criterion: Quit if
√−Θ0 < ǫ.

III. Forward recursion: For k from 0 to L− 1,

x0 = x̄0,

αk = ᾱ+ zk −Kk(xk − x̄k),

xk+1 = xk + τkK(xk)αk.

Consider the term 1
2
dT
k zk in (4.26). Based on (4.23), we have

1

2
dT
k zk = −1

2
dT
kC

−1
k dk.

Since Ck is symmetric positive definite, 1
2
dT
k zk < 0 and therefore the Newton step is

a descent direction. Moreover, Θ0 < 0, so the stopping criterion is
√−Θ0 < ǫ.
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4.2 Continuous Reccati Equations

In this section, we first introduce an informal way to derive the HJB equation.

We then present the continuous-time Riccati equation to linear quadratic problems

taking advantage of the sufficiency of the HJB equation. Lastly, we apply the same

techniques to obtain the continuous-time Riccati equations for nonlinear optimal

control problems.

4.2.1 The Hamilton-Jacobi-Bellman Equation

We have proved the HJB equation in Theorem 3.2, a sufficiency theorem. Now start-

ing with the discrete formulism, the Bellman’s principle of optimality, we introduce

another approach to derive the equation. We will later apply it to our continuous-

time settings.

We still use the same notations for the time discretizations as in (4.1),

0 = t0 < t1 < t2 < · · · < tL−1 < tL = 1,

with τk = tk+1 − tk, k = 0, 1, · · · , L− 1. Also, we have

xk+1 = xk + τkF(xk,αk; tk),

and

G(xk,αk) = τkg(xk,αk).
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By Bellman’s principle of optimality, Theorem 4.1, we have

V (x, tk) = min
α

{

τkg(x,α) + V (x+ τkF(x,α), tk + τk)
}

, (4.31)

for k = 0, · · · , L− 1, and the terminal condition is,

V (x, tL) = φ(x).

Assuming that V has the required differentiability properties, we expand it into a

first order Taylor series around (x, tk),

V (x+ τkF(x,α), tk + τk) =V (x, tk) +∇xV (x, tk)
′F (x,α)τk

+∇tV (x, tk)τk + o(τk), (4.32)

where o(τk) representing second order terms, satisfies

lim
τk→0,L→∞

o(τk)/τk = 0.

Moreover, ∇x denotes the column vector of partial derivatives with respect to x and

∇t denotes partial derivatives with respect to t.

Substitute the expansion (4.32) into (4.31) and we obtain

V (x, tk) = min
α

{

τkg(x,α) + V (x, tk) +∇xV (x, tk)
′F (x,α)τk

+∇tV (x, tk)τk + o(τk)
}

.
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Cancel V (x, tk) from both sides, divide by τk, and we have

0 = min
α

{

g(x,α) +∇xV (x, tk)
′F (x,α) +∇tV (x, tk) + o(τk)/τk

}

.

Assume that the discrete-time value function V yields its continuous-time counter-

part by taking the limit as τk → 0 and L → ∞, that is,

lim
L→∞,τk→0,tk=t

V (x, tk) = V (x, t), (4.33)

for all x, t. Therefore, taking the limit, we obtain

0 = min
α

{

g(x,α) +∇xV (x, t)′F (x,α) +∇tV (x, t)
}

,

for all x, t, and the boundary condition is

V (x, 1) = φ(x).

This is the Hamilton-Jacobi-Bellman equation as we discussed in theorem 3.2. In the

preceding derivation, the differentiability of V (x, t) is assumed among other things.

Based on theorem 3.2, if we can solve the HJB equation analytically or computation-

ally, then we can obtain an optimal control policy by minimizing its right-hand side.

The statement is analogous to a corresponding statement for discrete-time dynamic

programming: if we can execute the DP algorithm, we can find an optimal policy

through minimization based on Bellman’s principle 4.1.
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4.2.2 Linear Quadratic Problems

We derive continuous-time Riccati equation for linear dynamic system with quadratic

cost functional using the HJB equation.

Consider the n-dimensional linear system

ẋ(t) = Ax(t) +Bα(t),

where A and B are given matrices, and the quadratic cost is

J(α) =

ˆ 1

0

(x(t)′Qx(t) +α(t)Rα(t))dt+ x(1)′QTx(1),

where the matrices QT and Q are symmetric positive semidefinite, and the matrix

R is symmetric positive definite.

Following the HJB equation (3.3), we have

min
α

{Vt(x, t) +∇xV (x, t)′(Ax+Bα) + x′Qx +α
′Rα} = 0, (4.34)

with final state condition,

V (x, 1) = x(1)′QTx(1).

Since HJB equation is sufficient, let us try a solution of the form, separation of

variables,

V (x, t) = x′K(t)x,
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where K(t) is symmetric. Thus, we have

Vt(x, t) = x′K̇(t)x, (4.35)

∇xV (x, t) = 2K(t)x (4.36)

where elements of K̇(t) are the first order derivatives of the elements of K(t) with

respect to time. Substitute these expressions (4.35) and (4.36) in equation (4.34)

and we obtain

min
α

{x′K̇(t)x+ 2x′K(t)(Ax +Bα) + x′Qx +α
′Rα} = 0. (4.37)

The minimum is acquired when the gradient with respect to α is zero, that is,

2B′K(t)x + 2Rα = 0.

Thus,

α(t) = −R−1B′K(t)x. (4.38)

Substitute (4.38) back to equation (4.37), we have

min
α

{x′K̇(t)x+ 2x′K(t)(Ax− BR−1B′K(t)x) + x′Qx+ x′K(t)BR−1B′K(t)x} = 0,

and

min
α

{x′(K̇(t) + 2K(t)A− 2K(t)BR−1B′K(t) +Q +K(t)BR−1B′K(t))x} = 0.
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Hence, V (x, t) must satisfy the following matrix differential equation,

K̇(t) + 2K(t)A +Q−K(t)BR−1B′K(t) = 0, (4.39)

with the terminal condition,

K(1) = QT . (4.40)

The differential equation (4.39) is known as continuous-time Riccati equation.

Therefore, we conclude the optimal value function is

V (x, t) = x′K(t)x,

and K(t) is a solution of the Riccati equation (4.39) with the boundary condition

(4.40). Furthermore, an optimal policy according to (4.38) is

α
∗(t) = −R−1B′K(t)x.

4.2.3 Continuous-time Optimal Control

We follow the same notations as in section 4.1 and 4.2.1. The continuous-time Riccati

equations are analogous to the dynamic programming algorithm. To derive them,
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we now apply DP to the discrete-time approximation. To begin with, we have

fx(xk,αk) = I + τkFx(xk,αk),

fα(xk,αk) = τkFα(xk,αk),

Gx(xk,αk) = τkgx(xk,αk),

Gα(xk,αk) = τkgα(xk,αk).

With all the gradients substituted in, the Hessian matrices and linear terms in (4.16)-

(4.20) are

Ak = Pk+1 + τk(g
k
xx + Fk

xxqk+1 + 2FkT
x Pk+1) + τ 2k (Pk+1F

k
xx∆Fk + FkT

x Pk+1F
k
x),

Ck = τk(g
k
αα + Fk

ααqk+1) + τ 2k (Pk+1F
k
αα∆Fk + FkT

α Pk+1F
k
α),

Bk = τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk+1) + τ 2k (Pk+1F

k
αx∆Fk + FkT

α Pk+1F
k
x),

ek = qk+1 + τk(gx +Pk+1∆Fk + FkT
x qk+1) + τ 2kPk+1F

k
x∆Fk,

dk = τk(gα + FT
αqk+1) + τ 2kPk+1F

k
α∆Fk.

As to backward recursions, we first examine (4.24) and have

Pk = Pk+1 + τk(g
k
xx + Fk

xxqk+1 + 2FkT
x Pk+1) + τ 2k (Pk+1F

k
xx∆Fk + FkT

x Pk+1F
k
x)

− (τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk+1) + τ 2k (Pk+1F

k
αx∆Fk + FkT

α Pk+1F
k
x))

T

(τk(g
k
αα + Fk

ααqk+1) + τ 2k (Pk+1F
k
αα∆Fk + FkT

α Pk+1F
k
α))

−1

(τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk+1) + τ 2k (Pk+1F

k
αx∆Fk + FkT

α Pk+1F
k
x)).
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4.2. CONTINUOUS RECCATI EQUATIONS

Comparing the discrete update law for the Hessian to (3.14) which we obtain through

the continuous-time Riccati equation in section 3.3, we notice extra terms involving

τ 2k . For the application to diffeomorphic matching, τk is usually not small, so it seems

important to track and compute the additional terms of τ 2k .

The formalism of the discrete problems can be linked to that of the continuous-time

models by assumption similar to (4.33). Take limits as τk → 0 and L → ∞, we

assume,

lim
L→∞,τk→0,tk=t

Pk = lim
L→∞,τk→0,tk=t

P(tk) = P(t).

Thus, move Pk+1 to the left hand side and divide the equation by τk. Letting τk → 0,

we have,

− Ṗ = gxx + Fxxq+ 2FT
xP

− (gαx + Fαxq+ FT
αP)T (gαα + Fααq)

−1(gαx + Fαxq+ FT
αP). (4.41)

For linear quadratic problems, q,Fxx, and Fαα vanish, and this equation is exactly

the continuous-time Riccati equation (4.39). We perform similar process to linear
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terms q, and Θ, and we have,

qk = qk+1 + τk(gx +Pk+1∆Fk + FkT
x qk+1) + τ 2kPk+1F

k
x∆Fk

− (τk(g
k
αx + Fk

αxqk+1 + FkT
α Pk+1) + τ 2k (Pk+1F

k
αx∆Fk + FkT

α Pk+1F
k
x))

T

(τk(g
k
αα + Fk

ααqk+1) + τ 2k (Pk+1F
k
αα∆Fk + FkT

α Pk+1F
k
α))

−1

(τk(gα + FT
αqk+1) + τ 2kPk+1F

k
α∆Fk),

Θk = Θk+1 −
1

2
(τk(gα + FT

αqk+1) + τ 2kPk+1F
k
α∆Fk)T

(τk(g
k
αα + Fk

ααqk+1) + τ 2k (Pk+1F
k
αα∆Fk + FkT

α Pk+1F
k
α))

−1

(τk(gα + FT
αqk+1) + τ 2kPk+1F

k
α∆Fk).

Letting τk → 0 and L → ∞,

lim
L→∞,τk→0,tk=t

qk = q(t), lim
L→∞,τk→0,tk=t

Θk = Θ(t).

Therefore, we obtain the Riccati equations for the linear terms

− q̇ = gx + FT
xq− (gαx + Fαxq+ FT

αP)T (gαα + Fααq)
−1(gα + FT

αq), (4.42)

− Θ̇ = −1

2
(gα + FT

αq)
T (gαα + Fααq)

−1(gα + FT
αq). (4.43)

57



4.3. APPLICATIONS TO DIFFEOMORPHIC MATCHING PROBLEM

Hence, P,q, and Θ must satisfy the preceding differential equations (4.41)-(4.43)

with final conditions,

P(1) = ∇xx

[

φ(x(1))
]

,

q(1) = ∇x

[

φ(x(1))
]

,

Θ(1) = 0.

4.3 Applications to Diffeomorphic Matching Prob-

lem

In this section, we apply the variational approach to diffeomorphic matching prob-

lems. For many shape-matching applications, K can be the radial Gaussian kernel

Kσ with a suitable scale parameter σ > 0 where the smooth, symmetric bounded,

positive definite kernel Kσ is defined as

Kσ(x, x
′) =

1

(2π)3/2σ3
exp

(

− ‖x− x′‖2
σ2

)

, (4.44)

for x, x′ ∈ R
d. The choice σ heavily depends on local mesh size of the reference data

set and it is generally kept fixed during the whole computing procedure.

We have introduced the time discretization in (4.1) as

0 = t0 < t1 < t2 < · · · < tL−1 < tL = 1,
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4.3. APPLICATIONS TO DIFFEOMORPHIC MATCHING PROBLEM

and defined the step sizes as τk = tk+1 − tk, k = 0, 1, · · · , L− 1.

Following the notation in (2.19)-(2.21), we further discretize the problem in time and

it is organized as follows.

xk = x(tk) = (x1(tk), · · · , xN (tk)) ∈ R
Nd, k = 0, 1, · · · , L,

αk = α(tk) ∈ R
Nd, k = 0, 1, · · · , L− 1.

K(xk) ∈ R
Nd×Nd, (K(xk))ij = Kσ(xi(tk), xj(tk))Id ∈ R

d×d.

Moreover, to keep consistent with notations, we still denote the target set as {yj}Mj=1

and the reference as x̄0 = {xi}Ni=1, N and M being the cardinal number of the

reference and target set. Thus, the optimality problem (2.24) is

min J({αk}L−1
k=0 ; x

(0)) =
∑L−1

k=0 g(xk,αk; tk) + λφ(xL),

s.t. xk+1 = f(xk,αk; tk), k = 0, · · · , L− 1,

x0 = x(0).

(4.45)

With the RKHS, the placement function is

f(xk,αk; tk) = xk + τkK(xk)αk, (4.46)

and the kinetic energy function is

g(xk,αk; tk) =
τk
2
α

T
kK(xk)αk. (4.47)
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4.3. APPLICATIONS TO DIFFEOMORPHIC MATCHING PROBLEM

Furthermore, we set ai =
1
N

and bj =
1
M

in (2.18) and the measure matching reads

φ(xL) =
1

N2

N
∑

i,j=1

Kσ′(xi(tL), xj(tL))−
2

MN

N
∑

i=1

M
∑

j=1

Kσ′(xi(tL), yj)+
1

M2

M
∑

i,j=1

Kσ′(yi, yj).

(4.48)

The scale parameter here in the matching functional, σ′, is different from σ we choose

in (4.44). σ′ is usually updated dynamically after each continuation iteration which is

necessary because the matching functional indicates the distance between the target

and the numerical solution and updating σ′ gives a more precise evaluation of the

matching quality.
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CHAPTER 5

Application

In this chapter, we first explain the role that the continuation method plays in

the algorithm, as well as initialization of parameters. Then numerical results are

presented and discussed.

5.1 The Algorithm with Continuation Method

Consider the cost function in (4.45), the form of regularization is essentially a trade-

off between the kinetic energy (4.47) and the measure matching functional (4.48).

For λ small, the regularizing effect of the kinetic energy dominates. To obtain a
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5.1. THE ALGORITHM WITH CONTINUATION METHOD

good matching quality, one needs to solve the optimal control problem for fixed and

sufficiently large regularization parameter λ. However, the larger λ, the more ill-

conditioned the problem is. Moreover, the convergence region of the Newton descent

method gets smaller as λ increases and it would not converge if the initializer of

control α is not close to a local minimum.

To overcome the obstacle, we introduce an approximate continuation in λ. Initialize λ

with a small value, and solve the optimal control problem for fixed λ using the Newton

descent. Then at the end of each Newton step, increase λ by some multiplicative

factor and use the computed optimal control to initialize the control for new updated

regularization parameter λ.

Here we initialize α = 0. If more concrete information known at the initial state, we

may definitely use other existing initialization. If not, to avoid the initial inversion

of excessive computation we can crudely let α = 0.

The continuation method reads as follows:

• Step 1 (Initialization of continuation)

Specify a small initial value λ0 > 0, set ν = 0.

• Step 2. (Initialization of the inner iteration)

Initialize α
(0)
ν = 0 and set µ = 0. compute x(ν,0) with α

(ν,0) using (4.46).

• Step 3. (Dynamic programming using the second order information)

1. Set µ = µ+ 1, and compute αµ
ν by the second order method.

62



5.2. NUMERICAL RESULTS

2. If the stopping criterion,
√

−Θ0 < ǫ,

is satisfied, go to step 4. Otherwise go the step 3.

Step 4 (Termination of continuation)

If the matching functional satisfies,

φ((xµ
ν)Nt) < Err,

stop the algorithm.

Otherwise, set ν = ν + 1, α
(0)
ν = α

µ
ν−1, and increase the regularization param-

eter

λν = γνλν−1,

and go to step 3.

5.2 Numerical Results

5.2.1 Mitral Valve Shape Models

The mitral valve (Figure 5.1) is a dual-flap valve in the heart that lies between the

left atrium and the left ventricle which is typically 4-6 cm2 in area. It has two leaflets,

the anterior leaflet and the posterior leaflet, that guard the opening and the opening

is surrounded by a fibrous ring known as the mitral valve annulus.
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5.2. NUMERICAL RESULTS

The mathematical models were generated by image analysis of live 3D-echocardiographic

Figure 5.1: Mitral valve: the middle line is the coaptation line along which the
surfaces of the anterior and posterior leaflets meet when the valve is closed. The
closed black thick curve is the mitral annulus.

movies acquired by ultrasound technology and each movie includes 27-30 3D frames

per heartbeat cycle. The static snapshots were obtained by our research group on

mathematical image analysis (S. Alexander, J. Freeman, A. Jajoo, S. Jain, and A.

Martynenko.) in collaboration with Methodist Hospital, Houston, Texas (S. Ben

Zekry, S. Little, and W.Zoghbi, MDs).

Based on NURBS (non-uniform rational B-splines), the mitral valve models are ob-

tained by combining optical flow extraction algorithms with sparse tagging by med-

ical experts.

The mitral valve apparatus can be viewed as a composite deformable built from

several smooth deformable shapes, namely a closed curve (the mitral value annulus)

and two surfaces (the anterior and posterior leaflet). Accordingly, 3 NURBS models
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5.2. NUMERICAL RESULTS

are obtained, one for each leaflet and a third one for the mitral valve annulus.

Based on those models, [6] presented numerical results on the diffeomorphic matching

for multiple snapshots, also strain was computed in [8].

5.2.2 Measure Matching for Anterior Leaflets

We present the performance of diffeomorphic matching for 2 snapshots S0 and S1 of

the anterior leaflet. The scale and termination parameters are shown in Table 5.1.

The continuation algorithm starts with λ = 400 and is multiplied by γ. The values of

γ are displayed in the Figure 5.2. Based on our numerical experiments, γ is usually

chosen between (1,2) and as λ gets bigger, smaller γ is preferable. If too much

increment occurs to λ, the optimal control from the former outer iteration might not

be a good initializer.

Figure 5.3 shows the Newton decrement at each iteration. For each outer iteration,

the second order method starts out at the crest value and decreases till the stopping

criterion is reached. The lower figure clearly indicates one of the strongest advantages

the second order method has. The Newton decrement converges very fast and needs

at most six iterations to produce a solution of very high accuracy.

We use Pareto frontiers ([22]) to record and display the tradeoffs between the pair

of competing criteria, measure matching and kinetic energy. For fixed regularization

parameter λ, we use measure matching versus the kinetic energy to generate a point

on the approximate Pareto frontier at the end of each inner iteration of the second

order method. Convexity of the approximate Pareto curves is expected and observed

numerically in Figure 5.4.
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Figure 5.2: Multipliers of λ for matching anterior leaflets.

Figure 5.5 shows the behaviors of kinetic energy, measure matching and Hausdorff

distance in terms of λ. As we expect, kinetic energy goes up as good matching quality

is obtained. Moreover, the Hausdorff distance which indicates geometric difference

of two shapes also decreases. When λ is around 104, even though the measure is still

decreasing, the Hausdorff distance stays around 2.5. It is because the resolution is

already attained.

Parameter Notation Value
N Cardinal number of reference set 83
M Cardinal number of target set 82
σ Scale parameter for the Gaussian kernel 4.13
L 4 Time intervals 5
ǫ Stoping criterion of Newton decrement 1.d-8
Err Stoping criterion of measure matching 5.d-5

Table 5.1: Parameters and values for matching two anterior leaflets.
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Figure 5.3: Newton Decrement for matching anterior leaflets: for easier visualization,
the lower figure only displays Newton’s decrement for iterations 1 to 40.
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Figure 5.4: Pareto optimality for matching anterior leaflets.
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Figure 5.5: Behaviors of kinetic energy, measure matching, and Hausdorff distance
for matching two anterior leaflets.
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Figure 5.6: Box plot of point distance {d(x, S1), x ∈ Ŝ1}: red crosses are outliers.

To reflect the matching quality, we present geometric distances in Figure 5.6.

At each outer iteration with fixed λ, we compute the point distance of computed

deformation Ŝ1 and the target shape S1 and plot a box accordingly. For each box

in the figure, the central mark is the median, the edges of the box are the 25th and

75th percentiles and outliers are plotted individually. It suggests that as λ increases,

the median of overall distance is dramatically reduced. Furthermore, the outliers are

brought down and at the end there is no outliers at all.
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5.2.3 Diffeomorphic Matching for Multiple Anterior Snap-

shots

We present the performances of diffeomorphic matching for 3 snapshots S0, S1, S2

acquired at time t0 = 0, t1 =
4
9
and t2 = 1. Starting at t0, Ŝ1 is computed to match

S0 and S1. Then for the time interval [t1, t2], we match Ŝ1 and S2 to complete the

trajectories. The scale and termination parameters are listed in Table 5.2.

λ is initialized as 200 and 100 respectively for t1 and t2 and values of γ are displayed

in the Figure 5.7 for each outer iteration.

We observe similar results in Figure 5.8. As λ gets larger, for both deformations

computed at t1 and t2, kinetic energy increases in sacrifice to higher matching qual-

ity.

For computed deformation Ŝ1 and Ŝ2, the two graphs in Figure 5.9 display several

level curves for the point matching errors between Ŝ1 and S1, and Ŝ2 and S2. The

coordinate system has been modified isometrically at each snapshot instant in order

to display a better projection. From both figures, we notice the errors are smaller

around the edges compared to the region inside. Based on our observation of nu-

merical results, we discover that the edges always get matched faster with measure

matching.

In Figure 5.10, the 3 closed curves are 3 successive snapshots of anterior leaflet

boundary. The dotted curves are the computed trajectories.

Figure 5.11 and 5.12 display the reference, target and computed deformations at

instants t1, t2.

71



5.2. NUMERICAL RESULTS

0 5 10 15 20 25

1.2

1.4

1.6

1.8

2

Time t
1

Outer Iteration

γ

0 2 4 6 8 10 12 14 16 18
1.4

1.5

1.6

1.7

1.8

Time t
2

Outer Iteration

γ

Figure 5.7: Multipliers of λ for diffeomorphic matching multiple anterior leaflets at
time t1 and t2.
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Figure 5.8: Behaviors of kinetic energy, measure matching, and Hausdorff distance
for diffeomorphic matching multiple anterior leaflets at time t1 and t2.

Parameter Notation [t0, t1] [t1, t2]
N Cardinal number of reference set 83 83
M Cardinal number of target set 82 84
σ Scale parameter of the dynamic system 4.13 4.13
L Time steps 5 6
ǫ Stoping criterion of Newton decrement 1.d-8 1.d-8
Err Stoping criterion of measure matching 5.d-5 5.d-5

Table 5.2: Parameters and values for diffeomorphic matching multiple anterior
leaflets.
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Figure 5.10: Computed deformations of the anterior leaflet boundary for instants
t0, t1, t2: we use circles to outline trajectories of a few selected points.

5.2.4 Measure Matching for Posterior Leaflets

The data computed here is the posterior leaflet of a patient. The reference consists

of 727 points while target set consists of 4261 points. We apply the same variation-

al techniques to this data set and obtain very similar results. However, since the

data set is rather large, the actual CPU time is 1.66 × 103. The disadvantage of

the second order method is now very noticeable due to the computation involving

Hessian matrices. Later we develop the multi-scale method in Chapter 6 to improve

the efficiency.

The scale and termination parameters are listed in Table 5.3.

The regularization parameter λ is initialized as 20 and multiplied by 1.6 at each

outer iteration.
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Figure 5.11: Reference shape and computed deformations at time t1.
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Figure 5.12: Target shape and computed deformations at time t2.

77



5.2. NUMERICAL RESULTS

Parameter Notation Value
N Cardinal number of reference set 727
M Cardinal number of target set 4261
σ Scale parameter of the dynamic system 2.20
L Time intervals 2
ǫ Stoping criterion of Newton Decrement 1.d-8
Err Stoping criterion of measure matching 5.d-5

Table 5.3: Parameters and values for diffeomorphic matching two posterior leaflets.

Even though the cardinal number is extremely larger than the experiments in the

former context, the Newton decrements behave very similarly as in Figure 5.13. The

number of iterations is still around 5 and independent of the size of data set.

With dramatically increased cardinal number, we still observe that the Pareto curve

is perfectly convex as shown in Figure 5.14.

In Figure 5.15, we still obtain very similar results as before. As we increase the

trade-off parameter λ, both the measure disparity function and Hausdorff distance

are minimized in sacrifice of more kinetic energy.
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Figure 5.13: Newton Decrement for diffeomorphic matching two posterior leaflets.
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Figure 5.14: Pareto optimality for diffeomorphic matching two posterior leaflets.
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Figure 5.15: Behaviors of kinetic energy, measure matching, and Hausdorff distance
for diffeomorphic matching two posterior leaflets.
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CHAPTER 6

Multi-scale Method

6.1 Motivation

From the first two experiments in Chapter 5, we discover that the second order

method has very strong advantages. First of all, the convergence of the second order

method is quadratic near optimal solution and it needs at most six or so iterations to

achieve the stopping criterion of high accuracy. Moreover, it performs similarly with

different sizes, i.e., iterations needed for convergence do not depend on data sizes.

However, as to large data sets, disadvantages of the second order method become

noticeable. Computing and storing Hessian matrices is very expensive, as well as
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propagations involving Hessian matrices. If the reference data set consists of N

points, the number of operations required is on the order of N3. Besides, the convex

convergence region is rather small, so for larger sets, we are under a huge risk of

losing positive definite property which is crucial to the method.

To overcome all these disadvantages, we are introducing the multi-scale method.

Since at the very beginning, the continuation parameter, λ, is very small and thus

the matching quality is not good at all, there is no point in dealing with a humongous

data set. Therefore, we want to find a new representation which consists of fewer

points and retains the data structure to some degree. Then with finer scales, the

original problem can be solved.

6.2 Multi-scale and Representation

The concept of multigrid has been used for the numerical solution of diffusion and

convection-diffusion problem [24], and there are various approaches in image analysis

problems taking advantage of multigrid relaxation methods [71, 68]. For the multi-

scale method to be discussed, we consider a set of increasingly finer meshes (Figure

6.1). We start out with a coarse mesh size h and reduce it by half step by step.

For each step, one point is chosen to represent all the points in one block. The

essential idea of the method is to refine the grids recursively step by step. In each

refining step, a new approximately equivalent optimization problem will be defined,

increasing the number of points in the data set by reducing the mesh size to 1/4 or

1/2 of the former mesh size. We construct the coarser problems at the beginning,
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Ω0 Ω1 Ω2

h h
2

h
4

Figure 6.1: Increasingly finer meshes.

when λ is small and the matching quality does not concern, to avoid unnecessary

computing involving large Hessian matrices and hence to speed up the programming.

Various options can be applied for the point interpolation. For example, one might

pick the point with the most neighboring points. We now explain our version of

representation.

First, let us consider the one-dimensional case, a class of points {ai}ni=1 ∈ R, and let

amax = max
i

{ai}, amin = min
i
{ai}.

For any given mesh size h, define

qi = [
ai − amin

h
] + 1, for any i = 1, 2, · · · , n,
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and thus we locate ai in the qthi cell. Furthermore, the total number of cells is

Q = [
amax − amin

h
] + 1,

where [·] rounds toward the minus infinity.

See Figure 6.2 for an example. 5 cells are formed based on the data set {ai}10i=1 with

given mesh size h. If there is no point in one cell, e.g., cell 4, then no substitution is

needed for that cell.

Now we introduce new representation in 3D with mesh size h enforced. Consider

a data set {xi}Ni=1 ∈ R
3, apply the same strategy to each coordinate. Other than

the one-dimensional case, now for xi, we have qi = (qxi , q
y
i , q

z
i ) as its location and

Q = Qx×Qy×Qz total cells. Once all the points are properly located, get an average

of each cell, which is

x̂q =
1

|Iq|
∑

i∈Iq

xi, (6.1)

where Iq = {index i : xi belongs to cell q}, q = 1, 2, · · · , Q. Thus, we obtain Ωh =

{x̂q}Qq=1 as a new representation of data set Ω = {xi}Ni=1.

Note that the actual number of points in Ωh could be less than Q considering that

some cell might not have any points at all. As an example, consider the data given

in Figure 6.3. The region is divided into 12 cells and each red star represents an

average point of each cell. Cell (1,1) is empty and thus no representation is needed.

Ideally a suitable scale parameter σ > 0 for the Gaussian kernel Kσ in (4.44) should

be introduced to incorporate with new resolution. However, numerical experiments

show that fixating σ as the original scale parameter is very acceptable. Keeping σ
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cell 1 cell 2 cell 3 cell 4 cell 5

a10(amin) a2(amax)a5 a8 a1 a3a4 a6 a7 a9

Figure 6.2: An example of the one-dimensional case.
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Original Data Set

Figure 6.3: New representation and original data of a two-dimensional case.

fixed smooths the way into a finer grid from a coarser one. Besides, at the end, with

all the points taken into account, σ is the scale parameter of the original data set

anyway.

6.3 Updates Between Two Different Scales

Let h1 > h2 > · · · > hR > 0 be a sequence of increasingly finer mesh sizes and denote

Ωr = Ωhr
for r = 1, 2, · · · , R, where hR is small enough such that ΩR is nothing but
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the original data set Ω.

Now consider reference data set Ωref = {xi}Ni=1 ∈ R
3 and target data set Ωtar =

{yj}Mj=1 ∈ R
3. For a coarser mesh hr, by (6.1), generate

Ωref
r = {xr

i}Nr

i=1, Ωtar
r = {yr

j}Mr

j=1,

where r = 1, · · · , R− 1. Then the new approximately equivalent optimization prob-

lem is diffeomorphic matching of Ωref
r and Ωtar

r . Since the size of Ωref
r and Ωtar

r

is noticeably smaller than that of Ωref and Ωtar, the computing time is cut down

tremendously, especially at the first couple of rescaling steps. At the same time, the

matching quality is not compromised, considering that

Ωref
R = Ωref, Ωtar

R = Ωtar,

where the original data sets are utilized at the final scaling step R.

Apply the second order method discussed in Chapter 4 to match Ωref
r and Ωtar

r and

it yields an optimal solution

α
∗
r = (ᾱr

1, · · · , ᾱr
Nr
)T ∈ R

3Nr , r = 1, 2, · · · , R− 1.

Instead of initialing null control αr+1 blindly for step r+1, we want to take advantage

of optimal control α∗
r at step r, r = 1, 2, · · · , R − 1. With finer scale size hr+1, we

generate

Ωref
r+1 = {xr+1

i }Nr+1

i=1 , Ωtar
r+1 = {yr+1

j }Mr+1

j=1 ,
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as the new reference and target set respectively at rescaling step r + 1. Also, let

αr+1 = (αr+1
1 , · · · , αr+1

Nr+1
)T ∈ R

3Nr+1.

Now we show how to initialize αr+1 with optimal control α∗
r using properties of the

velocity field.

Theorem 6.1. Given optimal solution α
∗
r associated Ωref

r for r = 1, 2, · · · , R − 1,

the initializer αr+1 follows the update law

Nr
∑

i=1

ᾱr
iK(xr+1

j , xr
i ) =

Nr+1
∑

i=1

αr+1
i K(xr+1

j , xr+1
i ), (6.2)

where K(·, ·) is the radial Gaussian kernel with scale parameter σ.

Proof. The solution of velocity is restricted to the set of linear combination of

Kxr
1
, · · · , Kxr

Nr
, which places us in a very comfortable finite-dimensional situation.

Since α
∗
r is already the optimal control for scaling step r, we look for v under the

form v =
∑Nr

i=1 ᾱ
r
iKxr

i
, which may also be written as

v(x) =
Nr
∑

i=1

ᾱr
iK(x, xr

i ),

for any x ∈ R
3. (Refer to the left of Figure 6.4.)
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6.3. UPDATES BETWEEN TWO DIFFERENT SCALES

Then consider Ωref
r+1 = {xr+1

i }Nr+1

i=1 ∈ R
3, and the velocity at each position is given by

v(xr+1
j ) =

Nr
∑

i=1

ᾱr
iK(xr+1

j , xr
i ), (6.3)

for any j = 1, · · · , Nr+1.

Similarly, we also find the velocity for Ωref
r+1 = {xr+1

i }Nr+1

i=1 with finer mesh as

v(x) =

Nr+1
∑

i=1

αr+1
i K(x, xr+1

i ), x ∈ R
3,

(Refer to the right of Figure 6.4.) except that αr+1
i here are unknown. Furthermore,

the velocity at any individual point is

v(xr+1
j ) =

Nr+1
∑

i=1

αr+1
i K(xr+1

j , xr+1
i ), (6.4)

for j = 1, · · · , Nr+1.

Both equation (6.3) and (6.4) describe the velocity and they are approximately the

same. Thus, for j = 1, · · · , Nr+1,

Nr
∑

i=1

ᾱr
iK(xr+1

j , xr
i )

.
=

Nr+1
∑

i=1

αr+1
i K(xr+1

j , xr+1
i ).

Introduce new notations,

(Kr)ij = (K(xr
i , x

r
j)), (Kr,r+1)ij = K(xr

i , x
r+1
j ),
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Figure 6.4: Velocity fields with respect to finer mesh size (the left) and coarser mesh
size (the right).

and the update law (6.2) can be written as

Kr,r+1α
∗
r = Krαr+1.

Furthermore, since Kr is a positive definite matrix, we have

αr+1 = K−1
r Kr,r+1α

∗
r, r = 1, · · · , R− 1. (6.5)
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6.4 Programming

We have the algorithm laid out as follows

Step 1 (Initialization of scaling)

Specify β0 ∈ (0, 1). Set r = 0, hr = β0Disp(x,y), and then obtain new presentation

Ωref
r ,Ωtar

r .

Step 2 (Initialization of continuation)

Initialize λ0 > 0 and set ν = 0.

Step 3 (Initialization of Newton’s method)

α
(0)
ν = 0 and µ = 0.

Step 4 (The second order method)

Set µ = µ+1 and compute αµ
ν by the second order method. If the stopping criterion

√

−Θ0 < ǫ,

is satisfied, go to step 5.

Step 5 (Termination of continuation)

If the termination criterion µ >nMax or φ(xµ
ν) < ǫ is satisfied, go to step 6.

Otherwise, set ν = ν + 1, α
(0)
ν = α

(µ)
ν , and increase the regularization parameter,

λν = γνλν−1,

and go to step 4.

Step 6 (Rescaling)
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If r >rMAX, stop algorithm.

Otherwise, set r = r + 1, hr = βhr−1. Get Ωref
r ,Ωtar

r and obtain α
(0)
0 by (6.5). Set

λ0 = λν . Then, reset µ = ν = 0 and go back to step 4.

We use the Hausdorff distance as the disparity function Disp(·, ·) in step 1. However,

other disparity function could substitute as long as the disparity function chosen

displays the geometric distance between the reference and target set. As to the

rescaling parameter β, theoretically any number belongs (0, 1) is suitable, but for

the best, it is preferable that the number of points with the new scale increases not

too slowly. However, if the size of the new data set increases too much, the initializer

obtained by (6.5) would not do too much good because the data structure changes

too much. Based on our experiments, it is ideal to double or triple the data size until

the size of the original data sets is reached.

In step 6, if rescaling is needed, the continuation parameter λ is inherited from

previous programming and our numerical experiments suggest it is very important

to do so. For each scaling process, the optimization problem is slightly different but

ultimately similar. With the continuation method built inside, it is even harder to

jump from one scale to another. Fixating λ allows the optimization problem staying

consistent and stabilized.
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6.5 Numerical Results

6.5.1 Diffeomorphic Matching for Posterior Leaflets

We apply the multi-scale method to diffeomorphic matching of 2 posterior leaflet

snapshots S0 and S1 acquired at instants t0 and t1. Cardinals for S0 is 406 and

that for S1 is 1702. The scale parameter σ of the Gaussian kernel is 2.57. The

continuation parameter λ is initialized at 10 and increased by multiplying 1.6 at

each outer iteration. The parameters β are 0.5, 0.5 and 0.1 respectively for each

rescaling step. Till reaching the resolution of the original data set, 3 rescaling steps

are used with CPU time 249 seconds.

Figure 6.5 displays the Pareto optimality curves. For the first two reformatted data,

cardinals of them are 88 and 237 and the original data is utilized at the final rescaling

step. Convexity is observed of each Pareto frontier generated at each rescaling step.

We display several level curves for the point matching errors between Ŝ1 and the

given posterior leaflet S1 in Figure 6.6.
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Figure 6.5: Pareto optimality curves using the multi-scale method: for easier visual-
ization, the iterations are displayed separately at rescaling step 2.
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Figure 6.6: Matching errors between the computed posterior leaflet deformation Ŝ1

and the target shape S1.
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Parameter The second order Method Multi-scale method
σ 2.20 2.20
Time intervals 1 1
Measure matching 3.49× 10−5 2.94× 10−5

Kinetic energy 145 166
λ 2.42× 105 4.40× 105

Number of outer iterations 21 23
CPU time 1660 489

Table 6.1: Parameter and values of the second order method and the multi-scale
method.

6.5.2 Improvement Compared to the Second Order Method

Now we apply the multi-scale method to the same data in section 5.2.4 and compare

the numerical results. The reference consists of 727 points while target set consist-

s of 4261 points. The continuation parameter λ0 is initialized at 20 for both methods.

Table 6.1 demonstrates that to attain similar matching quality, the multi-scale method

uses less than one-third the time as with the same setting as the second order method.

The number of outer iterations for the multi-scale method is slightly more than that

of the second order method. However, since the original data set is only utilized for

the last four outer iterations, computing time is tremendously reduced.

In Figure 6.7, the approximate Pareto frontiers displays measure matching as func-

tions of the kinetic energy and we observe convexity of these curves. It also shows

that most of the outer iterations works on data with coarser meshes.

As shown in Figure 6.8 and 6.9, the geometric distance is very comparable.
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Figure 6.7: Pareto optimality curves for two posterior leaflets using the multi-scale
method: for easier visualization, the iterations are displayed separately at rescaling
step 2.
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Figure 6.8: Matching errors between the computed anterior leaflet deformation Ŝ1

and S1 using the multi-scale method (top) and the second order method (bottom).
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Figure 6.9: Box plot of point matching errors between the computed anterior leaflet
deformation Ŝ1 and S1: for each box in the figure, the central mark is the median,
the edges of the box are the 25th and 75th percentiles and outliers are plotted
individually.
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CHAPTER 7

Matching with Elasticity Energy

In our previous experiments, we discover that some area of a given data set tends

to stretch too much to obtain a good matching. However, in real life, human tissue

can not tolerate such enormous stress and ultimate enough stretching causes tissue

to break. With those facts taken into account, we introduce the elasticity energy in

the hope of reflecting the stiffness and stretchiness of human tissue.
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7.1 Stretching Fraction and Elasticity Energy

Definition 7.1. Imagine two points x(0) and y(0) are marked on an elastic rope, and

they relocate at new positions x(1) and y(1) respectively as the rope stretches (Figure

7.1). Define the constant

|x(1) − y(1)|

|x(0) − y(0)| ,

as the stretching fraction.

For surfaces in 3D, one point is not isolated and the stretching at one point

heavily depends on the movement of its neighborhood. Neighborhood is one of the

basic concepts in a topological space which is closely related to concepts of open

set and interior. In our case, since the movement of the closest points reflects the

stretching level at a point, the neighborhood is designed to reveal the fact.

With mesh cells, we define N (xi), the neighborhood of xi, as the points in the closest

cells to the cell where xi belongs. By using this definition, if xi ∈ N (xj), xj ∈ N (xi).

Furthermore, the elasticity energy is well posed considering that the closest points

are taking into account (Figure 7.2).

Definition 7.2. Let {xi(t)}Ni=1 be displacements of a collective data set at time t,

and introduce

E(t) =
N
∑

i=1

(
∑

xj(t)∈N (xi(t))

|xi(t)− xj(t)|2
|xi(0)− xj(0)|2

) (7.1)

to be the elasticity energy where N (xi(t)) stands for the neighborhood of point xi(t).
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x(1) y(1)

x(0) y(0)

Figure 7.1: Definition of stretching fraction.

xixj

Figure 7.2: Neighborhood of xi, N (xi), in two-dimensional space.

7.2 Variational Forms

To simplify (7.1), introduce the function

I tNi
(j) =

{
1 xj ∈ N (xi(t))

0 xj /∈ N (xi(t))
,

and then rewrite the elasticity energy as

E(t) =
N
∑

i=1

N
∑

j=1

I tNi
(j)

|xi(t)− xj(t)|2
|xi(0)− x

(
j0)|2

. (7.2)

For the sake of simplicity, we fix time and derive the variational forms only at time

t. In order to apply the second order method, we now derive the variational forms
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of (7.2) where

δE =
N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T (δxi − δxj)

=

N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T δxi −

N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T δxj .

Consider the second term in the formula above and we have

N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T δxj

=
N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INj

(i)(xj − xi)
T δxi

= −
N
∑

i=1

N
∑

j=1

2

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T δxi.

Thus,

δE = 4

N
∑

i=1

N
∑

j=1

1

|xi(0)− xj(0)|2
INi

(j)(xi − xj)
T δxi (7.3)

which implies

(∇E)i = 4
N
∑

j=1

1

|xi(0)− xj(0)|2
INi

(j)(xi − xj). (7.4)

Furthermore,

(

(∇E)i
)

x
= 4

N
∑

j=1

1

|xi(0)− xj(0)|2
INi

(j)(δxi − δxj)

= (4

N
∑

j=1

1

|xi(0)− xj(0)|2
INi

(j)I)δxi − 4

N
∑

j=1

1

|xi(0)− xj(0)|2
INi

(j)Iδxj (7.5)
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where I is the identity matrix.

7.3 Dynamic Programming

To appropriately mimic the motion of human tissue, we include the elasticity energy

into the minimization function and now the discrete dynamic system becomes

min J({αk}L−1
k=0 ; x̄0) =

∑L−1
k=0 g(xk,αk; tk) + b

∑L
k=1E(xk; tk) + λφ(xL)

s.t. xk+1 = f(xk,αk; tk), k = 0, · · · , L− 1,

x0 = x̄0,

(7.6)

where

f(xk,αk; tk) = xk + τkK(xk)αk,

g(xk,αk; tk) =
τk
2
α

T
kK(xk)αk,

φ(xL) =
1

N2

N
∑

i,j=1

Kσ′(xi(tL), xj(tL))−
2

MN

N
∑

i=1

M
∑

j=1

Kσ′(xi(tL), yj) +
1

M2

M
∑

i,j=1

Kσ′(yi, yj).

To apply the second order method to the modified discrete dynamic system (7.6),

we first rewrite the objective function as

J({αk}L−1
k=0 ; x̄0) =

L−1
∑

k=0

g(xk,αk) + b(

L−1
∑

k=1

E(xk)) + bE(xL) + λφ(xL), (7.7)
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where b ≥ 0 and it balances the kinetic energy and the elasticity energy. Therefore

the optimal cost-to-go at stage k is

Vk(xk) = min
{αl}

L−1

l=k

J({αl}L−1
l=k ; x̄k).

The Bellman’s principle of optimality implies

Vk(xk) = min
αk

{g(xk,αk) + bE(xk) + Vk+1(xk+1)},

with finial condition

VL(xL) = bE(xL) + λφ(xL).

7.4 Application

By using the differential dynamic programming, the final state is

PL = b∇xx[E(x̄L)] + λ∇xx[φ(x̄L)], (7.8)

qL = b∇x[E(x̄L)] + λ∇x[φ(x̄L)], (7.9)

V̄ (x̄L) = bE(x̄L) + λφ(x̄L),

ΘL = 0. (7.10)
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The feedback control law is

δαk = zk −Kkδxk, (7.11)

Kk = C−1
k Bk, (7.12)

zk = −C−1
k dk (7.13)

for k = L− 1, · · · , 0, with updated information

Pk = Ak −BT
kC

−1
k Bk, (7.14)

qk = ek +BT
k zk, (7.15)

Θk = Θk+1 +
1

2
dT
k zk, (7.16)

where

Ak = gk
xx + bEk

xx + hk
xx + fkTx Pk+1fx, (7.17)

Ck = gk
αα + hk

αα + fkTα Pk+1fα, (7.18)

Bk = gk
αx + hk

αx + fkTα Pk+1fx, (7.19)

ek = gk
x + bEk

x + hk
x (7.20)

dk = gk
α + hk

α. (7.21)

Since the elasticity energy only applies to time stage at k = 1, 2, · · · , L− 1,

∇xE0 = 0, ∇xxE0 = 0. (7.22)
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7.5 Numerical Analysis

We present the numerical results of diffeomorphic matching anterior leaflets including

elasticity energy in the objective function. From our initial experiments, we discover

that maximum stretching happens mostly on edges. Since there are less neighboring

points for boundary points and therefore less control exists over the stretching. Be-

sides due to the nature of measure matching, edges match faster than interior points,

so as λ increases, boundary points tend to be dragged along with the points inside.

To fix this problem, we split data sets into two parts, interior points and boundary

points, and match them separately. In fact, specifically directing movement of shape

points allows better matching quality as well as more evenly stretched shapes. This

approach is also medically feasible since no matter how human tissue deforms, the

edge is confined to stay at the very outside not being able to travel inside.

Now the optimization problem is reformatted as follows

min J({αk}L−1
k=0 ; x̄0) =

∑L−1
k=0 g(xk,αk; tk) + b

∑L
k=1E(xk; tk)

+λ(a1φint(xL) + a2φbnd(xL))

subject to xk+1 = f(xk,αk; tk), k = 0, · · · , L− 1,

x0 = x̄0,

(7.23)

where φint(xL) and φbnd(xL) are the positive measures of interior points and boundary

points respectively. We use fixed parameters a1, a2 > 0 to balance the matching

quality of interior and edge. Only when both measures decrease at a similar speed,

would the stretching be at the same level. We usually choose negative values for b
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when too much contraction happens and positive values for too much stretching.

The choice of σ for the Gaussian kernel is slightly different from previous experiments.

The aim now is to control the stretching but still attain similar matching quality, so

we allow the points to deform slightly freely by relaxing the value of σ a little bit.

7.5.1 Diffeomorphic Matching for Anterior Leaflets in Elas-

tic Model

We present the numerical results of diffeomorphic matching for 2 snapshots S0, S1

of the anterior leaflet using the elastic model. The reference S0 consists of 83 points

with 36 boundary points and the target set S1 consists of 82 points with 36 boundary

points. The scale parameter σ of the Gaussian kernel is 2.25. Continuation parame-

ter λ for different values of b are all initialized at 300 and increased accordingly with

each continuation iteration. The trade-off parameters for measures of interior and

boundary are (a1, a2) = (1.1, 1). The continuation method stops when both of the

measures are less than 5× 10−3.

Table 7.1 shows clearly that with very similar matching quality, elasticity energy

decreases from 1.10 to 0.884 as b increases from 0 to 400. Accordingly, the kinetic

energy keeps increasing which is the price paid to control the stretching.

In Figure 7.3, we plot the kinetic energy for fixed λ with different values of b. Even

though b varies, the general shape of the curve is very similar. Kinetic energy actu-

ally differs after the very first iteration and the difference is carried on for the rest

iterations.
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Figure 7.3: Kinetic energy with respect to regularization parameter λ for diffeomor-
phic matching two anterior leaflets with elasticity energy: for easier visualization, we
plot the first three iterations only in the bottom figure.
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b λ φint(xL) φbnd(xL) Hausdorff Kinetic Elasticity
distance energy energy

0 1.66× 104 3.7× 10−3 4.4× 10−3 3.60 279 1.10
100 1.70× 104 3.8× 10−3 3.0× 10−3 2.39 279 1.02
200 1.70× 104 3.9× 10−3 3.1× 10−3 2.42 284 0.968
300 1.70× 104 3.8× 10−3 3.8× 10−3 2.47 295 0.923
400 1.70× 104 4.0× 10−3 4.7× 10−3 2.45 308 0.884

Table 7.1: Parameters and values for diffeomorphic matching two anterior leaflets
with elasticity energy.

Figure 7.4 displays elasticity energy as a function of penalty parameter λ. We

discover similar results as in Figure 7.3. After the first iteration, the smaller b is, the

lower elasticity energy starts.

In Figure 7.5, for each point of the computed deformation, we calculate the average

stretching fraction and then for each percentage plot the corresponding percentile.

In the bottom figure, we observe the distortion is less intense for greater value of b.

Especially when b = 400, the overall stretching fraction is below 1.25 which satisfies

the maximum stretching the mitral valve tissue tolerates.

For computed deformations with b = 0, 100, 200, 300, 400, Figure 7.6 displays sev-

eral level curves of the average distortion fraction. The coordinate system has been

modified isometrically at each snapshot instant in order to display a better projection.
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Figure 7.4: Elasticity energy with respect to regularization parameter λ for diffeo-
morphic matching two anterior leaflets with elasticity energy: for easier visualization,
we plot the first three iterations only in the bottom figure.
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Figure 7.5: Percentile curves of distortion for diffeomorphic matching two anterior
leaflets with elasticity energy: for easier visualization, we plot percentile 90 to 100
separately.
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Figure 7.6: Distortion for computed anterior leaflets for b = 0, 100, 200, 300, 400.
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b λ φint(xL) φbnd(xL) Hausdorff Kinetic Elasticity
distance energy energy

0 1.03× 104 2.4× 10−3 2.9× 10−3 3.25 160 1.02
100 1.03× 104 2.6× 10−3 2.8× 10−3 3.19 163 0.965
200 1.03× 104 2.7× 10−3 2.9× 10−3 3.15 169 0.924
500 1.54× 104 2.3× 10−3 2.1× 10−3 2.68 222 0.860

Table 7.2: Parameters and values for diffeomorphic matching two posterior leaflets
with elasticity energy.

7.5.2 Diffeomorphic Matching for Posterior Leaflets with

Contraction

We apply the same algorithm to diffeomorphic matching of posterior leaflet snapshots

S0, S1 as in section 7.5.1. The reference S0 consists of 260 points with 65 boundary

points and the target set S1 consists of 282 points with 80 boundary points. The

scale parameter σ of the Gaussian kernel is 3.34. Continuation parameter λ for

different values of b are all initialized at 400 and increased dynamically with each

outer iteration. The continuation iteration stops when both measures are less than

3× 10−3 and (a1, a2) = (1, 1.8).

According to Table 7.2, similar behaviors are discovered as in the section 7.5.1.

With very similar matching quality, elasticity energy decreases from 1.02 to 0.860 as

b increases from 0 to 500. Responding to value changes of b, the kinetic energy keeps

increasing.

In Figure 7.7, the top graph shows that percentile curves get lower with greater

values of b which is similar to Figure 7.5. The right bottom figure indicates that the

highest stretching is very acceptable once b kicks in. However, we notice that the

114



7.5. NUMERICAL ANALYSIS

0 10 20 30 40 50 60 70 80 90 100

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

percent value

Di
sto

rti
on

 

 
 b= 0
b = 100
b = 200
b = 500

0 5 10 15

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

percent value

D
is

to
rt

io
n

 

 
b = 0
b = 100
b = 200
b = 500

85 90 95 100
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

percent value

D
is

to
rt

io
n

 

 
b = 0
b = 100
b = 200
b = 500

Figure 7.7: Percentile curves of distortion for diffeomorphic matching two posterior
leaflets with elasticity energy: for easier visualization, we plot percentile 0 to 15 and
85 to 100 separately in the bottom row.
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contraction is extraordinarily high with greater values of b. In particular, at b = 500

the least stretching fraction is much less than 0.75 which is infeasible to the nature of

human tissues. Instead of controlling the high stretching, the task now is to reduce

the excessive contraction. To fulfill that, we place extra weighting parameters w to

the elasticity energy for 5 percent points with least stretching.

Consider the optimal control problem

min J({αk}L−1
k=0 ; x̄0) =

∑L−1
k=0 g(xk,αk; tk) + b

∑L
k=1

(

wE1(xk; tk) + E2(xk; tk)
)

+λ(a1φint(xL) + a2φbnd(xL))

subject to xk+1 = f(xk,αk; tk), k = 0, · · · , L− 1,

x0 = x̄0,

(7.24)

where E1 is the elasticity energy of the first 5 percent of points with least stretching

and E2 is that of the remaining points at time tk. To increase the stretching fraction

of those points, we choose w < 1 and for better performance negative values are

much preferable.

We now fix b = 200 and adjust w with the rest parameters staying the same.

As w decreases, the overall elasticity energy increases but the difference is very

minor. Table 7.3 also shows a very slight increment in kinetic energy.

Figure 7.8 presents the percentiles curves for w = 1, w = 0, w = −0.5, w = −1

when b is fixed at 200. Since we only modify the weights of elasticity energy for the

most contracted points, it does not affect the rest regions too much as suggested in

the bottom right figure. In the bottom left figure, it is clear that the least contraction

is above 0.75 and coincides with behaviors of human tissue.
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Figure 7.8: Percentile curves of distortion with contraction control for various w
values: for easier visualization, we present percentile 0 to 15 and 85 to 100 separately
in the bottom row.
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w λ φint(xL) φbnd(xL) Hausdorff Kinetic Elasticity
distance energy energy

1 1.03× 104 2.7× 10−3 2.9× 10−3 3.15 169 0.924
0 1.03× 104 2.7× 10−3 2.9× 10−3 3.15 169 0.925
-0.5 1.37× 104 2.7× 10−3 2.9× 10−3 3.15 169 0.927
-1 1.03× 104 2.7× 10−3 2.9× 10−3 3.15 170 0.928

Table 7.3: Parameters and values for diffeomorphic matching with contraction con-
trol.

For computed deformations with b = 200, Figure 7.9 displays several level curves

of the average distortion fraction for w = 1, w = 0, w = −0.5, w = −1. The

coordinate system has been modified isometrically at each snapshot instant in order

to display a better projection.
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Figure 7.9: Distortion for computed posterior leaflets at b = 200 for w = 1, w =
0, w = −0.5, w = −1.
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CHAPTER 8

Conclusions and Future Work

In this dissertation, we have focused on finding optimal solutions to diffeomorphic

matching surfaces in 3D medical imaging. The main goal is to find a time-dependent

diffeomorphism Ft and reconstruct the trajectories of leaflets. The variational ap-

proach we use has been actively explored in [10, 27, 33, 34]. This dissertation can be

recognized as a continuation work of [6, 8]. However, the key difference here is that

we have developed a fast computing method using the second order information. By

our numerical experiments in Chapter 5, the beauty of Newton steps is revealed. It

only needs at most six iterations to achieve the stopping criterion of high accuracy.

Additionally, iterations needed for convergence do not depend on data sizes.
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In practical applications, to precisely capture the local properties of objects, a shape

with high resolution is much preferable. The multi-scale method we develop actually

help overcome the computational challenges dealing with finer mesh points. Not only

the computing time has been reduced, the matching quality is not compromised.

Finally, by adding the elasticity energy and splitting data into interior and bound-

aries, overall stretching is well controlled and satisfies the medical standards. To

cope with unexpected contraction, we use negative weighting parameters to modify

local intense contraction and the results are quite satisfying.

In this dissertation, we only regenerate the deformations of anterior and posterior

leaflets with given snapshots separately. However, the mitral valve apparatus com-

prises two leaflets (anterior and posterior) and a fibrous ring called annulus. Our

future plan is to deform all parts of the mitral valve as one object and hence to

reconstruct the deformation of the mitral valve apparatus between given snapshots.

We have one example in Chapter 3 dealing with three snapshots. However, we ac-

tually split the [0,1] interval into two and apply the second order method to each

time interval individually. So we further plan to find optimal matching for multiple

sub-manifolds as in [6] and recover the full motion.

In the dissertation, we use the pure Newton method where the step size is fixed at 1.

Sometimes it could be a little ambitious and hitting a saddle point could jeopardize

the convergence, so we plan to define the step size by backtracking line search.

Last but not the least, redefine the elasticity energy term to consider biological prior

knowledge. Because of tissue’s low level of viscoelasticity, modeling the valve tis-

sue as an elastic material is currently an accepted practice. So one remedy is to
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investigate the linear elasticity model and formulate the strain tensor.
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