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Abstract

This dissertation is focused on the mathematical modeling and numerical simu-

lations of cell sorting and enatiomer separation using surface acoustic wave-actuated

fluid flow.

We model a high throughput sorting of two different types of biological cells

(type I and type II) by a biomedical micro-electro-mechanical system (BioMEMS)

whose operating principle depends on surface acoustic wave (SAW)-manipulated fluid

flow in a microchannel. The BioMEMS consists of a separation channel with three

inflow channels for injection of the carrier fluid and the cells, two outflow channels

for separation, and an interdigital transducer (IDT) close to the lateral wall of the

separation channel for generation of the SAWs. The cells can be distinguished by

fluorescence. The inflow velocities are tuned such that, without SAW actuation, a

cell of type I leaves the device through a designated outflow channel. However, if a

cell of type II is detected, the IDT is switched on and the SAWs modify the fluid flow

such that the cell leaves the separation channel through the other outflow boundary.

Enantiomers are chiral objects such as chemical molecules that can be distin-

guished by their handedness. They typically occur as racemic compounds of left-

and right-handed species which may have completely different properties. Therefore,

in applications such as drug design in pharmacology, enantiomer separation is an

important issue. In this dissertation, we present a new technology for enantiomer

separation by surface acoustic wave generated vorticity patterns consisting of pair-

wise counter-rotating vortices in a carrier fluid. The enantiomers are injected onto

the surface of the fluid between two counter-rotating vortices such that right-handed
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(left-handed) enantiomers are attracted by left-rotating (right-rotating) vortices.

For modeling and numerical simulation of the cell sorting and enantiomer separa-

tion process we use the Finite Element Immersed Boundary (FE-IB) method, which

relies on the solution of a coupled system consisting of the incompressible Navier-

Stokes equations, and the equations of motion of the immersed structures described

with respect to an Eulerian and a Lagrangian coordinate system.

The results of the numerical simulation are compared with experimentally ob-

tained results [20, 10], and they are in excellent agreement.

Key words: cell sorting, enantiomer separation, surface acoustic waves, finite

element immersed boundary method
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CHAPTER 1

Introduction

Biomedical Micro-Electro-Mechanical Systems (BioMEMS) are miniaturized labora-

tories on a chip (lab-on-a-chip) that can be used for various biomedical and biochem-

ical purposes such as hybridization in genomics, protein profiling in proteomics, and

cytometry in cell analysis. In the past two decades, research on miniaturized labs has

seen enormous development, mainly due to the need to reduce costs by reducing the

consumption of expensive reagents and by increasing throughput and automation.

On the other hand, the ability to sort particles in a sample has been a critical need

with constantly expanding areas of application. Thus, the revolution of lab-on-a chip

with the investigation of continuous flow separation methods, has played a significant
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role in advancing designs of microfluidic separation devices [37].

Many new ideas of how to manipulate small amounts of fluids and particles

therein have been suggested. Recently, it has been shown that the agitation of fluids

by surface acoustic waves (SAWs) on piezoelectric substrates presents a versatile

method of manipulating and controlling the flow of small amounts of a fluid [31].

In this work we are concerned with a high throughput cell sorting and enantiomer

separation using surface acoustic wave-manipulated fluid in microchannels which

have significant applications in basic cell biology, cancer research, clinical diagnostics,

pharmaceutical manufacturing, and selection of rare multicellular events [12, 15, 28,

43, 45].

Modern cell sorting schemes operate in two different ways: Cells are either sorted

in continuous flow or encapsulated in small liquid droplets prior to sorting. When

sorting in continuous flow, one has to deal with low contrast of material properties of

cells and the bulk media because both are typically aqueous liquids. To overcome this

limitation, responsive beads are often biochemically attached to the cells to enhance

the separation efficiency. But these techniques suffer from slow response time and

consequently slow sorting rates. In the latter case, the problem of sorting applies to

the droplets and not to the cells. Drops can be sorted in air or in another immiscible

continuous liquid. Traditional fluorescence activated cell sorters encapsulate cells

in drops in air which are then labeled with an electric charge and subsequently

separated in an electric field. These sorters reach very high sorting rates but have

several disadvantages among others, large dead volume which makes it impossible to

separate cells from small sample volumes. Another technique is to employ standing
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surface acoustic waves (SSAW) which can be used to align and wash particles. In

SSAW, a stationary standing wave is built up and objects are driven to positions

of larger or smaller wave amplitude according to their compressibility contrast with

respect to the suspending medium. This force is often called acoustic radiation force

and is induced by an ultrasonic standing wave field. Acoustic radiation force acting

on an interface between two liquids with different densities can also be used to actuate

the heterogeneous fluid itself [20].

All the methodologies mentioned before heavily rely on different properties of the

cells in the sample (density/size, charge/polarization, magnetic labeling) and hence

are restricted to specific applications. A recent trend is to use surface acoustic wave

actuated fluid flow for cell-sorting (SAWACS) [20]. In this device, the homogeneous

continuous fluid is actuated including the objects and no contrast in compressibility,

dielectric constant or density is required. This scheme combines many advantages of

fluorescence-activated cell sorting (FACS) and fluorescence-activated droplet sorting

(FADS) in microfluidic channels. Cells are directed by acoustic streaming excited

by a surface acoustic wave which deflects the fluid independently of the contrast in

the material properties of the deflected objects and the continuous phase; thus the

device’s underlying principle works without additional enhancement of the sorting

by prior labeling of the cells with responsive markers such as magnetic or polarizable

beads. Single cells are sorted directly from bulk media at rates as fast as several

kHz without prior encapsulation into liquid droplet compartments as in traditional

FACS [20].

A geometric object is called chiral, if it is not identical to its mirror image, and
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achiral, otherwise. A chiral object and its mirror image are called enantiomers (or

stereoisomers, optical isomers). Since the chemical synthesis of enantiomers usually

gives rise to racemic compounds, i.e., compounds consisting of the same amount

of left-and right-handed species, enantiomer separation plays a significant role in

agrochemical, electronic, and pharmaceutical as well as food flavor and fragrance

industries (cf., e.g., [4, 13, 14, 19, 32, 38]).

The main established methods of enantiomer separation are gas or liquid chro-

matography and capillary electrophoresis [31]. In both cases specific chiral filling

materials are used to obtain different elusion times of the enantiomers. Moreover,

long columns are needed through which the enantiomers are dragged by a large pres-

sure or a high voltage difference. Chemically less specific methods that work with

less substance and that do not require high voltages or pressure would be of great

advantage.

Recently, it has been shown that SAWs can be used to generate specific flow

patterns in the carrier fluid such as vorticity patterns consisting of mutually counter-

rotating vortices. Since enantiomers drift in microflows with a direction depending

on their chirality (cf., e.g., [11, 31, 34, 36]), SAW-induced vorticity patterns can be

exploited for enantiomer separation in racemic compounds in the sense that parti-

cles with a given chirality primarily accumulate in vortices of the same direction of

rotation, whereas their chiral counterparts accumulate in vortices which are counter-

rotating.

In this dissertation, we present mathematical models and numerical simulations
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for surface acoustic wave-actuated cell sorting and separation of deformable vesicle-

like enantiomers. For this purpose, the finite element immersed boundary method

(FE-IB) is used. This method is a variation of the immersed boundary (IB) method

which was originally proposed by Peskin for modeling and simulation of blood flow

patterns around heart valves. The IB method is known to be a powerful tool, appli-

cable to general fluid-structure interaction problems involving incompressible viscous

fluid containing an immersed elastic interface [40, 41].

The dissertation is organized as follows: in the second chapter, we introduce the

immersed boundary method. We discuss the formulation of the original immersed

boundary (IB) method and the finite element immersed boundary method (FE-IB)

briefly.

Chapter three is devoted to the presentation of surface acoustic wave-actuated

cell sorting (SAWACS). We provide the mathematical model and stability estimates

for both continuous and discrete problems. Finally, we provide results of numerical

simulations for the sorting of a red blood cell and malignant breast cancer cell that

will prove the feasibility of SAWACS.

In chapter four, we study the separation of vesicle-like deformable L-shaped enan-

tiomers by SAWs. We discuss the experimental set up, mathematical model, and

numerical results. We will further compare our results of numerical simulation with

experimentally obtained results and with other current simulations done for rigid

L-shaped enantiomers.

And finally, we conclude the dissertation by discussing future work directions in

5



the fifth chapter.
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CHAPTER 2

An Introduction to the Immersed Boundary Method

In this chapter, we provide a brief introduction to the Immersed Boundary (IB)

method which is a frequently used tool for the mathematical modeling and numer-

ical simulation of fluid-structure interaction problems, especially in biological fluid

dynamics.

The IB method was originally introduced by Charles Peskin to study flow pat-

terns around heart valves in 1972 [39]. Since then it has been applied to a wide

range of problems, including platelet aggregation during blood clotting [17], fluid

dynamics of the inner ear [5], flow of suspensions [18], aquatic animal locomotion

[16], and flow in collapsible tubes [42]. The mathematical formulation uses Eulerian
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2.1. NOTATION AND FUNCTION SPACES

variables for the modeling of the fluid motion and Lagrangian variables for the im-

mersed structure which are related by interaction equations. We refer to the survey

article [41] for details and further references. In the original formulation, the Dirac

delta function plays an important role and the finite difference method is used for

the spatial discretization of the problem. Later, D. Boffi et al. [8, 9, 7] provided a

variational formulation of these equations in such a way that the Dirac delta function

is not directly involved and the finite element method is used for spatial discretiza-

tion. This extension of the IB method is referred to as the Finite Element Immersed

Boundary (FE-IB) method.

2.1 Notation and function spaces

Throughout this chapter and the rest of the dissertation, we will use standard no-

tation from Lebesgue and Sobolev space theory (cf., e.g., [46]). In particular, for a

bounded polygonal domain Ω ⊂ R2 with boundary Γ = ∂Ω, we denote by L2(Ω) and

L2(Ω) the Hilbert spaces of scalar and vector-valued Lebesgue integrable functions

on Ω with inner products (·, ·)0,Ω and norms ‖ · ‖0,Ω respectively. We refer to L2
0(Ω)

as the subspace of functions with zero integral mean. Further, we denote by Hs(Ω)

and Hs(Ω), s ∈ R+, the Sobolev spaces of scalar and vector-valued functions with

inner products (·, ·)s,Ω and associated norms ‖ · ‖s,Ω. For Γ′ ⊂ Γ, the spaces Hs
0,Γ′(Ω)

and Hs
0,Γ′(Ω) are the closures of C∞0,Γ′(Ω) and C∞0,Γ′(Ω) in H1(Ω) and H1(Ω). We

will omit the subindex Γ′ in case Γ′ = Γ and we denote C∞0 (Ω) resp. C∞0 (Ω) by

D resp. D . The spaces H−s(Ω) and H−s(Ω) stand for the dual spaces of Hs
0(Ω)
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2.1. NOTATION AND FUNCTION SPACES

and Hs
0(Ω) with 〈·, ·〉H−s,Hs

0
and 〈·, ·〉H−s,Hs

0
referring to the dual products. Likewise,

for closed subspaces V ⊂ H1(Ω) and V ⊂ H1(Ω) the spaces V ∗ and V∗ denote the

dual spaces and 〈·, ·〉V ∗,V and 〈·, ·〉V∗,V are the associated dual products. The spaces

Hs(Ω̄) ⊂ Hs(Ω) and Hs(Ω̄) ⊂ Hs(Ω) are the subspaces of all functions u|Ω and u|Ω
where u ∈ Hs(Rd) and u ∈ Hs(Rd) such that 〈u|Ω, ϕ〉 = 〈u, ϕ̃〉 and 〈u|Ω,ϕ〉 = 〈u, ϕ̃〉

for all ϕ ∈ C∞0 (Ω) and ϕ ∈ C∞0 (Ω) with ϕ̃ and ϕ̃ referring to the continuation of ϕ

and ϕ by zero outside Ω. For Γ′ ⊂ Γ, we denote by Hs−1/2(Γ′) and Hs−1/2(Γ′), s ≥ 1,

the trace space of scalar and vector-valued functions in Hs(Ω) and Hs(Ω) on Γ′. We

further refer to H
s−1/2
00 (Γ′) and H

s−1/2
00 (Γ′) as the spaces of functions whose exten-

sions by zero to Γ \ Γ′ belong to Hs−1/2(Γ) and Hs−1/2(Γ). Finally, we denote by

Ck,µ(Ω) and Ck,µ(Ω), k ∈ N0, µ ∈ (0, 1/2), the Banach spaces of k-times continuously

differentiable scalar and vector-valued functions on Ω whose derivatives of order k

are Hölder continuous of order µ.

Moreover, for T > 0 and a Banach space Z (Z) of scalar (vector-valued) func-

tions, we denote by L2((0, T ), Z) (L2((0, T ),Z)) the Hilbert space and by C([0, T ], Z)

(C([0, T ],Z)) the Banach space of functions v : [0, T ] → Z (v : [0, T ] → Z) with

norms

‖v‖L2((0,T ),Z) :=
( T̂

0

‖v(t)‖2
Zdt
)1/2

,

‖v‖C([0,T ],Z) := max
t∈[0,T ]

‖v(t)‖Z ,

and analogous settings in the vector-valued case. The spaces Hs((0, T ), Z), s ∈ R+,

(Hs((0, T ),Z)) are defined likewise. Further notations can be found in Appendix B.
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2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

2.2 The classical immersed boundary method

The IB method is a mixed Euler-Lagrangian finite-difference method for computing

the flow interaction with a flexible immersed boundary. In this method the fluid flow

is governed by the incompressible Navier-Stokes equations and these are solved on

a stationary Cartesian grid. The immersed body is represented by a set of massless

elastic fibers and the location of these fibers is tracked in a Lagrangian manner by

a collection of massless points that move with the local fluid velocity. The force

density is defined by a delta function layer that represents the force applied by the

immersed boundary to the fluid. Since the location of the fibers does not generally

coincide with the nodal points of the Cartesian grid, the forcing is distributed over

a band of cells around each Lagrangian point (cf. Figure 2.1) and this distributed

force will be used in the momentum equations.

Fk

qk

x

y

Figure 2.1: Transfer of force from Lagrangian boundary point to surrounding fluid
nodes.

Therefore, the general structure of the immersed boundary method is based on

three types of equations:
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2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

1. the incompressible Navier-Stokes equations for the description of the fluid,

2. the elasticity equations describing the total elastic force exerted by the im-

mersed body,

3. the interaction equations to translate Lagrangian into Eulerian coordinates and

vice versa.

2.2.1 The incompressible Navier-Stokes equations

The Navier-Stokes equations describe the dynamics of a viscous incompressible New-

tonian fluid with respect to the Eulerian variables denoted by x:

ρf (
∂v

∂t
+ v · ∇v)−∇ · σ = f in Ω× (0, T ) (2.1a)

∇ · v = 0 in Ω× (0, T ) (2.1b)

v = vD on ∂ΩD × (0, T ) (2.1c)

σ(v, p)n = 0 on ∂ΩN × (0, T ) (2.1d)

v(·, 0) = v0 in Ω (2.1e)

Here, ρf denotes the density of the fluid. The unknowns v(x, t) and p(x, t) represent

the velocity and the pressure, respectively. f denotes the density of a body force

acting on the fluid. It usually contains a singular vector field which is zero everywhere

except possibly on the curve representing the boundary of the immersed structure.

∆v has to be understood componentwise with components ∆vi, and similarly the

11



2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

convection terms v ·∇v = (v ·∇v)di=1 with (v ·∇v)i := Σd
j=1vj

∂vi
∂xj

. Further, σ(v, p) =

−pId + 2ηε(v) is the stress tensor , where ε(v) = 1/2(∇v + (∇v)T ) is called the rate

of strain tensor or rate of deformation tensor and η is the dynamic viscosity of the

fluid. Throughout this thesis, ρf and η are taken to be constant.

Equation (2.1a) describes the conservation of momentum and (2.1b) is the incom-

pressibility condition for the fluid. The equations (2.1c) and (2.1d) are the Dirichlet

and the Neumann (“ do-nothing”) boundary conditions with ∂ΩD ∪ ∂ΩN = ∂Ω and

∂ΩD ∩ ΩN = ∅, where typically ∂ΩN is the outflow part of the boundary. The func-

tion vD in (2.1c) describes a prescribed velocity and n in (2.1d) is the exterior unit

normal on ∂ΩN . Finally, the function v0 in (2.1e) is a given initial velocity.

Remark 2.2.1. For the rest of this chapter, we assume vD = 0 in (2.1c). This can

be done without loss of generality, because otherwise we define ṽ as the solution

of (2.1a)-(2.1e) with f = 0 in (2.1a) and v|∂ΩD = vD. Then, v̂ := v − ṽ satisfies

(2.1a)-(2.1e) with v̂D = 0 in (2.1c).

2.2.2 Material elasticity equations

In this subsection, we describe the mathematical model for the total force exerted

on the carrier fluid by the immersed structure. The immersed bodies are considered

to be elastic materials occupying subdomains B
(i)
t ⊂ Ω, 1 ≤ i ≤ N, t ∈ [0, T ], with

boundaries ∂B
(i)
t which are non-self-intersecting closed curves or surfaces such that

∂B
(i)
t ∩ ∂B(j)

t = ∅, 1 ≤ i 6= j ≤ N . For simplicity we consider N = 1 and write Bt

and ∂Bt instead of B1
t and ∂B

(1)
t in our discussion. The generalization to N > 1 is

12



2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

straightforward. We also assume that L is the length of the boundary of the initial

configuration, i.e., L = |∂B0|.

Let q̄ ∈ [0, L] be the coordinate labeling a material point on ∂B0. We denote the

position of that point in Ω at time t by X(q̄, t). We further denote by εe(X(q̄, t)) and

εb(X(q̄, t)) the local energy densities on the elastic boundary ∂Bt. The associated

bending and elastic energies are given by

Ee(t) =:

ˆ L

0

εe(X(q̄, t))dq̄, (2.2a)

Eb(t) =:

ˆ L

0

εb(X(q̄, t))q̄, (2.2b)

such that the total energy reads:

E(t) := Ee(t) + Eb(t), t ∈ (0, T ). (2.3)

Using the principle of virtual work, the local force density F is given by the Gâteaux

derivative of E according to

F(q̄, t) = −E ′(X(q̄, t)) (2.4)

2.2.3 Interaction equations

The most outstanding feature of the immersed boundary method is that the im-

mersed bodies are considered to be part of the fluid. This is done using interaction

equations that couple the elasticity equations with the fluid equations.

13



2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

In general, the mass density of the immersed body can be described by introducing

an excess Lagrangian mass density M(q̄), i.e., the difference between the mass of the

immersed body and the mass of the fluid displaced by it. Then, we can express the

density of the fluid , ρ̄, in terms of M(q̄). Assuming F(·, t) ∈ C(∂Bt), the interaction

equations are given by

f(x, t) =

ˆ L

0

F(q̄, t)δ(x−X(q̄, t))dq̄, in Ω× (0, T ) (2.5a)

ρ̄(x, t) = ρf +

ˆ L

0

M(q̄)δ(x−X(q̄, t))dq̄, in Ω× (0, T ) (2.5b)

where δ is the Dirac delta function in Rd. The force density f is the right-hand side

of (2.1a) and describes the interaction between the fluid and the immersed body.

Here, we observe that F takes into account the elasticity properties of the immersed

structure while f is purely in the Eulerian framework.

Remark 2.2.2. Throughout the thesis, we assume that the immersed boundary is

massless, i.e, M = 0. Hence, equation (2.5b) will not be used in subsequent discus-

sions.

In order to compute the position of the immersed body, we use the following relation:

∂X

∂t
(q̄, t) =

ˆ
Ω

v(x, t)δ(x−X(q̄, t))dx

= v(X(q̄, t), t), in Ω× (0, T ), (2.6)

where v(·, t) ∈ C(Ω) for t ∈ (0, T ]. The equation (2.6) enforces the no slip condition

for viscous fluid, i.e., the immersed body moves at the same velocity as the fluid.

14



2.2. THE CLASSICAL IMMERSED BOUNDARY METHOD

2.2.4 The immersed boundary system

In summary, the equations of motion for the fluid-structure system is to find v, p

and X satisfying:

ρf (
∂v

∂t
+ v · ∇v)− µ∆u+∇p = f in Ω× (0, T ), (2.7a)

∇ · v = 0 in Ω× (0, T ), (2.7b)

f(x, t) =

ˆ L

0

F(q̄, t)δ(x−X(q̄, t))dq̄ in Ω× (0, T ), (2.7c)

∂X

∂t
(q̄, t) = v(X(q̄, t), t) in ∂Bt × (0, T ), (2.7d)

v = 0 on ∂ΩD × (0, T ), (2.7e)

σ(v, p)n = 0 on ∂ΩN × (0, T ), (2.7f)

v(·, 0) = v0 in Ω, (2.7g)

X(q̄, 0) = X0(q̄) in B0, (2.7h)

where X0 is the position of the initial configuration of the immersed boundary.
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2.3. THE VARIATIONAL FORMULATION OF THE IMMERSED BOUNDARY
METHOD

2.3 The variational formulation of the immersed

boundary method

In the original immersed boundary method, the spatial discretization is done using

the finite difference approach. The main concern is the computation of f in (2.5a) due

to the presence of the Dirac delta function. This has been realized by constructing an

appropriate approximation δh for δ which is nonsingular for each h and approaches

δ as h→ 0 (cf. [7, 41]).

In this work, we use the finite element approach for the spatial discretization of

the fluid equations and periodic cubic splines for the immersed boundary. The force

term involving the Dirac delta function is dealt with in a variational way, so there is

no need for an approximation of δ. To this end, we need to introduce the variational

formulation of the immersed boundary equations (2.7) and this will be the purpose

of this section. Setting V := H1
0,∂ΩD

(Ω), the following result from [7] allows the

interpretation of the force density f(t), t ∈ (0, T ), as a distribution in V∗.

Lemma 2.3.1. Assume that for all t ∈ [0, T ], the immersed boundary ∂Bt is Lips-

chitz continuous. Then, for all t ∈ (0, T ) the force density f(t) is a distribution in

V∗ defined according to

〈f(t),w〉V∗,V =

ˆ L

0

F(q̄, t) ·w(X(q̄, t))dq̄, t ∈ (0, T ), w ∈ V. (2.8)
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2.3. THE VARIATIONAL FORMULATION OF THE IMMERSED BOUNDARY
METHOD

Proof. Denoting by Bε(0) the ball with center 0 and radius ε > 0, we consider the

family of continuous functions δε > 0 such that

supp(δε) ⊆ Bε(0),

ˆ
Bε(0)

δε dx = 1, δε → δ in D′, as ε→ 0. (2.9)

Setting

fε(x, t) =

ˆ L

0

F(q, t)δε(x−X(q, t)) dq ∀x ∈ Ω, t ∈ (0, T ),

for w ∈ D(Ω) := C∞0,∂ΩD
(Ω), Fubini’s theorem yields

〈fε(t),w〉D′,D =

ˆ
Ω

fε(x, t) ·w(x) dx

=

ˆ
Ω

(ˆ L

0

F(q, t)δε(x−X(q, t)) dq

)
·w(x) dx

=

ˆ L

0

F(q, t)

(ˆ
Ω

δε(x−X(q, t)) ·w(x)

)
dx dq. (2.10)

Using (2.9) and passing to the limit by interchanging the order of the limit and the

integration, we obtain

〈f(t),w〉D′,D = lim
ε→0
〈fε(t),w〉D′,D

= lim
ε→0

ˆ L

0

F(q, t)

(ˆ
Ω

δε(x−X(q, t)) ·w(x)

)
dx dq

=

ˆ L

0

F(q, t)

(
lim
ε→0

ˆ
Ω

δε(x−X(q, t)) ·w(x)

)
dx dq

=

ˆ L

0

F(q, t)〈δX(q,t),w〉D′,D dq

=

ˆ L

0

F(q, t)w(X(q, t))dq. (2.11)
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2.3. THE VARIATIONAL FORMULATION OF THE IMMERSED BOUNDARY
METHOD

We note that the integrand on the right-hand side in (2.11) is well defined for all

functions w such that the trace w(X(·, t)) along ∂Bt belongs to L2((0, L)). Since

by assumption X(·, t) : [0, L] → Ω, t ∈ (0, T ), is a Lipschitz curve in Ω, the trace

mapping

τ
X

: V → H1/2(∂Bt)

w → w(X(·, t))

is well defined. Since D(Ω) is dense in V, f(t) can be extended to a bounded linear

functional on V which proves (2.8).

Setting H3
per((0, L)) := {Y ∈ H3((0, L)) | dkY/dqk(0) = dkY/dqk(L), 0 ≤ k ≤ 2},

the variational formulation of the immersed boundary system (2.7) reads as follows:

Given an initial velocity v0 ∈ L2(Ω), an initial configuration X0 ∈ H3
per((0, L)), and

a force density F, find the velocity field v ∈ H1((0, T ),V∗) ∩ L2((0, T ),V), V :=

H1
0,∂ΩD

, the pressure p ∈ L2((0, T ), L2(Ω)), and X ∈ H1((0, T ),Z∗) ∩ L2((0, T ),Z),

Z := H3
per((0, L)), such that for all w ∈ V and q ∈ L2(Ω) it holds

〈ρf
∂v

∂t
,w〉V∗,V + a(v,w)− b(p,w) = `(w) f.a.a. t ∈ (0, T ), (2.12a)

b(q,v(·, t)) = 0 f.a.a. t ∈ (0, T ), (2.12b)

v(·, 0) = v0, (2.12c)

∂X

∂t
= v(X(·, t), t) f.a.a. t ∈ (0, T ), (2.12d)

X(·, 0) = X0. (2.12e)
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2.3. THE VARIATIONAL FORMULATION OF THE IMMERSED BOUNDARY
METHOD

Here, a(·, ·), b(·, ·) and the linear functional `(·) are given by

a(v,w) := (ρf (v · ∇)v,w)0,Ω + (η∇v,∇w)0,Ω (2.13a)

b(q,v) := (q,∇ · v)0,Ω (2.13b)

`(w) := 〈f ,w〉V∗,V =

ˆ L

0

F(q̄, t) ·w(X(q̄, t))dq̄. (2.13c)

Remark 2.3.2. For the special case where the weak formulation of the Navier-Stokes

equations in (3.8) is replaced by the weak form of the Stokes equations, the existence

of a solution of the coupled system (3.8) has been shown in one spatial dimension

by Boffi/Gastaldi in [7] using a fixed point argument and a compactness result.

The generalization to higher dimensions and to the Navier-Stokes equations is not

straightforward, since the proof requires some regularity properties of the velocity

that are not easy to obtain. As far as the existence of a weak solution of the Navier-

Stokes equations and its regularity is concerned, we refer to [23, 33, 47].
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CHAPTER 3

Surface Acoustic Wave-Actuated Cell Sorting

In this chapter, which follows the exposition in [21], we consider the mathematical

modeling and numerical simulation of high throughput sorting of two different types

of biological cells (type I and type II) by a biomedical micro-electro-mechanical

system (BioMEMS) whose operating behavior relies on surface acoustic wave (SAW)

manipulated fluid flow in a microchannel. The BioMEMS consists of a separation

channel with three inflow channels for injection of the carrier fluid and the cells,

two outflow channels for separation, and an interdigital transducer (IDT) close to

the lateral wall of the separation channel for generation of the SAWs. The cells can

be distinguished by fluorescence. The inflow velocities are tuned such that without

20



SAW actuation a cell of type I leaves the device through a designated outflow channel.

However, if a cell of type II is detected, the IDT is switched on and the SAWs change

the direction of the fluid flow such that the cell leaves the separation channel through

the other outflow boundary.
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Figure 3.1: Surface acoustic wave actuated cell sorting (SAWACS) in a microfluidic
PDMS channel (from [20]).

The motion of a cell in the carrier fluid is modeled by the Finite Element Im-

mersed Boundary Method (FE-IB) described in the previous chapter. The generation

of the SAWs is taken care of by the linearized equations of piezoelectricity, and the

impact of the SAWs on the fluid flow is realized by means of a boundary condi-

tion for the Navier-Stokes equations. The discretization in space is done by P2/P1

Taylor-Hood elements for the fluid flow and periodic cubic splines for the immersed

cell, whereas for discretization in time we use the backward Euler scheme for the

Navier-Stokes equations and the forward Euler scheme for the equation of motion of

the immersed cell. This Backward Euler/Forward Euler Finite Element Immersed

Boundary Method (BE/FE FE-IB) requires a CFL-type condition for stability. Nu-

merical results are presented that illustrate the feasibility of the surface acoustic
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wave actuated cell sorting approach.

In section 3.1, we briefly discuss the linearized equations of piezoelectricity for

SAW generation and the FE-IB method for modeling the fluid- cell interaction prob-

lem including stability estimates for the continuous as well as the fully discretized

problem. In section 3.2 we present results of numerical simulation for the separation

of a red blood cell (type I) and a melanoma breast cancer cell (type II).

3.1 Mathematical model

3.1.1 Surface acoustic wave (SAW) actuation

Surface acoustic waves are modes of elastic energy propagating at the surface of a

solid body. They can be viewed as a nanometer-sized miniature of an earthquake.

SAWs are easily excited on piezoelectric solids, because substrates deform due to the

application of an electric field. Rapid changes of these electric fields are efficiently

converted into a real nanoquake on a chip. Such rapid changes can be generated by

a metallic electrode comb structure, called interdigital transducer (IDT). An IDT

is used for the generation of the SAWs for the surface acoustic wave actuated cell

sorting.

The separation channel is placed on top of a plastic chip partially coated by a

piezoelectric substrate such as lithium niobate (LiNbO3). The IDT is placed close to

the wall of the channel with its aperture pointing towards the wall. A static electric

field E is applied to generate a strain which varies across the aperture of the IDT.
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3.1. MATHEMATICAL MODEL

Here, a(·, ·), b(·, ·), and the functional !(·) are given by

a(v,w) := (ρ(v · ∇)v,w)0,Ω + (η∇v, ∇w)0,Ω (2.3a)

b(p,v) := (p, ∇ · v)0,Ω , !(w) := 〈F,w〉H−1,H1
0
. (2.3b)

2.2. Surface Acoustic Wave Actuation. In SAW actuated cell sorting, the
separation channel is placed on top of a plastic chip partially coated by a piezoelectric
substrate such as lithium niobate (LiNbO3). The SAWs are generated by an inter-
digital transducer (IDT) close to the wall of the channel with its aperture pointing
towards the wall. The IDT features fingers substantially parallel to one another. A
static electric field E is applied to generate a strain which varies across the aperture
of the IDT. The electric field is either perpendicular or parallel to the fingers and
created by applying a dc voltage between two correspondingly positioned conductors.
The piezoelectric effect thus leads to SAWs that travel in the direction of the wall,
enter the fluid filled microchannel, and thus manipulate the flow field in the channel.

Fig. 2.2. Interdigital Transducer IDT (top) and motion of the SAW in the sagittal plane (right).

In piezoelectric materials, the stress tensor σ depends linearly on the electric field
E according to the generalized Hooke’s law

σ(u,E) = c ε(u) − eE, (2.4)

where ε(u) := (∇u + (∇u)T )/2 is the linearized strain tensor and u denotes the
mechanical displacement. Moreover, c and e refer to the symmetric fourth order elas-
ticity tensor and the symmetric third order piezoelectric tensor, respectively. Hence,
the application of an electric field causes a displacement of the material. The origin
of the piezoelectric effect is related to an asymmetry in the unit cell of a piezoelectric
crystal and can be observed only in materials with a polar axis (cf., e.g., [9, 17]).
Since the frequency of the electromagnetic wave is small compared to the frequency of
the generated acoustic wave, a coupling will be neglected. Further, the electric field
will be considered as quasistatic and irrotational such that it can be expressed as the
gradient of an electric potential Φ, i.e., E = −∇Φ. Moreover, piezoelectric materials
are nearly perfect insulators and hence, the only remaining quantity of interest in
Maxwell’s equations is the dielectric displacement D which is related to the electric
field by the constitutive equation

D = εE + P, (2.5)

5

Figure 3.2: Interdigital Transducer (IDT) and motion of SAWs in the sagittal plane

In piezoelectric materials, the application of an electric field will cause a mechan-

ical displacement of the material. They also show the reverse effect to generate an

electric field when subjected to mechanical stress. These properties are called the

piezoelectric effect and the inverse piezoelectric effect, respectively. In contrast to

non-piezoelectric materials where the effect of stress tensor σ to the electric field

E is quadratic, in piezoelectric materials σ depends linearly on E according to a

generalized Hookes law:

σ(u,E) = cε(u)− eE, (3.1)

Here, ε(u) := (∇u + (∇u)T )/2 is the linearized strain tensor and u stands for

the mechanical displacement, whereas c and e denote the symmetric fourth-order

elasticity tensor and the symmetric third-order piezoelectric tensor, respectively. The

origin of the piezoelectric effect is related to an asymmetry in the unit cell of a

piezoelectric crystal and can be observed only in materials with a polar axis (cf.,
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3.1. MATHEMATICAL MODEL

e.g., [24]).

Since the frequency of the electromagnetic wave is small compared to the fre-

quency of the generated acoustic wave, a coupling will be neglected. Moreover, the

electric field will be considered as quasistatic and irrotational. Hence, it can be ex-

pressed as the gradient of an electric potential Φ according to E = −∇Φ . Also,

piezoelectric materials are nearly perfect insulators. Therefore , the only remaining

quantity of interest in Maxwell’s equations is the dielectric displacement D which is

related to the electric field by the constitutive equation

D = εE + P, (3.2)

where ε is the electric permittivity of the material and P stands for the polarization.

For piezoelectric materials, P depends linearly on the displacement u according to

P = eε(u). (3.3)

We assume that the piezoelectric material with density ρp > 0 occupies some rect-

angular domain Ω1 with boundary Γ1 = ∂Ω1 and exterior unit normal n1. The

boundary Γ1 is partitioned into two disjoint sets in two ways according to

Γ1 = Γ̄E,D ∪ Γ̄E,N , ΓE,D ∩ ΓE,N = ∅,

Γ1 = Γ̄p,D ∪ Γ̄p,N , Γp,D ∩ Γp,N = ∅,
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3.1. MATHEMATICAL MODEL

Given boundary data ΦE,D on ΓE,D, the pair (u,Φ) satisfies the following initial-

boundary value problem for the piezoelectric equations

ρp
∂2u

∂t2
−∇ · σ(u,E) = 0 in Ω1 × (0, T1), (3.4a)

∇ ·D(u,E) = 0 in Ω1 × (0, T1), (3.4b)

u = 0 on Γp,D, n1 · σ = σn1 on Γp,N , (3.4c)

Φ = ΦE,D on ΓE,D, n1 ·D = Dn1 on ΓE,N , (3.4d)

u(·, 0) = 0,
∂u

∂t
(·, 0) = 0 in Ω1, (3.4e)

together with the constitutive equations (3.1), (3.2 ) and (3.3).

Assuming time periodic excitations ΦE,D(·, t) = Re
(
Φ̂E,D exp(−iωt)

)
such that

Φ̂E,D ∈ H1/2(ΓE,D), the time harmonic solutions are given in the form

u(·, t) = Re(u(·) exp(−iωt)), Φ(·, t) = Re(Φ(·) exp(−iωt)).

Further details can be found in [24].

3.1.2 The finite element immersed boundary method for

fluid-cell interaction

Red blood cells (RBCs) and malignant cancer cells (MCF -7) are viscoelastic bodies

consisting of a cytoskeleton enclosing a heterogeneous cell interior [1]. In a simplified

biomechanical model, neglecting viscoelastic properties, the cytoskeleton can be rep-

resented as an elastic membrane with specific elastic moduli and the cell interior as

an incompressible fluid with specific density and viscosity. We further assume that
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3.1. MATHEMATICAL MODEL

the density and viscosity are the same as for the carrier fluid. In practice, this can

be achieved via density and viscosity matching by adding chemicals to the carrier

fluid. We note, however, that there exists a version of the FE-IB that can handle

different densities and viscosities (cf., e.g., [6]). As we have already mentioned, the

FE-IB method depends on three equations, namely, the incompressible Navier-Stokes

equations, the material elasticity equations, and the interaction equations.

3.1.2.1 The incompressible Navier-Stokes equations

We consider a microchannel with a rectangular cross section, Ω ⊂ R2, three inflow

boundaries Γ
(i)
in ⊂ Γ := ∂Ω, i = 1 ≤ i ≤ 3, two outflow boundaries Γ

(j)
out, j = 1, 2 and

a boundary Γac where the SAWs enter the channel. We set ΓD := ∂Ω \
(⋃3

i=1 Γ̄
(i)
in ∪⋃2

j=1 Γ̄
(j)
out ∪ Γ̄ac

)
and Γ′ :=

⋃3
i=1 Γ̄

(i)
in ∪ Γac ∪ ΓD. (cf. Figure 3.3). For T > 0 , we

set Q := Ω × (0, T ], Σ
(i)
in := Γ

(i)
in × (0, T ], 1 ≤ i ≤ 3, Σ

(j)
out := Γ

(j)
out × (0, T ], 1 ≤ j ≤

2, Σac := Γac × (0, T ], and ΣD := ΓD × (0, T ].
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Γ
(3)
in

Γ
(2)
in

Γ
(1)
in

Γ
(2)
out

Γ
(1)
out

Γac

1

Figure 3.3: Separation channel

The incompressible Navier- Stokes equations that describe the fluid motion read:

ρf

(
∂v

∂t
+ (v · ∇)v

)
−∇ · σ = f in Q, (3.5a)

∇ · v = 0 in Q, (3.5b)

v = v
(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, (3.5c)

σ(v, p)n = 0 on Σ(j)
out, j = 1, 2 (3.5d)

v = vac on Σac, (3.5e)

v = 0 on ΣD, (3.5f)

v = v(0) in Ω, (3.5g)

where v and p are the velocity field and the pressure, ρf is the density of the fluid,

σ(v, p) = 2ηD(v) − pI is the stress tensor, where η is the dynamic viscosity of the
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carrier fluid and D(v) = (∇v + (∇v)T )/2 stands for the rate of deformation tensor.

Furthermore, f denotes the density of the body force exerted by the cell, vac = 0

when the SAWs are not actuated and ∂u
∂t

when the IDT is switched on for SAW

actuation. Here, u represents the mechanical displacement vector due to SAW. If

the harmonically excited IDT is placed close to the lateral wall of the microchannel

and we restrict ourselves to a two-dimensional scenario, we may assume u = (u1, u2)

with

u1 = 0, u2 = a sin(2πft) on Σac, (3.6)

where a is the amplitude and f stands for the operating frequency of the IDT. This

leads to vac = (vac,1, vac,1)T with

vac,1 = 0, vac,2 =
∂u2

∂t
= 2aπf cos(2πft) on Σac. (3.7)

Introducing the function spaces

V(0, T ) := H1((0, T ), H−1(Ω)) ∩ L2((0, T ),H1(Ω)),

W(0, T ) := {v ∈ V(0, T )| v|
Σ

(i)
in

= v
(i)
in , 1 ≤ i ≤ 3, vΣac = vac, vΣD = 0}

Q(0, T ) := L2((0, T ), L2(Ω)),

the weak formulation of the Navier-Stokes equations is to compute (v, p) ∈W(0, T )×

Q(0, T ) such that for all w ∈ H1
0,Γ′(Ω) and all q ∈ L2(Ω) there holds

〈ρf
∂v

∂t
,w〉H−1,H1

0,Γ′
+ a(v,w)− b(p,w) = 〈f ,w〉H−1,H1

0,Γ′
, (3.8a)

b(q,v) = 0, (3.8b)

v(·, 0) = v(0), (3.8c)

where a(·, ·) and b(·, ·) are defined according to (2.13a) and (2.13b) .
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3.1. MATHEMATICAL MODEL

3.1.2.2 Elasticity and interaction equations

We consider an immersed cell occupying a subdomain Bt ⊂ Ω, t ∈ [0, T ], with

boundary ∂Bt . As before, we assume that the curve ∂Bt is non self-intersecting

and closed. We denote by L := |∂B0| the length of the initial configuration ∂B0

and by q̄ ∈ [0, L], the Lagrangian coordinate labeling a material point on ∂B0.

X(q̄, t) = (X2(q̄, t),X2(q̄, t))T will be the position at time t ∈ (0, T ] such that

X ∈ H1((0, T ),L2([0, L])) ∩ L2((0, T ),H3
per([0, L])), (3.9)

where

H3
per([0, L]) := {Y ∈ H3([0, L]) | ∂kY(0)/∂q̄k = ∂kY(L)/∂q̄k, k = 0, 1, 2}.

Let εe(X(q̄, t)) and εb(X(q̄, t)) such that

εe(X(q̄, t)) =
κe
2

(∣∣∣∣∂X

∂q̄

∣∣∣∣2 − 1

)
(3.10a)

εb(X(q̄, t)) =
κb
2

∣∣∣∣∂2X

∂q̄2

∣∣∣∣2 (3.10b)

be the local energy densities on the elastic boundary ∂Bt where κe > 0 is the coef-

ficient with respect to elongation-compression and κb > 0 is the elasticity coefficient

with respect to bending. Then, the associated bending and elastic energies are given

by

Ee(t) :=

ˆ L

0

εe(X(q̄, t))dq̄, (3.11a)

Eb(t) :=

ˆ L

0

εb(X(q̄, t))dq̄, (3.11b)
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and the total energy reads:

E(t) := Ee(t) + Eb(t), t ∈ (0, T ). (3.12)

The local force density F is given in terms of the Gâteaux derivative of the total

energy according to

F(q̄, t) = −E ′(X(q̄, t)) (3.13)

= κe
∂2X

∂q̄2
(q̄, t)− κb

∂4X

∂q̄4
(q̄, t).

The global force density f in (3.5a) is given by

〈f(t),w〉H−1,H1
0,Γ′

=

ˆ L

0

F(q̄, t) ·w(X(q̄, t))dq̄, w ∈ H1
0,Γ′(Ω) (3.14)

Assuming additional regularity of w, using (3.14) and integrating by parts, we get

〈f(t),w〉H−1,H1
0,Γ′

= −κe
ˆ L

0

∂X(·, t)
∂q̄

·Dw(X(·, t))∂X(·, t)
∂q̄

dq̄ (3.15)

− κb
ˆ L

0

∂2X(·, t)
∂2q̄2

·D2w(X(·, t)) ·
(
∂X(·, t)
∂q̄

,
X(·, t)
∂q̄

)
dq̄

− κb
ˆ L

0

∂2X(·, t)
∂q̄2

·Dw(X(·, t))∂
2X(·, t)
∂q̄2

dq̄.

In view of 3.15, the pointwise restriction of w and its first and second derivatives to

∂Bt have to be well-defined which requires w to be twice continuously differentiable

on B̄t. This is guaranteed if we assume w ∈ H1
0,Γ′(Ω) ∩ H3+λ(B̄t), t ∈ [0, T ], for

some λ ∈ (0, 1/2), due to the Sobolev embedding theorem [46].
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Moreover, the immersed cell moves with the velocity v of the carrier fluid and

hence, we complement equations 3.8 with the equations of motion of the immersed

boundary,

∂X

∂t
(q̄, t) = v(X(q̄, t), t), (q̄, t) ∈ [0, L]× (0, T ], (3.16a)

X(·, 0) = X(0)(·). (3.16b)

In summary, we solve for (v, p) ∈W(0, T )×Q(0, T ) and X as in (3.9) such that for

all w ∈ H1
0,Γ′(Ω) and q ∈ Q(0, T ), it holds

〈ρf
∂v

∂t
,w〉H−1,H1 + a(v,w)− b(p,w) = 〈f ,w〉H−1,H1

0,Γ′
, (3.17a)

b(q,v) = 0, (3.17b)

v(·, 0) = v(0), (3.17c)

∂X

∂t
(·, t) = v(X(·, t), t), (3.17d)

X(·, 0) = X(0)(·), (3.17e)

where

〈f(t),w〉H−1,H1
0,Γ′

=

ˆ L

0

F(q̄, t) ·w(X(q̄, t))dq̄.
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3.1.3 Stability estimates

In case v|Σ = 0 and in the absence of a bending energy, a stability result has been

established in [8]. A stability estimate for inflow and outflow boundary conditions of

the form nΓin
· v|Γin

= −nΓout · v|Γout = g with g being independent of t ∈ [0, T ] and

in the presence of a bending energy has been provided in [22]. In the sequel, we will

give a stability estimate under the boundary conditions as given by (3.5c)-(3.5f).

We suppose that the inflow velocities v
(i)
in , 1 ≤ i ≤ 3, and vac satisfy

v
(i)
in ∈ H1((0, T ),H

5/2+λ
00 (Γ

(i)
in )), 1 ≤ i ≤ 3, (3.18a)

vac ∈ H1((0, T ),H
5/2+λ
00 (Γac)), (3.18b)

for some λ ∈ (0, 1/2). We further construct v
(j)
out, 1 ≤ j ≤ 2, according to

v(j)
out ∈ H1((0, T ),H

5/2+λ
00 (Γ(j)

out)), 1 ≤ j ≤ 2, (3.19)

such that for t ∈ [0, T ] there holds

2∑
j=1

ˆ
Γ

(j)
out

nΓout · v(j)
out(s, t)ds+

3∑
i=1

ˆ
Γ

(i)
in

nΓin
· v(i)

in (s, t)ds

+

ˆ
Γac

nΓac · vac(s, t)ds = 0. (3.20)

where n is the exterior unit normal for the respective boundaries.

Lemma 3.1.1. If we assume (3.18a), (3.18b), (3.19), and (3.20), there exists a

function

ψ̂ ∈ H1((0, T ),H3+λ(Ω) ∩H(div0,Ω)), (3.21)
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such that

ψ̂(·, t)|
Γ

(i)
in

= v
Γ

(i)
in

(·, t), 1 ≤ i ≤ 3 (3.22a)

ψ̂(·, t)|
Γ

(j)
out

= v
Γ

(j)
out

(·, t), 1 ≤ j ≤ 2 (3.22b)

ψ̂(·, t)|Γac = vΓac(·, t), (3.22c)

Moreover, there exist constants Ĉ1 > 0 and Ĉ2 > 0 such that for t ∈ [0, T ] it holds

‖ψ̂(·, t)‖C2,λ(Ω̄) ≤ Ĉ1 g1(t), (3.23a)

tˆ

0

‖∂ψ̂
∂τ

(·, τ)‖2
C2,λ(Ω̄) dτ ≤ Ĉ2 g2(t), (3.23b)

where the upper bounds g1(t) and g2(t) are given by

g1(t) :=
3∑
i=1

‖v(i)
in (·, t)‖

H
5/2+λ
00 (Γ

(i)
in )

+
2∑
j=1

‖v(j)
out(·, t)‖H5/2+λ

00 (Γ
(i)
out)

(3.24a)

+ ‖vac(·, t)‖H5/2+λ
00 (Γac)

,

g2(t) :=

tˆ

0

( 3∑
i=1

‖∂v
(i)
in

∂τ
(·, τ)‖2

H
5/2+λ
00 (Γ

(i)
in )

+
2∑
j=1

‖∂v
(j)
out

∂τ
(·, τ)‖2

H
5/2+λ
00 (Γ

(i)
out)

(3.24b)

+ ‖∂vac

∂τ
(·, τ)‖2

H
5/2+λ
00 (Γac)

)
dτ.

Proof. We denote by ṽ
(i)
in (·, t) ∈ H5/2+λ(Γ), 1 ≤ i ≤ 3, ṽ

(j)
out(·, t) ∈ H5/2+λ(Γ), 1 ≤

j ≤ 2, and ṽac(·, t) ∈ H5/2+λ(Γ) the extensions of v
(i)
in (·, t), v

(j)
out(·, t), and vac(·, t) by

zero to Γ such that
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‖ṽ(i)
in (·, t)‖5/2+λ,Γ . ‖v(i)

in (·, t)‖
H

5/2+λ
00 (Γ

(i)
in )
, (3.25a)

‖ṽ(j)
out(·, t)‖5/2+λ,Γ . ‖v(j)

out(·, t)‖H5/2+λ
00 (Γ

(i)
out)
, (3.25b)

‖ṽac(·, t)‖5/2+λ,Γ . ‖vac(·, t)‖H5/2+λ
00 (Γac)

. (3.25c)

In view of the trace theorem [46] there exist v̂
(i)
in (·, t) ∈ H3+λ(Ω), 1 ≤ i ≤ 3, v̂

(j)
out(·, t) ∈

H3+λ(Ω), 1 ≤ j ≤ 2, and v̂ac(·, t) ∈ H3+λ(Ω) such that v̂
(i)
in |Γ(·, t) = ṽ

(i)
in (·, t),

v̂
(j)
out|Γ(·, t) = ṽ

(j)
out(·, t) and v̂ac|Γ(·, t) = ṽac(·, t) as well as

‖v̂(i)
in (·, t)‖3+λ,Ω . ‖ṽ(i)

in (·, t)‖5/2+λ,Γ, (3.26a)

‖v̂(j)
out(·, t)‖3+λ,Ω . ‖ṽ(j)

out(·, t)‖5/2+λ,Γ, (3.26b)

‖v̂ac(·, t)‖3+λ,Ω . ‖ṽac(·, t)‖5/2+λ,Γ. (3.26c)

Due to the Sobolev embedding theorem [46], H3+λ(Ω) is continuously embedded in

C2,λ(Ω̄) and hence, there holds

‖v̂(i)
in (·, t)‖C2,λ(Ω̄) . ‖v̂(i)

in (·, t)‖3+λ,Ω, (3.27a)

‖v̂(j)
out(·, t)‖C2,λ(Ω̄) . ‖v̂(j)

out(·, t)‖3+λ,Ω, (3.27b)

‖v̂ac(·, t)‖C2,λ(Ω̄) . ‖v̂ac(·, t)‖3+λ,Ω. (3.27c)

We define

ψ̂ :=
3∑
i=1

v̂
(i)
in +

2∑
j=1

v̂(j)
out + v̂ac. (3.28)

By construction ψ̂ ∈ H1((0, T ),H3+λ(Ω)) satisfies (3.22a)-(3.22c). Moreover, (3.23a)

and (3.23b) hold true due to (3.25a)-(3.25c), (3.26a)-(3.26c), and (3.27a)-(3.27c).
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Finally, (3.20) implies

ˆ

Ω

∇ · ψ̂(·, t)dx =

ˆ

Γ

n · ψ̂|Γ ds = 0,

and hence, ψ̂(·, t) ∈ H(div0,Ω), t ∈ [0, T ].

For the proof of the subsequent energy estimate, we note that the computational

domain Ω ⊂ R2 is such that for v ∈W(0, T ) the Poincaré-Friedrichs inequality

‖v(·, t)‖0,Ω ≤ CΩ

(
‖∇v(·, t)‖2

0,Ω + ‖v(·, t)‖2
0,Γ

)1/2

, t ∈ [0, T ], (3.29)

holds true for some constant CΩ > 0.

Theorem 3.1.2. Let us suppose that the data of the problem satisfy (3.18a),(3.18b)

and that the additional assumption

max
0≤t≤T

g1(t) ≤ η

16 ρf Ĉ1 C2
Ω

(3.30)

holds true, where g1(t), t ∈ [0, T ], is from (3.24a) and the positive constants Ĉ1, CΩ are

given by (3.23a),(3.29). Moreover, assume that the triple (v, p,X) satisfies (3.8a)-

(3.8c) and (3.16a),(3.16b). Then, there exists a positive constant C, depending on
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ρf , η, κe, κb, Ĉi, 0 ≤ i ≤ 2, and CΩ such that there holds

ρf
4
‖v(·, t)‖2

0,Ω +
η

8

tˆ

0

‖∇v(·, t)‖2
0,Ω dτ +

κe
2

∥∥∥∥∂X(·, t)
∂q̄

∥∥∥∥2

0,[0,L]

+
κb
2

∥∥∥∥∂2X(·, t)
∂q̄2

∥∥∥∥2

0,[0,L]

≤ C
(
g1(0)2 + g1(t)2 +

tˆ

0

(g1(τ)2 + g2(τ)2) dτ + max
0≤τ≤t

g1(τ)

tˆ

0

‖v(·, τ)‖2
0,Γ dτ

+ ‖v(0)‖2
0,Ω +

∥∥∥∥∂X(0)

∂q̄

∥∥∥∥2

0,[0,L]

+

∥∥∥∥∂2X(0)

∂q̄2

∥∥∥∥2

0,[0,L]

+

tˆ

0

∥∥∥∥∂X(·, τ)

∂q̄

∥∥∥∥2

0,[0,L]

dτ

+

tˆ

0

∥∥∥∥∂2X(·, τ)

∂q̄2

∥∥∥∥2

0,[0,L]

dτ
)
. (3.31)

Proof. Due to Lemma 3.1.1, w := v − ψ̂ is an admissible test function in (3.8a).

Integrating over [0, t], it follows that

tˆ

0

〈ρf
∂v

∂τ
,v − ψ̂〉 dτ +

tˆ

0

a(v,v − ψ̂) dτ =

tˆ

0

〈f(τ),v − ψ̂〉H−1,H1
0
dτ. (3.32)

Using integration by parts, Young’s inequality with ε1 > 0, and the Poincaré-

Friedrichs inequality (3.29), the first term on the left-hand side in (3.32) can be
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bounded from below according to

tˆ

0

〈ρf
∂v

∂τ
,v − ψ̂〉H−1,H1

0,Γ′
dτ =

ρf
2

tˆ

0

∂

∂τ
‖v(τ)‖2

0,Ω dτ − ρf (v(·, t), ψ̂(·, t))0,Ω (3.33)

+ ρf (v(·, 0), ψ̂(·, 0))0,Ω + ρf

tˆ

0

(v(·, τ),
∂ψ̂

∂τ
(·, τ))0,Ω dτ ≥ ρf

4
‖v(·, t)‖2

0,Ω −
3ρf
4
‖v(·, 0)‖2

0,Ω

− ρf
(
‖ψ̂(·, t)‖2

0,Ω + ‖ψ̂(·, 0)‖2
0,Ω

)
− ε1ρf

tˆ

0

‖v(·, τ)‖2
0,Ω dτ − ρf

4ε1

tˆ

0

‖∂ψ̂
∂τ

(·, τ)‖2
0,Ω dτ

≥ ρf
4
‖v(·, t)‖2

0,Ω −
3ρf
4
‖v(·, 0)‖2

0,Ω − ρf
(
‖ψ̂(·, t)‖2

0,Ω + ‖ψ̂(·, 0)‖2
0,Ω

)
− ε1ρfC

2
Ω

( tˆ

0

‖∇v(·, τ)‖2
0,Ω dτ +

tˆ

0

‖v(·, τ)‖2
0,Γ dτ

)
− ρf

4ε1

tˆ

0

‖∂ψ̂
∂τ

(·, τ)‖2
0,Ω dτ.

Observing (ρf (v · ∇)v,v)0,Ω = 0 and by means of the Cauchy-Schwarz inequality,

Young’s inequality, and the Poincaré-Friedrichs inequality (3.29), the second term

on the left-hand side in (3.32) can be estimated from below according to

tˆ

0

a(v,v − ψ̂) dτ ≥ (3.34)

η

tˆ

0

‖∇v(·, τ)‖2
0,Ω dτ − η

tˆ

0

‖∇v(·, τ)‖0,Ω‖∇ψ̂(·, τ)‖0,Ω dτ −

ρf

tˆ

0

2∑
i,j=1

‖vj(·, τ)‖0,Ω ‖
∂vi
∂xj

(·, τ)‖0,Ω ‖ψ̂i(·, τ)‖0,Ω dτ ≥

(η
2
− ρf
√

2Ĉ1C
2
Ω max

0≤τ≤t
g1(τ)

) tˆ

0

‖∇v(·, τ)‖2
0,Ω dτ −

ρf
√

2

2
C2

Ω max
0≤τ≤t

g1(τ)

tˆ

0

‖v(·, τ)‖2
0,Γ dτ −

η

2

tˆ

0

g1(τ)2 dτ.
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In view of (3.15) and (3.16a), for the right-hand side in (3.32) we find

tˆ

0

〈f(τ),v〉H−1,H1
0,Γ′

dτ = (3.35)

tˆ

0

(
− κe

L̂

0

∂X(q̄, τ)

∂q̄
· ∂
∂q̄

v(X(q̄, τ)) dq̄ − κb
L̂

0

∂2X(q̄, τ)

∂q̄2
· ∂

2

∂q̄2
v(X(q̄, τ)) dq̄

)
dτ =

tˆ

0

(
− κe

L̂

0

∂X(q̄, τ)

∂q̄
· ∂
∂τ

(∂X(q̄, τ)

∂q̄

)
dq̄ − κb

L̂

0

∂2X(q̄, τ)

∂q̄2
· ∂
∂τ

(∂2X(q̄, τ)

∂q2

)
dq̄
)
dτ

= −κe
2

tˆ

0

∂

∂τ
‖∂X

∂q̄
(τ)‖2

0,[0,L] dτ −
κb
2

tˆ

0

∂

∂τ
‖∂

2X

∂q̄2
(τ)‖2

0,[0,L] dτ =

κe
2

(
‖∂X

∂q̄
(0)‖2

0,[0,L] − ‖
∂X

∂q̄
(t)‖2

0,[0,L]

)
+
κb
2

(
‖∂

2X

∂q̄2
(0)‖2

0,[0,L] − ‖
∂2X

∂q̄2
(t)‖2

0,[0,L]

)
.

Using (3.15) again, we get

tˆ

0

〈f(τ), ĝ〉H−1,H1
0,Γ′

dτ = (3.36)

κe

tˆ

0

(∂X

∂q̄
,D1ĝ(X(·, τ))

∂X

∂q̄

)
0,[0,L]

dτ + κb

tˆ

0

(∂2X

∂q̄2
,D1ĝ(X(·, τ))

∂2X

∂q̄2

)
0,[0,L]

dτ

+ κb

tˆ

0

(∂2X

∂q̄2
,D2ĝ(X(·, τ))(

∂X

∂q̄
,
∂X

∂q̄
)
)

0,[0,L]
dτ.

The stability estimate (3.31) now follows by using (3.33) with ε1 := µ/(4ρfC
2
Ω) and

(3.34)-(3.36) in (3.32).

3.1.4 Discretization in space and time

For discretization in space and time of the variational formulation of the FE-IB equa-

tions, we use the Backward Euler/Forward Euler Finite Element Immersed Boundary
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Method (BE/FE FE-IB) from [22] in the sense that we discretize the Navier- Stokes

equations by the backward Euler method in time and by Taylor-Hood P2/P1 ele-

ments in space, and we discretize the equation of motion of the immersed cell by

the forward Euler scheme in time and by periodic cubic splines in space. In this

subsection, we also give stability estimates for the fully discrete (BE/FE FE-IB ).

3.1.4.1 Discretization in space

Let Th be a geometrically conforming simplicial triangulation of Ω that aligns with

the partition of Γ. For K ∈ Th(Ω), we denote the area of K by |K|, the diameter

of K by hK , and we set h := max{hK |K ∈ Th(Ω)}. We assume that Th(Ω) is

quasi-uniform, i.e., there exist constants 0 < cQ ≤ CQ that only depend on the local

geometry of the triangulation such that

cQh ≤ hK ≤ CQh, K ∈ Th(Ω). (3.37)

Now, let Pk(K) be the space of polynomials of degree less or equal to k on K. For

the spatial discretization of the weak formulation (2.2a)-(2.2c) of the incompressible

Navier-Stokes equations we use P2-P1 Taylor-Hood elements [25, 27], i.e., we define

Vh := {vh ∈ C(Ω̄)| vh|K ∈ P2(K)2, K ∈ Th(Ω)},

Qh := {qh ∈ C(Ω̄)| qh|K ∈ P1(K), K ∈ Th(Ω)},

and set Vh,0 := Vh ∩C0(Ω̄). The finite element spaces Vh and Qh are spanned by

the canonically specified nodal basis functions:

B = {φi}n1
i=1 ⊂ Vh and B(Qh) = {ϕi}n2

i=1 ⊂ Qh.
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where n1 = dimVh and n2 = dimQh. In particular, the inverse estimate

‖vh‖0,Ω ≤ Cinvh
−1‖∇vh‖0,Ω, vh ∈ Vh, (3.38)

holds true with a positive constant Cinv which is independent of h.

The discretization of the immersed boundary is done with respect to a partition

T∆q̄ := {0 =: q̄0 < q̄1 < · · · < q̄M := L}, M ∈ N,

of the interval [0, L] into subintervals I` := [q̄`−1, q̄`], 1 ≤ ` ≤ M , of length ∆q̄` :=

q̄` − q̄`−1 with ∆q̄ := max {∆q̄`| 1 ≤ ` ≤M}.

We approximate X in (3.9) by periodic cubic splines and define

Sh := {Yh ∈ C2([0, L]; Ω) | Yh|I` ∈ P3(I`)
2, 1 ≤ ` ≤M,

Y
(k)
h (q̄0) = Y

(k)
h (q̄M), k = 0, 1, 2},

where P3(I`) is the set of polynomials of degree ≤ 3 on I`. For Yh ∈ Sh, we set

Y` := Yh(q̄`), 0 ≤ ` ≤M .

The discrete immersed cell occupies subdomains Bh,t ⊂ Ω with boundaries ∂Bh,t

that are C2 curves described by the periodic cubic spline Xh(·, t) ∈ Sh.
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3.1.4.2 Discrete elastic and bending energy

The discrete elastic energy Ee
h due to elongation/compression and the discrete bend-

ing energy Eb
h are given by

Ee
h(t) = κe

ˆ L

0

(
|∂Xh

∂q̄
(q̄, t)|2 − 1

)
dq̄, (3.39)

Eb
h(t) = κb

M∑
`=1

ˆ q̄`

q̄`−1

|∂
2Xh

∂q̄2
(q̄, t)|2dq̄, (3.40)

resulting in the discrete total energy

Eh(t) := Ee
h(t) + Ee

h(t)

The discrete force exerted by the immersed body is given by means of

〈fh(t),wh〉 = 〈−E ′h(t),wh〉h

= − κe
ˆ L

0

∂Xh

∂q̄
· ∂
∂q̄

wh(Xh(q̄, t))dq̄

+ κb

M∑
`=1

ˆ q̄`

q̄`−1

∂3Xh

∂q̄3
· ∂
∂q̄

wh(Xh(q̄, t))dq̄.

Observing that ∂3Xh

∂q̄3 (q̄, t) is constant in I`, we obtain

〈fh(t),wh〉 = − κe
ˆ L

0

∂Xh

∂q̄
· ∇wh(Xh(q̄, t))

∂Xh

∂q̄
dq̄ (3.41)

+ κb

M∑
`=1

∂3Xh

∂q̄3
|I` ·
ˆ q̄`

q̄`−1

∇wh(Xh(q̄, t))
∂Xh

∂q̄
dq̄.
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If we approximate ∂Bh,t by a closed polygon with vertices X`(t) = X(q̄`, t), 1 ≤ ` ≤

M, the second derivatives ∂2X`(t)
∂q̄2 by D2

∆q̄X`(t) such that

D2
∆q̄X`(t) =

X`+1(t)− 2X`(t) + X`−1(t)

(∆q̄)2
,

and the integrals in (3.40) by the trapezoidal rule, we obtain an approximation of

Eb
h(t) according to

Eb
h(t) ≈

κb
2

M∑
`=1

|D2
∆q̄X`(t)|2∆q̄`,

where the indexing of the boundary nodes are chosen in such a way that X`−1 and

X`+1 are neighbors of X`, and XM+` := X`, 1 ≤ ` ≤ 2, and X−1 := XM−1. If we

take ∆q̄` = ∆q̄, 1 ≤ ` ≤M , we get

|D2
∆q̄Xi(t)|2 = |(X`+1 −X`)(t)||(X` −X`−1)(t)|·

1

(∆q̄)4

( |(X`+1 −X`)(t)|
|(X` −X`−1)(t)| +

|(X` −X`−1)(t)|
|(X`+1 −X`)(t)|

− 2 cos(α`(t))

)
,

where α`(t) is the angle between the vectors (X`+1 − X`)(t) and (X` − X`−1)(t).

Assuming |(X`+1−X`)(t)| ≈ |(X`−X`−1)(t)| and using the identity sin2(α`(t)/2) =

(1− cos(α`(t)))/2, it follows that

|D2
∆q̄Xi(t)|2 ≈ 4

1

(∆q̄)4
|(X`+1 −X`)(t)||(X` −X`−1)(t)| sin2(α`(t)/2).

Then, introducing local bending rigidities

κ
(`)
b :=

1

(∆q̄)2
κb|(X`+1 −X`)(t)||(X` −X`−1)(t)| cos2(α`(t)/2),

we obtain the frequently used approximation of the discrete bending energy cf. [48,

49].

Eb
h(t) ≈

1

2

M∑
`=1

κ
(`)
b

(
tan(α`(t)/2)

2∆q̄

)2

∆q̄. (3.42)

42



3.1. MATHEMATICAL MODEL

3.1.5 Discretization in time

For the discretization in time we consider a uniform partition

T∆t := {0 =: t0 < t1 < · · · < tN := T}, N ∈ N,

of the time interval [0, T ] into subintervals of length ∆t := T/N . We use the backward

Euler scheme for discretization of the Navier- Stokes equations of the fluid and the

forward Euler method for the motion of the immersed structure.

Let v
(n)
h be an approximation of vh ∈ Vh at t = tn and denote by X

(n)
` the

approximation of X` at t = tn. We refer to D+
∆t and D−∆t as the forward and

backward difference operators, i.e,

D+
∆tv

(n)
h := (v

(n+1)
h − v

(n)
h )/(∆t), D−∆tv

(n)
h := (v

(n)
h − v

(n−1)
h )/(∆t)

D+
∆tX

(n)
` := (X

(n+1)
` −X

(n)
` )/(∆t), D−∆tX

(n)
` := (X

(n)
` −X

(n−1)
` )/(∆t).

For tn ∈ T∆t, we define v
(i)
h,in(·, tn), 1 ≤ i ≤ 2, and vh,ac(·, tn) as the L2-projections of

v
(i)
in (·, tn) onto Vh|Γ(i)

in
and of vac(·, tn) onto Vh|Γac respectively.

We set

W
(n)
h := {w(n)

h ∈ C(Ω̄) | w(n)
h ∈ Vh, w

(n)
h |Γ(i)

in
= v

(i)
h,in(·, tn),

1 ≤ i ≤ 2, w
(n)
h |Γac = vh,ac(·, tn), w

(n)
h |ΓD = 0},

Q
(n)
h := {q(n)

h ∈ C(Ω̄) | q(n)
h |K ∈ Qh}.

The BE/FE FE-IB reads as follows:

Given v
(0)
h ∈W

(0)
h and X

(0)
h ∈ Sh, for n = 0, . . . ,M − 1 we perform the following two

steps:
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Step 1: Compute (v
(n+1)
h , p

(n+1)
h ) ∈W

(n+1)
h ×Q(n+1)

h such that for all wh ∈ Vh,0

(ρfD
+
∆tv

(n)
h ,wh)0,Ω + a(v

(n+1)
h ,wh)− b(p(n+1)

h ,wh) = `
(n)
h (wh), (3.43a)

b(qh,v
(n+1)
h ) = 0, (3.43b)

`
(n)
h (wh) := 〈f (n)

h ,wh〉, (3.43c)

where

〈f (n)
h (t),wh〉 := − κe

ˆ L

0

∂X
(n)
h

∂q̄
· ∇wh(X

(n)
h (q̄, t))

∂X
(n)
h

∂q̄
dq̄ (3.44)

+ κb

M∑
`=1

∂3X
(n)
h

∂q̄3
|I` ·
ˆ q̄`

q̄`−1

∇wh(X
(n)
h (q̄, t))

∂X
(n)
h

∂q̄
dq̄.

Step 2: Compute X
(n+1)
h ∈ Sh according to

D+
∆tX

(n)
` = v

(n+1)
h (X

(n)
` ), 1 ≤ ` ≤M. (3.45)
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3.1.6 Stability estimates for the fully discrete problem

To derive a stability estimate for the fully discrete problem, we note that the bound-

ary ∂Bh,tn of the immersed cell at time tn consists of C2 segments ∂B
(`)
h,tn

connecting

the material points X
(n)
h,`−1 and X

(n)
h,` , 1 ≤ ` ≤M .

Let

Th(∂B(`)
h,tn

) := {K ∈ Th(Ω) | K ∩ ∂B(`)
h,tn
6= ∅}.

Then, from (3.38), we have

‖∇v
(n+1)
h ‖2

0,∂B
(`)
h,tn

≤
∑

K∈Th(∂B
(`)
h,tn

)

CKh
−1
K ‖∇v

(n+1)
h ‖2

0,K , (3.46)

where CK is a positive constant independent of hK .

If we denote by C
(n)
` the maximum number of C2 curve segments contained in an

element K ∈ Th(∂B(`)
h,tn

) and set

Ccell := c−1
Q max

0≤n≤N−1
max

1≤`≤M

(
C

(n)
` max

K∈Th(∂B
(`)
h,tn

)

CK

)
, (3.47)

where cQ is from (3.37), we obtain

‖∇v
(n+1)
h ‖2

0,∂Bh,tn
≤ Ccellh

−1‖∇v
(n+1)
h ‖2

0,Ω. (3.48)

Since ∂X
(n)
h /∂q̄ ∈ C1([0, L]), 0 ≤ n ≤ N, and considering the fact that the third

derivatives ∂3X
(n)
h /∂q̄3 are constant vectors on I`, 1 ≤ ` ≤M, we define

Λ1 := max
0≤n≤N

max
q̄∈[0,L)

∣∣∣∣∣∂X
(n)
h

∂q̄

∣∣∣∣∣∆q̄, Λ2 := max
0≤n≤N

max
1≤`≤M

∣∣∣∣∣∂3X
(n)
h

∂q̄3
|I`

∣∣∣∣∣∆q̄. (3.49)
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Moreover, we refer to ψ̂h(·, tn) as the biquadratic spline interpoland of ψ̂(·, tn) from

Lemma 3.1.1. Then, there exist constants C
(k)
2 > 0 such that

‖Dkψ̂h(·, tn)‖Ck(Ω̄) ≤ C
(k)
2 g

(n)
1 , 0 ≤ k ≤ 2, (3.50a)

n−1∑
r=0

‖D+
∆tψ̂h(·, tr)‖Ck(Ω̄) ≤ C

(k)
2 g

(n)
2 , 0 ≤ k ≤ 2, (3.50b)

where g
(n)
1 := g1(tn) with g1(t) from (3.24a), and g

(n)
2 is given by (cf. (3.24b))

g
(n)
2 :=

n−1∑
r=0

( 3∑
i=1

‖D+
∆tv

(i)
in (·, tr)‖2

H
5/2+λ
00 (Γ

(i)
in )

+

2∑
i=1

‖D+
∆tv

(i)
out(·, tr)‖2

H
5/2+λ
00 (Γ

(i)
out)

+ ‖D+
∆tvac(·, tr)‖2

H
5/2+λ
00 (Γac)

)
∆t.

Theorem 3.1.3. Let (v
(n)
h , p

(n)
h ,X

(n)
h )Nn=0 be the solution of the semi-implicit BE/FE

FE-IB (3.43a),(3.43b) and (3.45). In addition to the assumptions (3.18a),(3.18b)

let

max
0≤n≤N

g
(n)
1 ≤ η

16 ρf C
(1)
2 C2

Ω

. (3.51)

be satisfied and suppose that the following CFL-condition holds true

∆t

h
≤ η

8Ccell(κeΛ1 + κbΛ2)
, (3.52)

where the positive constants CΩ, Ccell, C
(1)
2 , and Λ1,Λ2 are from (3.29),(3.47),(3.50a),

and (3.49). Then, there exists a positive constant C, depending on ρ, η, κe, κb, C
(k)
2 , 0 ≤
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k ≤ 2, and CΩ, Ccell,Λ1,Λ2 such that the following stability estimate is fulfilled

ρf
4
‖v(n)

h ‖2
0,Ω +

η

16

n∑
r=0

‖∇v
(r)
h ‖2

0,Ω ∆t+
κe
2

∥∥∥∥∥∂X
(n)
h

∂q̄

∥∥∥∥∥
2

0,[0,L]

(3.53)

+
κb
2

∥∥∥∥∥∂2X
(n)
h

∂q̄2

∥∥∥∥∥
2

0,[0,L]

≤ C
(

(g
(0)
1 )2 + (g

(n)
1 )2 +

n−1∑
r=0

(
(g

(r)
1 )2 + (g

(r)
2 )2

)
∆t

+ max
0≤r≤n−1

g
(r)
1

n∑
r=0

‖v(r)
h ‖2

0,Γ∆t+ ‖v(0)
h ‖2

0,Ω +

∥∥∥∥∥∂X
(0)
h

∂q̄

∥∥∥∥∥
2

0,[0,L]

+

∥∥∥∥∥∂2X
(0)
h

∂q̄2

∥∥∥∥∥
2

0,[0,L]

+
n−1∑
r=1

∥∥∥∥∥∂X
(r)
h

∂q̄

∥∥∥∥∥
2

0,[0,L]

∆t+
n−1∑
r=1

∥∥∥∥∥∂2X
(r)
h

∂q̄2

∥∥∥∥∥
2

0,[0,L]

∆t
)
.

Proof. We choose wh = v
(r+1)
h −ψ̂(r+1)

h in (3.43a), multiply both sides of the equation

by ∆t and sum over r ( r = 0 to r = n− 1, n ≤ N ). We thus obtain

n−1∑
r=0

(
(ρfD

+
∆tv

(r)
h ,v

(r+1)
h − ψ̂(r+1)

h )0,Ω + a(v
(r+1)
h ,v

(r+1)
h − ψ̂(r+1)

h )
)

∆t (3.54)

=
m−1∑
r=0

〈F(r)
h ,v

(r+1)
h − ψ̂(r+1)

h 〉h∆t.
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By summation by parts we get

n−1∑
r=0

(D+
∆tv

(r)
h ,v

(r+1)
h )0,Ω∆t =

1

2
(‖v(n)

h ‖2
0,Ω − ‖v(0)

h ‖2
0,Ω) (3.55a)

+
1

2
∆t

n−1∑
r=0

‖D+
∆tv

(r)
h ‖2

0,Ω∆t,

n−1∑
r=0

(D+
∆tv

(r)
h , ψ̂

(r+1)

h )0,Ω∆t = (v
(n)
h , ψ̂

(n)

h )0,Ω − (v
(0)
h , ψ̂

(0)
)0,Ω (3.55b)

−
n−1∑
r=0

(v
(r)
h ,D+

∆tψ̂
(r)

h )0,Ω∆t.

Then using Young’s inequality with ε1 > 0, and the Poincaré-Friedrichs inequality

(3.29), the first term on the left-hand side in (3.54) can be bounded from below as

follows

n−1∑
r=0

(ρfD
+
∆tv

(r)
h ,v

(r+1)
h − ψ̂(r+1)

h )0,Ω∆t (3.56)

≥ ρf
4
‖v(n)

h ‖2
0,Ω − ρf ‖v(0)

h ‖2
0,Ω − ρf ‖ψ̂

(n)

h ‖2
0,Ω −

ρf
2
‖ψ̂(0)

h ‖2
0,Ω

− ε1ρf

n−1∑
r=0

‖v(r)
h ‖2

0,Ω∆t− ρf
4ε1

n−1∑
r=0

‖D+
∆tψ̂

(r)

h ‖2
0,Ω∆t

≥ ρf
4
‖v(n)

h ‖2
0,Ω − ρf ‖v(0)

h ‖2
0,Ω − ρf ‖ψ̂

(n)

h ‖2
0,Ω −

ρf
2
‖ψ̂(0)

h ‖2
0,Ω −

ε1ρfC
2
Ω

( n−1∑
r=0

‖∇v
(r)
h ‖2

0,Ω∆t+
n−1∑
r=0

‖v(r)
h ‖2

0,Γ∆t
)
− ρf

4ε1

n−1∑
r=0

‖D+
∆tψ̂

(r)

h ‖2
0,Ω∆t.
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For the second term on the left-hand side in (3.54), as in the proof of Theorem 3.1.2,

we deduce the following lower bound.

n−1∑
r=0

a(v
(r+1)
h ,v

(r+1)
h − ψ̂(r+1)

h ) ∆t (3.57)

≥ η
n−1∑
r=0

‖∇v
(r+1)
h (·, τ)‖2

0,Ω ∆t− η
n−1∑
r=0

‖∇v
(r+1)
h ‖0,Ω‖∇ψ̂

(r+1)

h ‖0,Ω ∆t

− ρf
n−1∑
r=0

2∑
i,j=1

‖v(r+1)
h,j ‖0,Ω ‖

∂v
(r+1)
h,i

∂xj
‖0,Ω ‖ψ̂

(r+1)

h,i ‖0,Ω dτ

≥
(η

2
− ρf
√

2C2
Ω max

1≤r≤n
g1(tr)

) n−1∑
r=0

‖∇v
r+1)
h ‖2

0,Ω ∆t

− ρf
√

2

2
C2

Ω max
1≤r≤n

g1(tr)
n−1∑
r=0

‖v(r+1)
h ‖2

0,Γ ∆t− η

2

n−1∑
r=0

g1(tr)
2 ∆t.

Observing (3.41) and (3.45), for the right-hand side in (3.54) we obtain

n−1∑
r=0

〈f (r)
h ,v

(r+1)
h − ψ̂(r+1)

h 〉h∆t = (3.58)

− κe
n−1∑
r=0

L̂

0

∂X
(r)
h

∂q̄
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t+ κb

n−1∑
r=0

M∑
`=1

q̄`ˆ

q̄`−1

∂3X
(r)
h

∂q̄3
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t

+ κe

n−1∑
r=0

L̂

0

∂X
(r)
h

∂q̄
·D1ψ̂

(r+1)

h

∂X
(r)
h

∂q̄
dq̄∆t+ κb

n−1∑
r=0

L̂

0

∂2X
(r)
h

∂q̄2
·D1ψ̂

(r+1)

h

∂2X
(r)
h

∂q̄2
dq̄∆t

+ κb

n−1∑
r=0

L̂

0

∂2X
(r)
h

∂q̄2
·D2ψ̂

(r+1)

h

(∂X
(r)
h

∂q̄
,
∂X

(r)
h

∂q̄

)
dq̄∆t.
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Summation by parts yields

− κe
n−1∑
r=0

L̂

0

∂X
(r)
h

∂q̄
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t = (3.59)

+ κe

n−1∑
r=0

L̂

0

D+
∆t

∂X
(r)
h

∂q̄
· ∂X

(r+1)
h

∂q̄
dq̄∆t+ κe

( L̂

0

∣∣∣∣∣∂X
(0)
h

∂q̄

∣∣∣∣∣
2

dq̄ −
L̂

0

∣∣∣∣∣∂X
(n)
h

∂q̄

∣∣∣∣∣
2

dq̄
)
.

For the first term on the right-hand side in (3.59) we have

κe

n−1∑
r=0

L̂

0

D+
∆t

∂X
(r)
h

∂q̄
· ∂X

(r+1)
h

∂q̄
dq̄∆t = (3.60)

κe

n−1∑
r=0

L̂

0

∂X
(r)
h

∂q̄
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t+ κe∆t

n−1∑
r=0

L̂

0

∣∣∣∣∣D+
∆t

∂X
(r)
h

∂q̄

∣∣∣∣∣
2

dq̄∆t.

Using (3.45),(3.47), and (3.49) , for the last term on the right-hand side in (3.60) we

get

L̂

0

∣∣∣∣∣D+
∆t

∂X
(r)
h

∂q̄

∣∣∣∣∣
2

dq̄ =

L̂

0

| ∂
∂q̄

(v
(r+1)
h (X

(r)
h ))|2 dq̄ (3.61)

≤
L̂

0

|∇v
(r+1)
h (X

(r)
h )|2

∣∣∣∣∣∂X
(r)
h

∂q̄

∣∣∣∣∣
∣∣∣∣∣∂X

(r)
h

∂q̄

∣∣∣∣∣ dq̄
≤ Λ1‖∇v

(r+1)
h ‖2

0,∂Bh,tr
≤ CcellΛ1h

−1‖∇v
(r+1)
h ‖2

0,Ω.

Combining (3.59),(3.60) and (3.61) results in

− κe
n−1∑
r=0

L̂

0

∂X
(r)
h

∂q̄
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t ≤ (3.62)

κe
2

(∥∥∥∥∥∂X
(0)
h

∂q̄

∥∥∥∥∥
2

[0,L]

−
∥∥∥∥∥∂X

(n)
h

∂q̄

∥∥∥∥∥
2

[0,L]

)
+
κe
2
CcellΛ1h

−1∆t
r−1∑
r=0

‖∇v
(r+1)
h ‖2

0,Ω∆t.
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Similarly we obtain

κb

n−1∑
r=0

M∑
`=1

q̄`ˆ

q̄`−1

∂3X
(r)
h

∂q̄3
·D+

∆t

∂X
(r)
h

∂q̄
dq̄∆t ≤ (3.63)

κb
2

(∥∥∥∥∥∂2X
(0)
h

∂q̄2

∥∥∥∥∥
2

[0,L]

−
∥∥∥∥∥∂2X

(n)
h

∂q̄2

∥∥∥∥∥
2

[0,L]

)
+
κb
2
CcellΛ2h

−1∆t
n−1∑
r=0

‖∇v
(r+1)
h ‖2

0,Ω∆t.

Choosing ε1 := η/(4ρfC
2
Ω) in (3.56), observing (3.51), using (3.52) in (3.62),(3.63),

and estimating the remaining terms on the right-hand side in (3.58) from above as

in the proof of Theorem 3.1.2 we conclude the result.
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3.2 Numerical simulations

In this section, we report on the results of numerical simulations for the separation

of an RBC cell and melanoma cell in a channel using SAW manipulated fluid flow.

Following [20], we consider a separation channel

Ω = (0µm, 300µm)× (0µm, 220µm)

with three inflow boundaries

Γ
(1)
in = {0} × (30µm, 80µm),

Γ
(2)
in = {0} × (90µm, 130µm),

Γ
(3)
in = {0} × (150µm, 200µm),

two outflow boundaries

Γ(1)
out = {300} × (20µm, 100µm),

Γ(2)
out = {300} × (120µm, 200µm),

and a boundary

Γac = (135µm, 165µm)× {0},

where the SAWs enter the separation channel. The density ρf and the dynamic

viscosity η have been chosen as

ρf = 1.0 · 103kg/m3, η = 6.0 · 10−3Pa · s

both for the carrier fluid and the fluid enclosed by the membrane of the RBC and

the melanoma cell. We have considered an RBC of diameter 7.5µm, perimeter P =
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19.8µm and moduli [44]

κe = 6.0 · 10−6N/m, κb = 2.0 · 10−19Nm,

a0, a1 and a2 in (A.1) are taken to be 0.49, 1.17 and −0.75 respectively. The reduced

volume ratio Cr = 0.587.

The melanoma cell has been modeled as a sphere of diameter 16µm and moduli

[3]

κe = 2.8 · 10−6N/m, κb = 1.2 · 10−19Nm.

Scenario I: The first scenario represents an experimental set-up without SAW ac-

tuation (i.e., vac = 0 on Σac). An RBC enters the separation channel through the

inlet Γ
(2)
in and the inflow velocities v

(i)
in on Σ

(i)
in , 1 ≤ i ≤ 3, are chosen according to

v
(1)
in = (v

(1)
in,1, v

(1)
in,2)

T ,

v
(1)
in,1 = v̂

(1)
in m

(1)
in (x2)(x2 − 30)(80− x2) cos α,

v
(1)
in,2 = − v̂(3)

in m
(1)
in (x2)(x2 − 30)(80− x2) sin α,

v
(2)
in = (v

(2)
in,1, v

(2)
in,2)

T ,

v
(2)
in,1 = v̂

(2)
in m

(2)
in (x2)(x2 − 90)(130− x2),

v
(2)
in,2 = 0,

v
(3)
in = (v

(3)
in,1, v

(3)
in,2)

T ,

v
(3)
in,1 = v̂

(3)
in m

(3)
in (x2)(x2 − 150)(200− x2) cos α,

v
(3)
in,2 = − v̂(3)

in m
(3)
in (x2)(x2 − 150)(200− x2) sin α.
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Figure 3.4: Velocity field and motion of an RBC without SAW actuation: Initial
state after injection (left) and state shortly before the RBC leaves the separation
channel (right)

Here , b
(1)
1 = 30, b

(1)
2 = 80, b

(2)
1 = 100, b

(2)
2 = 130, b

(3)
1 = 150, b

(3)
2 = 200, and

m
(i)
in(x2), 1 ≤ i ≤ 3, are smooth cut-off functions satisfying m

(i)
in(x2) = 1 on [b

(i)
1 +

ε, b
(i)
1 + ε] and vanish at b

(i)
1 and b

(i)
2 . The inflow velocities v̂

(i)
in , 1 ≤ i ≤ 3, and the

angle α have been chosen by means of

v̂
(1)
in = 5.0 · 10−2 m/s, v̂

(1)
in = 1.0 · 10−2 m/s, v̂

(1)
in = 10.0 · 10−2 m/s, α = π/6.

As can be seen in Figure A.1, the RBC leaves the separation channel through the

outlet Γ
(1)
out.

We took mesh size h = 1/3 and time step ∆t = 1/400. Dofs: 48146 (velocity), 6097

(pressure), 54243 (overall). We started at t0=1/400 and stopped the simulation at

final time T = 2.5, shortly after the RBC left the channel. The computation time

for the semi implicit FE was 3 hours 51 minutes and 26 seconds.

Scenario II: The second scenario corresponds to a situation where a melanoma

cell enters the separation channel though the inlet Γ
(2)
in , the inflow velocities are
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chosen as in Scenario I, and SAWs are created by an IDT with operating frequency

f = 100.0 MHz that enter the channel through Γac. The impact of the SAWs on the

fluid flow is realized by an inflow velocity vac = (vac, 1, vac, 1) according to

vac, 1 = 0. vac, 2 = 2aπfmac(x1) cos(2πft) on Σac.

Here, a = 1.0 · 10−9m and mac(x1) is smooth cut-off function satisfyingmac(x1) = 1

on [a1/2− d1 + ε, a1/2 + d1 − ε] and vanish at b
(i)
1 .
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Figure 3.5: Velocity field and motion of a melanoma cell with SAW actuation: Initial
state after injection (left) and state shortly before the cell leaves the separation
channel (right)

Figure 3.5 displays the resulting velocity fields and the motion of the melanoma

cell. Due to the SAW actuation, the path of the melanoma cell is diverted such that

it leaves the separation channel through the outlet Γ
(2)
out.

The mesh size h is taken to be the same as in scenario I and ∆t = 1/40. We started

at t0 = 1/40 and stopped the simulation at final time T = 1.55, shortly after the

melanoma cell reaches the boundary. The computation time for the semi implicit

FE in this case was 12 minutes. We notice that the time step is bigger than in the
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case of scenario I. That is due to the CFL - condition, namely the dependence of the

time step on the size of the immersed body.

All computations have been performed under Linux featuring Intel(R)Core(TM) i3-

2100 CPU 3.10 GHz and 7.7 GB RAM.

56



CHAPTER 4

Surface Acoustic Wave-Actuated Enantiomer Separation

Chirality is formally defined as the geometric property of an object, e.g., a molecule,

of not being superimposable with its mirror image. Molecules that can be super-

imposed on their mirror images are achiral (not chiral). It is a property found

throughout biological systems, from the basic building blocks of life such as amino

acids, carbohydrates, and lipids to the layout of the human body. Chirality is often

illustrated with the idea of left- and right-handedness: a left hand and right hand

are mirror images of each other but are not superimposable. The two mirror im-

ages of a chiral molecule are termed enantiomers (or optical isomers). Enantiomers

typically occur as racemic compounds of left- and right-handed species which may
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have completely different properties. Therefore, in applications such as drug design

in pharmacology, enantiomer separation is an important issue.

NUMERICAL SIMULATION OF SURFACE ACOUSTIC WAVE
ACTUATED ENANTIOMER SEPARATION BY THE FINITE

ELEMENT IMMERSED BOUNDARY METHOD

R.H.W. HOPPE∗, C. LINSENMANN† , AND K. ZELEKE‡

Abstract. Enantiomers are chiral objects such as chemical molecules that can be distinguished
by their handedness. They typically occur as racemic compounds of left- and right-handed species
which may have completely different properties. Therefore, in applications such as drug design in
pharmacology, enantiomer separation is an important issue. Here, we present a new technology for
enantiomer separation by surface acoustic wave generated vorticity patterns consisting of pairwise
counter-rotating vortices in a carrier fluid. The enantiomers are injected onto the surface of the
fluid between two counter-rotating vortices such that right-handed (left-handed) enantiomers get
attracted by left-rotating (right-rotating) vortices. In particular, we are concerned with the numerical
simulation of this separation process by an application of the finite element immersed boundary
method which relies on the solution of a coupled system consisting of the incompressible Navier-
Stokes equations and the equations of motion of the immersed enantiomers described with respect
to an Eulerian and a Lagrangian coordinate system. For a model system of deformable, initially
L-shaped enantiomers the results of the numerical simulations reveal a perfect separation.

Key words. enantiomer separation, surface acoustic waves, finite element immersed boundary
method

AMS subject classifications. 65M60, 74L15, 76Z05, 92C10, 92C50

1. Introduction. A geometric object is said to be chiral, if it is not identical
to its mirror image, and achiral, otherwise. A chiral object and its mirror image are
called enantiomers (or optical isomers). Since the word chiral stems from the Greek
’χειρ’ which means ’hand’, one distinguishes enantiomers by their handedness (right-
resp. left-handedness, or R- resp. L-form, or (+)- resp. (−)-form).

Fig. 1.1. Left- and right-handed enantiomer
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Figure 4.1: Left- and right-handed enantiomer

A famous example is the thalidomide tragedy in 1950s and 60s in Germany.

Thalidomide was sold as the racemic mixture of enantiomers. (+)(R)- thalidomide

is a sedative, but (-)(S)-thalidomide is a teratogen (i.e., a drug which can harm a

fetus in the womb). (-)(S)-thalidomide inhibits new blood vessel growth. This is

detrimental to a fetus because new blood vessels provide a road map for the growth

of limbs and organs during the development of a fetus. Thus, (-)(S)-thalidomide is

the unwanted enantiomer and needs to be separated.

In this chapter, we are concerned with the separation of deformable vesicle-like

enantiomers by a specific flow pattern generated by surface acoustic waves (SAWs)

[29].

In particular, we consider an IDT (Figure 4.2) built into a circuit board on top

of which a frame of plexiglas (PMMA) is glued to form a miniature trough (cf.

Figure 4.3 (left)). Figure 4.3 (right) shows a schematic side view of the setup with

58



the IDT on the bottom of the trough, a reservoir of water on top, and a particle

floating on the surface. Applying an alternating frequency then drives the streaming

and generates the scenario sketched in Figure 4.4.

IDT

propagating SAWs

Figure 4.2: Left: Interdigital tranducer (IDT) for generation of SAWs

circuit board

PMMA frame IDT

water IDT

particle

acoustic streamingsaw jets

Figure 4.3: Left: Photograph of the experimental setup for the investigation of the
behavior of chiral objects in quadripolar microflows. Right: Schematic side view of
the experimental setup.

Almost flat L-shaped hydrophobic enantiomers are injected onto the surface of

the fluid between two counter-rotating vortices. The result is that right-handed

(left-handed) enantiomers get trapped by left-rotating (right-rotating) vortices in

the sense that they stably rotate around the center of the vortex.

In section 4.1, we present a mathematical model for the separation of deformable

vesicle-like enantiomers with SAW-generated vortices. Section 4.3 is devoted to the

results of numerical simulations.
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4.1. MATHEMATICAL MODEL

Figure 4.4: Schematic top view of the experimental setup

4.1 Mathematical model

For the modeling and numerical simulation of the surface acoustic wave actuated

enantiomer separation we use the Finite Element-Immersed Boundary Method (FE-

IB) discussed in the previous chapters.

4.1.1 Generation of the vorticity patterns by SAWs

The SAWs are generated by an IDT as in subsection 3.1.1 of chapter 2.3. We assume

a container filled with fluid is placed on top a piezoelectric material with density ρp

and spatial domain Ω1 with boundary Γ1 = ∂Ω1. Further, we suppose that the fluid

in the container occupies a domain Ω2 := (0, L)2 × (0, H), H, L > 0, with boundary

Γ2 := Γb∪Γl ∪Γs, where Γb := (0, L)× (0, L)×{0}, Γs := (0, L)× (0, L)×{H}, and

Γl := Γ2 \ (Γb ∪ Γs). The impact of the SAWs on the fluid flow is realized through a

boundary condition on ΓSAW := [L/2− a, L/2 + a]2 × {0}, a > 0.
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4.1. MATHEMATICAL MODEL

 H
 

L

   

   

L    

Figure 4.5: Fluid container

Denoting by ρf , η, ξ the density, the standard and the bulk viscosity of the fluid

and by v, p the velocity and the pressure, the fluid flow is described by the compress-

ible Navier-Stokes equations

ρf
(∂v

∂t
+ v · ∇v

)
= ∇ · σ in Q2 := Ω2 × (0, T ), (4.1a)

∂ρf
∂t

+∇ · (ρfv) = 0 in Q2, (4.1b)

v(·, t) =
∂u

∂t
(·, t) on ΓSAW , t ∈ (0, T ), (4.1c)

v(·, t) = 0 on (Γb \ ΓSAW ) ∪ Γl , t ∈ (0, T ), (4.1d)

σn = 0 on Γs , t ∈ (0, T ) , (4.1e)

v(·, 0) = 0, p(·, 0) = 0 in Ω2, (4.1f)

where the constitutive equation for the stress tensor σ = (σij)
3
i,j=1 reads

σij := −p δij + 2ηεij(v) + δij(ξ − 2η/3)∇ · v. (4.1g)

Here, ρf is the density of the fluid, ε = (εij)
3
i,j=1, εij := (∂vi/∂xj +∂vj/∂xi)/2 stands

for the rate of deformation tensor, and u denotes the mechanical displacement of the
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4.1. MATHEMATICAL MODEL

IDT SAWs
Figure 4.6: Left: An IDT with a dye on top is placed on the bottom of a trough. The
generated SAWs couple into the fluid and form two jets. Right: Vorticity pattern
(acoustic streaming) in the upper right quadrant of the surface of the fluid.

wall of the container caused by the SAWs and obtained by solving the linearized

piezoelectric equations (3.4) in Ω1.

Remark 4.1.1. We have to consider the compressible Navier-Stokes equations, since

the propagation of acoustic waves in the fluid causes compressible effects.

The SAW-induced fluid flow exhibits two different time scales. When the SAWs

enter the fluid filled microchannels, sharp jets are created within nanoseconds (cf.

Figure 4.6 (left)). The SAWs propagate upwards and experience a significant damp-

ing which results in a vorticity flow pattern called acoustic streaming (cf. Figure 4.6

(right)) . This relaxation process happens on a time scale of milliseconds. The mul-

tiscale character can be appropriately taken care of by a homogenization approach.

According to [2], we introduce a scale parameter 0 < ε� 1 which represents the max-

imum deflection of the walls of the microchannels, and we consider the asymptotic
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4.1. MATHEMATICAL MODEL

expansions

ρf = ρf,0 + ερ′f + ε2ρ′′f +O(ε3),

v = v0 + εv′ + ε2v′′ +O(ε3),

p = p0 + εp′ + ε2p′′ +O(ε3).

We assume that v0 ≡ 0 and p0 ≡ 0, (i.e., fluid is at rest if no SAW actuation) and

take ρf,0 to be the density of the carrier fluid. Then, collecting all first order terms

and setting ρf,1 := ερ′f , v1 := εv′, p1 := εp′, a simple calculation reveals that the

triple (ρf,1,v1, p1) satisfies the following initial-boundary value problem for a linear

system a time-periodic boundary condition on ΓSAW :

ρf,0
∂v1

∂t
−∇ · σ1 = 0 in Ω2 × (0, T1], (4.2a)

∂ρf,1
∂t

+ ρf,0∇ · v1 = 0 in Ω2 × (0, T1], (4.2b)

v1 =
∂u

∂t
on ΓSAW × (0, T1], (4.2c)

σ1n = 0 on Γs × (0, T1], (4.2d)

v1(·, t) = 0 on (Γb \ ΓSAW ) ∪ Γl, t ∈ (0, T1], (4.2e)

v1(·, 0) = 0 , p1(·, 0) = 0, in Ω2, (4.2f)

with the constitutive equations

σ1 = ((σ1)ij), (σ1)ij := −p1δij + 2ηεij(v1) + δij(ξ − 2η/3)∇ · v1, (4.2g)

p1 = c2
0ρf,1. (4.2h)

Here, T1 := 2π/ω , where ω is the angular frequency of the time harmonic SAW

excitation, ∂u/∂t, and c0 stands for the small signal sound speed in the fluid. The
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4.1. MATHEMATICAL MODEL

system (4.2) describes the propagation of the SAW in the fluid filled container.

Next, collecting all terms of order O(ε2), neglecting time derivatives, and performing

the time-averaging

〈w〉 :=
1

T

ˆ t0+T1

t0

w dt,

we arrive at

−∇ · σ2 = 〈−ρf,1
∂v1

∂t
− ρf,0[∇v1]v1〉 in Ω2, (4.3a)

ρf,0∇ · v2 = 〈−∇ · (ρf,1v1)〉 in Ω2, (4.3b)

v2 = − 〈[∇v1]u〉 on ΓSAW , (4.3c)

v2 = 0 on (Γb \ ΓSAW ) ∪ Γl, (4.3d)

n · v2 = 0 onΓs, (4.3e)

n · σ2τ i = 0 on Γs, 1 ≤ i ≤ 2, (4.3f)

with

σ2 = ((σ2)ij), (σ2)ij := −p2δij + 2ηεij(v2) + δij(ξ − 2η/3)∇ · v2, (4.3g)

p2 = c2
0ρf,2. (4.3h)

Here, τ = (τ 1, τ 2)T is the unit tangential vector on Γs. We note that (4.3e),(4.3f)

are the free slip boundary conditions on the surface of the fluid. The compressible

Stokes system (4.3) is used as a model for the acoustic streaming flow pattern. For

the formulations of equations (4.2) and (4.3) and further discussion, we refer to

[2, 30].
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4.1. MATHEMATICAL MODEL

4.1.2 Fluid and immersed boundary equations

Since the enantiomers float on the surface Γs of the fluid, we are only interested

in the fluid flow and the motion of the enantiomers on Γs. The fluid flow on Γs

can be modeled by the incompressible Navier-Stokes equations with a source term

f = fq + fg, (where fq is a quadrupolar force density reflecting the SAW induced

vorticity pattern on Γs, and fg is a global force density, reflecting the impact of the

enantiomers on the flow):

ρf
∂v

∂t
+ ρf (v · ∇)v − η∆v +∇p = f in Γs × (0, T ), (4.4a)

∇ · v = 0 in Γs × (0, T ), (4.4b)

v = 0 on ∂Γs × (0, T ), (4.4c)

The quadrupolar force density is given according to

fq := −η∆v̂, v̂ = (v̂1, v̂2)T , v̂1 = ∂Ψ/∂x2, v̂2 = −∂Ψ/∂x1 (4.5)

where Ψ is a stream function described as

Ψ(x1, x2) = v0(f)
L
√

3

π

sin(πx1/L) sin(πx2/L)

(2− cos(πx1/L))(2− cos(πx2/L))
. (4.6)

Here, v0(f) > 0 stands for a parameter that depends on the operating frequency f

of the IDT and is fitted to available experimental data [10].

In the FE-IB, an immersed enantiomer is modeled as a body consisting of an

elastic membrane enclosing a fluid which here is assumed to have the same density

and viscosity as the carrier fluid in the container. Using notations from previous
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4.1. MATHEMATICAL MODEL
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Figure 4.7: Simulation of SAW-generated vortices

chapters, the immersed enantiomer is assumed to occupy a subdomain Bt ⊂ Γs, t ∈

[0, T ], with boundary ∂Bt which is a non-selfintersecting closed curve. We further

assume that the boundary ∂B0 of the initial configuration B0 has length ` := |∂B0|

and denote by q̄ ∈ [0, `] the Lagrangian coordinate labeling a material point on ∂B0.

We refer to X(q̄, t) = (X1(q̄, t), X2(q̄, t))T as the position vector at time t ∈ (0, T ]

which moves with the velocity v of the fluid such that the equation of motion takes

the form

dX

dt
(q̄, t) = v(X(q̄, t), t), q̄ ∈ [0, `], t ∈ [0, T ], (4.7a)

X(q̄, 0) = X0(q̄), q̄ ∈ [0, `], (4.7b)

where X0 stands for the initial position.

Denoting by F the local force density according to F(q̄, t) = −E ′(X(q̄, t)), where E ′

is the Gâteaux derivative of E, the global force density fg is given by

〈fg(t),w〉H−1,H1
0

=

`ˆ

0

F(q̄, t) ·w(X(q̄, t)) dq̄, w ∈ H1
0(Γs). (4.8)
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4.2. DISCRETIZATION

where F is described according to equation (3.13).

4.2 Discretization

The discretization of the variational equations associated to (2.1) is done as in chapter

2.3 subsection 3.1.4, where we discretized the incompressible Navier-Stokes equations

using the Taylor-Hood P2/P1 elements in space and the backward Euler scheme in

time. On the other hand, we have discretized the immersed body using cubic splines

in space and the forward Euler method in time.

Remark 4.2.1. In practice, for the formulation of the discrete bending energy Eb
h(t)

we use equation (3.42). In particular, for the L-shaped enantiomers, Eb
h(t) is given

according to

Eb
h(t) ≈

1

2

M∑
i=1

κpκb

(
tan(αi(t)− αd)/2)

2∆q̄

)2

∆q̄.

where αi is the angle between the vectors (Xi+1−Xi)(t) and (Xi−Xi−1)(t) and the

desired angle αd = π/2 for corner nodes and 0 otherwise. Further κp is a ‘penalty’

coefficient which is assumed to have a value greater than one at corner nodes to

guarantee less deformation.

4.3 Numerical simulations

We present the results of numerical simulations of the separation of deformable,

initially L-shaped enantiomers by SAW-generated vorticity patterns consisting of
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4.3. NUMERICAL SIMULATIONS

four pairwise counter-rotating vortices at the surface of the fluid. The material data

and the numerical data have been chosen as follows:

Material Data: As piezoelectric material we have used 128o rotated YX lithium

niobate (LiNbO3) with density ρp = 4.63 · 103 kg/m3 and elasticity tensor c, piezo-

electric tensor e, and dielectric tensor ε given in Table 4.1. The operating frequency

f of the IDT has been chosen according to f = 1.42 · 102 MHz. Based on exper-

imental measurements, we found out that v0(f) = 2.0.10−3m/s in (4.6) provides a

good approximation of the resulting vorticity pattern at the surface of the fluid.

c c11 c12 c13 c14 c33 c44 c66

[1010 N
m2 ] 20.3 5.3 7.5 0.9 24.5 6.0 7.5

e e15 = e24 e22 = −e21 e31 = e32 e33

[ C
m2 ] 3.7 2.5 0.1 1.3
ε ε11 = ε22 ε33

[10−12 F
m

] 749.0 253.2

Table 4.1: Material Moduli for 128o rotated YX LiNbO3 (note that c11 = c22, c13 =
c23, c14 = −c24 = c56, c44 = c55 and e22 = −e16)

The fluid with density ρf = 1.1 · 103 kg/m3 and viscosity η = 1.01 · 10−6 m2/s

occupied a domain Ω2 = (0, L)2 × (0, H) with L = 4.0.10−2 m and H = 5.0.10−3 m.

We considered L-shaped enantiomers of perimeter 5.0.10−4m. The material moduli

of the enantiomers are given by κe = 3.0.10−2 N/m and κb = 2.5.10−17 Nm. Further,

we took κp = 1.5 at the corner nodes.

Numerical Data: For the numerical solution of the coupled system by the Back-

ward Euler/Forward Euler FE-IB we have used a uniform simplicial triangulation of

Γs by right isosceles with h = L/35 and a uniform partition of [0, `] with ∆q = `/200.
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4.3. NUMERICAL SIMULATIONS

We have further used a uniform partition of the time interval with time step size

∆t = 1/9000 satisfying the CFL-condition (3.52).

Simulation Results: An initially L-shaped, left-handed enantiomer has been in-

jected onto the surface of the fluid approximately in the middle between two counter-

rotating vortices. The motion of the enantiomer is such that it gets attracted by the

right-rotating fluid vortex. After the completion of the first cycle around the center

of the vortex, new cycles begin with paths of the enantiomer similar to the first one

(cf. Figure 4.8 ). Figure 4.9 displays the paths of an initially L-shaped, right-handed

enantiomer which gets attracted by the left-rotating vortex. The separation does

not depend on the position of the enantiomers with respect to the velocity field (see

Figure 4.11 for a left-handed L-shaped enantiomer rotated by 90◦ compared to the

upright position). However, for a proper separation of the enantiomers it is impor-

tant that they are injected approximately in the middle between two counter-rotating

vortices.
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Figure 4.8: Velocity field and motion of a left-handed L-shaped enantiomer initially
placed in the middle between two counter-rotating vortices
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Figure 4.9: Velocity field and motion of a right-handed L-shaped enantiomer initially
placed in the middle between two counter-rotating vortices

71



4.3. NUMERICAL SIMULATIONS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t = 5.9995

Figure 4.10: Velocity field and motion of a left-handed L-shaped enantiomer rotated
by 90◦ with respect to the upright position
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Figure 4.11: Velocity field and motion of a right-handed L-shaped enantiomer rotated
by 30◦ with respect to the upright position
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In [10], the numerical simulation of the separation of rigid L-shaped enantiomers

has been considered based on the Fictitious Domain Lagrange Multiplier (FDLM)

method from [26].

Figure 4.12: Left: Attraction of a right-handed L-shaped enantiomer by the counter
clockwise rotating vortex in the lower left quadrant. Right: Attraction of a left-
handed L-shaped enantiomer by the clockwise rotating vortex in the upper left quad-
rant

Figure 4.12 displays the motion of a right-handed and a left-handed L-shaped enan-

tiomer initially placed slightly left of the middle between the two counter rotating

vortices in the lower quadrants of the surface of the fluid. As can be seen in Figure

4.12 (left), the right-handed enantiomer gets attracted by the counter clockwise ro-

tating vortex in the lower left quadrant. On the other hand, as shown in Figure 4.12

(right), the right-handed enantiomer follows a trajectory that leads to a path around

the center of the clockwise rotating vortex in the upper right quadrant. Likewise,

Figure 4.13 shows that a right-handed (left-handed) enantiomer initially placed a

little bit to the right of the middle between the two counter rotating vortices gets

attracted by the counter clockwise (clockwise) rotating vortex in the upper right

(lower right) quadrant.
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Figure 4.13: Left: Attraction of a right-handed L-shaped enantiomer by the counter
clockwise rotating vortex in the upper right quadrant. Right: Attraction of a left-
handed L-shaped enantiomer by the clockwise rotating vortex in the lower right
quadrant

When we compare the results of the application of the FE-IB method and the FDLM

method, we see that in both cases right-handed (left-handed) enantiomers get at-

tracted by left-rotating (right-rotating) vortices, i.e., in both cases we can achieve

perfect separation. In detail, however, there are slight differences in so far as in the

FE-IB-based simulation a right-handed (left-handed) L-shaped enantiomer follows a

path around the center of the left-rotating (right-rotating) vortex in the lower left

(lower right) quadrant of the surface of the fluid, whereas in the FDLM method

a right-handed (left-handed) enantiomer gets attracted by the left-rotating (right-

rotating) vortex in the upper right (upper left) quadrant when the initial position

is slightly right (left) of the middle of the two counter-rotating vortices in the lower

half of the surface of the fluid. This can be explained by the fact that in the FDLM

method the inertia of the enantiomers is taken into account while it is not in the

FE-IB method.
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CHAPTER 6

Conclusions and Future Work

Particle sorting in a sample is a growing need in many applications, including basic

cell biology, cancer research, clinical diagnostics, tissue engineering, and drug de-

sign in pharmacology. In the past, many techniques have been investigated for this

purpose. Most of the methodologies depend heavily on different properties of the

particles in the sample, such as density, size, charge, or polarization. Hence they

are restricted to specific applications. A new tehchnology is surface acoustic wave

actuated particle sorting, which doesn’t depend on such contrasts.

In this dissertation, we have provided mathematical models and numerical simula-

tions for surface acoustic wave-actuated cell sorting, as well as enantiomer separation
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using surface acoustic wave generated vorticity patterns. This is accomplished us-

ing the Finite Element Immersed Boundary (FE-IB) method. The FE-IB method

couples the Navier-Stokes equations for modeling the incompressible fluid flow and

elasticity equations for the description of the force exerted by the immersed body

on the fluid. The surface acoustic waves (SAWs) are generated using an interdigital

transducer (IDT), and their action on the fluid is realized through boundary con-

ditions of the fluid equations. Stability estimates for the problem under the given

boundary conditions has been established.

For SAW-actuated cell sorting, we considered a separation channel with three

inlets and two outlets placed on top of a plastic chip partially coated with a piezo-

electric substrate, with an IDT paced close to it. We have presented the numerical

simulation of the sorting of a red blood cell and a melanoma breast cancer. Our

simulations agree with experimentally obtained results [20].

On the other hand, for the separation of enantiomers, a quadrupolar force density

is used to simulate the SAW-generated vorticity patterns. The numerical simulations

show that these patterns reproduce the acoustic streaming generated by SAWs in

experiment [10]. We have tested the technique for the separation of deformable

vescile-like L-shaped enantiomers. Our results show a perfect separation when the

enantiomers are injected in the middle of two counter rotating vortices. We have

further compared our results with current simulations done for rigid L-shaped enan-

tiomers, using the fictitous domain technique, and found out that our results agree

[10].

In SAW-actuated particle sorting, the experimental design relies on a heuristic
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fine tuning of the aperture of the IDT (determining the direction of the SAW) and

its operating frequency on one hand and the inflow velocity at the inlets on the other

hand. Thus there is a need for a rigorous, mathematically founded design based on

the optimal control of the underlying state equations describing the generation of

acoustic streaming, and the motion of the cells or enantiomers in the SAW manip-

ulated carrier fluid. Therefore, subsequent research might investigate the optimal

control of these problems. All of our simulations are done in R2, hence a natural

continuation to this work is to consider the problems in R3.
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Computation of the shape of the red blood cell (RBC)

RBC assumes a biconcave disc shape which permits its passage through capillaries

and enables its surface to volume ratio to be significantly higher than that of a

sphere. The RBC membrane is modeled as a flexible two-dimensional thin structure

enclosing an incompressible fluid, using a Lagrangian description. The shape of a

RBC is determined by the elasticity properties of the membrane and its so called

reduced volume, which we explain as follows. Given a circle of radius r and volume

Vc. If we shrink the volume of the circle and keep it’s perimeter nearly constant, we

get a reduced volume denoted by Vr. We further denote by Cr := V/Vc the reduced

ratio.
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For the computation of the shape of the RBC we prescribe its initial or static

shape according to (cf. [35])

y = 1/2[1− x2]1/2(a0 + a1x
2 + a2x

4), x ∈ [−1, 1], (A.1)

where a0, a1 and a2 are constants obtained from experiments. Then we determine the

perimeter P of the given resting membrane to calculate the radius r of the circle with

the same perimeter. We define the desired volume of the RBC as Vd := CrVc = Crπr
2.

Then to the energy functional defined in (3.12), we add the term

Ep :=
κp
2

(V (X)− Vd
Vd

)
(A.2)

Ep is a penalty term that enforces the change in volume, V (X), of the membrane to

approach Vd. To achieve this, we set the force acting on X` at time t as

F` = −
(∂E(t)

∂X`

+
∂Ep(t)

∂X`

)
, 1 ≤ ` ≤M (A.3)

and solve the following equation of motion so that the total energy is minimum. (cf.

[48, 49])

m∂BẌ`(t) + µ∂BẊ`(t) = F`, 1 ≤ ` ≤M. (A.4)

wherem∂B and µ∂B denote the mass and viscosity of the RBC membrane respectively.

A second-order accurate scheme yields

X`(t+ ∆t) =
∆2F` + 2m∂BXi(t) + (µ∂B∆t/2−m∂B)X`(t−∆t)

m∂B + µ∂B∆t/2
(A.5)

1 ≤ ` ≤M , with Xi(0−∆t) := ∆X`(0) for solving the equation.
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Figure A.1: Shape of an RBC
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Notation and symbols

R Set of real numbers

SAW Surface acoustic wave

IDT Interdigital transducer

BioMEMS Biological micro-electro-mechanical system

FE-IB Finite element immersed boundary

Ω a bounded polygonal domain in R2

Γ = ∂Ω, boundary of Ω

L2(Ω) Scalar and vector-valued square Lebesgue integrable functions on Ω

L2(Ω) Vector-valued square Lebesgue integrable functions on Ω
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(·, ·)0,Ω Inner prodcut of the space L2(Ω) or L2(Ω)

‖ · ‖0,Ω Norm of the space L2(Ω) or L2(Ω)

L2
0(Ω) Scalar square labesgue interable of functions with zero integral mean

Hs(Ω) Sobolev spaces of scalar -valued functions

Hs(Ω) Sobolev spaces vector-valued functions

(·, ·)s,Ω Inner product of Hs(Ω) or Hs(Ω)

‖ · ‖s,Ω Norm of Hs(Ω) or Hs(Ω)

C∞0 (Ω)(D) The space of inifinitely differentiable scalar functions with compact support

C∞0 (Ω)(D) The space of inifinitely differentiable vector valued functions with compact

support

Hs
0,Γ′(Ω) Closure of C∞0,Γ′(Ω) in H1(Ω) for Γ′ ⊂ Γ

Hs
0,Γ′(Ω) Closure of C∞0,Γ′(Ω) in H1(Ω) for Γ′ ⊂ Γ

H−s(Ω) Dual space of Hs
0(Ω)

H−s(Ω) Dual spaces H−s(Ω)

V ∗ Dual spaces of V ⊂ H1(Ω)

〈·, ·〉V ∗,V Dual product

Hs−1/2(Γ′) Trace space of functions in Hs(Ω)

H
s−1/2
00 (Γ′) Spaces of functions whose extensions by zero to Γ \ Γ′ belong to Hs−1/2(Γ)

82



Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, New York, fourth edition, 2002.

[2] H. Antil, R. Glowinski, R. H. W. Hoppe, C. Linsenmann, T.-W. Pan, and
A. Wixforth. Modeling, simulation, and optimization of surface acoustic wave
driven microfluidic biochips. J. Comp. Math, 28:149–169, 2010.

[3] D. Bekah. Measurement of viscoelastic properties of treated
and untreated cancer cells using passive microrheology.
(http://digitalcommons.ryerson.cy/dissertations/563), 2010.

[4] K. Bester. Chiral analysis for environmental applications. Analytical and Bio-
analytical Chemistry, 376(3):302–304, 2003.

[5] R.P. Beyer. A computational model of the cochlea using the immersed boundary
method. Journal of Computational Physics, 98:145–162, 1992.

[6] D. Boffi, N. Cavallini, and L. Gastaldi. Finite element approach to immersed
boundary method with different fluid and solid densities. Math. Models and
Methods in App. Sciences, 21:2523–2550, 2011.

[7] D. Boffi and L. Gastaldi. A finite element approach for the immersed boundary
method. Computers and Structures, 81:491–501, 2003.

[8] D. Boffi, L. Gastaldi, and L. Heltai. Numerical stability of the finite element
immersed boundary method. Math. Mod. Meth. Appl. Sci., 17:1479–1505, 2007.

83



BIBLIOGRAPHY

[9] D. Boffi, L. Gastaldi, and L. Heltai. On the CFL condition for the finite element
immersed boundary method. Computers and Structures, 85:775–783, 2007.

[10] S. Burger, T. Franke, T. Fraunholz, R. Hoppe, M.A. Peter, and A. Wixforth.
Numerical simulation of surface acoustic wave actuated separation of rigid enan-
tiomers by the fictitious domain Lagrange multiplier method. submitted.

[11] K.A. Busch and M.A. Busch. Chiral Analysis. Elsevier, Amsterdam, 2006.

[12] J.L. Carey, J.P. McCoy, and D.F. Keren. Flow Cytometry in Clinical Diagnos-
tics. ASCP Press, Chicago, fourth edition, 2007.

[13] A.N. Collins, G. Sheldrake, and J. Crosby (eds.). Chirality in Industry: The
Commerical Manufacture and Applications of Optically Active Compounds. Wi-
ley, Chichester, 1995.

[14] A.N. Collins, G. Sheldrake, and J. Crosby (eds.). Chirality in Industry II: The
Commerical Manufacture and Applications of Optically Active Compounds. Wi-
ley, Chichester, 1997.

[15] E. Eisenstein. Cell sorting: divide and conquer. Nature, 441(7097):1179–1185,
2006.

[16] L.J. Fauci and C.S. Peskin. A computational model of aquatic animal locomo-
tion. Journal of Computational Physics, 77:85–108, 1988.

[17] A.L. Fogelson. A mathematical model and numerical method for studying
platelet adhesion and aggregation during blood clotting. Journal of Compu-
tational Physics, 56:111–134, 1984.

[18] A.L. Fogelson and C.S. Peskin. A fast numerical method for solving the three-
dimensional Stokes’ equations in the presence of suspended particles. Journal
of Computational Physics, 79:50–69, 1988.

[19] E. Francotte and W. Lindner (eds.). Chirality in Drug Research. Wiley-VCH,
Weinheim, 2006.

[20] T. Franke, S. Braunmüller, L. Schmid, A. Wixforth, and D.A. Weitz. Surface
acoustic wave actuated cell sorting (SAWACS). Lab on a chip, 6:789–94, 2010.

[21] T. Franke, R. Hoppe, C. Linsenmann, and K. Zeleke. Numerical simulation
of surface acoustic wave actuated cell sorting. To appear in Central European
Journal of Mathematics.

84



BIBLIOGRAPHY

[22] T. Franke, R.H. W. Hoppe, C. Linsenmann, L. Schmid, C. Willbold, and A. Wix-
forth. Numerical simulation of the motion of red blood cells and vesicles in
microfluidic flows. Comp. and Vis. in Sc., 14:167–180, 2011.

[23] G.P. Galdi. An introduction to the Navier-Stokes initial-boundary value prob-
lem. Advances in Mathematical Fluid Mechanics, 1:1–98, 2000.
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