(© COPYRIGHTED BY

Martina Bukaé

May 2012



A FLUID-STRUCTURE INTERACTION MODEL
CAPTURING LONGITUDINAL DISPLACEMENT IN
ARTERIES: MODELING, COMPUTATIONAL METHOD,

AND COMPARISON WITH EXPERIMENTAL DATA

A Dissertation
Presented to
the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By
Martina Bukaé

May 2012



A FLUID-STRUCTURE INTERACTION MODEL
CAPTURING LONGITUDINAL DISPLACEMENT IN
ARTERIES: MODELING, COMPUTATIONAL METHOD,

AND COMPARISON WITH EXPERIMENTAL DATA

Martina Bukaé

APPROVED:

Dr. Suncica Canié,

Chairman
Dept. of Mathematics, University of Houston

Dr. Roland Glowinski
Dept. of Mathematics, University of Houston

Dr. Annalisa Quaini
Dept. of Mathematics, University of Houston

Dr. Josip Tambaca
Dept. of Mathematics, University of Zagreb

Dean, College of Natural Sciences and Mathematics

il



Acknowledgements

First and foremost, I acknowledge Dr. Sunéica Cani¢, without whom I could not
have completed this thesis. She is the best advisor and teacher I could have wished
for, full of contagious enthusiasm and inspiration, which were always there when I
needed it. I appreciate all her contributions of time, ideas, and funding to make my
PhD experience productive and stimulating.

I feel privileged to have been able to work with Dr. Roland Glowinski, who gave
me tools that were essential in my PhD research. His infinite wisdom and knowledge
gave me the confidence to explore my research interests and the guidance to avoid
getting lost in my exploration.

Many thanks to Dr. Josip Tambaca, who has inspired me from early stages,
and introduced me to applied mathematics. My initial interest in mathematics as
well as my decision to pursue an academic career in mathematics and science can
be attributed in large part to the undergraduate courses I took with him and to
the experience I gained while he was advising my undergraduate thesis. I am also
grateful for his valuable suggestions and tireless help during my time in graduate
school.

I gratefully acknowledge Dr. Annalisa Quaini for discussing research and more,
for the contribution of numerous ideas and suggestions. Most important, I acknowl-
edge her for being an exceptional friend who always gave me a brighter look on
things, and with whom I spent many unforgettable moments.

I thank Dr. Boris Muha, who first introduced me to Continuum Mechanics, for

iii



suggestions and inspiration in the later stages of my thesis. I also acknowledge him
for contributing to the work done in Chapter 5.3 of this thesis.

My time in Houston was made enjoyable in large part due to the many friends
and groups that became a part of my life. I am grateful for time spent with them, for
many international dinners and board game nights. Their company made my time
at the Department filled with joy and laughter even at the most trying times of my
tenure as a graduate student.

This thesis is dedicated to my parents, who have always offered unwavering sup-
port for my decisions and who have have consistently placed their faith in my ability
to make these decisions myself. Without this balance of support and independence,
[ am certain that I could not have developed the determination nor the confidence in
my abilities and in my decisions that have been necessary to complete my doctoral

work.

v



A FLUID-STRUCTURE INTERACTION MODEL
CAPTURING LONGITUDINAL DISPLACEMENT IN
ARTERIES: MODELING, COMPUTATIONAL METHOD,
AND COMPARISON WITH EXPERIMENTAL DATA

An Abstract of a Dissertation
Presented to
the Faculty of the Department of Mathematics

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By
Martina Bukaé

May 2012



Abstract

The focus of this thesis is on numerical modeling of fluid-structure interaction
(FSI) problems with application to hemodynamics.

Recent in vivo studies, utilizing ultrasound contour and speckle tracking methods,
have identified significant longitudinal wall displacements and viscoelastic arterial
wall properties over a cardiac cycle. Existing computational models that use thin
structure approximations of arterial walls have so far been limited to elastic models
that capture only radial wall displacements. In this thesis, we present a new model
and a novel loosely coupled partitioned numerical scheme modeling fluid-structure
interaction (FSI) in blood flow allowing non-zero longitudinal displacement.

In this work arterial walls are modeled by a linearly viscoelastic, cylindrical Koi-
ter shell model capturing both radial and longitudinal displacement. Fluid flow is
modeled by the Navier-Stokes equations for an incompressible, viscous fluid. The
two are fully coupled via kinematic and dynamic coupling conditions. The proposed
numerical scheme is based on a new modified Lie operator splitting that decouples
the fluid and structure sub-problems in a way that leads to a loosely coupled scheme
that is unconditionally stable. This was achieved by a clever use of the kinematic
coupling condition at the fluid and structure sub-problems, leading to an implicit
coupling between the fluid and structure velocities. The proposed scheme is a mod-
ification of the recently introduced “kinematically coupled scheme” for which the
newly proposed modified Lie splitting significantly increases the accuracy. In this
work it is shown that the new scheme, called the kinematically coupled [-scheme,

is unconditionally stable for all 5 € [0,1]. The performance and accuracy of the
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scheme are studied on a series of instructive examples including a comparison with a
monolithic scheme proposed by Quaini and Quarteroni in [77]. It is shown that the
accuracy of our scheme is comparable to that of the monolithic scheme, while our
scheme retains all the main advantages of partitioned schemes.

The results of the computational model are compared with in vivo measurements
of the common carotid artery wall motion, and with data capturing stenosed coronary

arteries, showing excellent agreement.

Keywords: Fluid-structure interaction, hemodynamics, loosely coupled scheme,

longitudinal displacement, viscoelastic arteries.
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Chapter

Introduction

Recent developments in ultrasound Contour and Speckle Tracking techniques make
it now possible to measure in vivo radial and longitudinal arterial wall displace-
ments [1,25,26,28, 73,84, 85,89]. These measurements for the first time reveal that
longitudinal displacement in healthy human arteries is comparable in magnitude
to the radial displacement (see Figure 1.1). While healthy subjects exhibit signif-
icant longitudinal displacement, recent ultrasound in vivo measurements indicate
that smaller longitudinal displacement is associated with atherosclerotic vessels [84],
or with older, diabetic subjects [28] (see Figure 1.2). On the other hand, large longi-
tudinal displacement is particularly pronounced under adrenaline conditions during
which the longitudinal displacement of the intima-media complex increases by 200%,
and becomes twice the magnitude of radial displacement [1]. Since the appropriate
ultrasound techniques have only recently been developed, the relationship between

longitudinal displacement and pathophysiology of the human cardiovascular system
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Figure 1.1: Longitudinal and radial displacement in a carotid artery measured us-
ing in vivo ultrasound speckle tracking method. The thin red line located at the
intimal layer of the arterial wall shows the direction and magnitude of the displace-
ment vector, showing equal magnitude in longitudinal and radial components of the
displacement [28].

is under-explored, and the work in this thesis presents an important first step in this

direction.

We study fluid-structure interaction (FSI) between an incompressible viscous,
Newtonian fluid, and a thin viscoelastic structure modeled by the linearly viscoelas-
tic cylindrical Koiter shell model. A cylindrical viscoelastic Koiter shell model is
derived to describe the mechanical properties of arterial walls, while the Navier-
Stokes equations for an incompressible, viscous, Newtonian fluid are employed to
model the flow of blood in medium-to-large human arteries. The two are coupled via

the kinematic (no-slip) and dynamic (balance of contact forces) coupling conditions.

In hemodynamics, the coupling between the fluid and structure is highly nonlinear

due to the fact that the fluid and structure densities are roughly the same, making
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Figure 1.2: Comparison of carotid artery wall motion in a healthy and diabetic
subject, measured in vivo using ultrasound speckle tracking methods [28].

the inertia of the fluid and structure roughly equal. In this regime, classical loosely
coupled (or explicit) numerical schemes, which are based on the fluid and structure
sub-solvers, have been shown to be intrinsically unstable [22] due to the miss-match
between the discrete energy dictated by the numerical scheme, and the continuous
energy of the coupled problem. This has been associated with the “added mass
effect” [22]. To rectify this problem, the fluid and structure sub-solvers need to
be sub-iterated until the energy balance at the discrete level approximates well the
energy of the continuous coupled problem. The resulting strongly coupled scheme,

however, gives rise to extremely high computational costs.

To get around these difficulties, several different loosely coupled algorithms have
been proposed that modify the classical strategy in coupling the fluid and structure
sub-solvers. The method proposed in [71] uses a simple membrane model for the
structure that can be easily embedded into the fluid equations and appears as a
generalized Robin boundary condition. In this way the original problem reduces to

a sequence of fluid problems with a generalized Robin boundary condition that can



be solved using only the fluid solver. A similar approach was proposed in [8], where
the fluid and structure are split in the classical way, but the fluid and structure sub-
problems were linked via novel transmission (coupling) conditions that improve the
convergence rate. Namely, a linear combination of the dynamic and kinematic inter-
face conditions was used to artificially redistribute the fluid stress on the interface,

thereby avoiding the difficulty associated with the added mass effect.

A different stabilization of the loosely coupled (explicit) schemes was proposed
in [18] which is based on Nitsche’s method [47] with a time penalty term giving L>-
control on the fluid force variations at the interface. We further mention the scheme
proposed in [9], where Robin-Robin type preconditioner is combined with Krylov

iterations for the solution of the interface system.

For completeness, we also mention several semi-implicit schemes. The schemes
proposed in [4,5,37] separate the computation of fluid velocity from the coupled
pressure-structure velocity system, thereby reducing the computational costs. Sim-
ilar schemes, derived from algebraic splitting, were proposed in [10,77]. We also
mention [68] where an optimization problem is solved at each time-step to achieve

continuity of stresses and continuity of velocity at the interface.

In this thesis we deal with the problems associated with the added mass effect by:
(1) employing the kinematic coupling condition implicitly in all the sub-steps of the
splitting, as in the kinematically coupled scheme first introduced in [46]; (2) treating
the fluid sub-problem together with the viscous part of the structure equations so
that the structure inertia appears in the fluid sub-problem (made possible by the

kinematic coupling condition). In this step, a portion of the fluid stress, the fluid



inertia, and the viscous part of the structure equations are coupled weakly, and
implicitly, thereby adding dissipative effects to the fluid solver and contributing to
the overall stability of the scheme (although the scheme is stable even if viscoelasticity
of the structure is neglected). The modification of the Lie splitting introduced in this
manuscript uses the remaining portion of the normal fluid stress (the pressure) to
explicitly load the structure in the elastodynamics equations, significantly increasing
the accuracy of our scheme when compared with the classical kinematically coupled
scheme [46], and making it comparable to that of the monolithic scheme presented
in [10,76]. Including the structure inertia implicitly in the fluid sub-problem is the
main reason why our scheme is stable even when the density of the structure is equal
to the density of fluid. We show, using ideas similar as in [22], that our scheme is

unconditionally stable for all the ratios between the fluid and structure densities.

To deal with the motion of the fluid domain, we implemented an Arbitrary
Lagrangian-Eulerian (ALE) approach. In addition to the ALE method [32, 48, 50, 59,
61,77, 78], the Immersed Boundary Method [35, 40, 62,65, 74, 75] has been very pop-
ular in problems with moving domains, especially when the structure is completely
immersed in the fluid domain. We also mention the Fictitious Domain Method com-
bined with the mortar element method or ALE method [7,87], the Lattice Boltz-
mann method [34, 36,53, 54], the Coupled Momentum Method [39], and the Level

Set Method [27].

We used this computational model to study FSI in the common carotid artery

and in a stenosed coronary artery under physiological conditions. Numerical results



were compared with measurement showing excellent agreement. New results re-
lated to the behavior of longitudinal displacement were obtained. More precisely, we
showed that, unlike radial displacement, longitudinal displacement in stenotic lesions
is highly dependent on the stenotic geometry. In particular, we showed that in type
3 stenotic geometry listed in Section 7.2, the magnitude of longitudinal displacement
is largest, which may be associated with higher incidence of plaque rupture. We also
showed that longitudinal displacement in atherosclerotic arteries is smaller than in
healthy arteries, which is in line with the recent in vivo measurements that associate
plaque burden with reduced total longitudinal wall displacement [85]. Details of
the comparison between our numerical results and experimental measurements are

presented in Chapter 7.

The research presented in this thesis provides a first step in our effort to capture
multi-layered structure of arterial walls and their interaction with blood flow. In
modeling the intima-media/adventitia complex, the coupling between a thin shell
(intima) allowing radial and longitudinal displacement, and a thick structure (me-
dia/adventitia) is important. The development of the model presented in this thesis
is crucial for this project. Our preliminary results show that the modified kinemati-
cally coupled scheme proposed in this manuscript is perfect for the numerical solution

of such a FSI problem.



Chapter 2

The linearly viscoelastic Koiter models

2.1 Introduction

Arterial walls are complex structures composed of different layers, which makes their
detailed elastic/viscoelastic behaviour difficult to model. There are three main layers

that form arterial walls (see Figure 2.1):

e Tunica adventitia - The outermost layer of arterial wall; it is composed of

connective tissue as well as collagen and elastic fibers.

e Tunica media - the middle layer of the arterial wall. It is composed of smooth
muscle cells surrounded by a network of fibers primarily made of two proteins,

collagen, and elastin. The elastin forms concentric rings within the vessel wall.

e Tunica intima - the innermost layer of arterial wall closest to the blood. It is

composed of a single layer of specialized cells, called endothelial cells, which sit



2.1. INTRODUCTION

atop the sub-endothelial space and a wall called the basement membrane.

outer smooth hasement
coat muscle membrane  endothelium

Lt

elastictissue

elastic tissue

ARTERY 1@ 3901 BrooaniCnis - Thomad

Figure 2.1: Layers forming arterial wall.

Since the full elastic response of arterial wall interacting with blood flow is diffi-
cult to model, the following set of simplifying assumptions is commonly introduced
to capture only the most important physics in the description of the mechanical

properties of arterial walls:

e homogeneity of the material with “small” displacements and “small” deforma-

tion gradients leading to the hypothesis of linear elasticity,

e “small” vessel wall thickness allowing a reduction from three-dimensional mod-

els to two-dimensional shell models,

e cylindrical geometry and axial symmetry leading to the further reduction to

one-dimensional models capturing only radial displacement.

A classical model for arterial walls which includes those assumptions is the elastic
membrane model. When external forces are applied, a membrane model captures

deformation of the structure that only result from stretching. An extension of the

8



2.2. GEOMETRY OF 2-SURFACES AND THE SHELL PROBLEM

membrane model that captures deformation which result from both stretching and

bending is a shell model.

In this chapter we derive the equations for the elastic membrane model for a
tube with variable radius, and an elastic Koiter shell model for a straight tube; both
are extended by the Kelvin-Voigt viscoelastic model. Kelvin-Voigt model has been
shown in [2, 3, 11] to be a good approximation of the measured viscoelastic properties

of the human carotid and femoral arteries, and the canine aorta.

2.2 Geometry of 2-surfaces and the shell problem

Let w C R? be open, bounded and simply connected set with Lipschitz-continuous
boundary ¢. Denote by y = (y,) a generic point in w, and let 0, := 9/0,, and
Oap := 0%/0ya0ys. Let ¢ € C3(w;R3) be an injective mapping such that the two
vectors

a.(y) = Oup(y)

are linearly independent at all points y € w. Then they form the covariant basis of
the tangent plane to the surface S := (@) at the point ¢(y). The contravariant

basis of the tangent plane is formed by the two vectors a®(y) defined by

a®(y) - ag(y) = d5.

To extend the basis to the whole space, we define the third vector (see Figure 2.2)

2(y)
2(y)] .

_ a;(y) x
lai(y) x

as(y) = a*(y) :



2.2. GEOMETRY OF 2-SURFACES AND THE SHELL PROBLEM

Figure 2.2: The mapping ¢ and the covariant basis at a point y

The metric tensor (first fundamental form) of the surface S in covariant A, =

(aap) or contravariant A°¢ = (a®”) components is given, respectively, by

Aag = Qg - Ag, a? =a® - a”.

The area element along S is v/ady, where a := det(A,) > 0 in @ since A, is a positive

definite matrix.

The curvature tensor (second fundamental form) of surface S in covariant B, =

(bap) or mixed B = (b?) components is given, respectively, by

bop = a3 - Opap = —0,a3 - ag, bg = ad%b,,.

The Christoffel symbols T'? are given by

05 =a’ - 0sa, = —0pa’ - a,.

In addition, we define covariant components c,s of the third fundamental form
of the surface S by

Cag = bgbog,

10



2.3. LINEARLY VISCOELASTIC KOITER SHELL MODEL IN CURVILINEAR
COORDINATES

and the first-order covariant derivatives b3|, of the curvature tensor of S by

D310 = Bab + T b5 — T5,07

Ba¥T*

For each ¢ > 0, we define the set
Qf =w x (—€€). (2.1)

Let 2¢ = (y,z¢) denote a generic point in , and define a mapping ® : Q° — R3 by
letting

®(z°) == p(y) + 25a’(y), Va©=(y,25) € Q" (22)

For each 0 < € < €, the set ®(Q°) is the reference configuration of an elastic shell,
with middle surface S = (@) and thickness 2e. We will be assuming, see below,
that the material constituting the shell is linearly elastic, isotropic and homogeneous,

characterized by Lamé constants A > 0 and p > 0.

2.3 Linearly viscoelastic Koiter shell model in

curvilinear coordinates

Consider a linearly elastic shell of thickness 2¢, with middle surface S = ¢ C R?, as
defined in Section 2.2. Let (y be any portion of dw with positive length. We assume

the shell is clamped on a portion of their lateral face, whose middle line is ¢((p).

When external forces are applied, deformation of the shell will be a result of

stretching and bending. Stretching of the surface is measured by the change of

11



2.3. LINEARLY VISCOELASTIC KOITER SHELL MODEL IN CURVILINEAR
COORDINATES

metric tensor, and bending effects by the change of curvature tensor. Let v €
H'(w) x H'(w) x H*(w). Then the linearized change of metric tensor v = (V,5) and
the linearized change of curvature tensor @ = (0ap3) associated with v, in covariant

components, are given, respectively, by

1
Yap(v) = 5(8,11)5 + 0pva) — 3505 — bapus,

0a5(V) = 0Oapvz — 730,03 + 03(0avs — L', vr) + 05,(05v5 — G,07) + 05| s05 — Capus,

where I'7 5 are Christoffel symbols and b,5 are components of the second fundamental

form defined in Section 2.2.

Introduce the elasticity tensor A [24]

A°EA°, E € Sym(R?), (2.3)

2F 2F
AE = “(A@Emf+1

11— o2 +o
where A, and A€ are the first fundamental form in covariant and contravariant

components, and - denotes the scalar product
A-B:=Tr(AB"), A,B e MR).

Material properties are described through Young’s modulus E and Poisson’s ration

o. They are related to Lamé constants through the following identities

B (3N 4+ 2p) A

e 0 T a0t

Displacement of a shell corresponds to the displacement of shell’s middle surface.
Denote the displacement by 1 and assume that n is a function of space and time.
We include viscoelastic behavior by assuming the Kelvin-Voigt model where the total

stress is linearly proportional to strain and to the time-derivative of strain. Then, for

12



2.3. LINEARLY VISCOELASTIC KOITER SHELL MODEL IN CURVILINEAR
COORDINATES

the linearly viscoelastic Koiter shell model we define the internal (stretching) force

by
h h :
S Av(m) + 5By(1), (2:4)
and bending moment by
h3 h3 ,
o1 Aem) + 5 Be(n). (2.5)

Here ) denotes the time-derivative, h is thickness of the shell and B is given by

_ 2E,0, (Ac . E)AC + ﬂACEAC’ Ec Synl(RQ), (26)

1— 02 1+ o0,

with F, and o, corresponding to the viscous counterparts of the Young’s modulus

F and the Poisson’s ratio o.

To define the weak formulation, we introduce the following function space V' by
V={veH (w)x H(w) x H*(w) : v|¢, =0, d,v3]c, = 0}.

The total energy of the linearly viscoelastic Koiter shell is given by the sum of the
contributions due to stretching and bending. The corresponding weak formulation
will thus account for the internal (stretching) force and bending moment. Therefore,
the weak formulation of the linearly viscoelastic Koiter shell is given by: for each

t > 0 find n(t) € V such that

g/(Av(n) + By(n)) -7(6)\/5dy+g—z (Ao(n) + Bo(n)) - 0(&)Vady
+pwh/%272-£\/5dy=/f-€\/5dy> vEev, (2.7)

where p,, is shell’s density and f is the vector of covariant components of the surface

density of the force applied to the shell. The first term on the left-hand side of (2.7)

13



2.4. THE LINEARLY VISCOELASTIC MEMBRANE MODEL FOR A TUBE
WITH VARIABLE RADIUS

multiplying h/2 captures the membrane effects, while the second term on the left
hand-side multiplying h®/24 captures the flexural effects of the Koiter shell. In this
model, components of the vector function n in the canonical basis are components

of the displacement vector in contravariant basis.

2.4 The linearly viscoelastic membrane model for

a tube with variable radius

To derive the linearly viscoleastic Koiter membrane model we note that the only
difference between the membrane and shell models is that the shell model accounts for
bending rigidity, while in the membrane this is negligible. Thus, the weak formulation
of the linearly viscoelastic membrane model is: for each ¢ > 0 find n(t) € V such

that V€ € V

h

3 [ (At + By (@ ady+ pun [ S evady = [ ey, 29

Consider a clamped cylinder of length L, with variable radius R(z), where R :
[0,L] — R is a smooth function. The reference surface is now defined by (see

Figure 2.3)
® = {2 = (R(2)cos, R(z)sinf,z) € R*: 0 € (0,27),z € (0, L)},
and the reference position of the membrane is obtained through a smooth mapping
@(z,0) = (R(2)cosf, R(z)sin6, z) € R®, for z € (0,L),0 € (0,2m). (2.9)

14
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The mapping ¢ introduces a local system of curvilinear coordinates, whose co-

variant basis is given by

e

a = 5o = (R'(z)cosf,R'(z)sinb, 1),
z
a, = 08_990 = (—R(z)sinf, R(z) cos,0),
a; X Qs cos 6 sin 0 R
ag = )

R Y en ) VI e Ve o

el BN
[
N y

Figure 2.3: The reference domain

The contravariant basis is given by

1
2 = Ty () cost. R(2)sind. 1),
1
a? = E(—sin&,cos@,O),
cos 6 sin R
a’ = az = ( )

VIF®RP VIH(RP I+ (R?

The first fundamental form of the surface ® in covariant A, = (a.s3) and con-

travariant A¢ = (a®®) components is, respectively,

A (R'(z)2+1 0 A o=ty
0 R(2)? 0 —R(lz)Q

15



2.4. THE LINEARLY VISCOELASTIC MEMBRANE MODEL FOR A TUBE
WITH VARIABLE RADIUS

The second fundamental form of the surface ® in covariant B, = (b,s) and mixed

components B = (b?) is, respectively,

_ R”(Z) 0 _ R”(z) O
B — (R'(2))*+1 B— (R (2))2+1)3/2
’ 0 R(z) ’ 0 S D
(R'(2))>+1 R(2)\/ (R (2))*+1
Now, the Christoffel symbols I'7 5 for surface X read as follows
 _RERG) L,
F].]. 1+ R/( )2 ) F].]. - O?
R’(z)
Fb - F%l =0, F22 - 1121 = W7
R(z)R'(2)
1 _ 2 _
[y = TR I3, =0.

Remark 2.4.1. Blouza and Le Dret showed in [14] that a linearized change of metric

can be written in the following way
1, . -
Yap(v) = 5(851) cag+ 030 - a,), (2.10)
for all v € H'(w) x HY(w) x H?*(w), where © = [a' a* a®] v.

Using equation (2.10) the corresponding linearized change of metric reads as

follows
e RORE) L RE)

) = AT e A wer
1 R'(z)

T2(v) = 5(6102+82711)— R(2) V3,
1 R'(z)

Yo (v) = 5(32014-3102)— R )712,
. _BORG) __ RG)

E T ) 7 65)
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Components of a vector function v = (vy, v, v3) are its components in contravari-
ant basis {a',a? a3}. Note that the standard basis {e;, es, €3} can be written as a

linear combination of vectors forming the contravariant basis in the following way

e. = R(2)cosfa'— R(z)sinf a* — _ cosf 3
1+ R'(2)?
ind
e; = R(2)sinfa'+ R(z)cosh a’® — Sy 3
1+ R'(2)?
/
es = a'+ & a’.

1+ R'(2)?
From this relation we can form the change of basis matrix W from the standard to

contravariant basis:

al R'(z)cos R'(z)sinf 1
W= 1|a; | =| —R(z)sind R(z)cost 0
ag cos 6 sin 0 R'(2)

CVIHR(E JIHR(2 A 1+R ()2
Given matrix W, for every vector v we can relate its components in contravariant
and standard basis as
[U]{a1,a27a3} = W[’U]{el’e%egj}.
From here we can easily make a connection between the vector coordinates in con-

travariant and cylindrical coordinate system as

o R'(z)cos R'(z)sinf 1 v, cos 0
vy | = | —R(2)sinf R(z)cosd 0 v, sin 6
s cosf sin 0 R'(2) v,

CVIHR ()2 JIHR(2 A\ 1+R(2)?

17
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The latter equations simplify to

v, = R'(2)v. + v,
Uy = O,

1 R (z
L LR

Uy V.
I+ B2 1+ R()?

Taking this into account, the change of metric tensor reads as follows

R'(z)v] 4+ v, 0 .
~y(v) = , V(v.,v,) € Hy(0,L) x Hy(0,L). (2.11)
0 R(z)v,

With these constitutive relations and equation (2.8) we now define the weak
formulation of the linearly viscoelastic membrane model by the following: for each

t >0 find (t) = (n.(t),n.(t)) € Hi(0,L) x HL(0, L) such that

h g y 1(~)2 L8217 / 2
5 [ A+ By@) ARGV T+ R+ puh [ - €R() T+ RGP

L
— [ £ eRVITRGRE:,  vE=(66) € HY x H. (2.12)
0

Written in terms of the displacement, employing the notation

E, _ Euo,

o 27 v o o 27
1—o03 1—o07

C, =

and after integration by parts, the weak formulation of the linearly viscoelastic Koiter

18
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membrane model is given by

Lo EhR(2)R'(2)? ony Lo EhR(z)R/(2) on.
[ ala i momm o ot | o (T mom o )5

Lo EhR(2)R'(2) on L EhoR'(z) on
_/0 3z<(1 —02)(1+ R(2)2)3/? 9z >fzdz+/0 (1—02)/1+ R(2)? 0z bz

- /OL % ((1 pe >Ehf+ Rf<z>2”“>fzdz - /OL ffz((l 5 fg(z)?)w %f)fzd”’

L En J1+R(z edet L Eho 1 6‘?725
Nréraz
g 1—o0? R(z) 0o 1—02\/14+RI(2)? 02

8 ( Eho  R(z) d [ CuhR(2)R'(2)% 0%,

_/0 8z<1—a2 1+R/(z)2m>§”dz_/o 8z((1+R’(z)2)3/2 828t>§’"dz

L9 ( CLhR(2)R'(2) 01, L9 ( C,hR(2)R'(2) 01,
_/0 82((1+R’(z)2)3/2 8z8t>€rdz_/0 82:((1+R’(z)2)3/2 8z8t>§zdz
_/L0< CuhR() 82nz>§dz_/L3< DR (2) 077r>£d2

0 Oz WQ 020t ) >* 0o 0z\\/I+R(z)?2 0t )"

L L /
_/ a< Dyh am)gde/ th\/lJrR(z)?(‘)mgd

0

_l’_

02\ \/1+R/(2)? Ot R(z) ot "
LDhR'()a25 L Dyh 825
V1 + R(2)2 0201 V1 + R(z)? 020t dz

8 i 2 Ny
. . 1 /2
+pwh/ 5 &+ 502 &)R(2)\V/1+ R(2)2dz
/ (f-£. + &) R(2)\V/1 + R(2)2dz, for all € = (£.,€,) € HY x H}.

From here the equilibrium equations read as follows

6%_20 1 _gcﬁnz 1
oz 92\ RV1I+R? 0z 0z ) RV1+ R2

I R/ W S )/ W
02\ * 0z RV1+ R?2 0z 0ot RV1+ R2

_§D82772 1 _ﬁDﬁnr 1
02\ ‘010z ) RV + R? 02\ "0t0z) RVi+ R®
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8 777' a 8777‘ anz
. = puwh Csn. — — | Cyn C
f P az( )Rm L™
0 on, 1 0 on, 1 (‘977,, o0°n,
A (5 Ba/ U I S (o 4Dy D
92 ( ’ ) RVITR? 02 ( ) RVITR? 50,
0*n, 0 on, 1 0 0*n, 1
0, M O (> Weal L -y W
otdz 0z ot ) RV1+ R? 0z 0tz )] R\v/1 + R2
90 D 0?n, 1
02\ "20tdz ) RVI + R?’
where
__ hEo __ _hE R __ _hE R'R __ _hE
Co= 1% mme O = tomeye O = o 6= o
hEo R hEo R hEo h RR"?
Ci= 15w O = itrmmm %Zﬁmﬁm»Gﬁt%mﬁm
_ 1 _ RR/
DO — hD’UW’ D]_ —_— thW, hO HR—,2)3/2’ thRZ’
R/2
Dy = hDy e, Ds = hDygipms,  Ds = hDy e = hCoilers.

At this step it is easy to include the space-dependence of Young’s modulus, struc-
ture thickness or viscoelastic parameters. Let us assume that the stiffness changes
along the cylinder, i.e. £ = F(z), and let h = const, C, = const, and D, = const.

After taking all the derivatives, the viscoelastic Koiter membrane model is given by

1 :pwfg_%m_m%nwfm_%ym_Mym_%%hwﬁ%~

82752 o 0z . 0z 022 022 ot otoz
szth b38t8z2 b“atam?’ <2'13)
+b7§t32 —bs aiatz — b gsan;’ (2.14)
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where
_ ho 1 o ERR
@ = 1—0—2R(1+R'2)< 1+R’2)’
h 1 R, E, R?R?-2R'R+1)+R'R
“o= 1—021+1w2'2<1+1w2'2EJFR(“L (1+ R?)? ))’
h 1 , ER'(1+ R”?—-3RR")
ay = E + 5
1-0%(1 +R’2)2< R(1+ R?) )
hE R’
“B T IS0t R
_ hE 1
R Qe ) P
B h E oR EoR"
© = e T )
w6 — h R/ <E/R/ N ERR”(Q _ R/2) +R/2<1 +R/2)>7
1— 02 (1+ R?)? R 1+ R?
h 1 R, E, R?R?-2R'R+1)+R'R
ar = — E'+—(oc— ) )
1—021+R’2< 1+ R? R (1+ R72)2 )
_ hE R\’
@ = 1—02<1—|—R’2>
o~ hD,R'R"
R(1+ R?)%
yo_ b <DU N CyR*(R? - 2R'R+1)+ R”R>
' 1+rR2\R " R (1+ R?)? ’
by — hC,R'(1+ R? — 3RR")
R(1+ R2) !
R/
by = hcvma
1
by = hcvm,
o (G L)
R\ R (1+R??2)
R'(RR"(2— R?) + R?(1+ R?))
bs = hC, ,
R(1+ R?)?
yo_ b <Dv Gy R?(R?-2R"R+1)+ R”R)
"7 1+R?2\R R (1+ R?)? ’

R \?
bs = hC”(lJrR’?)'
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2.5. THE LINEARLY VISCOELASTIC KOITER SHELL MODEL FOR A
STRAIGHT TUBE

2.5 The linearly viscoelastic Koiter shell model

for a straight tube

Consider a clamped cylindrical shell with the reference radius of the middle sur-
face equal to R = const. Shell thickness is denoted by h and the cylinder length
by L. Assume the shell is axially symmetric, so that the displacement in the
f—direction is zero and nothing in the problem depends on 6. Displacement of the
shell corresponds to the displacement of shell’s middle surface and is denoted by

n(z,t) = .(2,t),m-(2,t)). The reference domain is now defined by (see Figure 2.4)
® = {z = (Rcosf,Rsinf,2) e R* : § € (0,27),2 € (0,L)}. (2.15)

Note that the reference configuration is the same as (2.9) in the case R(z) = const =

middle
surface

undeformed
shell

Figure 2.4: Left: Cylindrical shell in reference configuration with middle surface
radius R and shell thickness h. Right: Deformed shell.

R,Vz € (0, L). Therefore, the first fundamental form of the cylindrical shell in co-

variant A, = (aq5) and contravariant A¢ = (a®?) components is given, respectively,
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by
1 0 1 0
Ac: ) Af =
0 R? 0 %

Now, using equation (2.11) with R'(z) = 0,Vz € (0, L), the change of metric

tensor is given by

v, 0
~(v) = . Y(vs,v,) € HY(0,L) x Hy(0,L). (2.16)
0 Rwv,

Since we are deriving a shell model we also have to find the change of the curvature

tensor to capture bending effects.

Remark 2.5.1. Blouza and Le Dret showed in [14] that linearized change of curvature

can be written in the following way
0a8(V) = (Oap® — I'730,0) - as, (2.17)
for all v € H'(w) x HY(w) x H?*(w), where © = [a' a* a®] v.

Using this result together with equations from the previous section, the change

of curvature tensor for a cylindrical shell is given by

o(v) = , Y(v,,v,) € Hy(0, L) x Hy(0, L). (2.18)

Introduce the following function space

Ve = Hy(0,L) x Hg(0, L)
= {£€=1(&.&) € H'(0,L): £(0) =&(L) =0, £(0) =& (L) = 0}. (2.19)

23



2.5. THE LINEARLY VISCOELASTIC KOITER SHELL MODEL FOR A
STRAIGHT TUBE

Then, using equation (2.7) the weak formulation of the linearly viscoelastic Koiter

shell model is given by: for each t > 0 find n(t) = (7.(t), n.(t)) € V. such that

ho [t/ 2E on. 2Ec , 2Ec  0n., 2F
2/0 (1926 RO-o" T Ri—0?) 3: " T R =)
28, 0%, 2E,0, On, 2E,0, 0°n. 2E,  On,
g “re YRd
1020200 T R —02) 0t T R(1—02) 020t " R2(1—02) 0t ° )rd
r* (L, 28 9%, 2F0 2B0  0%n, 2F
+ ( D) 772 5;’, Y 2 777‘6;/ D2 b} 772 57“ + 4 D) T’T‘&T’
24 Jy \1—02 0z R%(1 —0?) R2(1 —0?) 0z R4(1 —0?)
2B, 0%, 2E,0, On, 28,0, 0%, 2E,  On,
2 277 T - 2 : T - 2 277 &+ g 2 if?“)RdZ
1— 020220t R%2(1—02) Ot R%(1 — 02) 0220t RY(1—02) Ot

L 82 . 82 \ L
+psh/0 ( 6;; .+ 8; &r)dz :/0 (f26: + fr&r) Rdz, V€ = (&:,&) € Ve (2.20)

After integration by parts, the equilibrium equations read as follows

+DaS + D .
where
2 3
“ _ﬁ(“ﬂ;}p), Cy —%%, e _%f—iw
hE e
Do = 53 C(l+ 55); D, zg(]?;’ D, =2
Dy =hC,. b, MG

Remark 2.5.2. In the numerical examples we will be using the viscoelastic Koiter
shell model neglecting the terms containing the 4th and 5th order derivatives (it can
be shown, using non-dimensional analysis, that these terms are much smaller than

the remaining terms).
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2.5.1 Energy equality of the linearly viscoelastic Koiter shell

In (2.20) we replace the test function € by the structure velocity %—’Z and integrate by

parts over (0, L) to obtain the following energy equality of the clamped Koiter shell:

2 2

d ) psh||on: 4 Lshl| O
dt 2 ot 2 ot
L2(0,L) L2(0,L)
2 2 2
h | _E ||n _E on= Fo oz Nr
+2 1+o || R + 1+o0 || 0z + 1-02 || 0z + R
L2(0,L) L2(0,L) L2(0,L)
2 2 2
B _E || _E_|| 2%, Eo || _ & 4
+24 140 || R? + 140 || 822 + 1—02 0z2 + R?
L2(0,L) L2(0,L) L2(0,L)
2 2 2
h | _E, ||0n Ey, ||8%n: Eyou || %02 | Onr
+2 140, || ROt + 140, || 020t + 1—02 || 020t + ROt
L2(0,L) L2(0,L) L2(0,L)
2 2 2
h_3 Ev a77’!‘ Ev 63 Tr Ev Oy _ 83 Nr 6777‘
+24 1+0, || R20t + 140, || 0220t + 1-02 0220t + R26t
L2(0,L) L2(0,L) L2(0,L)
_ (Le. 0m g5
— [Fg.om gz (2.24)

The first two terms under the time-derivative correspond to the kinetic energy
of the Koiter shell. The terms in the second and third row correspond to the elastic
energy of the Koiter shell (the terms multiplying h are the membrane energy, while
the terms multiplying 23 correspond to the flexural (bending) energy). The terms in
the fourth and fifth row correspond to the viscous energy of the viscoelastic Koiter

shell, while the last term corresponds to the work done by the external loading.
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Denote by £k the contribution from the kinetic and elastic energy:

2

on. |I? o, ||* E |n|? E ||on.
Eks = psh‘ L +psh‘ 7 +h{ s il
Ot || 12(0,1) Ot || 20,1 L+o|| R0 140921200
Fo 877,3_’_& 2 }_th[ E || 2 E ||0%n, 2
1-— 0'2 BZ R L2(0,L) 1211 + o R2 LQ(O,L) 1 + o 822 L2(0,L)
Eo 82777” U 2
_ e 2.25
]. — 0'2 822 + R2 LQ(O,L) ’ ( )
and by Vg, the contribution from the viscous energy:
v B ﬁ E, ony 2 E, 82772 2 E,o, 82172 n ony 2
Ks = 911+ oy || ROt 20, Lt+ow 020t 2o L o2||0z0t ROt £2(0,L)
BBy || O 2 E, || &y ||
24 |1 -+ Oy Rgat LQ(O,L) 1 =+ Oy 8z28t L2(0,L)
N Eyou || 0n, ony 2 }
1 — 0'12) 82’28t R23t LQ(O,L) '

In the case when the external forces are zero, we have the following energy equality:

1d
5 7 EKs T Viea =0, (2.26)
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Chapter 3

The Navier-Stokes equations for

incompressible viscous fluid in moving

domains and the Arbitrary Lagrangian

Eulerian (ALE) formulation

3.1 Introduction

A well-accepted model for blood flow in medium-to-large arteries are the Navier-
Stokes equations for an incompressible viscous fluid. In this chapter we present
the Navier-Stokes equations for an incompressible viscous fluid in moving domains.
To resolve the difficulties associated with moving domains we introduce the ALE

method. This approach is widely used in numerical studies of the fluid-structure
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interaction problems [32,48, 50,61, 77, 78].

3.2 The Navier-Stokes equations for an incompress-

ible viscous fluid in moving domains

We consider the flow of an incompressible, viscous fluid in a two-dimensional channel
of length L and reference width 2R. The lateral boundary of the channel is bounded
by a thin, deformable wall. Without loss of generality, we consider only the upper half
of the fluid domain supplemented by a symmetry conditions at the axis of symmetry.

We assume the tube is fixed at the edges, i.e., the length of the tube does not change.

We will be assuming that for each ¢t € (0,7") the boundary of the fluid domain
is Lipschitz continuous and that its lateral boundary, in Eulerian framework, can be

described by a Lipschitz continuous function
g(+;t): (0, L) =R, g(-;t): 2z g(z;t) foreach te(0,7),
so that, in Eulerian framework,
I'(t) ={(z,9(z1),z€ (0,L)} for te(0,T),

where z and r denote the horizontal and vertical Cartesian coordinates, respectively.

The fluid domain is given by (see Figure 3.1)
Q) ={(z,1) ER} 0<z< L, 0<r<g(zt)}, for te(0,T). (3.1)

The inlet boundary will be denoted by I%,, the outlet boundary by 'y, the sym-
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r T(t)

Iy N

Figure 3.1: Fluid domain €(¢).

metry (bottom) boundary for which » = 0 by T, so that

OQt) =T UT () U Tou U L.

The flow of a viscous, incompressible, Newtonian fluid is governed by the Navier-

Stokes equations

pf(%_‘;+u.w) — V.o mQt)fort e (0,T), (3.2)

Viu = 0 in Q(t) fort € (0,7, (3.3)

where u = (u,, u,) is the fluid velocity, p is the fluid pressure, py is the fluid density,
and o is the fluid stress tensor. We assume the fluid is Newtonian so that the fluid
stress tensor is given by o = —pI + 2uD(u), where p is the fluid viscosity and

D(u) = (Vu + (Vu)7)/2 is the rate-of-strain tensor.
At the inlet and outlet boundary we prescribe the normal stress:
onl|;,(0,r,t) = —pu(t)n|, on (0,R) x (0,7, (3.4)
on|op (L, t) = —pout(t)n]oye on (0, R) x (0,7, (3.5)

where n;, /n,,; are the outward normals to the inlet/outlet boundaries, respectively.
Even though not physiologically optimal, these boundary conditions are common in

blood flow modeling [8, 65, 70].
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At the bottom boundary I', we impose the symmetry conditions

%(z,(),t) =0, wu.(2,0,t)=0 on(0,L)x (0,7). (3.6)

The upper boundary I'(t) represents a moving channel wall. Here we prescribe

the no-slip boundary conditions for the fluid velocity
u=up onl(t), forte (0,7).

When considering a fluid-structure interaction problem the no-slip condition will be

supplemented by an additional condition describing the balance of contact forces.

Initially, the fluid is assumed to be at rest
u =0,

with the moving wall in the reference configuration.

3.3 The ALE mapping

To deal with the motion of the fluid domain we adopt the Arbitrary Lagrangian-
Eulerian (ALE) approach [32,50,70]. In the context of finite element method ap-
proximation of moving-boundary problems, ALE method deals efficiently with the
deformation of the mesh, especially near the interface between the fluid and struc-

ture.

Denote by Q := (0, L) x (0, R) the reference domain, and let Q(t) be a current

domain. A point & €  is called the ALE coordinate, while & = x(&,t) € Q(t)
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3.3. THE ALE MAPPING

is called the Eulerian coordinate. ALE approach is based on introducing a family
of (arbitrary, invertible, smooth) mappings A; defined on a single, fixed, reference
domain € such that, for each ¢ € (to,T), A; maps the reference domain Q0= (0, L) x

(0, R) into the current domain €(¢) (see Figure 3.2):
A QCcRY = Q) cRY x(@,t) = A() € Qt), for & € Q. (3.7)
In addition, assume that the mapping
t— x(&,t)

is differentiable almost everywhere in [0, 7.

A:

L 1 L
Figure 3.2: A, maps the reference domain €2 into the current domain €(t).

Let f = f(x,t) be a function defined on Q(t) x (t,,T) and f := f o A, the
corresponding function defined on Q x (to,T) given by
J(@.t) = [(A&), ). (3.8)

Define the time derivative of f on the reference configuration, in notation 86—{ 4 I

the following way

of

of (x,t) = E(At_l(a:),t). (3.9)
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Using this notation, differentiating the function f defined in (3.8) using the chain

rule we have

of|  of OA, _of
=G (o At@) Vi =G s (3.10)

where V denotes the gradient with respect to  and

o VA
Ot

ox

o A N x) = B

(3.11)

&

denotes domain velocity.

3.4 The ALE formulation of the Navier-Stokes equa-

tions in conservative and non-conservative form

When dealing with moving domains in practice, it is natural to work with variables

that follow the domain evolution. Suppose we have a moving mesh and let an

and x;n11 be the corresponding mesh nodes in the mesh at times ¢* and t"*!, as

in Figure 3.3. A natural way of discretizing the time-derivative of a function u €

Figure 3.3: Example of a moving mesh.
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Q") is via the forward difference

ou w(@pnsr, ") — w(@m, t")
_(wt”‘*‘lvtmrl) ~ tntl _ ¢n )

ot

However, a point @+ that belongs to Q(¢t""1) does not have to necessarily belong
to (¢"). Since the two terms that define the discrete form of the time derivative are
not defined on same domains, the approximation of the time-derivative is not well
defined. For this reason it is necessary to map the function uw back to the reference
domain before discretizing the time derivatives. Using relation (3.10), for a function

u defined on a moving domain we can write

au_au

where w is domain velocity and %—;‘ 5 1s derivative of u on the reference domain.

We apply this rule to write the time-derivative of the velocity in Navier-Stokes
equations (3.2)-(3.3) on the reference domain. Using equation (3.12), the ALE for-

mulation of the Navier-Stokes equations in non-conservative form is given by

Py (38_1; A + (u — w) - V'u,) = V.o inQ)fort €(0,7), (3.13)

Viu = 0 in Q(t) fort € (0,7, (3.14)
with appropriate initial and boundary conditions.

Remark 3.4.1. In the general case w(x,t) # u(x,t). However, let us point out two

special cases:

e w = 0 : the domain is fixed, i.e. Q(t) = Q. In this case we recover the Eulerian

description of the motion.
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e w = wu : t) is the material domain. In this case we recover the Lagrangian

description of the motion.

To derive the conservative formulation we introduce the following proposition [43]

Proposition 3.4.1. The following identity holds

0J 4

(@0 = Ja(#1) V- w(A(2),1), Vi e Q,vt > 0, (3.15)

where J4 is Jacobian of A;.

Using Proposition 3.4.1 one can show the following equality

0_u _i a(JAu)
ot |, Ja\ Ot

— JquV - w) (3.16)

Replacing the material derivative in (3.13) with the relation (3.16) and using
Vi(u®@w)=uV- -w+w- Vu,

we obtain the ALE formulation of the incompressible Navier-Stokes equations in

conservative form

pr 9(Jau)
Jq Ot

L+v.(pfu®(u—w)—a> = 0 inQ@) fort €(0,T), (3.17)

Viu = 0 inQt) fort € (0,7), (3.18)

with appropriate initial and boundary conditions.

3.5 Construction of the ALE mapping

Assume we know the motion of the interface
h 90 % (0,T) — dQ(t).

34



3.5. CONSTRUCTION OF THE ALE MAPPING

We want to find an ALE mapping A; such that
A&) = h(&,t), Vi ed, te(0,T).

Since At x) =x(&,t) and At is arbitrary inside €2, we can assume x is any “reason-
) )
able” extension of h over (2

x = Ext(h).
A simple model for finding such an « is the following;:

Problem 3.5.1. Find x : Q x (0,T) — Q(t) such that

‘96_‘: Vs (kVam) =0, VéeO, te(0,T), (3.19)
x(&,0) = &, & e, (3.20)
x(&,t) = h(&,1), & e o0, te(0,T), (3.21)

where Kk is a positive constant.

In the case when we do not have a prescribed motion given for all times ¢, a
numerical method only has an input for the time interval (¢",¢"*!) which consists of
the reference domain and the new position of the boundary, in notation h : o) —

dQ(t), a simple choice for the function @ is a harmonic extension of h onto Q:

Problem 3.5.2. Find a : Q) — Q(t) such that

Vs (kVgx) =0, VY& e, (3.22)

x(&) = h(), & € 00, (3.23)

where k is a positive constant (in the simplest case Kk =1).
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In our approach, we define A; to be the harmonic extension of the mapping g
that maps the boundary of Q to the boundary of Q(t) for a given time ¢. More

precisely, in our case {2 := (0,L) x (0, R), and so A; is a harmonic extension of
g : 00 — 90(t)
onto the whole domain €, for a given ¢ :

Problem 3.5.3. Find x : Q — Q(t) such that

Azx =0, Vi € Q, (3.24)
x(&) =0, & e 0\Q, (3.25)
x(&) = g(&), & (3.26)
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Chapter I

The fluid-structure interaction problem

4.1 The coupling conditions and formulation of

the fluid-structure interaction problem

Consider the flow of an incompressible viscous fluid in a two-dimensional channel.
Without loss of generality, we consider only the upper half of the fluid domain supple-
mented by a symmetry condition at the axis of symmetry (see Figure 3.1). The lateral
boundary of the channel is bounded by a thin, deformable wall. We model the fluid
flow by the Navies-Stokes equations for an incompressible viscous fluid (3.3)-(3.6),
and the motion of the wall by the linearly viscoelastic Koiter shell model (2.22)-(2.23).
We are interested in simulating a pressure-driven flow through the deformable 2D

channel with a two-way coupling between the fluid and structure.

The fluid domain, which depends on time, is not known a priori. The location
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of the lateral boundary, defined in Lagrangian framework, is given by I'(t) = {(Z +
n.(2,t), R+ n.(2,t)) | 2 € (0,L)} for t € (0,T). Throughout the rest of this thesis
we will be denoting the Lagrangian coordinates by x = (2,7). The displacement of
the boundary will always be given in Lagrangian framework. However, we will omit

the hat notation on n for simplicity.

The fluid and structure are coupled via the kinematic and dynamic boundary

conditions [20]:

¢ Kinematic boundary condition describes continuity of velocity: the fluid

velocity at the current interface I'(¢) equals the velocity of the structure:

_n

u(z+n.(2,t), R+n.(2,t),t) = T

(2,t) on (0,L) x (0,7). (4.1)

e Dynamic coupling condition describes balance of forces: the contact force
exerted by the fluid to the structure is counterbalanced by the contact force of
the structure. The fluid contact force, typically given in Eulerian framework, is
given by the normal fluid stress on on I'(t), where n is the outward normal to
the deformed boundary I'(t). Let F' = (f., f,) denote the force of the structure

to the fluid-structure interface. Then, for every Borel subset B € f‘, we require

/ 1+3?7z 2+ il 2571\ e.dz = —/fdz
5 B B I'(¢) z - 5 zU=,
.\ o \? B
/B\/(l + 82) + (82) onlry - e dz = —/Bfrdz,

= \/<1+%";)2+ @";)2 (4.2)
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is the Jacobian determinant of the mapping transforming I'(¢) to [. Pointwise,

the balance of contact forces reads

~f. = Jon|ry e, onl x(0,7T), (4.3)

~fr = Jon|ry e, onl x(0,T). (4.4)

Now, we define the fluid-structure interaction problem, written in the ALE frame-

work, as the following problem:

Problem 4.1.1.

pf<%—“t‘@+(u—w)~Vu):V~a in Qt) x (0,7),

V-ou= in Q(t) x (0,7),

9 = ufrg on (0, L) x (0,T),
phZe — Cy0e _ Cy e Do O — g on (0,L) x (0,7T),

T T 2 r 8 r
P + Cune = Cu5% + Colfe + D% — Duft

+Do 5 = on (0,L) x (0,7),
with the following boundary and initial conditions

ou,
r
u(0,R,t) =u(L,R,t) =0, mn(0,t) =n(L,t)=0,

2,0,t) = u.(2,0,t) =0 on(0,L) x (0,7),

onli,(0,7,1) = —pin(O)n]in, o0|gw (L, 7, 1) = —pout(t)0]oue on (0, R) x (0,T),

9 .
uliso =0, 7o =0, a—? —0 on. (4.5)
t=0

Remark 1. It is worth mentioning here that while the fluid flow is modeled in 2D,

the thin structure equations, described in the previous section, are given in terms
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of cylindrical coordinates, assuming axial symmetry. It is standard practice in 2D
fluid-structure interaction studies to use thin structure equations that are derived
assuming cylindrical geometry. This is because cylindrical structure models account
for the circumferential stress that “keeps” the top and bottom boundary of the
structure “coupled together” when they are loaded by the stresses exerted by the

fluid, thereby giving rise to physiologically reasonable solutions.

4.2 Variational formulation and the energy equal-

ity for the coupled FSI system

4.2.1 Variational formulation

Define the space of test functions

V(t) = {v:Q@t) > R|v==00(A4)"oec (H (D) v|—0 =0,
vlre) € Hy(D(1))}, (4.6)
Qt) = {q:9(t) =Rl g=go(A)",qe L)}, (4.7)

for allt € [0, 7). The variational formulation of Problem 4.1.1 reads: givent € (0,7),

find (u,p,n(t)) € V(t) x Q(t) x V. such that for all (v,q) € V(t) x Q(t)

pf/ vdzc+2,u/ D(u D('v)dzl:—/ pV - vdx
Q)
A an 0% an 9%\ 9(v.)
h = " _ D r s 2 D 2 E
+/0 (ps oz~ o, " Prgs )“Z|Fdz+/o (03 9z 3ataz) 9.
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L
9%, on, on, 0%n, .
+/ ( h i —|—C()777~—|—02 i +D0 T +D2 i )UT|de
0

ot? 0z ot ot0z
O n \O(wely) . [F f
_'_/0 (Cl a + Dl ataz) 82’ dZ /0 pm(t)vz’zzodr - /0' pout(t)vz’z:Ldr7
and

/ qV - udx = 0.
Q(t)

4.2.2 The energy of the coupled FSI problem

To formally derive the energy of the coupled FSI problem we multiply the structure

equations by the structure velocity, the balance of momentum in the fluid equations

by the fluid velocity, integrate by parts over the respective domains using the in-

compressibility condition, and add the two equations together. The dynamic and

kinematic coupling conditions are then used to couple the fluid and structure sub-

problems.

We start by first considering the Navier-Stokes equations for the fluid. To find the

energy of the fluid sub-problem we multiply the momentum equation in the Navier-

Stokes equations by u and integrate by parts over €2(t), using the incompressibility

condition along the way. With the help of the following identities

0 1d 1
Pde = =2 |ul*dx — —/ |ul*u - ndS,
o) Ot 2dt Jou 2 Joow

1
/ (u-V)u-uder = —/ |u|?u - ndS,
Q) 2 Jaow
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one obtains
1d 9 9
& prllullzz2ey) ¢ + 26D (W12

R R
—/ Pin(t)uz],=odr + / Pout ()| ,=pdr = / on-u dS.
0 0 ')

The integral on the right-hand side can be written in Lagrangian coordinates as

L
/ on-udS = / lon - u] |z 2.0), Rame () J d2 (4.8)

NG 0
where J is the Jacobian of transformation from the Eulerian to Lagrangian frame-

work, given by (4.2). Now we use the kinematic (4.1) and dynamic (4.3)-(4.4) lateral

boundary conditions to obtain

L L an
/ lon -] |s . ), Rme ey J A2 = = / £-o d (4.9)
0 0

Thus, the fluid sub-problem coupled with the structure satisfies

%%{PfHUH%Q(Q(t))} 21Dz gy

R R L a,r'
—/ Pin ()t | ,=odr —|—/ Pout ()| ,=pdr = —/ f.— d2. (4.10)
0 0 0 ot

By adding (2.24) and (4.10), the right-hand sides of the two equations cancel out

and one obtains the energy equality for the FSI problem:

2 2

d pi’|u|‘2 + M aﬁz psh 8777“
@) 2 OO 2 10 || oy 2 110 [l2n
Kineti;rEnergy
b E ||n 2 E ||on.|? Eo ‘6nz+m 2
2 1 + o R LQ(O,L) 1 + o aZ LQ(O,L) 1-— 0'2 az R L2(0,L)
Structure Elastic Energy (Membrane Contribution)
L E |l 2 20 ||0%n, 2
24 _1 —0?|| R? L2(0,L) 1—02|] 922 L2(0,L)

Structure Elastic Energy (Flexural(Shell) Contribution)
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Lh E, one 2 E, 82nz 2 FE,o, 82172 n ony 2
2 1 + Oy Rat LQ(O,L) 1 + Oy 82815 LQ(O,L) 1-— O'g azat Rat L2(O,L)
Structure Viscous Energy (Membrane Contribution)
2 3 2
h3 E’U anr QEU 8 777- 2
57 + 2p||D(uw

~~ Fluid Viscous Energy
Structure Viscous Energy (Flexural (Shell) Contribution)

R R
:/ pm(t)uz|zzodr—/ Pout (t)Uz| = dr. (4.11)
0 0

The coefficients F, and o, are defined in Chapter 1. Therefore, we have shown that

if a solution to the coupled fluid-structure interaction problem (2.21) - (4.4) exists,

then it satisfies the energy equality (4.11). This equality says that the rate of change

of the kinetic energy of the fluid, the kinetic energy of the structure, and the elastic

energy of the structure, plus the viscous energy of the structure, plus the viscous

energy of the fluid, is equal to the work done by the inlet and outlet data.
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Chapter

A kinematically coupled S-scheme for the

fluid-structure interaction problem

5.1 Monolithic and partitioned algorithms for fluid-

structure interaction problem

There are two main approaches to numerically solving fluid-structure interaction
problems, monolithic and partitioned approach. Monolithic schemes solve the fluid-
structure interaction problem as a single system, enforcing strong coupling between
the fluid and structure. As a drawback, they are generally quite expensive in terms
of programming time, memory requirements and computational time when solving
large systems. Namely, since the coupling between the fluid and structure is highly

non-linear, such solvers require solving non-linear, strongly coupled problems at each
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time step using, for example, fixed point or Newtons methods [12, 23,29, 38, 48].

Partitioned schemes separate the fluid-structure interaction problem into two
main sub-problems: the fluid sub-problem and the structure sub-problem. Parti-
tioned algorithms that do not require sub-iterations between the fluid and the struc-
ture sub-problems at each time-step are called loosely coupled algorithms. Those that
require sub-iterations between the fluid and the structure sub-problems are called
strongly coupled algorithms. The basic idea of a classical partitioned scheme is to
solve the fluid sub-problem with Dirichlet boundary conditions at the fluid-structure
interface given by the velocity of the structure from the previous time-step. After
that, one can compute the fluid stress at the fluid-structure interface and use it as
a load in the structure sub-problem. This saves computational time since it involves
solving smaller sub-problems, and programming time by allowing the use of existing
solvers for each sub-problem. However, the energy at the fluid-structure interface is

not exactly balanced due to the explicit discrete coupling between sub-problems.

More precisely, if fluid and structure are of roughly the same densities, which
is the case in the blood flow applications, small errors can lead to instabilities and
convergence issues in numerical simulations. Numerical instabilities that occur when
modeling interaction between fluid and structure of comparable densities are associ-
ated with the “added mass effect” [22]. Causin et al. showed that in the blood flow
applications classical partitioned schemes are unconditionally unstable. The added
mass effect also influences implicit schemes by causing convergence issues, but not

instabilities.
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One of the recently proposed loosely coupled schemes that is unconditionally sta-
ble when fluid and structure have comparable densities is the kinematically coupled
scheme. This scheme was proposed in [46] and applied to a simple benchmark prob-
lem. To solve the fluid-structure interaction problem (4.1.1), we propose an extension

of the kinematically coupled scheme with the following two goals:

1. to capture both radial and longitudinal displacement of arterial wall,

2. to improve accuracy of the scheme.

More precisely, the classical kinematically coupled scheme introduced in [46] is
based on a time-splitting approach known as the Lie splitting [44]. The viscoelastic
structure is split into its elastic part and the viscous part. The viscous (parabolic)
part and structure inertia are treated implicitly together with the fluid, while the
elastic (hyperbolic) part is treated separately. The inclusion of the structure inertia
and viscous part of the structure into the fluid solver implicitly as a boundary condi-
tion in the weak formulation is crucial for the stability of the scheme. This approach
provides a desirable discrete energy inequality making this scheme stable even when

the density of the fluid is equal to the density of the structure.

The elastic part of the structure, which is solved separately, communicates with
the fluid only via the kinematic coupling condition. The fluid stress does not appear
in this step, as it is used as a loading to the viscous part of the structure in the weak

formulation of the fluid sub-problem.

We will change this approach by additionally splitting the normal stress into a

fraction that loads the viscous part of the structure, and a fraction (pressure) that
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loads the elastic part of the structure. This splitting is done using a modification of

the Lie splitting scheme in a way which significantly increases accuracy.
Thus, the kinematically coupled scheme, called the kinematically coupled -
scheme, is extended and improved to achieve the following two goals:
1. Capture both radial and longitudinal displacement of the linearly viscoelastic
Koiter shell for the underlying fluid-structure interaction problem.
2. Increase the accuracy of the kinematically coupled scheme by introducing a

new splitting strategy based on a modified Lie’s scheme.

This version of the kinematically coupled scheme retains all the advantages of

the original scheme, which include:

e The scheme does not require sub-iterations between the fluid and structure

sub-solvers to achieve stability.

e The scheme is modular, allowing the use of one’s favorite fluid or structure

solvers independently. The solvers communicate through the initial conditions.

e Except for the pressure, the fluid stress at the boundary does not need to be

calculated explicitly.
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5.1.1 The Lie operator splitting scheme

Let A be an operator from a Hilbert space H into itself, and suppose ¢g € H. Consider

the following initial value problem

9¢ :
E+A(¢) = 0 in(0,7), (5.1)

¢(0) = . (5.2)

Suppose A has a non-trivial decomposition

where I > 2 and A; are non-trivial, individually simpler operators than A. Let At >
0 be a time discretization step. Denote t" = n/At and let ¢™ be an approximation of

¢(t"). The Lie scheme [44] reads as follows: Set

¢" = do.
Then, for n > 0 compute ¢"*! by solving

O
ot

+ Ai(¢;) = 0 on (t”,t”“),

¢z(tn> — ¢n+(i_1)/l,
and set "t/ = ¢, (t"1), fori =1,....1.

This method is first-order accurate in time. More precisely, if (5.1) is defined on
a finite-dimensional space, and if the operators A; are smooth enough, then ||¢(¢") —
¢"|| = O(At) [44]. In our case, operator A that is associated with Problem 4.1.1 will

be split into a sum of three operators:
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1. The Stokes problem with suitable boundary conditions implicitly involving

structure velocity and fluid stress at the boundary.
2. The fluid advection problem.

3. The elastodynamics problem for the structure, loaded by the fluid pressure.

These sub-problems are coupled via the kinematic coupling condition and via fluid
pressure appearing in the elastodynamics problem. The kinematic coupling condition
also plays a key role in writing Problem 4.1.1 as a first-order system, based on which

the Lie splitting can be performed.

To write Problem 4.1.1 in first-order form, we utilize the kinematic coupling

0
condition u = il Written in the ALE framework, our problem now reads: Find

ot
u = (uzu,), n=(ns,n), with a(x,t) = u(A(%x),t) and 4|z = a(2, R, t), such that
Ou .
pf(% A +(u—w)-Vu) =V-o, in Q(t) x (0,7), (5.3)
V-u=0 in Q(t) x (0,7), (5.4)

with the kinematic and dynamic coupling conditions holding on I'(¢):

on _ .

ot - u|f‘ on (OvL) X (OaT)a (55)
a('&Z|A) on, 82772 8<ﬁr’A) 82(ﬁZ|A)
h—2I — - D L/ D, 2
=~ — o, ~ G — ey, 3922
on. 2 on, 2
= — 1+ P + P on|ry -e, on(0,L)x (0,7), (5.6)
a(ar‘f) 82771” on. N 82(ar‘f) a</&2’f)
. Doy | — D, SR | p, Aele)
psh =+ Cotr = Crgrg + Cag = 4 Doty |p = Di—5 5= + Do

on.\° o\ -
=— 1+ P + o onlry e, on (0,L) x (0,7), (5.7)
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and the following boundary conditions on I'y, U gy U I'y:

du,,
ai(z, 0,t) = u.(2,0,t) =0 on [}, (5.8)
r
on,
u(0,R,t) =u(L,R,t) =0, m|m0r = =0, (5.9)
0z 2=0,L
O'l’l|in(0,’l“, t) = _pzn(t)n|znu (510)
on|out (L, 7, 1) = —pous ()10 o0 (0, R) x (0, 7). (5.11)
At time ¢t = 0 the following initial conditions are prescribed:
0
uli=0 =0, 7nli==0, el = 0. (5.12)
ot |,_

Notice how the kinematic coupling condition is used in (5.6) and (5.7) to rewrite the
viscous part of the structure equations in terms of the trace of the fluid velocity on

['(t). This will be used in the splitting algorithm described below.

Remark 2. As shown in [33], if we discretise (3.11) as

A (&) — &

T

w(x, ) =

+ O(1), (5.13)
we obtain a linear affine transformation for A
A () =2 +1w(x, 7) + O(T). (5.14)

It can be easily shown that, using this transformation, spatial partial derivatives
of a function on a domain €(7) are equal to the derivatives of the same function
on the reference domain €, plus an error O(7) [33]. We avoid dealing with this
problem by writing only the time-derivative on the reference domain, and leaving
the spatial derivatives evaluated on the current domain. Details of the new splitting

are described next.
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5.2 Details of the operator-splitting scheme

We split the first-order system (5.3)-(5.12) into three sub-problems. The fluid prob-
lem will be split into its viscous part and the pure advection part (incorporating the
fluid and ALE advection simultaneously). The fluid stress on will be split into two
parts, Part I and Part II:
on = on + Apn —Bpn,
S——
(1) (I1)
where 3 is a number between 0 and 1, 0 < < 1, with § = 0 corresponding

to the splitting introduced in [46]. As discussed later, the accuracy of the scheme
increases as the value of 8 increases from 0 to 1. The numerical results presented
in this manuscript will correspond to the value of § = 1. The viscoelastic structure
equations will be split into their viscous part and the elastic part. These are combined

into a splitting algorithm in the following three steps.

e Step 1. Step 1 involves the Stokes problem with the viscous part of the
structure and Part I of the fluid stress. The Stokes problem is solved on a fixed
domain Q(¢") with a “Robin type” lateral boundary condition given in terms
of Part I of the fluid stress which is balanced implicitly by the viscous part of

the structure and by structure inertia. The problem reads as follows:

Problem 5.2.1. Given u™ and 0", find u,p and n, with 4(X,t) = u(A(x),1t)
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such that for t € (t",¢"1):

)
pr =V, V-u=0 nQt")x (")

Mz t)=0 on(0,L) x (t"t"),

0 U ’lLr 4 P’
J ot 2o 2 B )+ (G2 - e
_ \/ 1 + 8772 8[;72) (o'nnhw(t)) €, oNn (07 L) X (tn7tn+1)7

psh (U'rlr) +D0 7'| _D182(’&r‘1—‘) +D (Uzlp)

022
9 3 7 nn
+B\/ 1+ le an )2(]) n |F(t))-er
k - \/1+8’7Z (22)2(mi|r) - e, om (0, L) x (7, #7+1),

with the following boundary conditions on 'y, U gy U Ty

Ou,
au (2,0,t) =  u.(2,0,t) =0 only,
r
u(0,R,t) =u(L,R,t) =0,
Un|in - _pm(t)n|m on Fim Un'out = _pout(t)nlout on Fouta

and initial conditions
u(t") =u", n(t")=n".

Then set un+1/3 — u(tn+1>7 ,’,’n+1/3 — ,r’(thrl)’ pn+1 p<tn+1)

Note that here we used only Part I of the fluid stress.
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e Step 2. In Step 2 we solve the fluid and ALE advection sub-problem defined

on a fixed domain Q(¢"). The problem reads:

Problem 5.2.2. Find u and n with a(X,t) = u(Ay(x),t), such that fort €

(tn’ tn+1)

G|+ (urtE — w8 Vu =0, Q") x (", ")

%—’Z(é,t) =0 on(0,L)x (t",t"*1),

pshs 2SI =0, on (0,L) x (7, t1),

with boundary conditions:

1/3
n+1/3 on FT_H_ /

u=u , where

I3 = (x e R2x € 9Q(t"), (w3 — w"t/3) . n < 0},

and initial conditions
u(tn) _ un+1/3’ n(tn) _ ,’,In+1/3‘

Then set u™+2/3 = U_(tn—H), nn+2/3 — ,r’(tn—i-l)'

e Step 3. Step 3 involves solving the elastodynamics problem for the location
of the deformable boundary by solving the elastic part of the structure which
is loaded by Part II of the normal fluid stress. Additionally, the fluid and
structure communicate via the kinematic lateral boundary condition which
gives the velocity of the structure in terms of the trace of the fluid velocity,

taken initially to be the value from the previous sub-step. The problem reads:
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Problem 5.2.3. Find G and n, with p"™* computed in Step 1 and n™ obtained

at the previous time step, such that for t € (", t"*1)

4

Gu =0, mQ@{")

%—’Z(z,t) =1l on(0,L) x (t",t"*),

psha(%zt‘f) o C anr 03%:22
= B\/(l + 8"2) + (%)%p"“nﬂp(t)) e, on(0,L) x (t ¢,
(i
S 1 Cyn OV + 013

= By (L + 2202 + ()2 () e o (0,L) x (17, 4711),

\

with boundary conditions:

ony
2= = = 0’
M=o = 5

and initial conditions:
u(tn) — un+2/37 n(tn) _ nn+2/3‘

Then set u™* = u(t"t1), pntl = n(tm+h).

Do t" = t""! and return to Step 1.

A diagram of the scheme is shown in Figure 5.1.

Remark 5.2.1. Note that the outward normal to the lateral boundary can be written

as

1 /
no_ e lEn) (5.15)

V)2 + (T+m)?
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[ Initial conditions ]

L

> Mesh update

i
/ Step 1: \

Stokes problem coupled with
structureinertia and
viscoelasticity

2

Step 2:
\_ Advection problem Q\\)y
Step 3:

Structure (elastodynamics)
problem) with pressure loading
and initial structure velocity
given by the fluid velocityon I’

b

Figure 5.1: Diagram of the kinematically coupled S-scheme.

Using this equality, we can take m in Step 3 implicitly, which upon substituting |

by %? leads to the following system

h 68122 ( B |n+1 )

C3 822 =0 on (O L) (tn7 tn+1>7
2

4
psh e + Cone — CL 5% + (Cy — Bl ) 2 + 15 C Btk

= Bili on (0.L) x (&7, £741),

where p"*! is pressure computed in Step 1.

Remark 5.2.2. The trace of the pressure, used in Step 3 to load the structure, needs to
be well-defined. In general, one expects the pressure for a Dirichlet problem defined

on a Lipschitz domain to be in L*(Q), which is not sufficient. Several works, see
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e.g., [6,56,83], indicate that, under certain compatibility conditions, the solution of
the related class of moving boundary problems has higher regularity, allowing the
definition of the trace of the pressure on the moving boundary. In fact, we can show
that for our problem, under certain compatibility conditions at the corners of the
domain, the pressure belongs to W8/7(2), which is more than sufficient for the trace

to be well-defined on I'(¢") [67].

5.2.1 The time-dependent Stokes problem

Consider Problem 5.2.1. In this subproblem the time derivative of m is zero in
(t", t"*1) implying n(t) = n(t"),Vt € (t",t"). Therefore we can map the problem

back into Q(¢"). Thus, in Step 1 we are solving

)
pfa—'t‘ —V-o, V-u=0 inQ")x (" "), (5.16)

with the following boundary conditions:

e On I'(t") :

A(uzlp@ny) A(ur|pmy) 9 (uz|p(n))
o P, TP

on? O o0 =
+5\/(1 + pp )2+ ( B )2(p"0"|p(en)) - €

psh

= —\/(1 t3, )2+ ( o )2(en?|pn)) - €z on (0,L) x (t",t"), (5.17)
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O(ur|r(n)) 0 (ur|p(en)) I(uz|p(m))
pshA + Doty — D . 2<t )\ p, az(t )
onr 8 i
+ﬁ\/ n an (P | pgm)) - e

6772 anr Y n o4n
:‘\/<1+ 52+ () an ngm) e on (0,L) x (&7, 1"+). (5.18)

Note that o here is the fluid stress at the current time.

e On ['y:

e (200 =0, upl(2,0,6) =0 (5.19)

67’ ) - Y T ) - Y- .
e On an

(0,R,t) =0 .= —pi(t)n. (5.20)
e On I',:

u(L,R,t) =0, onr,, = —Pout(t)n. (5.21)
Initially,
u(t")=u", n(t")=n". (5.22)

5.2.1.1 Variational formulation

Recall the spaces of test functions defined in (4.6) and (4.7)

Vi) = {v:Q@F) 5 R|v==00(A)""0e (H(D))?v]— =0,
vlre € Hy(T(1))},

Qit) = {qg:Q1)—=R|g=go(A)™",ge L*Q)}, forallte[0,T).
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Then the variational formulation of problem (5.16)-(5.22) reads as follows: Fort €

(0,T) finduw € V(t") and p € Q(t") such that Yv € V (")

L9 ;
Qf/ 6_u -vdx + 2 D(u) : D(v)dx +/ pshmwh(tn)dz
() Ot () 0 ot

L a " ) ] )
_/ DQM%’F tn)dz+/ Ds |Ft )) (v |F(t ))dz
0

0z 0z 0z
L 9(up|pgn L O(u|pn
+/ psh%uﬂh(tn)dz + / (Dourh"(tn) + DQ%)UAF@")CZZ
0 0 <

L R
+/ D1 (Ugl“(tn ) (UT|F tn )d o / pv 'Udm o / pm(tn)vz|zzgd7’
0 z Q@tn) 0
0 8
_/ pout( Uz z= Ldr - ﬁ/ \/ nz 87]7" ) (pnnn)‘l" tn ,Uz‘l“ tm) dz
0

0 8
—5/ \/1+ 77z am) (pnnnﬂr n Ur|rtn dz,

and

/ ¢V -udz =0, Vg€ Q). (5.23)
Q(t™)

To discretise problem (5.16)-(5.22) in space we use an isoparametric version of the
Bercovier-Pironneau finite element spaces introduced in [13], also known as P;-iso-Py
and P approximation. Namely, we use a continuous piecewise linear approximation
of the pressure on a triangulation 75, of 0, and the same approximation for velocity

on a mesh 771 /2, Where ’ﬁ /2 is twice finer than 771

Precisely, denote by 7A7L = 73% U 7A'Ch, where

~

Tan = {T|T €Ty, the three edges of T are rectilinear},

A

Ten = {T|T € 72, T has two vertices on I'}.

58



5.2. DETAILS OF THE OPERATOR-SPLITTING SCHEME

To form the mesh 7;, /2, every triangle T" € Trn is divided into four sub-triangles by
joining the midpoints of its edges. Every curved triangle T € Ten is divided into four
sub-triangles by joining the two midpoints of the rectilinear edges, and the midpoint

of the arc, as shown in Figure 5.2.

Figure 5.2: Approximation of a curved triangle T' by T = U}, T;.

Pressure and velocity spaces on a reference domain are now approximated, re-

spectively, by

Qn = {qdlqeCQ), qlr € P,,VT € Tan,
ql7 € Pi(T),VT € Ton}, (5.24)
Vi = {v]ve (C%Q)?2 vlr € (B(T))? VT € T,

vl € (Py(T))* VT € Ton}, (5.25)

P2<T) = {90|90€CO(T)790T16]P17 \V/’lzl,,4}, VTEﬁLv

P(T) = {¢| ¢ € Py(T),p at the midpoint is equal to the arithmetic average of ¢

at corresponding endpoints}.
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With a slight abuse of notation, using the ALE mapping (3.7), we can define the

finite element spaces for a given time step t"

Qn(t") = An(Qn), (5.26)
Vi(t") = A (Va), (5.27)

where
T = A (T5), (5.28)

and ['(¢") is linearly interpolated and each triangle with straight edges in 7Ty, is trans-

formed in a triangle with straight edges in 7.

To discretise the time-derivative we use the backward Euler method. To write the
variational formulation of a fully discrete problem let @y (") and V},(t") be defined
as in (5.26)-(5.27). Then, the variational formulation of a problem discretised in
time and space is given by: Find uz+1/3 € Vi(t") and pn+l/3 € Qun(t") such that

Y, € Vh(tn)

ﬁ/ uZH/S cvpdx + 21 D(u nH/B) : D(vy,)dz
VAN n Qtn)
L L
osh n sh "
+At/ B +1/3|Ftn Uh,z pAt/ ! +1/3|F (") Unr |0y 2
L gyt rien) O(un | pen un+1/3 P
+/ D, ( hza [r(e) (v, |F(t) / D2 IV ))’l]h7zlp(tn)dz
0 z
"o O 2 lren)
+/ (Dou +1/3’F(t") + Dza—)vh,r‘F(t")d'Z
o z
Lo ) Ov n
+/ D, (U " Ioam) O(vnelre ))dz—/ PBY wpde = L(vy),  (5.29)
0 0z 0z Q(tn)
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and
/ @V - qu/?’dw =0, Vg, € Qu(t"), (5.30)
Q)

where

Pr n psh L n psh - n
L(’Uh) = Kt e up - 'Uhdﬂf + E o uh7r|[‘(tn)vh77‘|1"(tn)d2 + E : Uh7r|1“(tn)’[1h7r|[‘(tn)dz

R R
+ / P (0 2 oo — / Pout () ons spdr
0 0
L ﬁnﬁz 67727« —
—5/0 \/(1 t 5. )2+ (W)Q(phng)|F(t”)vh,z|F(t”)dZ

L oy oy
_ 1 52 \2 5T
2 /0 \/( + 0z )+ 0z

V(D) [y O |y d2- (5.31)

5.2.1.2 Aniterative procedure for solving the generalized Stokes problem

To describe a basic idea of an iterative method for solving the Stokes problem, we

start by considering the generalized Stokes problem:
au — pAu+Vp = f in Q(t"),
V-u=0 in Q(t"), (5.32)
u=g, only, ug—Z—nngl on I'y,

where Ty NIy = 0, Ty UT; = 99Q(t"). Note that this corresponds to the discretized

problem (5.16) for a fixed time ¢t = ¢" and generalized boundary conditions. To write

the weak formulation of problem (5.32), introduce the following function spaces:
Vo = {vjve (H(Qt))? v=0onTy}, (5.33)
Vo = {v|ve (H' Q1)) v=g,onTg}. (5.34)

61



5.2. DETAILS OF THE OPERATOR-SPLITTING SCHEME

Now the weak form of problem (5.32) is given by:

find w € Vyo, p € L*(Qt")) such that
fQ(tn)(au % + ,uvu . V’U)d:l: - fQ(t") pv . rvdw
= Joum F-vdz + [ gy -vdD Yo €T, (5.35)

V-u=0 in Q(t").

Next, we introduce a linear operator from L*(2(t")) into L*(2(t")), called Stokes
operator, defined by
Ag=V -u, Vqe L*(Qt")), (5.36)

where u, € V| is a unique solution of the following linear variational problem

/ (auy - v+ pVu : Vo)de = / ¢V -vdx Vv elj. (5.37)
Q) Q(tm)

In the following Lemma, we summarize a result from [44], Section 4.19.4:

Lemma 5.2.1. Assume that problem (5.35) has s solution {u,p} in Vo x P. Then
the pressure p also verifies

Ap = —V - uy, (5.38)

where ug € Vo is the solution of the following problem, Vv € Vj:

/ (aug - v + uVugy : Vo)dz = /
Q@)

f - vdx —|—/ g, -vdl. (5.39)
Q(t") I

To write an iterative method for the generalized Stokes problem, let us observe

that the incompressibility condition V - u = 0 is equivalent to

p=p—pV-u, (5.40)
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if p # 0. Using the latter identity, an iterative method for the generalized Stokes
problem proposed in [44], Section 4.20., reads as follows:

Let p® € L*(Q(t™)) be given. Then, for n >0, p* € L*(Q(t")) known, we obtain u*

k+1

and p*T via
~(auf v+ puVuF  Vo)dx — [, p"V - vdx
fQ(t )( H ) fQ(t ) (5.41)
= Joumy £ -vd@ + [1 gy -vdl Vv €T,
PPt =pF - pV - (5.42)

It was shown in [44], Section 4.20.1., that if 0 < p < pu, the iterative scheme above
converges to the unique solution {u,p} of the generalized Stokes problem (5.35) in

Voo x L*(Q(t")).

Using the iterative scheme (5.41)-(5.42) and Lemma 5.2.1, we give a naive de-
scription of the conjugate gradient method applied to the sequence {p*}i>o:

Take an initial guess p° € L*(QU(t™)) and then find g° € L*(Q(t")) such that

/ ¢qdx = / (Ap° +V - wy)qdx, Vq € L*(Q(t")),
Q(tn) Q(tm)

where ug is the solution of (5.39). Set w°® = ¢°.

k+1

For k > 0, assuming that p*, 7%, g* and w* are known, compute pF*1, r**1 gkl and

k+1

w as follows:

fQ(tn) |9k|2dm

L ph= ,
Jon (AwF)whda

2. pFtl = pf — phuk,
3. find g"T' € L2(Q(t")) such that
/ ¢ lgde = / ¢ qdx — pk/ Awtqde, Vg e LA(Q(t")). (5.43)
Q(tn) Q(tm) Q(tm)
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p Joan 197 P
fQ(tn) 9" [Pda
- fQ(tn) ¥+ 2 da
fQ(t”) |9k|2dm ’

5. whtl = ghtl

< € take p = p**. Else compute

4. e

+ ’kak.

Set k+ 1 — k and go back to Step 1.

Since we do not know operator A explicitly, but only how A operates on particular
vectors, we can rewrite the latter algorithm in the following way:

Take an initial guess p° € L*(Q(t™)) and then find u® € Vo such that

au’ — pAu’ = f —Vp® in Q")

u’ =g, onTy.

Set ¢° =V - u® and w° = ¢°.

For k > 0, assuming that p*, 7%, g* and w* are known, compute pF*1 r*+1 gkl and

k+1

w as follows:

1. find u* € V,y such that

au® — pAuF = f —Vp* in Q")

u* =0 only,

2. gF =V -uF,
k|2
fQ(t”) grwkdz’

4, phl = pk — phok,
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5. ghtl = gk — phgh.

Jp Joun 19" P
fQ(tn) |g* |2 dx

B fQ(tn) |gk+1\2dw
fQ(t") |g*[Pdx

7. Wt = g gy,

< € take p = p**1. Else compute

6. Yk

Set k+1 — k and go back to Step 1.

With this we finish a description of the conjugate gradient method for a general-
ized Stokes problem. Since it is known that the rate of convergence of the conjugate
gradient method that uses the classical scalar product in L*(Q(¢")) is slow if & >> p,
which is the case in blood flow, in the next section we present the preconditioned

conjugate gradient method for the Stokes problem (5.16)-(5.22).

5.2.1.3 The preconditioned conjugate gradient method for the Stokes

problem

To solve the problem (5.16)-(5.22) numerically, we use a preconditioned conjugate
gradient method proposed in [45]. The fully discrete variational formulation of the
problem is given by (5.29)- (5.31). To avoid cumbersome notation we will drop the

h subscript for the discretized variables.

Denote by a = pf/At and 8 = psh/At + Dy and consider the following scalar
product in L*(Q(t"))

{p,q}—>/ (B™'p)qde,
Q(tm)
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where Bq = ayp, + pg, and ¢, is a solution of the following problem

p

—Dypg=q in Q(t")
Spq =0 Onrzn ) Fout7 (5 44)
3_4,2(1 =0 on Fb;

| oo+ 2% =0 onT(t")

Then, the preconditioned conjugate gradient algorithm for the problem (5.29)- (5.31)

read as follows:

Take an initial guess p° € Qu(t") and then find u® € V;,(t") such that

D(u

Qf/ u’ - vdx + 2
Q)

At

") : D(v)da

L
osh
At / 2|F(tn)vz|l“(tn)dz

n (o n
/ DQ |F Uz|F(t")dZ+/ D3 |F(t ( |F(t )>dZ

At

/ D1 \Ftn

O(vr|r(m))

osh
+ / ur|F(t" UT|F(t" dz +/ (D()’U/T,‘F ") + D2 (
0

0z

2lrem)
T(t UT’F(tn)dZ

dz = / P’V -vdx + L(v), Yo € V,(t"), (5.45)
Qtn)

0z
and set r° =V - u”.
Then, solve
—Ap? =10 in Q(t"),
0
' =0 onl';,, UTou,
O ' (5.46)
a% =0 on [,
\ ¥ + g%‘%o =0 onl'(t"),
and set
@ = w4+ a’ (5.47)
w’ = ¢~ (5.48)
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1’ Tk+1 k+1

For k > 0, assuming that p*,r*, ¢* and w* are known, compute p** , g and

wkt as follows:

Find u”* € V;,(t") such that

L

Qf/ _ _k osh 7

— u -fudw—i—ZM/ D(u"): D U | pen) Vs rnydz
A o o (@") : D(v)dzx f |p(enyVz|rem)

b 0(ak pm) % |remy) O(ve|r(m))
— D 2 iren)) |y d D5 z d
/o 2 92 v |1"(t Z—i—/ Ep 92 z

L L —k
Qsh — _ a uz T(tm
+ At / uf\p(tn)vr\p(tn)dz +/O (Douf\p(tn) + D2%>”r’l‘(t")dz

/ D, |F(t” (ng(tn))dz _ / LAV vdx, Yv € V,(t"), (5.49)
(™)

and set 7% =V - a*. Compute

o = / r’“gkdm// Fuwrde, (5.50)
Q) Q)
and set
Pt o= Pt - g (5.51)
L = ko (5.52)
Then, solve
.
—AgF =7+ in Q(t"),
QO 0 Onrin U FOu )
) : (5.53)
%— =0 on I'y,
| ¢F+ 2% =0 onD(t"),
and set g"t = gk — op (ui* + a@t).
If
/ rk+1gk+1dm// g’ < e (5.54)
Q@) Q)
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take p = pF*1; else, compute

’m:/ r’““g’““dw// rgtda, (5.55)
) Q)

and set

wh = gM 4yt (5.56)

Do k =k +1 and return to (5.49).

This algorithm is a pressure-driven method, where the vectors ¢* and w* are pres-
sure corrections which enforce the incompressibility condition. A great attention was
given in the choice of a proper preconditioner in the pressure space. More precisely,
the choice of a new scalar product associated with the boundary conditions reduces
substantially the number of iterations when compared with a conjugate gradient

algorithm equipped with the canonical scalar product in L?.

Remark 5.2.3. The algorithm above requires the solution of the elliptic problem (5.53)
at each iteration of the conjugate gradient calculation. This elliptic problem is defined
on the domain €2(¢") which changes at each time step and therefore the stiffness
matrix of the elliptic problem should be recalculated at each time step. In order to
avoid this, even if the geometry of the domain has changed, we assemble the stiffness
matrix on the initial domain and we “freeze” it, using the same matrix at every time
step. By doing this, we need to assemble the stiffness matrix only once and this still

gives excellent numerical results.
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5.2.2 The fluid and ALE advection

Problem 5.2.2 consists of two non-dissipative transport problems, the transport of
u, and the transport of w,. In this sub-problem the time derivative of i is zero,
which again allows us to map the reference domain onto the current domain. In
an attempt to preserve non-dissipative nature of the problem, it is natural to use
solvers with low numerical dissipation. We have implemented two such solvers: a
positivity-preserving ALE finite element method [15] (Solver 1), and a wave-like
equation method [44] (Solver 2). We can use Solver 1 or Solver 2, depending on
the particular application in mind. For example, a positivity preserving ALE finite
element method is particularly suitable for problems for which it is important to
preserve positivity of the unknown variable, such as, for example, a concentration of
a given quantity. We start by a description of Solver 1 first, and present the wave-like

method (Solver 2) next.

5.2.2.1 A positivity-preserving ALE finite element scheme

In this section we present the numerical algorithm proposed in [15], which is capable
of successfully keeping positivity of concentration, preserving conservation of mass at
the discrete level, correctly resolving the no-flux condition at the moving boundary,
and resolving the sharp and thin concentration fronts in the advection-dominated

case.

Denote by ¢ the advected quantity and consider the following advection problem

g—§+v-(uc) —0 Q) te(0,T), (5.57)
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in the time-dependent domain (see Figure 3.1)
Q) ={(z,1) eR*: 0< 2 < L,0 <1 < g(z;1)},

where

g(;t) 1 (0,L) = R, g(t): 2z g(z;t), Vte (0,T)

is a Lipschitz continuous function describing the motion of the upper wall. We

assume the following:

o V-u=0in Q(t),
on
o U- n|p(t) = E
Using an ALE formulation, we can write (5.57) in conservative form as

ia(JAC)

Ti ot V- ((w—w)e) =0 inQ), t €(0,T), (5.58)

where J4 is the Jacobian of the ALE mapping A; defined in (3.15), and w is the

domain velocity. We assume
u-n=w-n onl,UL(), te(0,T), (5.59)

where I'y denotes the bottom boundary.

Denote by

I = {xcRzcily, (u—w) n<0} (5.60)

I, = {xcRx €l (u—w) n>0} (5.61)
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the inflow and outflow portions of the boundary 0€(t), respectively. At the inflow

boundary we prescribe the total flux
(uc) -m = (ucy,) -n onl_ x (0,7), (5.62)

where ¢;, is the concentration at the inflow boundary. The initial condition is given

by

~

Clt=o = o in Q2. (5.63)

We assume that the velocity field w, the domain displacement 7, and the domain
velocity w, are given. Namely, they are determined in the previous steps by a

numerical solution of a fluid-structure interaction problem.

Let ¢ be an admissible weight function. The weak formulation of (5.58) is given

by [42]
d

i o codx — /Q(t) Vo (u—w)c)de + /F(t) d(ucy,) - nds

+ (uc) -nds =0, Vo. (5.64)
Iy ()

Let 7, be a triangulation of €2, and let {¢;} be a set of IP; basis functions associated
with the vertices {x;} of 7,. Using a finite element approach, the solution of (5.64)

is approximated by
cn(x,t) = Z ci(t)pi(),
J
and

(ue)n(z,t) = Zujcj(t)%(«’ﬂ)-

Substituting ¢ by ¢, and uc by (uc)y, and taking ¢ = p;, i = 1,...,n, we obtain

n

Z % /Q(t) ¢;(t)pjpide — Z(uj —wj)c;(t) - /

j=1 Q(t)

Vip;dx + / (uci, - n)p;ds
I (1)

71



5.2. DETAILS OF THE OPERATOR-SPLITTING SCHEME

+Zujcj(t)-/ pjpinds =0, Vi=1,... n.
j=1 r

+(t)

Remark 5.2.4. The triangulation 7, used here is the one used to approximate velocity

in the Stokes sub-problem.
Let Mc(t) = {my;(t)}, K(t) = {kij(t)} and ¢(t) = {¢;(t)} be defined as follows:
mo®) = [ e, == [ (uenn)ads
Q(t) r_(t)

k’”(t) = —Uu;- / gpjgoinds + (’Uj — w]') V(,OZ . @]dm
I () Q(t)

Let c(t) = {¢;} be the vector of nodal values. Then, we can write our problem as

the following semi-discrete system

%[Mc(t)c(t)] = K(t)e(t) + q(t), te (", ). (5.65)

In certain flow regimes, the Galerkin discretization of the advection equation is known
to become unstable and produce oscillations in the proximity to steep fronts. This
may cause the concentration ¢ to assume non-physical negative values. To rectify
this, we use the algebraic flux correction [57,58] to constrain the coefficients of the
Galerkin scheme. We begin the modification by a conservative elimination of matrix
entries that do not satisfy the positivity constraint. First, the mass matrix M is

replaced by

My = diag{m;}, m; = Zmij‘ (5.66)
J

Next, we add an artificial diffusion operator D to construct a non-oscillatory low-

order counterpart of the discrete advection operator K:

L=K+D, (5.67)
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where D is defined as follows [57, 58|

dij = max{—ki;, 0, —kji} = dji, j #1, (5.68)
and
dij ==Y dij, i=1,...,n. (5.69)
J#i

Substituting M by M, and K by L, one obtains the low-order approximation

%[ML@)C@)] = L(t)e(t) +qt), te ("), (5.70)

Integrating (5.70) in time one obtains

tn+1 tn+1

L{t)c(t)dt + / q(t)dt. (5.71)

tn

M (" e(t"™™) = My (t)e(t™) + /

tn

The fully discrete problem now reads
Act = B + At (5.72)

where the integrals in (5.71) are approximated by the midpoint rule and

At
A = M- 7L”“/?, (5.73)

At
B = Mg+7L"+1/2. (5.74)

Matrix A is the so-called M-matrix whose inverse A~! has no negative entries [58].
Entries of B are also non-negative if the time step At is sufficiently small. The
source term ¢ is non-negative since u - < 0 at I'_. This proves that the scheme is

positivity-preserving.

To preform the anti-diffusive correction of c¢” note that the difference between
the residuals of systems (5.65) and (5.70) is the vector

f= M- Mc)fl—j — De. (5.75)
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As proposed by Kuzmin [57], the raw antidiffusive fluzes f;; can be evaluated using

L
the predictor c. Denote by ¢¥ a numerical approximation of d;; and let
If the flux f;; has the same sign as (c¢[' — cf), we set fi; := 0 because then f;; is

diffusive in nature and tends to flatten the solution profile instead of steepening it.
We apply the sum of limited antidiffusive fluxes multiplied by a solution-dependent

correction factor a;; to the low-order solution el

MpHen = Myttt Atf, fi =)oyt (5.77)

J#i
The correction factors «;; € [0, 1] are chosen so that the nodal values of the final
solution ¢! are bounded by the local maxima and minima of ¢*. Namely, the

correction factors «y; are obtained using the Zalesak’s limiter [91] as follows:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

Pt = Zmax{(),fij}, P = Zmin{o,fij}. (5.78)

J#i JF

2. Compute the distance to a local extremum of the auxiliary solution c*

J i ' i

Q) = max{0,max(cy — <)}, Q7 = min{0,min(cj — )} (5.79)
JI7F V=

3. Compute the nodal correction factors for the net increment to node ¢

OF O~
Rf = min{l, ZP;}, R; = min{l, Z”;%_ 1. (5.80)
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4. Define a;; so as to satisfy the positivity constraint for nodes 7 and j

min{R, R}, if fi; >0,
i = R By ’ (5.81)
min{R;, Ry}, otherwise.

This completes a description of the positivity preserving ALE scheme.

5.2.2.2 A wave-like equation method

Consider the following transport problem for c:

g—j + a2 . Ve=0 inQ@") x (¢, "), (5.82)
c(t") = "3, (5.83)
¢=cym onT™T3 s (g7 471y, (5.84)

where u"*'/3 is given, and such that w"*'/? is independent of time on (", "*1).

Assume also that

Va3 =0 in Q") x (", "), (5.85)
85;” =0 on I3 5 (¢, "), (5.86)
where
8 = (2 e R?|z € 9Q(t"), u"/? . n < 0}, (5.87)
Tnitial condition ¢**1/3 is equal to u2t"? for the transport of u,, and u?/? for the

transport of u,. Analogous holds for ¢;,.

n+1/3
Taking the time derivative of equation (5.82) and using condition v T 0,
one obtains
D%c i dc
z - n+1/3 72~ _ : n n 4n+l
8t2+u Vat—O in Q") x (", t"). (5.88)
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Combining the transport equation (5.82) with (5.88) we obtain the following wave-

like equation problem

d%c

i w6 =0 in Q") x (¢, ), (5.89)
0

C(tn> _ Cn+1/37 a_j@n) _ _un+1/3 . vcn+1/37 (590)

c=cm on I3 x (", "), (5.91)

un+1/3 . n(% + un+l/3 . VC) =0 on (aﬂ(tn)\l—‘ﬁ+l/3) X (t", tn-i-l). (592)

To write the weak formulation of the problem (5.89)-(5.92) let FTl/g ={x €

R2|z € 9Q(t"), u"*/3 . n > 0} and define the space of test function by
Oy ={¢|¢ € H'(Q"), 6 =0on "/}, (5.93)

After multiplying (5.89) by a test function ¢ € ®(, and after using the divergence

theorem and assuming c¢ is smooth enough, any solution ¢ of (5.89)-(5.92) satisfies

2
/ g—t§¢da:+ / (W3 Ve)(utE . Vo) da
() Q)

0
—i—/ s w3 na—j<bds =0, Vo€, ae. on (t" "),
Fn 1

ny _ .n+1/3 @ ny _— _ . nt+1/3 n+1/3
c(t") =c : (t") U Ve ,

ot

c=c¢; onT"H3« (¢, 1.

It was shown in [44], Chapter 6, Section 31.5.2.; that any smooth solution of the
transport problem (5.82)-(5.84) is also a solution of the wave-like equation prob-

lem (5.89)-(5.92).

To solve this problem numerically, define 7, to be a finite element triangulation
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of Q(t") defined as in (5.28), and let

O, = {on|on € COUQE™)), dnlr € P1,VT € Tp}, (5.94)

Qon = {dn|dn € T o =0on "/ (5.95)

Remark 5.2.5. As in the positivity-preserving ALE finite element scheme, the tri-
angulation 7}, used here is the one used to approximate velocity in the Stokes sub-

problem.

We assume that the set of vertices of T, contains the points at the interface of

™% and 8Q(t")\Fz+1/3 and of FTl/g and aQ(tn)\FTl/gv and that

lim &, = HY(Q(t")), lim &g, = Do. (5.96)
h—0 h—0

With this notation, the finite element approximation of problem (5.89)-(5.92) reads

as follows:

cn(th) = CZH/S € Oy, CZH/S ~ 3 (5.97)

)

%(t") = c1, € Von, (5.98)
t

/ cinbndx = — / WL By de, Yoy, € Do, (5.99)
Q(tn) Q(tn)

cn(t) € B, cn(t) = cinp on T3 vt e 17, 07, (5.100)

82

/ a—cghmda: + / (w3 V) (u P Vo) da (5.101)

o) Ot Q)

0
+ / . u”“/?’-n%gbhds =0, Von € Vin, ae. on (£, t"1).(5.102)
F’ﬂ

+
Denote by ¥j, the set of vertices of Ty,

Yp={P|P€Q,Pis a vertex of T}, (5.103)
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and by g, C X, the set of vertices of 7, that are not on frfrl/?’

Son={P|Pex,Pg¢l™?}
We order the elements in ¥, in the following way

Yp = Yop U {Pj}j'v:hNOh—H’

(5.104)

(5.105)

where N, := dim(®,) = Card(X),) and Ny, := dim(Pg,) = Card(Xo). Let {gb]};v:hl

be a set of P; basis functions associated with vertices P; € ¥j of T;, such that

"2 S q)h,Vj = 1,...,Nh, and
(Pj(PZ) = 5ij7 VZ,j = 1,. .. >Nh-

Then we can approximate ¢ by

Nop, Ny,
o) = ctej+ Y. cinn(P))p;.
Jj=1 J=Non+1

Substituting (5.107) into (5.97)-(5.102), and by replacing ¢, by ¢;, i = 1,...

we obtain
Nop Nop
3 ) / pioida + > c(t) / (u- Vi) (u- V;)dz
= Q(tr) =1 Q@r)

Non

+ ) it / u - n)p;p;dS
Z 50 [y, (4 ™95

Np

(5.106)

(5.107)

7N0h

= — Z Cin,h(Pj) / (U . V(p,)(u . V(p])d:c, Vi= 1, R ,Noh(5108)

j=Nop-+1 Q(t™)

Define the Ny, x No, matrices M, A and C' by
M = (mij)i<ijeno,  Mij = Joum) Pipide,
A= (ay)i<ijene i = Joum (- Vi) (u- Vey)de,
C = (cih<ijeno: € = Jp, (- )@ip;dS,
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and the forcing term vector F' = {f;}Xo0 by

fim =S aen(P) [ (e Vi)(u: Ve)da. (5.110)

Sin

Then equation (5.108) can be written as

MX +AX +CX =F on (t",t"),
(5.111)

X(0) = Xo, X(0) =X,

where X (£) = {e.(6) 1%, Xo = {cy* ()} and X(8) = {eun (P}

=1

Matrices A and C' are symmetric and positive semi-definite, while M is symmet-

ric positive definite. We discretise equation (5.111) in time following the approach

in [44]:
Xn+1 —2Xn anl
M 5 i + A(@X™ + (1 —22) X" + a X" (5.112)
Ta

Xn+1 _ anl

+02—:F” forn=0,1,...N —1, (5.113)
Ta

XOZX(), Xl—X_l :2TaX1, (5114)

where 0 < @ < 1/2 and 7, = At/N is a time substep in (¢",t"*!). It was shown

in [44] that this scheme is unconditionally stable for of a = 1/4.
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5.2.3 Elastodynamics of the deformable boundary

Problem 5.2.3 describes the elastodynamics of the thin, linearly elastic Koiter shell
with the load that comes from a part of the fluid pressure. As mentioned in Re-

mark 5.2.1, we can rewrite Problem 5.2.3 in the following way

phZle — (Cy — Bprt) o — Cy%0 = 0 on (0, L) x (£, 1"1),
psh e 4 Cony — CL o 4 (Cy — B+ 2 4 22 0y O (5.115)

= Bp"* on (0, L) x (t", "),

with boundary conditions

N|.=0 =0, N|.=r =0, (5.116)
and initial conditions
n(t") = n"**s, (5.117)
Z—?(t") = w2 (5.118)
where u™t2/3 p"*+1 and n"*?/3 are computed in the previous steps.

5.2.3.1 Space discretization

We discretise the problem in space using a second-order finite difference scheme. Let

L
M-1

{zitiz1, ., zi=(i—1) (5.119)
be the set of points for the space discretization and denote by

X = [77217"'77721\4777T1a-"777TM]T
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the vector of space-discretized val