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Abstract

This dissertation studies the role of frames as codes. Frames are families of

vectors that give rise to embeddings of Hilbert spaces. These embeddings can be

interpreted as codes, because possible linear dependencies among frame vectors can

be used to recover missing components in the embedded data, so-called erasures.

This dissertation is dedicated to structured erasures. One type of structured erasure

occurs when consecutive frame coefficients are lost due to the occurrence of random

burst errors. Assuming that the distribution of bursts is invariant under cyclic shifts

and that the burst-length statistics are known, we wish to find frames of a given size,

which minimize the mean-square reconstruction error for the encoding of vectors in

a complex finite-dimensional Hilbert space. We derive statistical error bounds for

a given Parseval frame and relate them to its generalized frame potential. In the

case of cyclic Parseval frames, we find a family of frames which minimizes the upper

bound. Under certain conditions, these minimizers are identical to complex Bose-

Chaudhuri-Hocquenghem(BCH) codes discussed in the literature. The accuracy of

our upper bounds for the mean-square error is substantiated by complementary lower

bounds.

Another part of the dissertation concerns the transmission of digital media, typ-

ically following a protocol that splits data into a number of packets having a fixed

size. When such packets are sent over a network such as the Internet, there is in

principle no guarantee of reliability, that is, the contents of each packet may become

corrupted in the course of transmission or entire packets may be lost due to buffer

overflows. We assume that during the transmission, only a few of these packets are
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corrupted or lost. In this part of the dissertation we adapt ideas by Candes and Tao

in order to construct frames as codes for such erasures. The frames are associated

with consistency checks for the data that are obtained from random matrices whose

entries are independent realizations of a Gaussian random variable. In addition to

the random Gaussian matrices, we use random projections to achieve recovery based

on a low dimensional check-sum measurement. We use a generalized technique of l1

minimization to reconstruct the error vector from these measurements.
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CHAPTER 1

Introduction

Redundancy is common and useful in our daily lives. When we leave for work, we

double and triple-check that we turned off appliances and lights, that we took our

keys, money, etc. The same possibility of a consistency check can be incorporated in

signal representations. A signal is understood to be a vector of a Hilbert space and

a representation is a map to another Hilbert space. Typically, we would choose a

basis and map the vector to its inner products with the basis vectors, the transform

coefficients. One of the reasons for choosing a new basis is that often the signal

characteristics are more readily apparent in the transform coefficients. Such a repre-

sentation is non-redundant, and thus corruption or loss of any transform coefficient is
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1.1. ENCODING VIA FRAMES

irrecoverable. However, instead of a basis, we can choose a linearly dependent family

of vectors that introduces redundancy, when the inner products are computed. This

way we try to build a safety net into our representation so that we can retain recov-

erability, stable linear reconstruction, from part of the inner products. Allowing the

vectors to be linearly dependent generalizes the concept of a basis to that of a frame.

Frames for a Hilbert space were formally defined by Duffin and Schaeffer [32] in

1952 to study some deep problems in non-harmonic Fourier series. Despite being over

half a century old, frames gained popularity only in the last two decades after the

landmark paper of Daubechies, Grossmann and Meyer [30] was published in 1986.

Traditionally, frames have been used in signal processing, image processing, data

compression, and sampling theory.

1.1 Encoding via frames

In the first part of this dissertation, we study frames for redundant encoding of an

analog signal and evaluate their performance when the signal is sent through a chan-

nel and burst erasure occurs, that is, consecutive frame coefficients are lost. There

are two general possibilities, so-called blind reconstruction which replaces the lost

coefficients by zeros and active error correction, which aims at perfect reconstruction

provided enough coefficients are known. Previous results were concerned with the

worst-case scenario and the most generic error models for data loss [38, 37, 55, 5], and

many investigated the performance of blind reconstruction [24, 62, 40, 12, 43]. The

underlying assumption was that the erasures happen so infrequently that one wants

2



1.1. ENCODING VIA FRAMES

to successively narrow the choice of frames by demanding perfect reconstruction for

no loss, then optimal error suppression for one lost coefficient, and at each step select

from the remaining frames the ones which are optimal for the next higher number

of erasures. Another series of works evaluated the performance of active error cor-

rection with low-pass cyclic frames in the presence of quantization errors and burst

erasures [56, 57] and with other cyclic frames when more general erasures occur [58].

The performance measure in this case is the mean-square error remaining after the

erasure correction is applied. In the absence of erasures, it is known that the error

due to quantization of frame coefficients is minimized by equal-norm Parseval frames

[38, 37, 57, 58].

Next, we discuss specifics of frames used for encoding signal and resulting er-

ror corrction capabilities. For a signal x in a Hilbert space H of dimension k, we

encode this signal using a frame F = {fi : 1 ≤ i ≤ n} as the frame coefficients

{〈x, fi〉 : 1 ≤ i ≤ n}. These coefficients are sent through a channel and the receiver

does not receive all the coefficients as they are. Some of the coefficients are lost or

corrupted. The problem is to linearly reconstruct the vector from these remaining

coefficients. We evaluate the performance of frames in the case of burst erasures

when we linearly reconstruct the vector. We measure the performance in terms of

the mean-square error (MSE), which is the average of the square of the Euclidean

norm of the difference between the input and the recovered vector over all unit-norm

input vectors. We derive bounds for the MSE and investigate frames which have

optimality properties in this setting, with special emphasis on cyclic frames. These

frames are a counterpart to cyclic block codes in digital error correction, for example

3



1.1. ENCODING VIA FRAMES

Bose-Chaudhuri-Hocquenghem (BCH) codes [39, 15] or Reed Solomon codes [60], see

also [7, 61]. Burst error correction by Reed-Solomon codes has found a wide range

of applications, from deep space transmissions or other wireless communications to

storing audio on compact discs or even bar-codes [66]. In addition to their suitability

for bursty environments, such codes can correct a maximum number of corrupted or

missing symbols in a block due to their maximum distance separability. However, in

many cases the transmitted string of symbols is a digitized analog signal, in which

case the number of correctable symbols may not be the ultimate measure for per-

formance. For this reason, we consider a redundant linear encoding over the real or

complex number field and evaluate the performance by the mean-square error.

Averaging the entries of the Grammian cyclically lowers the mean-square recon-

struction error. This is the reason we primarily study cyclic frames, which have

Grammians that are invariant under cyclic averaging. For cyclic frames, we estimate

the mean-square reconstruction error in the presence of bursty data loss. The mean-

square error is defined by averaging over all cyclic bursts with given burst-length

probabilities and over the set of all uniformly distributed unit-norm input vectors.

The uniform distribution among all unit-norm input vectors is justified by assuming

that the data has been compressed before transmission which would result in seem-

ingly independent, identically Gaussian distributed entries for the vectors, and then

if the dimension is large enough, a concentration of measure argument would allow

replacing them by vectors of a constant norm. The optimal design of frames for

this type of performance measure has applications for streaming media and wireless

communications [41, 42, 48].

4



1.2. PACKET-BASED ENCODING AND FUSION FRAME

Our first main result is an identity between the mean-square error for Parseval

frames resulting from burst erasures and subsequent blind reconstruction, and a

weighted squared Hilbert-Schmidt norm of the Grammian. Then we derive upper

and lower bounds for the mean-square error. In the case of cyclic frames, we find

minimizers for the upper bound. These minimizers can be described by the frequency

support of the encoded vectors, or alternatively, by its complement, the syndrome

frequencies. If the number of frame vectors n and the dimension of the Hilbert space

k are relatively prime, if k is odd, and if the redundancy ratio is sufficiently large,

then the optimizers for the upper bound are complex BCH codes that have been

introduced in [49] and whose error correcting capabilities have been investigated in

previous works [56, 57, 58]. In this case, the syndrome frequencies can be arranged

in a uniformly spaced sequence. If the redundancy ratio is sufficiently small, then the

optimizers have syndrome frequencies whose complement is uniformly spaced. We

also investigate a specific burst-length distribution motivated by a channel model

introduced by Gilbert and Elliott [36, 33].

1.2 Packet-based encoding and fusion frame

Signal transmission through a noisy digital channel typically uses the following strat-

egy: a generic signal is decomposed (encoded) into a sequence of coefficients which

are then grouped into a number of packets of the same size. When such packets

are sent over a network such as the Internet, there is in principle no guarantee of

reliability, that is, the contents of each packet may become corrupted in the course of
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1.2. PACKET-BASED ENCODING AND FUSION FRAME

transmission or entire packets may be lost due to buffer overflows[9]. The integrity

of the data in each packet is typically protected by some error correction scheme,

so for practical purposes one may assume that packets arrive either intact or not at

all. The noise of the channel may cause the loss of some packets so that the recon-

struction of the signal is done possibly without the whole set of packets. Hence, we

search for encoding-decoding schemes that minimize, with respect to some measure,

the worst case error between the original signal and the reconstructed signal for a

fixed number of packet losses. In practice, it is commonly assumed that losing one

packet in the transmission process is rare, and that the occurrence of two lost pack-

ets is much less likely. A similar hierarchy of probabilities usually holds for a higher

number of lost packets. When the coefficients are sent individually, these types of

problems have been considered recently in [24, 40, 14, 62, 12], where they describe

the structure of optimal encoding-decoding schemes based on a particular choice to

measure the worst case reconstruction error. Casazza and Kovačević [24] find the

optimal scheme in case of one erasure using equal-norm tight frames, Holmes and

Paulsen [40] in the case of two erasures using equiangular uniform frames, Bodmann

and Paulsen [12], and Strohmer and Heath [62] provide conditions for higher number

of erasures using graph theoretic apporach, and Bodmann, Paulsen and Kribs [14]

generalize the idea in the quantum setting. For related problems in packet encoding,

see the work by Bodmann [9], the most recent overview by Bodmann [10], Oswald

on stable space splittings in Hilbert spaces [53] which are equivalent to Sun’s notion

of g-frames [63], and the concept of frames for subspaces introduced by Casazza

and Kutyniok [27]. This concept was applied under the name of fusion frames to

6



1.2. PACKET-BASED ENCODING AND FUSION FRAME

distributed processing [28]. To study a similar problem, Massey [50] uses so-called

uniform (N,m,D)-reconstruction systems in terms of N weighted rank-m opera-

tors satisfying certain conditions on the D-dimensional Hilbert space containing the

vectors to be transmitted.

The second part of this dissertation deals with recovering the transmitted vec-

tor assuming that there are only a few corrupt packets received at the receiver end.

Instead of setting the corrupt packets to zero, we try to recover them using a gen-

eralization of l1 minimization techniques by Candes and Tao[22] and Candes [21] in

the recovery of sparse vectors. The signal under consideration is a vector v in the

D-dimensional Hilbert space RD. An encoding scheme will map this vector v to N

packets of size m, thus to a vector in RNm. We send this encoded vector through

a noisy channel and at the receiving end we receive k corrupted packets, k being

small compared to N . We wish to recover these packets in order to get the trans-

mitted vector. We observe that the range of an ecoding map is a D-dimensional

suspace of RNm and the kernel of its adjoint is also a subspace of RNm of dimension

M = Nm − D. For purposes of designing a recovery algorithm, we use a random

matrix Tof size M × Nm with entries ti,j, which are independent realizations of a

Gaussian random variable with mean 0 and variance
1

M
. We denote the range of the

map T ∗ : RM → RNm by R and Ker(T ) by K, which is an D-dimensional subspace

of RNm satisfying K = R⊥. From an orthonormal basis of K, we obtain a Parseval

frame F for RD and use its analysis operator Q as the encoding map. Thus, for any

v ∈ RD, the encoded vector is Qv ∈ K ⊂ RNm. After the transmission, we receive

Qv+x, where x is the error during the transmission. If we know x, then we will have

7



1.2. PACKET-BASED ENCODING AND FUSION FRAME

the encoded vector Qv. As K = Ker(T ), applying T to the received vector gives us

T (Qv + x) = 0 + Tx = Tx ∈ RM . We then apply T ∗ and a multiple of a random

projection P of rank p to get the measurements. From these measurements, we try

to recover x and once we have x, we get the transmitted vector as (Qv+x)−x at the

receiver end. The reason behind taking random projections P of rank p on RNm and

random T described above is that the range of the encoding mapQ is aD-dimensional

random subspace of RNm so that the vector PT ∗T (Qv+ x) = 0 +PT ∗Tx = PT ∗Tx

is the projection of x on a random p dimensional subspace of RNm. Under certain

conditions on k,N,m,M , and p, we show that with overwhelming probability, the

error vector x can be recovered with good accuracy even in the presence of noise

of small magnitude when we allow M,m, and p to grow to infinity. We use the

structure of the erasures to achieve better probability bounds for the probability of

success compared to a setting in which unstructured erasure of km coefficients occur.

8



CHAPTER 2

Burst Erasures and the Mean-Square Error for Cyclic Parseval

Frames

This chapter is concerned with the concepts of burst erasure and mean-square re-

construction error for a given frame corresponding to a given burst statistics. We

compute the statistical error bounds for a given Parseval frame and focus on cyclic

Parseval frames. We also discuss some numerical experiments to validate the theo-

retical results towards the end of the chapter.

9



2.1. PRELIMINARIES

2.1 Preliminaries

First we fix our notations for frames, define concepts related to frames and discuss

some properties of frames.

Definition 2.1.1. A sequence {fj}j of elements of a Hilbert space H is called a

frame if there are constants A,B > 0 such that

A‖x‖2 ≤
∑
j

|〈x, fj〉|2 ≤ B‖x‖2 (2.1)

for each x ∈ H. If A = B, it is called tight and if A = B = 1, it is called a Parseval

frame.

In a finite dimensional Hilbert space H of dimension k, any spanning family of

n vectors F = {fj}nj=1 ⊂ H is a frame for H. We will work with finite dimensional

Hilbert space H over R or C.

Definition 2.1.2. For a frame F = {fj : 1 ≤ j ≤ n} for H, we define the analysis

oparator for F as a linear map V : H → Fn via

(V x)j = 〈x, fj〉

for all x ∈ H.

The map V ∗ : Fn → H is called the synthesis operator for F and the map

T = V ∗V : H → H is the frame operator.

Definition 2.1.3. We call family F an (n,k)-frame if the Parseval-type equality

‖x‖2 =
n∑
j=1

|〈x, fj〉|2

10



2.1. PRELIMINARIES

holds for every x ∈ H. If the Grammian G with entries Gi,j = 〈fj, fi〉 satisfies

Gi+l,j+l = Gi,j for all i, j, l ∈ {1, 2, . . . , n}, where the summation of indices is taken

modulo n, then we call F a cyclic (n, k)-frame.

Given a frame F for H, we say that a frame F̃ for a Hilbert space H̃ of dimension

(n−k) is complementary to F if its Grammian G̃ is related to that of F by G̃ = I−G.

Proposition 1. If V and G are the analysis operator and the Grammian respectively

for a frame F = {fj : 1 ≤ j ≤ n}, then we have

(i) G = V V ∗.

(ii) G is an orthogonal projection if and only if the frame is Parseval.

(iii) If the frame F is a cyclic (n, k) frame, then G is of rank k and ‖fj‖2 = k/n for

all j ∈ {1, 2, . . . n}. Moreover, G = q(S) with a complex polynomial q which

assumes the value one at k of the n-th roots of unity and the value zero at the

others, where S is the cyclic shift matrix. Hence, G commutes with S.

Proof. (i) Let {ei : 1 ≤ i ≤ n} be the standard orthonormal basis for Fn. For any

fixed 1 ≤ i ≤ n, we have

V V ∗ei =
n∑
j=1

〈V ∗ei, fj〉ej =
n∑
j=1

〈ei, V fj〉ej

=
n∑
j=1

〈ei,
n∑
l=1

〈fj, fl〉el〉ej

=
n∑
j=1

〈fj, fi〉ej =
n∑
j=1

〈fi, fj〉ej

= Gei.

11



2.1. PRELIMINARIES

This shows that G = V V ∗.

(ii) By definition, G = G∗.

For a Parseval frame, we have

‖V x‖2 =
n∑
j=1

|〈x, fj〉|2 = ‖x‖2.

Also, we observe that ‖V x‖2 = 〈V x, V x〉 = 〈V ∗V x, x〉 and ‖x‖2 = 〈Ix, x〉.

Since both sides coincide as quadratic forms, the operators coincide, that is,

V ∗V = I. Therefore, G is an orthogonal projection as

G2 = V V ∗V V ∗ = V (V ∗V )V ∗ = V IV ∗ = V V ∗ = G .

Conversely, let us assmume that G is an orthogonal projection. As V is one to

one and V ∗ is onto, we have

G2 = G

⇒V V ∗V V ∗ = V V ∗

⇒V (V ∗V − I)V ∗ = 0

⇒(V ∗V − I) = 0 .

Therefore, for any x ∈ H, we obtain

‖x‖2 = 〈Ix, x〉 = 〈V ∗V x, x〉 = 〈V x, V x〉 = ‖V x‖2 =
n∑
j=1

|〈x, fj〉|2 .

Therefore, F is a Parseval frame.

(iii) As F = {fj : 1 ≤ j ≤ n} is aS cyclic (n, k)-frame, 〈f1, f1〉 = 〈f1+l, f1+l〉 for

1 ≤ l ≤ (n − 1). Therefore, all the diagonal entries of G are the same. Now,

12



2.1. PRELIMINARIES

we have

tr(G) = tr(V V ∗) = tr(V ∗V ) = k.

Also, we have tr(G) =
∑n

j=1 ‖fj‖2. Therefore, we conclude that

‖fj‖2 =
k

n
for all 1 ≤ j ≤ n.

Using the cyclic property 〈fi, fj〉 = 〈fi+l, fj+l〉 for all 1 ≤ i, j, l ≤ n and

identifying fj and fj+n, we obtain

G =



〈f1, f1〉 〈fn, f1〉 · · · 〈f3, f1〉 〈f2, f1〉

〈f2, f1〉 〈f1, f1〉 · · · 〈f4, f1〉 〈f3, f1〉
...

...
. . .

...
...

〈f(n−1), f1〉 〈f(n−2), f1〉 · · · 〈f1, f1〉 〈fn, f1〉

〈fn, f1〉 〈f(n−1), f1〉 · · · 〈f2, f1〉 〈f1, f1〉


= 〈f1, f1〉I + 〈f2, f1〉S + 〈f3, f1〉S2 + · · ·+ 〈fn, f1〉S(n−1),

where S =



0 0 0 · · · 0 0 1

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


.

Thus, we conclude that G = q(S) =
∑(n−1)

j=0 qjS
j with qj = 〈fj+1, f1〉. Hence, G

commutes with S. As S is the companion matrix for the polynomial xn−1, the

13
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characteristic polynomial for S is xn − 1. Therefore, the eignevalues of S are

the nth roots of unity e
2πil
n , 0 ≤ l ≤ (n− 1). For λ ∈ {e

2πil
n : 0 ≤ l ≤ (n− 1)},

if fλ is an eigenvector of S, then we have

Gfλ = q(S)fλ = q(λ)fλ

Thus, q(λ) is an eigenvalue of G with the same eigenvector fλ. Also, G is an

orthogonal projection onto a k-dimensional space, eigenvalues of G belong to

{0, 1}. Therefore, q(λ) ∈ {0, 1} and q(λ) = 1 for k of the nth roots of unity

and zero for others.

For a fixed input vector x ∈ H, we send the encoded coefficients through a noisy

channel and loose some of the coefficients. In the case of blind reconstruction, we need

to set these coefficients to zero and recover the vector from a subset of coefficients.

The norm of the difference of the vector and recovered vector is the reconstruction

error. Formally, we define the reconstruction error for one input vector as follows:

Definition 2.1.4. Let F be an (n, k)-frame for a real or complex Hilbert space H.

The reconstruction error for an input vector x ∈ H and an erasure of frame

coefficients with indices J = {j1, j2, . . . jm}, m ≤ n, is given by

‖V ∗EV x− x‖ = ‖(V ∗EV − I)x‖ = ‖V ∗DV x‖

where E is the diagonal n× n matrix with Ej,j = 0 if j ∈ J and Ej,j = 1 otherwise,

and D = I − E.

14
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Since the error is proportional to the norm of the input vector, we could use

the operator norm ‖V ∗DV ‖ as a measure for the worst case error among all inputs.

This has been investigated elsewhere [40, 12, 43]. In the following, we will define a

measure for average performance when the probabilities for erasures are known. We

average the square of the reconstruction error with the distribution of erasures and

input vectors. As a simple model, we have chosen a uniform measure on the unit

sphere in H for the input. We focus on a particular type of errors, the burst erasures.

We use the following notations, in order to define the mean-square reconstruction

error by taking the average of the difference of norms of each input vector and

recovered vector, where the average is taken over all the unit vectors:

Definition 2.1.5. Let Bm denote the set of diagonal n × n matrices with a block

(indices modulo n) of exactly m ≤ n diagonal entries equal to 0 and a block of n−m

diagonal entries equal to 1.

We also denote Dm = {D : D = I − E,E ∈ Bm}. To simplify expressions, we

write D(m) for the n × n matrix with D
(m)
j,j = 1 for 1 ≤ j ≤ m and zero elsewhere.

Then Dm = {(S∗)jD(m)Sj}nj=1.

Definition 2.1.6. Given an (n, k)-frame F for a Hilbert space H with analysis op-

erator V and a probability vector p = (p0, p1, . . . , pn), we define the mean-square

reconstruction error for burst erasures with length statistics p as

E(V, p) = pn +
n−1∑
m=1

pm
n

∑
D∈Dm

ˆ
‖Ω‖=1

‖V ∗DV Ω‖2dµ(Ω)

whereby µ denotes the uniform probability measure on the unit sphere in H. We will

later use the same definition and notation for the mean-square reconstruction error

15
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corresponding to some vector p = (p0, p1, . . . , pn) even if it is not a probability vector.

2.2 Computing the mean-square reconstruction

error

First, we show that the mean-square error is the square of a weighted Frobenius

norm of the Grammian. We also estimate the mean-square reconstruction error.

As preparation, we review a fact from representation theory.

Lemma 2.2.1. For any self-adjoint operator A on a real or complex Hilbert space

H of dimension k, ˆ
‖Ω‖=1

〈AΩ,Ω〉dµ(Ω) =
1

k
trA .

Proof. It is enough to show the claimed identity if A is a self-adjoint rank-one pro-

jection, because both sides of the equation are linear in A and any self-adjoint A can

be written as a sum of real multiples of mutually orthogonal rank-one projections.

To verify the claim for the rank one projection PΩ′ onto the space generated by a

fixed vector Ω′ ∈ H, we compute

ˆ
‖Ω‖=1

‖PΩ′Ω‖2dµ(Ω) =

ˆ
‖Ω‖=1

|〈Ω′,Ω〉|2dµ(Ω) (2.2)

in cylindrical coordinates. We first consider the case of a real Hilbert space. when Ω is

projected onto x = 〈Ω′,Ω〉, the measure µ induces a measure dµλ(x) = Aλ(1− x2)λ−
1
2dx

16
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with λ = k−2
2

on the interval [−1, 1] [52]. Thus, we have

1 =

ˆ
dµλ(x) =

ˆ 1

−1

Aλ(1− x2)λ−
1
2dx

= 2Aλ

ˆ 1

0

(1− x2)λ−
1
2dx

= Aλ

ˆ 1

0

(1− u)λ−
1
2u
−1
2 du

= Aλ

ˆ 1

0

u
1
2
−1(1− u)(λ+ 1

2
)−1du

= AλB

(
1

2
, λ+

1

2

)
By definition of beta function and Γ(1

2
) =
√
π , we obtain

Aλ
Γ(1

2
)Γ(λ+ 1

2
)

Γ(λ+ 1
2

+ 1
2
)

= 1

⇒ Aλ =
Γ(λ+ 1)√
πΓ(λ+ 1

2
)
.

17



2.2. COMPUTING THE MEAN-SQUARE RECONSTRUCTION
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Now, the integral in 2.2 becomes

ˆ
‖Ω‖=1

|〈Ω′,Ω〉|2dµ(Ω)

=

ˆ 1

−1

x2Aλ(1− x2)λ−
1
2dx

=
Γ(k

2
)

√
πΓ(k−1

2
)

ˆ 1

−1

x2(1− x2)
k−3
2 dx

=
Γ(k

2
)

√
πΓ(k−1

2
)
2

ˆ 1

0

x2(1− x2)
k−3
2 dx

=
Γ(k

2
)

√
πΓ(k−1

2
)

ˆ 1

0

u
1
2 (1− u)

k−3
2 du

=
Γ(k

2
)

√
πΓ(k−1

2
)

ˆ 1

0

u
3
2
−1(1− u)

k−1
2
−1du

=
Γ(k

2
)

√
πΓ(k−1

2
)
B

(
3

2
,
k − 1

2

)
=

Γ(k
2
)

√
πΓ(k−1

2
)

Γ(3
2
)Γ(k−1

2
)

Γ(k−1
2

+ 3
2
)

=
Γ(k

2
)

√
π

Γ(1
2

+ 1)

Γ(k
2

+ 1)

=
Γ(k

2
)

√
π

1
2
Γ(1

2
)

k
2
Γ(k

2
)

=

√
π√
πk

=
1

k

=
tr(PΩ′)

k
.

The integral for the case of a complex Hilbert space gives the same result because

H can be viewed as a real Hilbert space of twice the dimension and PΩ′ as the sum

of the two projections onto the real subspaces spanned by Ω′ and iΩ′.

In the following result, we express E(V, p) in terms of Frobenius norm of com-

pression of the Grammian using the above lemma and its definition.
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Theorem 2.2.2. Let H be a real or complex Hilbert space of dimension k and F an

(n, k)-frame for H with analysis operator V . Given a vector p = (p0, p1, . . . , pn) with

pm ≥ 0 for m ≥ 1, then

E(V, p) = pn +
1

k

n−1∑
m=1

pm
n

∑
D∈Dm

tr[(DGD)2] .

Proof. We observe that

‖V ∗DV Ω‖2 = 〈(V ∗DV )Ω, (V ∗DV )Ω〉 = 〈(V ∗DV )2Ω,Ω〉

and (V ∗DV )2 is self adjoint. From definition of mean-square reconstruction error

2.1.6 and applying the preceding lemma 2.2.1, we get

E(V, p) = pn +
n−1∑
m=1

pm
n

∑
D∈Dm

1

k
tr
[
(V ∗DV )2

]
.

Since tr(AB) = tr(BA), G = V V ∗ and D2 = D, we have

tr
[
(V ∗DV )2

]
= tr [V ∗DV V ∗DV ]

= tr [DV V ∗DV V ∗]

= tr [DD(V V ∗)DD(V V ∗)]

= tr [(DGD)(DGD)]

= tr
[
(DGD)2

]
Therefore, we have

E(V, p) = pn +
1

k

n−1∑
m=1

pm
n

∑
D∈Dm

tr
[
(DGD)2

]
.
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Since (tr[(DGD)2])1/2 is the Frobenius norm of the compression DGD of the

Grammian G, E(V, p) can be viewed as a generalized frame potential [23]. In

the following, we define the weights and express E(V, p) in terms of the weighted

Frobenius norm of the Grammian.

Definition 2.2.3. Let p = (p0, p1, . . . , pn) be a probability vector. The sequence of

weights associated to p is defined to be the sequence of an even, n-periodic sequence

{wj}j∈Z specified by its values for 0 ≤ j ≤ n/2,

wj =

n−j∑
l=j+1

(l − j)pl +
n∑

l=n−j+1

(2l − n)pl .

We will use the same definition and notation for the sequence of weights associated

to a vector p ∈ Rn even if it is not a probability vector.

Theorem 2.2.4. Given an (n, k)-frame F for a real or complex Hilbert space H and

a vector p = (p0, p1, . . . , pn), the resulting mean-square reconstruction error is given

by the square of the weighted Frobenius norm

E(V, p) =
1

kn

n∑
j,l=1

wj−l|Gj,l|2

of the Grammian G, where the sequence of weights {wi} are as in definition 2.2.3.

Proof. We recall that Dm = {(S∗)jD(m)Sj}nj=1 and the cyclic shift matrix S satisfies
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SS∗ = S∗S = I, where S is given by

S =



0 0 0 · · · 0 0 1

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


.

Thus, using tr(AB) = tr(BA), we have

1

n

∑
D∈Dm

tr[(DGD)2] =
1

n

n∑
j=1

tr[((S∗)jD(m)SjG(S∗)jD(m)Sj)2]

=
1

n

n∑
j=1

tr[(S∗)jD(m)SjG(S∗)jD(m)Sj(S∗)jD(m)SjG(S∗)jD(m)Sj]

=
1

n

n∑
j=1

tr[Sj(S∗)jD(m)SjG(S∗)jD(m)Sj(S∗)jD(m)SjG(S∗)jD(m)]

=
1

n

n∑
j=1

tr[D(m)SjG(S∗)jD(m)D(m)SjG(S∗)jD(m)]

=
1

n

n∑
j=1

tr[(D(m)SjG(S∗)jD(m))2] . (2.3)

We observe that if the vector p has only one non-zero entry pm with 1 ≤ m < n,

then the sum in the resulting formula for E(V, p) is of the form

1

kn

n∑
j=1

pm tr[(D(m)SjG(S∗)jD(m))2] =
1

kn

n∑
l,j=1

qj,l|Gj,l|2

with certain weights {qj,l}nj,l=1. This form is preserved under linear combinations of

pm’s. So, we need to find the weights applying to each |Gj,l|2. To compute them, we
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evaluate the square of the Frobenius norm or the Hilbert Schmidt norm for a matrix

unit El,l+d instead of G, for fixed l, d ∈ {1, 2, . . . , n}.

wd =
∑
m

pm

n∑
j=1

‖(D(m)SjEl,l+d(S
∗)jD(m))‖2

HS

=
∑
m

pm

n∑
j=1

m∑
p,q=1

(SjEl,l+d(S
∗)j)2

p,q

=
∑
m

pm

n∑
j=1

m∑
p,q=1

(El+j,l+d+j)
2
p,q .

Now using that the entries of the matrix unit are zero or one, (Ej,l)
2
p,q = (Ej,l)p,q for

any j, l ∈ {1, 2, . . . , n}, and that
∑n

j=1 S
jEl,l+d(S

∗)j = S−d, produces

wd =
∑
m

pm

n∑
j=1

m∑
p,q=1

(El+j,l+d+j)p,q

=
∑
m

pm

m∑
p,q=1

n∑
j=1

(SjEl,l+d(S
∗)j)p,q

=
∑
m

pm

m∑
p,q=1

(S−d)p,q

=
∑
m

pm

m∑
p,q=1

(S−d)2
p,q

=
∑
m

pm‖(D(m)S−dD(m))‖2
HS .

For 1 ≤ m ≤ n, we thus have

‖(D(m)S−dD(m))‖2
HS =

m∑
p,q=1

(S−d)p,q

=


0 if m ≤ d

(m− d) if d+ 1 ≤ m ≤ n− d

(2m− n) if n− d+ 1 ≤ m ≤ n

.
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2.2. COMPUTING THE MEAN-SQUARE RECONSTRUCTION
ERROR

Therefore, we get

wd =
n−d∑

m=d+1

(m− d)pm +
n∑

m=n−d+1

(2m− n)pm .

This concludes the proof.

Theorem 2.2.5. Let F and F̂ be (n, k) and (n, n− k)-frames for H and Ĥ respec-

tively and F̂ be complementary to F . If p = (p0, p1, · · · , pn) is a given vector, then

the resulting mean-square reconstruction error for F̂ is given by

E(V̂ , p) =
n− 2k

kn
w0 + E(V, p), (2.4)

where E(V, p) is as in Theorem 2.2.4.

Proof. Using Theorem 2.2.4, for (n, n− k)-frame F̂ the mean-square reconstruction

error is given by

E(V̂ , p) =
1

kn

n∑
j,l=1

wj−l|Ĝj,l|2 ,

where Ĝ is the Grammian for F̂ .

As Ĝ = I − G, we have |Ĝj,l| = |Gj,l| for all j 6= l and Ĝj,j = 1 − Gj,j = 1 − k

n
.

Thus, E(V̂ , p) is equal to

1

kn

n∑
j=1

w0

(
1− k

n

)2

+
1

kn

∑
j 6=l

wj−l|Gj,l|2

=
1

kn

n∑
j=1

w0

(
1− 2k

n
+
k2

n2

)
+

1

kn

∑
j 6=l

wj−l|Gj,l|2

=
1

kn

n∑
j=1

w0

(
1− 2k

n

)
+

1

kn

n∑
j,l=1

wj−l|Gj,l|2 .
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From the definition of E(V, p), the above expression reduces to

E(V̂ , p) =
n− 2k

kn
w0 + E(V, p) .

The Frobenius norm of DGD is also the Euclidean norm of the vector formed

by its eigenvalues. Therefore, it is equivalent to the operator norm and we could

estimate the worst-case reconstruction error when the frame coefficients are subjected

to some erasure in terms of the Frobenius norm. Furthermore, we could then derive

an estimate for the average of all worst-case reconstruction errors for given erasure

statistics. We focus exclusively on the mean-square reconstruction error.

2.3 Estimating the mean-square reconstruction

error

Now, we try to establish a lower bound and an upper bound for the mean-square

reconstruction error for an (n, k)-frame F . Using relation (2.4), we will then auto-

matically get these bounds for an (n, n− k)-frame F̂ , which is complementary to F .

We first estimate them in general and then focus on particular cases of interest.
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2.3.1 A lower bound for the mean-square reconstruction

error

In order to get a lower bound of E(V, p), we cyclically average the entries of the

Grammian. We show that by doing so, we only lower the mean-square reconstruction

error.

Proposition 2.3.1. For an (n, k)-frame with an analysis operator V and a proba-

bility vector p = (p0, p1, . . . , pn), the mean-square reconstruction error has the lower

bound

E(V, p) ≥ pn +
1

k

n−1∑
m=1

pmtr[(D(m)G̃D(m))2] ,

where the diagonal matrix D(m) has entries D
(m)
j,j = 1 for 1 ≤ j ≤ m and zero

elsewhere, and G̃ = 1
n

∑n
j=1 S

jG(S∗)j. Assuming all pm > 0 for 1 ≤ m ≤ n − 1,

then this inequality is saturated if and only if |〈fi, fj〉| = |〈fi+l, fj+l〉| for all i, j, l ∈ Z

(modulo n).

Proof. The inequality follows from an application of Jensen’s inequality to the convex

function g : A 7→ tr[A2] defined on the real vector space of all self-adjoint operators

{A ∈ B(H) : A = A∗} (See [54]) and theorem 2.2.2. Using the relation 2.3 and

averaging gives

1

n

∑
D∈Dm

tr[(DGD)2] =
1

n

n∑
j=1

tr[(D(m)SjG(S∗)jD(m))2]

≥ tr

[( 1

n

n∑
j=1

D(m)SjG(S∗)jD(m)
)2
]

= tr[(D(m)G̃D(m))2] .
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To characterize cases of equality, we observe that Jensen’s inequality is strict unless

tr[(DGD)2] depends only on m = trD, not the particular choice of D ∈ Dm.

We proceed by induction. For m = 1, the trace of all DGD is identical if and only

if there is c1 such that all ‖fj‖ = c1. Now suppose we have shown this for all entries

up to the (m − 1)-th super and subdiagonal. Comparing the Frobenius norms, we

get

tr[(D(m)GD(m))2 + (D(m−2)SGS∗D(m−2))2]

= 2|〈fm, f1〉|2 + tr[(D(m−1)GD(m−1))2 + (D(m−1)SGS∗D(m−1))2]

Repeating this for the cyclically shifted G and using the assumption shows that there

is a constant cm such that all |〈fj, fj+m−1〉| = cm.

2.3.2 A lower bound for cyclic frames

Although cyclic frames saturate this lower bound for the mean-square reconstruction

error, it is unclear whether there is always a cyclic frame among the minimizers.

Nevertheless, further below we focus on designing the best cyclic frames for given

erasure statistics. Even in this special case, there is no simple, explicit way known

to us to characterize the best frame. As a first step, we investigate how well a cyclic

frame could possibly perform. We prepare by examining convexity properties of the

weights.

Lemma 2.3.2. Let (p0, p1, . . . , pn) be a probability vector, and let the weights {wj}j∈Z

be as in the definition 2.2.3. Then the restriction of the sequence {wj} to indices
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0 ≤ j ≤ n/2 is convex and decreasing, that is, wj ≤ 1
2
(wj−1 + wj+1) and wj ≤ wj−1

for each 1 ≤ j ≤ n
2
− 1.

Proof. Let pl = 1 for a fixed l ∈ {1, 2, . . . n}. If l ≤ n/2, we have

wj =

 l − j, j ≤ l − 1

0, else

and if l ≤ n/2, we have

wj =

 l − j, j ≤ n− l

2l − n, else
.

In both cases, wj is convex and decreasing in j. Therefore, any convex combination

of such sequences, obtained by allowing more than one index l for which pl 6= 0, is

convex and decreasing.

Proposition 2. Let n be even, p be a probability vector and {wj} be the weights

associated to p. If E(Vmin, p) is the minimum of E(V, p), where the minimum is

taken over all cyclic (n, k)-frames, then

E(Vmin, p) ≥
1

n

[
k

n
w0 +

(
1− k

n

)
wn/2

]
.

Proof. First we note that for a cyclic (n, k)- frame F with Grammian G

k =
n∑

l,j=1

|Gj,l|2 . (2.5)

As Gj,j = k/n for each 1 ≤ j ≤ n, we have

n∑
l,j=1
l 6=j

|Gj,l|2 = k − nk
2

n2
=
k

n
(n− k) . (2.6)
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ERROR

We employ a variational argument. To this end, we define the set

G = {G : G = G∗G, trG = k,GS = SG} ,

containing the Grammians of all cyclic (n, k)-frames, and the larger set of n × n

matrices

G1 = {G = (Gl,j) : Gj,j = k/n,

n∑
l,j=1

|Gj,l|2 = k and GS = SG} .

Define f : G1 → R via

f(G) =
1

kn

n∑
j,l=1

wj−l|Gj,l|2 .

Using the fact that G ⊂ G1 and from definitions of f and E(Vmin, p), we conclude

that

E(Vmin, p) = min
G∈G

f(G) ≥ min
G∈G1

f(G) .

First we observe that relations (2.5) and (2.6) hold true for all G ∈ G1 as well. As

{wj} is convex and decreasing for 0 ≤ j ≤ n/2, the minimum value of f(G) is

attained at G ∈ G1 satisfying G(n/2+j)(mod n),j = α for some fixed α and 1 ≤ j ≤ n,

and all other off-diagonal entries zero. Using the above relations (2.5) and (2.6) for

this G, we get

k = n
k2

n2
+ n|α|2 .

This gives us

n|α|2 =
k

n
(n− k)

and the value of f(G) is given by

f(G) =
1

kn

[
n
k2

n2
w0 + n|α|2wn/2

]
=

1

n

[
k

n
w0 +

(
1− k

n

)
wn/2

]
.
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Hence, we obtain

E(Vmin, p) ≥
1

n

[
k

n
w0 +

(
1− k

n

)
wn/2

]
.

2.3.3 An upper bound for the mean-square reconstruction

error

A different convexity argument gives an upper bound for E(V, p). The idea is to

replace the probability vector for the burst lengths by another vector p̃ such that

the weights can only increase. In the special case of a transmission that erases no

coefficients, approximately half, or all of the coefficients, this estimate is saturated

under certain conditions.

Theorem 2.3.3. Let F be an (n, k)-frame with analysis operator V on a real or

complex Hilbert space. Let (p0, p1, . . . , pn) be a probability vector, and let the weights

{wj}j∈Z be defined as in Definition 2.2.3. If n is even, then there exists a probability

vector p̃ with p̃j = 0 for all j /∈ {0, n/2, n} such that w̃0 = w0, w̃n/2 = wn/2. If n

is odd, then there exists a vector p̃ with p̃j = 0 for all j /∈ {0, (n − 1)/2, n} and
n∑
j=0

p̃j = 1 such that w̃0 = w0 and w̃(n−1)/2 = w(n−1)/2, where {w̃j}j∈Z is the sequence

of weights associated to p̃. Moreover, in both cases,

E(V, p) ≤ E(V, p̃) . (2.7)

Proof. We first consider even n. Define p̃ by p̃n/2 =
2

n
(w0 − wn/2), p̃n =

1

n
wn/2, p̃0 =

1 − p̃n/2 − p̃n and p̃j = 0 for all j /∈ {0, n/2, n}. As w0 ≥ wn/2 and wn/2 ≥ 0 , we
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conclude that p̃n/2 ≥ 0 and p̃n ≥ 0. From the definition of p̃, we verify that the

weights associated with p̃ satisfy w̃0 = n
2
p̃n/2 + np̃n = w0 and w̃n/2 = np̃n = wn/2.

Now, we need to show that vector p̃ is a probability vector. From the definition, we

have

p̃n/2 + p̃n = 2
w0

n
− 1

n
wn/2

=
1

n

[
2p1 + 4p2 + · · ·+ npn

2
+ np(n

2
+1) + · · ·+ npn

]
≤ 1

n
[np1 + np2 + · · ·+ npn]

=
n∑
l=1

pl ≤ 1.

Thus p̃ is a probability vector. As w̃0 = w0, w̃n/2 = wn/2 and the sequence {w̃j}j∈Z

restricted to 0 ≤ j ≤ n/2 is linear in j and is a convex combination of w̃0 and w̃n/2,

so by the convexity from Lemma 2.3.2, wj ≤ w̃j for all j ∈ Z Therefore, by definition,

we obtain

E(V, p) ≤ E(V, p̃) .

For n being odd, we define p̃ by p̃(n−1)/2 =
2

n− 1
(w0 − w(n−1)/2), p̃n =

1

n
w(n−1)/2,

p̃0 = 1− p̃(n−1)/2 − p̃n and p̃j = 0 for all j /∈ {0, (n− 1)/2, n}. From the definition of

p̃, we have w̃0 =
n− 1

2
p̃(n−1)/2 + np̃n = w0 and w̃(n−1)/2 = np̃n = w(n−1)/2.

Again, in this case, the sequence {w̃j}j∈Z restricted to 0 ≤ j ≤ (n− 1)/2 is linear

in j and is a convex combination of w̃0 and w̃(n−1)/2, so by the convexity from the

Lemma 2.3.2, wj ≤ w̃j for all j ∈ Z and hence

E(V, p) ≤ E(V, p̃) .
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Now, we examine the conditions under which equality in (2.7) holds in the above

theorem. The following theorem states a necessary and sufficient condition for the

equality in (2.7).

Theorem 2.3.4. Let n be a positive integer and p and p̃ be as in Theorem 2.3.3.

A necessary and sufficient condition for E(V, p) = E(V, p̃) for all (n, k)-frames with

analysis operator V is pi = p̃i for 1 ≤ i ≤ n. Moreover, when n is odd, p̃ is a

probability vector if
(n−1)/2∑
l=0

(n− 1− 2l)pl ≥
n∑

l=(n+1)/2

pl .

Proof. If pi = p̃i for 1 ≤ i ≤ n, then wi = w̃i. Therefore, by definition, for any

(n, k)-frame with analysis operator V , we have

E(V, p) = E(V, p̃) .

Conversely, if E(V, p) = E(V, p̃), then using Theorem 2.2.4, we have

1

kn

n∑
j,l=1

(w̃j−l − wj−l) |Gj,l|2 = 0 . (2.8)

From Theorem 2.3.3, we know that w̃i ≥ wi for each i and therefore, from relation

(2.8), we conclude that w̃j−l = wj−l whenever |Gj,l| 6= 0. As E(V, p) = E(V, p̃) for

any (n, k)-frame with analysis operator V and corresponding Grammian G, we can

always find one such G such that for fixed 1 ≤ j, l ≤ n, |Gj,l| 6= 0 and therefore, we

have w̃i = wi for each i ∈ Z. Hence, we conclude that pj = p̃j for all 1 ≤ j ≤ n.

From definition of p̃n and p̃(n−1)/2 as in the proof of Theorem 2.3.3 both are non-

negative. For p̃ to be a probability vector, it is enough to have p̃n + p̃(n−1)/2 ≤ 1.
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We have

p̃n + p̃(n−1)/2 =
1

n− 1

[
2w0 −

n+ 1

n
w(n−1)/2

]
≤ 1

n− 1

[
2w0 − w(n−1)/2

]
=

1

n− 1

2
n∑
l=1

lpl −
n∑

l=(n+1)/2

(2l − n)pl


=

1

n− 1

(n−1)/2∑
l=1

2lpl +
n∑

l=(n+1)/2

(2l − 2l + n)pl


=

1

n− 1

(n−1)/2∑
l=1

2lpl +
n∑

l=(n+1)/2

npl


=

n∑
l=0

pl +
1

n− 1

 n∑
l=(n+1)/2

pl −
(n−1)/2∑
l=0

(n− 1− 2l)pl


As

n∑
l=0

pl = 1, we conclude that if

(n−1)/2∑
l=0

(n− 1− 2l)pl ≥
n∑

l=(n+1)/2

pl ,

then p̃n + p̃(n−1)/2 ≤ 1.

2.3.4 An upper bound for cyclic frames

The next result focuses on cyclic (n, k)-frames. From proposition 1, we know that

if F is a cyclic frame for H, then the Grammian is a polynomial of the cyclic shift,

G = q(S), where q(z) = q0+q1z+· · ·+qn−1z
n−1, z ∈ C with qj = 〈fj+1, f1〉 = G1,(j+1)

and q assumes the value one at k of the n-th roots of unity and the value zero at the
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others. Similarly, we define w(z) = w0 + w1z + . . . wn−1z
n−1. We show that E(V, p)

can be expressed in terms of sum of evaluations of the polynomial w(z) for finite

number of z on the unit circle.

Proposition 2.3.5. Let F be a cyclic (n, k)-frame, with Grammian G = q(S) and

q(e2πij/n) = 1 for j ∈ K ⊂ {1, 2, . . . n}, |K| = k. Let p = (p0, p1, . . . , pn) be a

vector with pj ≥ 0 for 1 ≤ j ≤ n and {wj} the sequence of associated weights as in

definition 2.2.3, then

E(V, p) =
1

kn2

∑
j,l∈K

w(e2πi(j−l)/n) .

Proof. This follows from the Plancherel theorem and the convolution theorem for

the Discrete Fourier Transform.

For cyclic frames, we know that Gi,j = Gi+l,j+l for all 1 ≤ i, j, l ≤ n (where sum

is taken modulo n). Thus, we have

E(V, p) =
1

kn

n∑
t,l=1

wt−l|Gt,l|2 =
1

k

n−1∑
j=0

wj|G(j+1),1|2

=
1

k

n−1∑
j=0

wj|qj|2 =
1

k

n−1∑
j=0

wjqj q̄j .

Let α = (w1q1, · · · , wnqn)T , β = (q1, · · · , qn)T , γ = (w1, · · · , wn)T and α̂, β̂, γ̂ be

their Fourier transforms respectively. Using the Plancherel Theorem and convolution
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theorem, the above relation reduces to

E(V, p) =
1

k
〈α, β〉

=
1

kn
〈α̂, β̂〉

=
1

kn
〈 1
n
γ̂ ∗ β̂, β̂〉

=
1

kn2

n∑
j=1

(w ∗ q)(e2πij/n)q(e2πij/n)

As q(e2πij/n) = 1 whenever j ∈ K and 0 otherwise, we have

E(V, p) =
1

kn2

∑
j∈K

(w ∗ q)(e2πij/n)

=
1

kn2

∑
j∈K

n∑
l=1

w(e2πi(j−l)/n)q(e2πil/n)

=
1

kn2

∑
j,l∈K

w(e2πi(j−l)/n) .

Consequently, to design an optimal cyclic frame, we want to find the set K

containing indices for which the average of the pair potential w(e2πi(j−l)/n) over all

j, l ∈ K, is minimized. In principle, this can be done by an exhaustive search. In

order to obtain an analytic result, we could consider special cases for the probability

vector. Another possibility is to estimate the associated weights {wj} and minimize

the bound for the resulting error. We consider using the previously obtained upper

bound E(V, p) ≤ E(V, p̃). In preparation to finding out what choice of K will give rise

to the minimum value of E(V, p̃) in the case of cyclic frame, we prove the following

lemma.
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Lemma 2.3.6. Let k ≤ n/2 and L = {β1, β2, · · · , βk} ⊂ S = {1, 2, · · · , 2n} with

βl+1 = βl + 2 for all 1 ≤ l ≤ k− 1. Let M = {α1, α2, · · · , αk} be any subset of S with

αl − αj ∈ 2Z for all 1 ≤ l, j ≤ k.

Let f : 2Z→ R be a symmetric increasing function, then,

k∑
l,j=1

f(βl − βj) ≤
k∑

l,j=1

f(αl − αj).

Proof. Without loss of generality, we may assume that αm+1 ≥ αm for 1 ≤ m ≤ k−1.

As αm+1 − αm ∈ 2Z, there exists cm ∈ N such that αm+1 = αm + 2cm. Thus, for

1 ≤ m ≤ k, αm+1 = α1 + 2(c1 + c2 + · · ·+ cm−1). Therefore, for l > j, we have

αl − αj = [α1 + 2(c1 + c2 + · · ·+ cl−1)]− [α1 + 2(c1 + c2 + · · ·+ cj−1)]

= 2(cj + cj+1 + · · ·+ cl−1)

≤ 2(l − j) = βl − βj.

As f is symmetric increasing, we have

k∑
l,j=1

f(βl − βj) ≤
k∑

l,j=1

f(αl − αj) .

We now describe how to choose K ⊂ {1, 2, · · · , n} with |K| = k such that E(V, p̃)

is minimized and give the minimum values.

Theorem 2.3.7. Let p = (p0, p1, p2, . . . , pn) be a probability vector. For n even and

k ≤ n/2, a cyclic (n, k)-frame F with Grammian G = q(S) and q(e2πij/n) = 1 for

j ∈ K ⊂ {1, 2, . . . , n} with |K| = k, minimizes the upper bound E(V, p̃) for the mean-

square error given by Theorem 2.3.3 if and only if any two elements of K have an
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even difference. For n even and k ≥ n/2, the frame minimizes the upper bound

if and only if any two elements of the complement {1, 2, . . . , n} \ K have an even

difference. For odd n and k < n/2, a cyclic (n, k)-frame F minimizes the upper

bound E(V, p̃) if and only if K is formed by a sequence of evenly spaced numbers,

with a difference of two modulo n for each consecutive pair. For odd n and k > n/2,

the frame minimizes the upper bound if and only if the complement {1, 2, . . . , n} \K

is formed by a sequence of evenly spaced numbers, with a difference of two modulo n

for each consecutive pair.

Proof. To evaluate E(V, p̃), we use the fact that the sequence {w̃j} is piecewise linear.

In preparation for the following, we denote the l-th Dirichlet kernel by

D(θ, l) =
sin(lθ/2)

sin(θ/2)
, θ ∈ [0, 2π) .

We recall the Bartlett window sequence. If n is even, we define the sequence

{bj : −n/2 ≤ j ≤ n/2} by

bj = 1−
∣∣2j
n

∣∣,
which gives the polynomial

b(eiθ) =

n/2∑
j=−n/2

bje
ijθ =

2

n
D2
(
θ,
n

2

)
.

If n is odd, we let

bj = 1−
∣∣ 2j

n− 1

∣∣ for − (n− 1)/2 ≤ j ≤ (n− 1)/2,

which gives

b(eiθ) =

(n−1)/2∑
j=−(n−1)/2

bje
ijθ =

2

n− 1
D2

(
θ,
n− 1

2

)
.
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Then for even n and 0 ≤ j ≤ n/2, we have

w̃j =
(n

2
− j
)
p̃n/2 + np̃n

=

(
1− 2j

n

)
(w0 − wn/2) + wn/2

= wn/2 + bj(w0 − wn/2) .

For l ∈ {0, 1, · · · , n− 1}, using the definition of w̃(z) and w̃j, we have

w̃(e2πil/n) =
n∑
j=0

w̃je
2πilj/n

=

n/2−1∑
j=−n/2+1

w̃je
2πilj/n + w̃n/2e

πil

=

n/2−1∑
j=−n/2+1

(
wn/2 + bj(w0 − wn/2)

)
e2πilj/n + wn/2e

πil

= (w0 − wn/2)

n/2∑
j=−n/2

bje
2πilj/n + wn/2

eπil +

n/2−1∑
j=−n/2+1

e2πilj/n


= (w0 − wn/2)

2

n
D2
(

2πl/n,
n

2

)
+ wn/2D(2πl/n, n) .

In order to minimize E(V, p̃) =
1

kn2

∑
j,l∈K

w̃(e2πi(j−l)/n), we must suppress the contri-

bution from summing over all j 6= l because that from j = l does not depend on the

particular choice of K with |K| = k.

If n is even and k ≤ n/2, we observe that D2(2πj/n, n/2) = 0 if j ∈ 2Z \ {0}

and is otherwise strictly positive. Therefore, if all pairs of indices j, l ∈ K have even

differences, then we achieve the minimum and the minimum is given by

E(Ṽmin, p̃) =
1

kn2

[
knwn/2 +

2

n
(w0 − wn/2)k

(n
2

)2
]

=
1

2n

[
wn/2 + w0

]
.
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If n is even and k ≥ n/2, then n − k ≤ n/2. Thus, treating n − k as new k in the

above argument gives the desired result. This concludes the case of even n.

Now, for odd n and 0 ≤ j ≤ n/2, we have

w̃j =

(
n− 1

2
− j
)
p̃(n−1)/2 + np̃n

=

(
n− 1

2
− j
)

2

n− 1
(w0 − w(n−1)/2) + w(n−1)/2

=

(
1− 2j

n− 1

)
(w0 − w(n−1)/2) + w(n−1)/2

= bj(w0 − w(n−1)/2) + w(n−1)/2 .

For l ∈ {0, 1, · · · , n− 1}, we have

w̃(e2πil/n) =
n∑
j=0

w̃je
2πilj/n

=

(n−1)/2∑
j=−(n−1)/2

{
bj(w0 − w(n−1)/2) + w(n−1)/2

}
e2πilj/n

= (w0 − w(n−1)/2)
2

n− 1
D2

(
2πl/n,

n− 1

2

)
+ w(n−1)/2D(2πl/n, n).

To address the case of odd n, we embed the set K + nZ in Z. We partition

K + nZ = K1 ∪ K2 such that there are only even differences between all pairs of

elements taken from either K1 or K2, and odd differences between pairs that contain

elements from both sets. Then, since n is odd, K1 + n = K2.

For j ∈ Z, we have

sin2

(
(n− 1)

4

2π

n
j

)
= sin2

(
πj

2
− πj

2n

)
=

 sin2( π
2n
j), if j even

cos2( π
2n
j), if j odd

.
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Therefore, for j 6= 0, we have

D2(2πj/n, (n− 1)/2) =


sin2( π

2n
j)

sin2(π
n
j)
, if j even

cos2( π
2n
j)

sin2( π
2n
j)
, if j odd

=


1
4
sec2( π

2n
j), if j even

1
4
csc2( π

2n
j), if j odd

.

Thus, for an odd j, we have

D2(2πj/n, (n− 1)/2) =
1

4
csc2

( π
2n
j
)

=
1

4
sec2

( π
2n

(n− j)
)

= D2(2π(n− j)/n, (n− 1)/2)

Therefore, we conclude that

∑
j,l∈K

w̃(e2πi(j−l)/n) =
∑
j,l∈K̃1

w̃(e2πi(j−l)/n) ,

where K̃1 = K1 ∩ S and S = {0, 1, · · · , 2n− 1, 2n}.

In this case, all differences between j, l ∈ K̃1 are even, and so w̃(e2πi(j−l)/n) is

symmetric increasing in j − l ∈ 2Z .

We consider rearrangements among the set of numbers in {1, 2, . . . , 2n}∩ (K1 + 2Z).

Using Lemma 2.3.6, we obtain that the sum
∑
j,l∈K̃1

w̃(e2πi(j−l)/n) is minimal if the

rearranged K̃1 consists of evenly spaced numbers, with a difference of two modulo

2n for each consecutive pair.
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Now we identify points in K̃1 which differ by n and thus map this set onto K, to

get the minimizers for the mean-square error.

From the above and from Theorem 2.2.5, we infer that if a frame F̂ with analysis

operator V̂ is complementary to an (n, k)-frame F , then it is a minimizer of E(V̂ , p)

among all cyclic (n, n − k)-frames if and only if F is a minimzier among all cyclic

(n, k)-frames. From the characterization of minimizers when k ≤ n/2 we thus obtain

the minimizers if k ≥ n/2.

Remark 2.3.8. As pointed out in the literature, frames can be viewed as codes over

the real or complex numbers [49, 8]. If k ≥ n/2 and if it is relatively prime to

n, then an (n, k)-frame F which minimizes the upper bound for the mean-square

reconstruction error is a complex BCH code as defined in [49]. The performance of

these codes in the context of active error correction has already been investigated in

previous works [56, 57, 58].

2.3.5 An improved upper bound

Earlier we used a convexity argument and replaced the probability vector for the

burst lengths by another vector p̃ to get an upper bound for E(V, p). Now, we

use a similar argument to get an improved upper bound in the case when n is a

multiple of 2m for some fixed m. We consider the case of a transmission that erases

no coefficients, n/2m coefficients, n/2m−1 coefficients, · · · , n/2 coefficients, or all of

the coefficients. We obtain an upper bound for E(V, p) by replacing the probability

vector p by another vector p̃ with p̃j = 0 if j /∈ {0, n/2m, n/2m−1, · · · , n/2, n} and
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pj ≥ 0 for 1 ≤ j ≤ n so that the weights w̃j can not decrease.

Theorem 2.3.9. Let F be an (n, k) frame with analysis operator V . Let n be a mul-

tiple of 2m and p = (p0, p1, · · · , pn) be a probability vector. Then there exists a vector

p̃ = (p̃0, p̃1, · · · , p̃n) with pj = 0 for j /∈ {0, n/2m, n/2m−1, · · · , n/4, n/2, n}, pj ≥ 0

for 1 ≤ j ≤ n and satisfying p̃0 = 1 −
n∑
j=1

p̃j such that the associated sequence of

weights {wj} and {w̃j} agree for the indices j ∈ {0, n/2m, n/2m−1, · · · , n/4, n/2}

when 0 ≤ j ≤ n/2, and

E(V, p) ≤ E(V, p̃) .

Proof. We define p̃j = 0 for j /∈ {0, n/2m, n/2m−1, · · · , n/4, n/2, n}. By the definition

of the weights w̃j associated to the vector p̃, we obtain the following: for 2 ≤ t ≤ m

and n/2t ≤ j ≤ n/2(t−1) − 1,

w̃j =
( n

2(t−1)
− j
)
p̃n/2(t−1) +

( n

2(t−2)
− j
)
p̃n/2(t−2) + · · ·+

(n
2
− j
)
p̃n/2 + np̃n ,

for 0 ≤ j ≤ n/2m − 1,

w̃j =
( n

2m
− j
)
p̃n/2m +

( n

2m−1
− j
)
p̃n/2m−1 + · · ·+

(n
2
− j
)
p̃n/2 + np̃n .

and w̃n/2 = np̃n.

Now, defining w̃j = wj for j ∈ {0, n/2m, n/2m−1, · · · , n/4, n/2}, we obtain that

for 1 ≤ t ≤ m,

wn/2t = np̃n + n
t−1∑
l=1

(
1

2t−l
− 1

2t

)
p̃n/2t−l

and

w0 = n
m∑
l=0

1

2m−l
p̃n/2m−l .

41



2.3. ESTIMATING THE MEAN-SQUARE RECONSTRUCTION
ERROR

From the above equations, we obtain p̃n =
1

n
wn/2 and p̃n/2 = 4

n
(wn/4 − wn/2). For

2 ≤ t ≤ m− 1, we consider the following expression

α(t) = 2t+1wn/2n+1 − 3(2)twn/2t + 2twn/2n−1 .

Using the definition of wj’s and simplifying, we get

α(t) = n

[
t∑
i=1

(2i − 1)p̃n/2t+1−i − 3
t−1∑
i=1

(2i − 1)p̃n/2t−i + 2
t−2∑
i=1

(2i − 1)p̃n/2t−1−i

]
.

By changing the indexing in the first and third term of the above expression, we

obtain

α(t) = n

[
t−1∑
i=0

(2i+1 − 1)p̃n/2t−i − 3
t−1∑
i=1

(2i − 1)p̃n/2t−i + 2
t−1∑
i=2

(2i−1 − 1)p̃n/2t−i

]
.

Combining the coefficients of p̃n/2t−i and simplifying, we get α(t) = np̃n/2t and there-

fore,

p̃n/2t =
2t

3n

(
2

3
wn/2t+1 − wn/2t +

1

3
wn/2t−1

)
for all 2 ≤ t ≤ m− 1.

To find p̃n/2m , we consider the expression α0 = 2mw0 − 2m+1wn/2m + 2mwn/2m−1 .

Again, using the definition of wj and simplifying, we get

α0 = n

[
m−1∑
i=0

2ip̃n/2m−i − 2
m−1∑
i=1

(2i − 1)p̃n/2m−i + 2
m−2∑
i=1

(2i − 1)p̃n/2m−1−i

]
.

By changing the indexing in the third term of the above expression and then com-

bining the coefficients of p̃n/2m−i , we obtain α0 = np̃n/2m . Therefore, p̃n/2m =

2m+1

n

(
1

2
w0 − wn/2m +

1

2
wn/2m−1

)
.

As wj is non-negative, decreasing and convex in j for 0 ≤ j ≤ n/2 (Lemma 2.3.2),

we conclude that p̃n/2t ≥ 0 for all 0 ≤ t ≤ m. Finally, define p̃0 = 1 −
n∑
j=1

p̃j. As

42



2.3. ESTIMATING THE MEAN-SQUARE RECONSTRUCTION
ERROR

wj ≥ w(j+1) for all 0 ≤ j ≤ (n/2 − 1) , we conclude that p̃j ≥ 0 for all 1 ≤ j ≤ n.

Now, as

E(V, p) =
1

kn

n∑
j,l=1

wj−l|Gj,l|2,

it is enough to show that wj ≤ w̃j for each 0 ≤ j ≤ n/2.

Now, we denote n/2m by r. We observe that w̃j is linear in j on [0, r] and on

[2tr, 2t+1r] for each fixed 0 ≤ t ≤ m− 2. As w̃0 = w0, w̃r = wr and wj is decreasing

and convex in j(from Lemma 2.3.2), we conclude that w̃j ≤ wj for all 0 ≤ j ≤ r.

A similar argument shows that for any fixed 0 ≤ t ≤ m − 2, w̃j ≤ wj for all

2tr ≤ j ≤ 2t+1r. This proves the theorem.

Again, we examine the special case of a cyclic (n, k)-frame F , with Grammian G =

q(S) with q(e2πij/n) = 1 for j ∈ K ⊂ {0, 1, 2, . . . n − 1}, |K| = k and q(e2πij/n) = 1

for j ∈ {0, 1, 2, . . . n− 1} \K .

Lemma 2.3.10. Let F be a cyclic (n, k) frame with Grammian G = q(S), where S

is the shift matrix. Let p̃ be as in Theorem 2.3.9. Then for any fixed 0 ≤ l ≤ n− 1,

w̃(e2πil/n) = p̃n/2mD
2(2πl/n, n/2m) + p̃n/2m−1D2(2πl/n, n/2m−1) + · · ·

+ p̃n/2D
2(2πl/n, n/2) + np̃nD(2πl/n, n).

Proof. For notational convenience, we abbreviate ∆t,j = n
2t
− |j|. For fixed 0 ≤ l ≤

n− 1, using the definition of w̃j, we have
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w̃(e2πil/n) =
n∑
j=0

w̃je
2πilj/n

=

j=n/2−1∑
j=−n/2+1

w̃je
2πilj/n + w̃n/2e

πil

=

j=n/2m−1∑
j=−n/2m+1

∆m,j p̃n/2me
2πilj +

j=n/2m−1−1∑
j=−n/2m−1+1

∆m−1,j p̃n/2m−1e2πilj+

· · ·+
j=n/2−1∑
j=−n/2+1

∆1,j p̃n/2e
2πilj + np̃n

1 +

j=n/2−1∑
j=−n/2+1

e2πilj


= p̃n/2mD

2(2πl/n, n/2m) + p̃n/2m−1D2(2πl/n, n/2m−1) + · · ·

+ p̃n/2D
2(2πl/n, n/2) + np̃nD(2πl/n, n) .

Theorem 2.3.11. If k ≤ n/2m and p̃ is as in Theorem 2.3.9, then a cyclic (n, k)-

frame F with Grammian G = q(S) and frequency support K, q(e2πij/n) = 1 for

j ∈ K ⊂ {0, 1, 2, · · · , n − 1}, minimizes the upper bound E(V, p̃) if and only if each

pair j, l ∈ K, j 6= l, satisfies (j − l) ∈ 2mZ \ {0}. If k ≥ n − n/2m, then F

minimizes the upper bound if and only if each pair j, l ∈ {1, 2, . . . , n} \ K, j 6= l,

satisfies (j − l) ∈ 2mZ \ {0}. Moreover, in the case of k ≤ n/2m, there exists an

optimal frame with analysis operator Ṽmin which achieves the minimum value of the

mean-square error given by

E(Ṽmin, p̃) =
1

n2m

[
w0 + 2wn/2m + 2m−2wn/2 + 3

m−2∑
l=1

2l−1wn/2m−l

]
.

If k ≥ n− n/2m, then we have an optimal frame with analysis operator Ṽmin and

E(Ṽmin, p̃) =
1

n2m

[(
2m
n− 2k

k
+ 1
)
w0 + 2wn/2m + 2m−2wn/2 + 3

m−2∑
l=1

2l−1wn/2m−l

]
.
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Proof. We have

E(V, p̃) =
1

kn2

∑
j,l∈K

w̃(e2πi(j−l)/n)

In order to minimize E(V, p̃), we must minimize the contributions from j 6= l as

the contribution from j = l does not depend on what K we pick with |K| =

k. From above Lemma, we observe that w̃(e2πi(j−l)/n) is minimized if D2(2π(l −

j)/n, n/2m) = 0, D2(2π(l − j)/n, n/2m−1) = 0, · · · , D2(2π(l − j)/n, n/4) = 0 and

D2(2π(l − j)/n, n/2) = 0, and this happens if (l − j) ∈ 2mZ \ {0}. Therefore, if we

pick K in such a way that each pair j, l ∈ K, j 6= l is such that (j − l) ∈ 2mZ \ {0},

then E(V, p̃) is minimized.

If k ≥ n − n/2m, then we have n − k ≤ n/2m. Choosing n − k as new k in the

above arguments, we obtain the result in this case.

Moreover, in the case of k ≤ n/2m minimum value of E(V, p̃) is given by

E(Ṽmin, p̃) =
1

kn2

[
p̃n/2mk

( n
2m

)2

+ p̃n/2m−1k
( n

2m−1

)2

+ · · ·+ p̃n/2k
(n

2

)2

+ nknp̃n

]
=

1

22m

[
m∑
l=0

22lp̃n/2m−l

]
.

Substituting the values of p̃n/2m−l for 1 ≤ l ≤ m − 2 in the above expression and

simplifying, we obtain

E(Ṽmin, p̃) =
1

n2m

[
n

2m
p̃n/2m +

m−2∑
l=1

2l+1wn/2m−l+1 − 3
m−2∑
l=1

2lwn/2m−l

+
m−2∑
l=1

2lwn/2m−l−1 + n2(m−2)p̃n/2 + n2mp̃n

]
.

Plugging the values of p̃n/2m , p̃n/2, p̃n and changing the indexing in the first and third
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sums in the above expression, we get

E(Ṽmin, p̃) =
1

n2m

[
w0 − 2wn/2m + wn/2m−1 +

m−3∑
l=0

2l+2wn/2m−l − 3
m−2∑
l=1

2lwn/2m−l

+
m−1∑
l=2

2l−1wn/2m−l + 2m(wn/4 − wn/2) + 2mwn/2

]
.

Combining the coefficients of wn/2m−t for 0 ≤ t ≤ m and simplifying them, we obtain

E(Ṽmin, p̃) =
1

n2m

[
w0 + 2wn/2m + 2m−2wn/2 + 3

m−2∑
l=1

2l−1wn/2m−l

]
.

Using the identity for complementary frames in Theorem 2.2.5, we deduce from the

formula for k ≤ n/2m the corresponding expression for the minimal mean-square

error when k ≥ n− n/2m.

2.3.6 Accuracy of the upper bound for cyclic (n, k)-frames

We observe that Theorem 2.3.11 is concerned with a minimizer for E(V, p̃), which

resulted from modifying the burst-length statistics to obtain an upper bound for the

mean-square error. Next, we want to compare the performance of this minimizer

with the unmodified statistics given by p.

Let E(Vmin, p) be the minimum of E(V, p), where the minimum is taken over

all V belonging to cyclic (n, k)-frames. In the case of a cyclic (n, k)-frame, from

Theorem 2.3.11, the minimum of E(V, p̃) is given by

E(Ṽmin, p̃) =
1

n2m

[
w0 + 2wn/2m + 2m−2wn/2 + 3

m−2∑
l=1

2l−1wn/2m−l

]
.

As E(Vmin, p) ≤ E(V, p) and E(V, p) ≤ E(V, p̃) ( from Theorem 2.3.9) for any fixed

46



2.3. ESTIMATING THE MEAN-SQUARE RECONSTRUCTION
ERROR

V , we conclude that E(Vmin, p) ≤ E(Ṽmin, p). We now obtain an upper bound for

E(Ṽmin, p)− E(Vmin, p).

Theorem 2.3.12. Let p and p̃ be as in Theorem 2.3.9. If Vmin and Ṽmin are as

defined above, then

E(Ṽmin, p)− E(Vmin, p) ≤
n− k
n2

(
w1 − wn/2

)
.

Proof. Let G̃ and G be the Grammian for the frames with analysis operators Ṽmin

and Vmin respectively. Using G̃j,j = Gj,j for 1 ≤ j ≤ n, we obtain

E(Ṽmin, p)− E(Vmin, p) =
1

kn

n∑
l,j=1

wl−j

[
|G̃j,l|2 − |Gj,l|2

]
=

1

kn

n∑
l,j=1
l 6=j

wl−j

[
|G̃j,l|2 − |Gj,l|2

]

≤ 1

kn

 ∑
l,j

|G̃j,l|≥|Gj,l|

w1

(
|G̃j,l|2 − |Gj,l|2

)

+
∑
l,j

|G̃j,l|<|Gj,l|

wn/2

(
|G̃j,l|2 − |Gj,l|2

)
=

1

kn

[
wn/2

n∑
l,j=1

(
|G̃j,l|2 − |Gj,l|2

)

+
∑
l,j

|G̃j,l|≥|Gj,l|

(w1 − wn/2)
(
|G̃j,l|2 − |Gj,l|2

) .
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Using relations (2.5) and (2.6) in the above expression, we get

E(Ṽmin, p)− E(Vmin, p) ≤
1

kn
(w1 − wn/2)

n∑
l,j=1
l 6=j

|G̃j,l|2 =
n− k
n2

(
w1 − wn/2

)
.

2.3.7 Example: packetization and burst lengths

We examine a particular case in which the burst-length statistics depend on just

one parameter β ∈ [0, 1]. This parameter is related to transition probabilities in

a two-state Markov model for the transmission channel, see [64]. The two states

correspond to a frame coefficient being erased or being perfectly transmitted. Given

that a coefficient is erased, then the conditional probability of the following coefficient

being erased is β.

The problem we wish to consider is the transmission of a sequence of vectors

in terms of packets of size n, given by the frame coefficients corresponding to each

vector. If the packet/frame size were infinite, then a geometric distribution for

burst lengths would ensue. To obtain the mean-square reconstruction error in the

finite-length case, we compute the effective distribution of the burst lengths inside

each packet. For simplicity, we eliminate a trivial dependence and assume that the

probability of a burst occurring within each packet is equal to one. If packetization is

ignored, then it is natural to assume that each position in a sequence of transmitted

frame coefficients should have the same probability for being the starting point of a

burst. Partitioning the sequence into consecutive packets of a given length leads to an
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effective distribution in which the first position in a packet has a higher probability

of being the starting point compared to the others. On the other hand, the fixed

packet size effectively truncates long bursts.

The length statistics of the truncated bursts depends on their starting point

within a packet. Let {Xt : t ∈ {1, 2, · · · , n}} be a sequence of integer-valued random

variables such that the value r ∈ {1, 2, . . . , n} is assumed with probability

P (Xt = r) =


(1− β)βr−1, r < n− t+ 1

βn−t, r = n− t+ 1

0, else

.

Here, t indicates the starting point of the burst in a packet.

To compute the probability that the first position in a packet belongs to a burst,

we consider the N coefficients preceding a packet together with the those in the

packet, for some fixed N ∈ N. Assuming that a burst could start at any N + n

position of the sequence with equal probability, if M is a random variable specifying

at which position the burst starts inside the packet, then the probabilities PN for M

are

PN(M = 2) = PN(M = 3) = · · · = PN(M = n) =
AN
N + n

and

PN(M = 1) =
AN
N + n

(1 + β + β2 + · · ·+ βN) =
1− βN+1

(N + n)(1− β)
,

where AN is a normalization constant. Now, we have

n∑
i=1

PN(M = i) =
AN
N + n

(
n− 1 +

1− βN+1

1− β

)
= 1
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which determines the value of AN . After normalizing and letting N → ∞, we get

the probabilities P (M = i) that a burst starts at position i in the packet and they

are given by

P (M = i) =


1

1+(n−1)(1−β)
, i = 1

1−β
1+(n−1)(1−β)

, 2 ≤ i ≤ n

.

Therefore, p, the length statistics for the burst erasure is given by p0 = 0 and for

1 ≤ j ≤ n

pj = P (XM = j) =
n∑
t=1

P (M = t)P (Xt = j) .

We plug in the values of P (M = t) and P (Xt = j) in the above expression and

simplify to obtain

pj =


(1−β)βj−1

1+(n−1)(1−β)
[2 + (n− 1− j)(1− β)], 1 ≤ j ≤ n− 1

βn−1

1+(n−1)(1−β)
, j = n

.

From p, we get to p̃ as in Theorem 2.3.9, calculate E(Ṽmin, p̃) as an upper bound

and compare this to E(Ṽmin, p) for different values of m, fixed k and r = n/2m. We

include log-log plots of
1

n

[
k

n
w0 +

(
1− k

n

)
wn/2

]
, of E(Ṽmin, p̃), of E(Ṽmin, p) and of

the expected burst length for each m ∈ {1, 2, 3, 4}, k = 9 and r = 10 in Figure 2.1.

The probability vector p is calculated for each β ∈ [0, 1], from which the expected

burst length is deduced. We observe that β = 0 implies that p = (0, 1, 0, · · · , 0), thus

the expected burst length is 1 and E(Ṽmin, p) =
k

n2
. This gives the starting point of

the each of the curves for E(Ṽmin, p) for different values of n as k remains fixed.
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Figure 2.1: Log-log plots of upper and lower bounds and of the mean-square error
depending on the expected burst length, for each frame of size n ∈ {20, 40, 80, 160}
in a Hilbert space of dimension k = 9.

In order to assess the magnitude of deviation from the mean-square reconstruction

error, we plot simulated square errors for m = 4, r = 10 and k = 9 in Figure 2.2,

with 10, 000 randomly generated input vectors and bursts.

As the packet length n increases to infinity, the distribution of the burst lengths

in a packet converges to a geometric distribution. If the ratio k/n converges to a

constant c as n diverges, then the asymptotics of the upper and lower bounds coincide

(using Proposition 2 and Theorem 2.3.11). Therefore, the mean-square error satisfies

nE(Ṽmin, p) → cw0. In a log-log plot, this leads to an asymptotically linear graph
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Figure 2.2: Log-log plots of upper and lower bounds and of the mean-square error
depending on the expected burst length for a frame of size n = 160 in a Hilbert space
of dimension k = 9, together with square errors resulting from randomly selected
input vectors and bursts.

of the mean-square error. To illustrate the effect of the truncation due to the finite

packet length, we have plotted the true mean-square reconstruction error and our

estimates for fixed values of β and packet length n = r2m with m = 4, k = r− 1 and

thus k/n→ 1/2m = 1/16 in Figure 2.3.
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Figure 2.3: Log-log plot of upper and lower bounds and of the mean-square error
depending on r ∈ {10, 11, · · · , 100}, with corresponding packet lengths n = 24r
and dimensions k = r − 1, so k/n → 1/16, and different values of the parameter
β ∈ {0.9, 0.8, .064, .04}, which determines the approximately geometric distribution
of burst lengths.
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CHAPTER 3

Linear Packet Encoding and Erasures

In this chapter, we study another form of structured erasures. In contrast to chapter

2, the structure of the lost data does not consist of a burst, but in an erased subset

of coefficients, a packet. We consider a signal as a vector in an D-dimensional real

Hilbert space. An encoding map sends this vector to N packets each having m

coefficients and thus to a vector in RNm. The range of this ecoding map is a D-

dimensional suspace of RNm and the kernel of its adjoint is a subspace of RNm of

dimension M = Nm−D. This encoded vector is transmitted through a noisy channel

in the form of N packets of m linear coefficients. During the transmission, a few of

the packets are lost or corrupted and thus, the receiver has less intact packets. We
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assume D < Nm to allow for the possibility that a significant part of the signal may

be recovered without the need for re-sending when a few packets are lost, corrupted

or impractically delayed in the transmission. We also assume that only k packets of

the transmitted vector are lost or corrupted with k being very small compared to

N . For the purposes of designing an algorithm to recover the transmitted vector, we

use matrix Tof size M ×Nm with entries ti,j, which are independent realizations of

a Gaussian random variable with mean 0 and variance
1

M
. Denoting the range of

map T ∗ : RM → RNm by R and Ker(T ) by K, which is an D-dimensional subspace

of RNm, we observe that R⊥ = K. Let {aj : 1 ≤ j ≤ D} be an orthonormal basis

of K = Ker(T ). We denote A = [a1|a2| · · · |aD] and write the rows of A as vi for

1 ≤ i ≤ Nm. Then F = {vi : 1 ≤ i ≤ Nm} is a Parseval frame for RD. We

use the analysis operator Q for this Parseval frame F as encoder for RD. Thus, for

any v ∈ RD, the encoded vector is Qv ∈ K ⊂ RNm. Then we send this encoded

vector through a noisy channel and at the receiving end, we receive Qv + x, where

x is the error during the transmission. If we know x, then we will have the encoded

vector Qv. We assume that only k packets of x are non-zero, where k is very small

compared to N , the total number of packets. As K = Ker(T ), applying T to the

received vector gives us T (Qv + x) = 0 + Tx = Tx ∈ RM . In order to get the

measurements, we then apply T ∗ and a multiple of a random projection P on RNm

of rank p.

In order to achieve the goal, we follow the following steps:

• For a fixed x ∈ RNm, we show that the value of ‖Tx‖2 is concentrated around

its expected value ‖x‖2 (Lemma 3.2.1 and 3.2.2).
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• Let x ∈ RNm be written as x = (xt1, x
t
2, · · · , xtN) with xti ∈ Rm, that is,

x is treated as N packets with each having m linear coefficients. Let S ⊂

{1, 2, · · · , N} be a set of indices with #S ≤ k and XS be the subspace of RNm

consisting of all x ∈ RNm with xi = 0 for all i /∈ S. For a fixed 0 < δ < 0.4,

‖Tx‖2 is close to ‖x‖2 for all x ∈ XS with high probability(Lemma 3.2.3).

• For a fixed 0 < δ < 0.4 and fixed S, we then show that the length of ‖T ∗Tx‖

is close to ‖x‖ for all x ∈ XS with high probability (Lemma 3.2.4).

• Using the result(Lemma 3.2.5) that for a fixed vector z ∈ RNm and a random

projection P of rank p on RNm,
√

Nm
p
‖Pz‖ is close to ‖z‖ with high probability

(Theorem 3.2.6).

• Combining the above steps, we show that
√

Nm
p
‖PT ∗Tx‖ is close to ‖x‖ with

high probability for a fixed 0 < δ < 0.4 and fixed XS (Theorem 3.2.7).

• We show that for fixed 0 < δ < 0.2 and any XS,
√

Nm
p
PT ∗T satisfies weak

form of restricted isometry property (Theorem 3.2.8).

• For a fixed 0 < δ < 0.2, we provide conditions on N, k,m,M , and p that

guarantee that
√

Nm
p
PT ∗T satisfies the weak form of the restricted isometry

property with probability p̃, which goes to 1 as we allow m,M , and p to go to

infinity under certain conditions (Proposition 3).

In the section 3.3, we reconstruct x with only k non-zero packets as a solution to

a convex optimization problem. We also show the stability of the solution in the

presence of noise of small magnitude.
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3.1. NOTATIONS AND DEFINITIONS

3.1 Notations and definitions

We generalize the concept of frames for a Hilbert space. We define a fusion frame or

frame of subspaces and related concepts for a Hilbert space H.

Definition 3.1.1. Let J be some index set, and let {vj : vj > 0j ∈ J} be a family of

weights. A family of closed subspaces {Wj : j ∈ J} of a Hilbert space H is a fusion

frame or a frame of subspaces with respect to {vj : vj > 0 for each j ∈ J} for H, if

there exist constants 0 < C ≤ D <∞ such that

C‖x‖2 ≤
∑
j∈J

v2
j‖PWj

x‖2 ≤ D‖x‖2 for all x ∈ H , (3.1)

where PWj
is the orthogonal projection of H onto Wj. We call C and D the frame

bounds for the fusion frame. The family {Wj : j ∈ J} is called a C-tight fusion frame

with respect to {vj : vj > 0 ∀j ∈ J} , if in (3.1) the constants C and D can be

chosen so that C = D, a Parseval fusion frame with respect to {vj : vj > 0 ∀j ∈ J}

provided that C = D = 1 and an orthonormal basis of subspaces if H =
⊕
j∈J

Wj.

Moreover, we call a fusion frame {Wj : j ∈ J} with respect to {vj : vj > 0 ∀j ∈ J}

v-uniform, if v := vi = vj for all i, j ∈ J .

For natural numbers m and N , we define (N,m,M)-reconstruction system for

the Hilbert space H = RM .

Definition 3.1.2. A family V = {Vj : 1 ≤ j ≤ N} of linear maps from Rm to RM

is called an (N,m,M)-reconstruction system for RM , if

SV :=
N∑
j=1

VjV
∗
j
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is a positive and invertible operator on RM . This is called an (N,m,M)-protocol if

N∑
j=1

VjV
∗
j = IM .

If Wj is the range of Vj, then the analysis operator of this system V is defined by

TV : RM → ⊕Nj=1Wj = W

via

TVy = (V ∗1 y, V
∗

2 y, · · · , V ∗Ny) .

Its adjoint T ∗V is called the synthesis operator of the system V , and it satisfies

T ∗V : W = ⊕Nj=1Wj → RM

with

T ∗V(x1, x2, · · · , xN) =
N∑
j=1

Vjxj .

3.2 Restricted isometry property of a random

matrix

In this section we construct a matrix which allows the recovery of vectors that are

non-zero in only a few packets. If the signal is encoded in such a way that it is

annihilated by this matrix, then recovery of sparse errors and recovery of the signal

are equivalent. As in other works on the recovery of sparse vectors, we also use

measure concentration as an essential tool. We consider an M ×Nm random matrix
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T = (ti,j) whose entries ti,j are independent realizations of Gaussian random variable

with mean 0 and variance 1
M

, i. e. ,

ti,j ∼ N
(

0,
1

M

)
.

We write T = [T1, T2, · · · , TNm], where Tj is the jth column of T . By concatenating

the first m columns of T , we form a matrix V1 ∈ RM×m. Similarly, we denote the

matrix formed by the next m columns of T by V2 and continue in this fashion to get

V3, · · · , VN . Thus we obtain a family V = {Vj : 1 ≤ j ≤ N} of linear maps from Rm

to RM . This family V = {Vj : 1 ≤ j ≤ N} is an (N,m,M)- reconstruction system

for RM with T ∗ as the analysis operator. We first show that the expected value of

the random variable ‖Tx‖2 for a fixed x is ‖x‖2 and it is highly concentrated about

‖x‖2 as stated in [2].

Lemma 3.2.1. [2] Let ν be the probability measure on

E =

{
T = (ti,j) 1≤i≤M,

1≤j≤Nm
: ti,j’s are independent realizations of N

(
0,

1

M

)}
induced by the probability measures on ti,j’s. Then for any fixed x ∈ RNm with

x = (ξ1, ξ2, · · · , ξNm)t, we have

E[‖Tx‖2] = ‖x‖2 ,

where the expectation is computed with respect to the measure ν.
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Proof. We have

‖Tx‖2 =
M∑
i=1

(
Nm∑
j=1

ti,jξj

)2

=
M∑
i=1

Nm∑
j=1

(ti,j)
2ξ2
j +

Nm∑
j,l=1
j 6=l

ti,jξjti,lξl


As E[ti,j] = 0,E[(ti,j)

2] =
1

M
and E[ti,lti,j] = E[ti,l]E[ti,j] whenever j 6= l (by inde-

pendence), we have

E
[
‖Tx‖2

]
=

M∑
i=1

Nm∑
j=1

E
[
(ti,j)

2ξ2
j

]
+

Nm∑
j,l=1
j 6=l

E [ti,jξjti,lξl]



=
M∑
i=1

Nm∑
j=1

ξ2
jE
[
(ti,j)

2
]

+
Nm∑
j,l=1
j 6=l

ξjξlE [ti,j]E [ti,l]


=

M∑
i=1

[
1

M

Nm∑
j=1

ξ2
j + 0

]

= ‖x‖2 .

Next, we need that for any fixed vector x ∈ RNm, the random variable T 7→ ‖Tx‖2

is strongly concentrated about its expected value ‖x‖2 [1, 2].

Lemma 3.2.2. [1, 2] Let ν be the probability measure on

E =

{
T = (ti,j) 1≤i≤M,

1≤j≤Nm
: ti,j’s are independent realizations of N

(
0,

1

M

)}
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induced by the probability measures on ti,j’s. For any x ∈ RNm and fixed 0 < ε < 1,

we have

ν
{
T ∈ E : |‖Tx‖2 − ‖x‖2| ≥ ε‖x‖2

}
≤ 2e−Mc0(ε) (3.2)

where c0(ε) =
ε2

4
− ε3

6
.

Proof. We observe that ‖Tx‖2 =
M∑
i=1

(Tx)2
i . For each 1 ≤ i ≤ M , we consider the

random variable

Yi = (Tx)i =
Nm∑
j=1

ti,jξj.

The expected value of Yi is given by

E[Yi] =
Nm∑
j=1

E[ti,j]ξj = 0.

Using the independence of ti,j and ti,l whenever j 6= l, we compute the second moment

of Yi as follows:

E[Y 2
i ] =

Nm∑
j,l=1

E[ti,jti,l]ξjξl =
Nm∑
j,l=1
j 6=l

E[ti,j]E[ti,l]ξjξl +
Nm∑
j=1

E[t2i,j]ξ
2
j =

1

M
‖x‖2.

This shows that Zi =

√
M

‖x‖
Yi is distributed as N (0, 1) and Zi’s are independent.

Thus, the random variable
M∑
i=1

Z2
i is χ2

M chi-squared distributed with M degrees

of freedom. Now, we bound the failure probability of one side. From the relation

‖x‖2

M

M∑
i=1

Z2
i = ‖Tx‖2, we obtain

ν
{
T ∈ E : ‖Tx‖2 ≥ (1 + ε)‖x‖2

}
= ν

{
T ∈ E :

M∑
i=1

Z2
i ≥ (1 + ε)M

}

= ν
{
T ∈ E : χ2

M ≥ (1 + ε)M
}
.

61



3.2. RESTRICTED ISOMETRY PROPERTY OF A RANDOM
MATRIX

We appeal to a concentration result below:

ν
{
T ∈ E : χ2

M ≥ (1 + ε)M
}
≤ e−

M
4

(ε2−ε3). (3.3)

To prove the above relation 3.3, we observe that Zi’s are i.i.d. N (0, 1) random

variables. By Markov’s inequality, we have

ν
{
T ∈ E : χ2

M ≥ (1 + ε)M
}

= ν

{
T ∈ E :

M∑
i=1

Z2
i ≥ (1 + ε)M

}

= ν
{
T ∈ E : eλ

∑M
i=1 Z

2
i ≥ eλ(1+ε)M

}
≤

E
[
eλ

∑M
i=1 Z

2
i

]
eλ(1+ε)M

=

(
E
[
eλZ

2
1

])M
eλ(1+ε)M

= e−λ(1+ε)M

(
1

1− 2λ

)M/2

,

where the last step follows from evaluating the expectation of eλZ
2
1 , which holds for

0 < λ < 1/2. Choosing λ =
ε

2(1 + ε)
minimizes the above expression and thus, we

have

ν
{
T ∈ E : χ2

M ≥ (1 + ε)M
}
≤
[
(1 + ε)e−ε

]M/2 ≤ e−
M
4

(ε2−ε3),

using the upper bound 1 + ε ≤ eε−(ε2−ε3)/2. Similarly, we have

ν
{
T ∈ E : ‖Tx‖2 ≤ (1− ε)‖x‖2

}
= ν

{
T ∈ E : χ2

M ≤ (1− ε)M
}
≤ e−

M
4

(ε2−ε3).

(3.4)

From the definition of Zi’s and combining (3.3) and (3.4), we conclude that

ν
{
T ∈ E : ‖Tx‖2 ≤ (1− ε)‖x‖2 or ‖Tx‖2 ≥ (1 + ε)‖x‖2

}
≤ 2e−

M
4

(ε2−ε3),
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which completes the proof.

For x ∈ RNm, we write x = (x1, x2, · · · , xN)t with xtj ∈ Rm. Let us restrict our

attention to the acton of random T on a fixed km-dimensional subspace. For any

set of indices S ⊂ {1, 2, · · · , N} with #S ≤ k, we denote by XS the set of all vectors

x ∈ RNm satisfying xj = 0 for all j /∈ S. The strategy of the proof of the following

lemma is similar to that used by Baraniuk et al. in [2].

Lemma 3.2.3. Let ν be the probability measure on E. Then, for any fixed S ⊂

{1, 2, · · · , N} with #S = k, and any 0 < δ < 0.4, we have(
1− 4δ

7

)
‖x‖2 ≤ ‖Tx‖2 ≤

(
1 +

4δ

7

)
‖x‖2 for all x ∈ XS (3.5)

with

ν{T ∈ E : (3.5) holds } ≥ 1− 2

(
1 +

16

δ

)km
e−c0(δ/4)M . (3.6)

Proof. By scaling, we only need to show that (3.5) holds for all ‖x‖ = 1, x ∈ XS.

By a volume inequality for sphere packings [2], we know that for given δ > 0, there

exits a set B ⊂ ΣS = {x ∈ XS : ‖x‖ = 1} such that

1. for every x ∈ ΣS, there exists y ∈ B such that ‖x− y‖ ≤ δ/8, so B is a δ/8-net

in ΣS

2. the cardinality of B is ≤
(

1 +
16

δ

)km
.
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Using the union bound along with the relation (3.2), with probability exceeding the

right hand side of (3.6), we have(
1− δ

4

)
‖y‖2 ≤ ‖Ty‖2 ≤

(
1 +

δ

4

)
‖y‖2 for all y ∈ B. (3.7)

Now, we define a to be the smallest number such that

‖Tx‖2 ≤ (1 + a) ‖x‖2 for all x ∈ XS with ‖x‖ ≤ 1. (3.8)

For any x ∈ ΣS, there exists y ∈ B such that ‖x− y‖ ≤ δ/8. In this case, we have

‖Ty‖2‖T (x− y)‖2 ≤ (1 + a)‖y‖2(1 + a)‖x− y‖2 ≤ (1 + a)2

(
δ

8

)2

(3.9)

and this implies that

‖Tx‖2 ≤ ‖Ty‖2 + ‖T (x− y)‖2 + 2‖Ty‖‖T (x− y)‖

≤ (1 + δ/4) + (1 + a)

(
δ

8

)2

+ 2(1 + a)

(
δ

8

)
.

Since, by definition, a is the smallest number for which (3.8) holds, we obtain

(1 + a) ≤ (1 + δ/4) + (1 + a)

(
δ

8

)2

+ 2(1 + a)

(
δ

8

)
⇒ a

(
1− δ2

64
− δ

4

)
≤ δ

4
+
δ2

64

⇒ a ≤ 32δ + δ2

64− 16δ − δ2
.

In order to show the upper inequality in (3.5), we need to prove that for 0 < δ < 0.4,

32δ + δ2

64− 16δ − δ2
≤ 4δ

7
.

We consider

4δ

7
− 32δ + δ2

64− 16δ − δ2
=
δ(32− 71δ − 4δ2)

7(64− 16δ − δ2)
. (3.10)
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As 32− 71δ− 4δ2 and 64− 16δ− δ2 are decreasing and positive functions of δ on the

interval (0, 0.4), using the relation (3.10), we conclude that the upper inequality in

(3.5) holds.

Also, from triangle inequality, we have

‖Tx‖2 ≥ (‖Ty‖ − ‖T (x− y)‖)2

≥ ‖Ty‖2 − 2‖Ty‖‖T (x− y)‖

Using relations (3.7), (3.9) and the upper inequality in (3.5), we obtain

‖Tx‖2 ≥ (1− δ/4)− 2

(
1 +

4δ

7

)
δ

8
= 1− δ

2
− δ2

7
(3.11)

For 0 < δ < 0.4, we have

4δ

7
− δ

2
− δ2

7
=
δ(1− 2δ)

14
> 0 (3.12)

Using (3.11) and (3.12), we conclude that the lower inequality in (3.5) holds.

We define map θ : E → MN given by T 7→ T ∗T . This map induces a probability

measure νθ on F = {θ(T ) = T ∗T : T ∈ E}. The following lemma is a consequence

of the previous lemma.

Lemma 3.2.4. For any S with #S = k and any 0 < δ < 0.4, we have(
1− 4δ

7

)
‖x‖ ≤ ‖T ∗Tx‖ ≤

(
1 +

4δ

7

)
‖x‖ for all x ∈ XS (3.13)

with

νθ {T ∗T ∈ F : (3.13) holds } ≥ 1− 2

(
1 +

16

δ

)km
e−c0(δ/4)M . (3.14)
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Proof. We observe that the relation (3.5) is equivalent to

〈(1− 4δ/7)Ix, x〉 ≤ 〈T ∗Tx, x〉 ≤ 〈(1 + 4δ/7)Ix, x〉 for all x ∈ XS

⇒(1− 4δ/7)IXS ≤ T ∗TXS ≤ (1 + 4δ/7)IXS .

This shows that (1− 4δ/7) and (1 + 4δ/7) are the smallest and largest eigenvalues of

T ∗TXS . Therefore, (1−4δ/7)2 and (1+4δ/7)2 are the smallest and largest eigenvalues

of (T ∗TXS)2. This implies that

(1− 4δ/7)2IXS ≤ (T ∗TXS)2 ≤ (1 + 4δ/7)2IXS

⇒〈(1− 4δ/7)2Ix, x〉 ≤ 〈T ∗TT ∗Tx, x〉 ≤ 〈(1 + 4δ/7)2Ix, x〉 for all x ∈ XS

⇒(1− 4δ/7)2‖x‖2 ≤ ‖T ∗Tx‖2 ≤ (1 + 4δ/7)2‖x‖2 for all x ∈ XS

⇒(1− 4δ/7)‖x‖ ≤ ‖T ∗Tx‖ ≤ (1 + 4δ/7)‖x‖ for all x ∈ XS .

As νθ is induced by the map θ and relation (3.5) holds with the same probability as

given in (3.6), lemma is proved.

Now, for the random projection, we have the following lemma:

Lemma 3.2.5. [3, 46] Let z ∈ RNm be a non-zero vector and let µNm,p be the invari-

ant probability measure on the Grassmannian Gp(RNm) of p-dimensional subspaces

in RNm. For V ∈ Gp(RNm), let zV be the orthogonal projection of z onto V . Then,

for any 0 < ε < 1,

µNm,p

{
V ∈ Gp(RNm) :

√
Nm

p
‖zV ‖ ≥ (1− ε)−1‖z‖

}
≤ e−ε

2p/4 + e−ε
2Nm/4 and

µNm,p

{
V ∈ Gp(RNm) :

√
Nm

p
‖zV ‖ ≤ (1− ε)‖z‖

}
≤ e−ε

2p/4 + e−ε
2Nm/4 .
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Let O(Nm, p) denote the set of orthogonal projections of rank p from RNm.

As µNm,p is the probability measure on the Grassmannian Gp(RNm), the map ψ :

Gp(RNm) → O(Nm, p) given by V 7→ PV , where PV is the orthogonal projection of

RNm onto the subspace V , induces a probability measure µψ on O(Nm, p). Thus,

using lemma 3.2.5, we have that for any fixed z ∈ RNm,

µψ

{
P ∈ O(Nm, p) : (1− ε)‖z‖ ≤

√
Nm

p
‖Pz‖ ≤ (1− ε)−1‖z‖

}

≥ 1− 2
(
e−ε

2p/4 + e−ε
2Nm/4

)
. (3.15)

Now, we consider the product measure λ = µψ × νθ on O(Nm, p) × F . The map

(P, T ∗T ) 7→ PT ∗T induces a probability measure σ on

G = {PT ∗T : P ∈ O(Nm, p), T ∗T ∈ F}.

Theorem 3.2.6. Let T ∈ E and P ∈ O(Nm, p). For any set S ⊂ {1, 2, · · · , N} of

indices, let XS denote the set of all vectors x = (x1, x2, · · · , xN)t with xtj ∈ Rm in

RNm satisfying xj = 0 for all j outside of S. Then, for any S with #S = k, a fixed

vector x ∈ XS and for any 0 < δ < 0.4, we have

σ

({
PT ∗T : (1− δ/8)(1− 4δ/7)‖x‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ (1 + 4δ/7)

(1− δ/8)
‖x‖

})

≥

(
1− 2

(
1 +

16

δ

)km
e−c0(δ/4)M

)(
1− 2(e−δ

2p/256 + e−δ
2Nm/256)

)
(3.16)

Proof. For a fixed vector x ∈ XS,

(1− 4δ/7)(1− δ/8)‖x‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ (1 + 4δ/7)

(1− δ/8)
‖x‖
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is true whenever both of the following relations hold:

(1− δ/8)‖T ∗Tx‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ 1

(1− δ/8)
‖T ∗Tx‖

and

(1− 4δ/7)‖x‖ ≤ ‖T ∗Tx‖ ≤ (1 + 4δ/7)‖x‖ .

Thus, for a fixed x ∈ XS, we have

σ

({
PT ∗T : (1− δ/8)(1− 4δ/7)‖x‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ (1 + 4δ/7)

(1− δ/8)
‖x‖

})

≥ σ

({
PT ∗T : (1− δ/8)‖T ∗Tx‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ (1− δ/8)−1‖T ∗Tx‖ and

(1− 4δ/7)‖x‖ ≤ ‖T ∗Tx‖ ≤ (1 + 4δ/7)‖x‖})

= µψ

({
P ∈ O(Nm, p) : (1− δ/8)‖z‖ ≤

√
Nm

p
‖Pz‖ ≤ (1− δ/8)−1‖z‖

})

× νφ ({T ∗T ∈ F : (1− 4δ/7)‖x‖ ≤ ‖T ∗Tx‖ ≤ (1 + 4δ/7)‖x‖}) .

Using lemma 3.2.4 and relation (3.15), we obtain that the RHS of the above inequality

is

≥

(
1− 2

(
1 +

16

δ

)km
e−c0(δ/4)M

)(
1− 2(e−δ

2p/256 + e−δ
2Nm/256)

)
.

In order to avoid writing complicated expressions, let us denote

α(δ) = 2

(
1 +

8

δ

)km
e−c0(δ/2)M (3.17)

β(δ) = 2
(
e−δ

2p/4 + e−δ
2Nm/4

)
(3.18)
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Using the above notations, the relation (3.16) becomes

σ

({
PTT ∗ : (1− δ/8)(1− 4δ/7)‖x‖ ≤

√
N

p
‖PTT ∗x‖ ≤ (1 + 4δ/7)

(1− δ/8)
‖x‖ does not hold

})

≤ α(δ/2) + β(δ/8) . (3.19)

Theorem 3.2.7. Let T, P and XS be as above. For any 0 < δ < 0.4, we have

(1− δ)‖x‖ ≤

√
Nm

p
‖PT ∗Tx‖ ≤ (1 + 4δ/7)

(1− δ/8)2
‖x‖, for all x ∈ XS (3.20)

with probability

σ{PT ∗T : P ∈ O(Nm, p), T ∗T ∈ F} ≥ 1−
(

1 +
16

δ

)km
(α(δ/2) + β(δ/8)) ,

(3.21)

where α(δ) and β(δ) are defined by 3.17 and 3.18.

Proof. The idea of the proof is based on the arguments made by Baraniuk et al. in

[2]. As PT ∗T is linear, it is enough to prove (3.20) in the case when ‖x‖ = 1. By a

volume inequality for sphere packings [2], we know that for given δ > 0, there exits

a set B ⊂ ΣS = {x ∈ XS : ‖x‖ = 1} such that

1. for every x ∈ ΣS, there exists y ∈ B such that ‖x− y‖ ≤ δ/8, so B is a δ/8-net

in ΣS

2. the cardinality of B is ≤
(

1 +
16

δ

)km
.

Using the union bound along with the relation (3.19), with probability exceeding the

right hand side of (3.21), we have

(1− δ/8)(1− 4δ/7)‖y‖ ≤

√
Nm

p
‖PT ∗Ty‖ ≤ (1 + 4δ/7)

(1− δ/8)
‖y‖ for all y ∈ B . (3.22)
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Define A as the smallest number such that√
Nm

p
‖PT ∗Tx‖ ≤ A‖x‖, for all x ∈ XS, ‖x‖ ≤ 1 . (3.23)

We need to show that A ≤ (1 + 4δ/7)

(1− δ/8)2
. For any x ∈ XS with ‖x‖ = 1, we can pick

a y ∈ B such that ‖x− y‖ ≤ δ/8. In this case, using (3.22) and (3.23), we have√
Nm

p
‖PT ∗Tx‖ ≤

√
Nm

p
‖PT ∗Ty‖+

√
Nm

p
‖PT ∗T (x− y)‖

≤ (1 + 4δ/7)

(1− δ/8)
‖y‖+ A‖(x− y)‖

≤ (1 + 4δ/7)

(1− δ/8)
+ A

δ

8

By definition of A, we obtain

A ≤ (1 + 4δ/7)

(1− δ/8)
+ A

δ

8

⇒A ≤ (1 + 4δ/7)

(1− δ/8)2

Thus, the upper inequality in (3.20) holds. For the lower inequality, we have√
Nm

p
‖PT ∗Tx‖ ≥

√
Nm

p
‖PT ∗Ty‖ −

√
Nm

p
‖PT ∗T (x− y)‖

≥ (1− δ/8)(1− 4δ/7)‖y‖ − (1 + 4δ/7)

(1− δ/8)2
‖(x− y)‖

≥ (1− δ/8)(1− 4δ/7)− (1 + 4δ/7)

(1− δ/8)2

δ

8

=
3584− 3840δ + 680δ2 − 103δ3 + 4δ4

56(8− δ)2
. (3.24)

For 0 < δ < 0.4, we have

3584− 3840δ + 680δ2 − 103δ3 + 4δ4

56(8− δ)2
− (1− δ)

=
δ (640− 272δ − 47δ2 + 4δ3)

56(8− δ)2
> 0 (3.25)
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Thus, from (3.24) and (3.25), we conclude that the upper inequality in (3.20) holds.

Theorem 3.2.8. Let T, P and XS be as above. For any 0 < δ < 0.2, we have

c‖x‖2 ≤ Nm

p
‖PT ∗Tx‖2 ≤ d‖x‖2 for all x ∈ XS, (3.26)

where c ≥ 1− (
√

2− 1) and d ≤ 1 + (
√

2− 1), with probability

≥ 1−
(

1 +
16

δ

)km
(α(δ/2) + β(δ/8)) , (3.27)

where α(δ) and β(δ) are defined by 3.17 and 3.18.

Proof. From theorem 3.2.7, it is enough to prove that

(1 + 4δ/7)

(1− δ/8)2
≤ 21/4

and (1− δ)2 ≤ 2−
√

2 for all 0 < δ < 0.2.

We have

(1 + 4δ/7)

(1− δ/8)2
≤ 21/4

⇒1− 21/4 +
4δ

7
+

δ

(2)23/4
− δ2

(32)23/4
≤ 0

The roots of this quadratic equation are 4
7
23/4

(
16 + (7)21/4

)
− 4

7
23/4

√
256 + (273)21/4

and 4
7
23/4

(
16 + (7)21/4

)
+ 4

7
23/4

√
256 + (273)21/4. Thus the above inequality holds

for all 0 < δ < 4
7
23/4

(
16 + (7)21/4

)
− 4

7
23/4

√
256 + (273)21/4 and hence for all 0 <

δ < 0.2.

Also, (1 − δ)2 is decreasing on the interval δ ∈ (0, 0.2) and for δ = 0.2, (1 − δ)2 ≥

2−
√

2. Hence the result.
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We know that for each subspace XS with S ⊂ {1, 2, · · · , N}, |S| = k, the matrix√
Nm

p
PT ∗T fails to satisfy (3.26) with probability

≤
(

1 +
16

δ

)km
(α(δ/2) + β(δ/8)) .

There are

(
N

k

)
≤ (eN/k)k such subspaces. Hence, for any k-sparse x, (3.26) will

fail to hold with probability

≤
(
eN

k

)k (
1 +

16

δ

)km(
2

(
1 +

16

δ

)km
e−c0(δ/4)M + 2

(
e−δ

2p/256 + e−δ
2Nm/256

))
(3.28)

= 2ek ln( eN
k

)
[
e−Mc0(δ/4)+2km ln(1+ 16

δ
) + e−pδ

2/256+km ln(1+ 16
δ

) + e−Nmδ
2/256+km ln(1+ 16

δ
)
]

(3.29)

Proposition 3. For any fixed 0 < δ < 0.2, let N and k be fixed with N
k
≥ 256 ln(1+16/δ)

δ2
.

For any k-sparse x, (3.26) will fail to hold with probability ≤ p̃, which goes to zero

as M,m, and p go to infinity provided m
M

= constant, c0(δ/4) > 2k m
M

ln(1 + 16
δ

) and

p
m

= constant ≥ 256k ln(1+16/δ)
δ2

.

Proof. We note that φ =

√
Nm

p
PT ∗T remains a fixed multiple of PT ∗T even if m

and p tend to infinity. Let us consider each term one by one on the RHS of the above

relation. We observe that the expression k ln( eN
k

) is a fixed constant and appears in

each of the exponents in the above relation. Using the condition on ratio of N and

k and from exponent of the third term in above relation, we have

Nmδ2

256
> km ln(1 +

16

δ
).
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This implies that the third term goes to zero as m → ∞. Similarly, using the

conditions on the ratio of p and m, we see the second term also goes to 0 as m→∞.

Now, we consider the exponent of the first term: Using the condition that c0(δ/4) >

2k m
M

ln(1 + 16
δ

), we conclude that

−Mc0(δ/4) + k ln(
eN

k
) + 2km ln(1 +

16

δ
) = k ln(

eN

k
) +M

[
−c0(δ/4) + 2k

m

M
ln(1 +

16

δ
)

]
goes to −∞ as M and m go to ∞ with M

m
. This shows that the first term also goes

to zero.

3.3 Recovery in the case of sparse error

Now, suppose we have φ =

√
Nm

p
PT ∗T such that φ satisfies (3.26) for all x ∈ XS

and for all XS with |S| ≤ k.

Suppose W1,W2, · · · ,WN are subspaces of a Hilbert space H with dim(Wi) = m for

all 1 ≤ i ≤ N . Define W as the direct sum of these subspaces, W = ⊕Ni=1Wi. For

any x = (x1, x2, · · · , xN) ∈ W,xi ∈ Wi, we define the mixed lq,r norms as

‖x‖q,r =

(
N∑
i=1

‖xi‖rq

)1/r

.

When the parameter q is omitted, we mean that q = 2:

‖x‖r =

(
N∑
i=1

‖xi‖r2

)1/r

.

Suppose that we observe

y = φx , (3.30)
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3.3. RECOVERY IN THE CASE OF SPARSE ERROR

where x = (x1, x2, · · · , xN) ∈ W is a vector we wish to reconstruct, y ∈ W are

available measurements, and φ is a known linear operator on W . We also assume

that the dimension of the range of W is p < Nm. Now, we ask whether it is possible

to reconstruct x with good accuracy.

Definition 3.3.1. For each integer k = 1, 2, · · · , define the weak restricted isometry

constant δk of an operator φ as the smallest number such that

(1− δk)‖x‖2
2 ≤ ‖φx‖2

2 ≤ (1 + δk)‖x‖2
2 (3.31)

holds for all k-sparse vectors. A vector x = (x1, x2, · · · , xN) ∈ W is said to be

k-sparse if the cardinality of {i : xi 6= 0} is ≤ k.

Let x∗ be the solution to

min
x̄∈W
‖x̄‖1 subject to φx̄ = y . (3.32)

For x = (x1, x2, · · · , xN) ∈ W , we have (‖x1‖2, ‖x2‖2, · · · , ‖xN‖2) ∈ RN and we

denote this by x̃. We will compare the reconstruction x∗ with the best sparse ap-

proximation one could obtain if one knew exactly the locations and amplitudes of

the k-largest entries of x̃. We denote this approximation by x(k), i. e., the vector x

with all but the k-largest components set to zero.

We observe

y = φx+ z , (3.33)

where z is an unknown noise term. In this context, we try to reconstruct x as the

solution to the convex optimization problem

min
x̄∈W
‖x̄‖1 subject to ‖y − φx̄‖2 ≤ ε . (3.34)
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3.3. RECOVERY IN THE CASE OF SPARSE ERROR

The following theorem is an extension of a result by [21] and its proof uses the ideas

from the proof of the original result presented in this paper by Candes.

Theorem 3.3.2. Assume that δ2k <
√

2 − 1 and ‖z‖2 ≤ ε. Then the solution to

(3.34) obeys

‖x∗ − x‖2 ≤ C0k
−1/2‖x− x(k)‖1 + C1ε (3.35)

with the some constants C0 and C1 given explicitly below.

First, we prove the following lemma:

Lemma 3.3.3. For all x, x′ ∈ W supported on disjoint subsets S, S ′ ⊂ {1, 2, · · · , N}

with |S| ≤ k and |S ′| ≤ k′, we have

|〈φx, φx′〉| ≤ δk+k′‖x‖2‖x′‖2 .

Proof. The proof of this lemma follows by essentially the same arguments given by

Candes[21]. Suppose x and x′ are unit vectors with disjoint supports. We have

(1− δk+k′)‖x± x′‖2
2 ≤ ‖φ(x± x′)‖2

2 ≤ (1 + δk+k′)‖x± x′‖2
2 .

As S ∩ S ′ = ø, ‖x± x′‖2
2 = ‖x‖2

2 + ‖x‖2
2 = 2. Therefore, we have

2(1− δk+k′) ≤ ‖φ(x± x′)‖2
2 ≤ 2(1 + δk+k′) .

Using the parallelogram identity, we have

|〈φx, φx′〉| = 1

4

[
‖φ(x+ x′)‖2

2 − ‖φ(x− x′)‖2
2

]
≤ δk+k′ ,

which concludes the proof.
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Now, we prove the theorem 3.3.2:

Proof. We observe that

‖φ(x∗ − x)‖2 ≤ ‖φx∗ − y‖2 + ‖y − φx‖2 ≤ 2ε , (3.36)

which follows from the triangle inequality and the fact that x is feasible for the prob-

lem (3.34). We set x∗ = x+h and decompose h into a sum of vectors hS0 , hS1 , hS2 , · · · ,

each of sparsity at most k. Here, S0 corresponds to the locations of k largest coeffi-

cients of x̃; S1 corresponds to the locations of the k largest coefficients of h̃Sc0 ; S2 to

the locations of the next k largest coefficients of h̃Sc0 , and so on.

First, we show that the size of h outside of S0 ∪ S1 is essentially bounded by that of

h on S0 ∪ S1.

We note that for each j ≥ 2,

‖hSj‖2 ≤ k1/2‖hSj‖∞ ≤ k−1/2‖hSj−1
‖1

and thus

∑
j≥2

‖hSj‖2 ≤ k−1/2(‖hS1‖1 + ‖hS2‖1 + · · · ) ≤ k−1/2‖hSc0‖1 . (3.37)

In particular, this gives us the useful estimate

‖h(S0∪S1)c‖2 = ‖
∑
j≥2

hSj‖2 ≤
∑
j≥2

‖hSj‖2 ≤ k−1/2‖hSc0‖1 . (3.38)
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Also, we have

‖x‖1 =
N∑
i=1

‖xi + hi‖2

=
∑
i∈S0

‖xi + hi‖2 +
∑
i/∈S0

‖xi + hi‖2

≥
∑
i∈S0

(‖xi‖2 − ‖hi‖2) +
∑
i/∈S0

(‖xi‖2 − ‖hi‖2)

= ‖xS0‖1 − ‖hS0‖1 + ‖hSc0‖1 − ‖xSc0‖1 .

This implies that

‖hSc0‖1 ≤ ‖x‖1 − ‖xS0‖1 + ‖hS0‖1 + ‖xSc0‖1

≤ ‖x− xS0‖1 + ‖hS0‖1 + ‖xSc0‖1

= 2‖xSc0‖1 + ‖hS0‖1 (3.39)

Applying (3.38), then (3.39) and the Cauchy- Schwarz inequality to bound ‖hS0‖1

by k1/2‖hS0‖2, we obtain

‖h(S0∪S1)c‖2 ≤ k−1/2‖hSc0‖1 [using (3.38)]

≤ k−1/2[2‖xSc0‖1 + ‖hS0‖1] [using (3.39)]

≤ 2k−1/2‖xSc0‖1 + k−1/2k1/2‖hS0‖2 [using ‖hS0‖1 ≤ k1/2‖hS0‖2]

= ‖hS0‖2 + 2e0 with e0 = k−1/2‖x− x(k)‖1 . (3.40)

In the next step, we bound ‖h(S0∪S1)c‖2. To do this, we note that φh(S0∪S1) =

φh−
∑
j≥2

φhSj and, therefore, we have

‖h(S0∪S1)‖2
2 = 〈φh(S0∪S1), φh〉 − 〈φh(S0∪S1),

∑
j≥2

φhSj〉 .
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From (3.36) and the weak restricted isometry property(3.31), we obtain

|〈φh(S0∪S1), φh〉| ≤ ‖φh(S0∪S1)‖2‖φh‖2 ≤ 2ε
√

1 + δ2k‖h(S0∪S1)‖2 .

Also, from lemma 3.3.3, we have

|〈φhS0 , φhSj〉| ≤ δ2k‖hS0‖2‖hSj‖2

and likewise for S1 in place of S0. As S0 and S1 are disjoint, we have

‖hS0‖2 + ‖hS1‖2 ≤
√

2‖h(S0∪S1)‖2 .

Thus, we have

(1− δ2k)‖h(S0∪S1)‖2
2 ≤ ‖φh(S0∪S1)‖2

2 ≤ ‖h(S0∪S1)‖2(2ε
√

1 + δ2k +
√

2δ2k

∑
j≥2

‖hSj‖2) .

Therefore, using (3.37), we have that

‖h(S0∪S1)‖2 ≤ αε+ ρk−1/2‖hSc0‖1, α =
2
√

1 + δ2k

1− δ2k

, ρ =

√
2δ2k

1− δ2k

. (3.41)

From this inequality and (3.39) , we conclude that

‖h(S0∪S1)‖2 ≤ αε+ ρ‖h(S0∪S1)‖2 + 2ρe0

⇒‖h(S0∪S1)‖2 ≤ (1− ρ)−1(αε+ 2ρe0) .

Finally, we have

‖h‖2 ≤ ‖h(S0∪S1)‖2 + ‖h(S0∪S1)c‖2

≤ 2‖h(S0∪S1)‖2 + 2e0

≤ 2(1− ρ)−1(αε+ (1 + ρ)e0)

= C0k
−1/2‖x− x(k)‖1 + C1ε
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with C0 and C1 given by

C0 = 2(1− ρ)−1(1 + ρ) (3.42)

and

C1 = 2(1− ρ)−1α , (3.43)

where ρ and α have explicit form in 3.41

Now, we combine the results we have shown above to conclude the following

theorem:

Theorem 3.3.4. For any fixed 0 < δ < 0.2, let N and k be fixed with N
k
≥

256 ln(1+16/δ)
δ2

. For any k/2-sparse x, let y = φ(x) + z, where z satisfies ‖z‖ ≤ ε,

then the solution to

min
x̄∈W
‖x̄‖1 subject to ‖y − φx̄‖2 ≤ ε . (3.44)

will fail to obey

‖x∗ − x‖2 ≤ C0(k/2)−1/2‖x− x(k/2)‖1 + C1ε (3.45)

with probability ≤ p̃, which goes to zero as M,m, and p go to infinity provided

m
M

= constant, c0(δ/4) > 2k m
M

ln(1 + 16
δ

) and p
m

= constant ≥ 256k ln(1+16/δ)
δ2

, where

the constants C0 and C1 are given explicitly above in 3.42 and 3.43.

Proof. Using Theorem 3.2.8 and relation 3.29, we obtain that φ fails to satisfy the

weak restricted isometry property 3.31 with probability

≤ p̃ = 2ek ln( eN
k

)
[
e−Mc0(δ/4)+2km ln(1+ 16

δ
) + e−pδ

2/256+km ln(1+ 16
δ

) + e−Nmδ
2/256+km ln(1+ 16

δ
)
]
.
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From Theorem 3.3.2, we conclude that relation 3.34 will fail to obey 3.45 with prob-

ability ≤ p̃. Finally, from proposition 3, we conclude that under the given condition

in the above theorem, p̃ goes to zero as m,M , and p go to infinity.

If there is no noise and x is k/2-sparse, the following corollary shows that the

recovery via l1-minimization precisely gives us x.

Corollary 3.3.5. For any fixed 0 < δ < 0.2, let N and k be fixed with N
k
≥

256 ln(1+16/δ)
δ2

. For any k/2-sparse x, let y = φ(x) + z, where z satisfies ‖z‖ ≤ ε,

then the solution to

min
x̄∈W
‖x̄‖1 subject to φx̄ = y

will fail to obey

‖x∗ − x‖1 ≤ C0‖x− x(k/2)‖1 (3.46)

and

‖x∗ − x‖2 ≤ C0(k/2)−1/2‖x− x(k/2)‖1 (3.47)

with probability ≤ p̃, which goes to zero as M,m and p go to infinity provided m
M

=

constant, c0(δ/4) > 2k m
M

ln(1 + 16
δ

) and p
m

= constant ≥ 256k ln(1+16/δ)
δ2

, where the

constant C0 is given explicitly above in 3.42 and 3.43.
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