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Abstract

This thesis introduces a new method for image reconstruction in collimated Com-

puted Tomography called Searchlight CT. The method significantly reduces the over-

all radiation exposure when primarily the reconstruction of a specified region of inter-

est is required. To achieve this, the Searchlight CT approach restricts the acquisition

essentially to the region of interest, yet the algorithm provides a stable and robust

reconstruction of the region of interest. The algorithm uses an iteration of the X-ray

Transform and its regularized inverse.

The performance of the algorithm is illustrated on simulated phantoms as well as

experimental data. It is tested initially on 2D data and studied in detail for the 3D

case including the adaptation to spiral tomography. Various methods of regulariza-

tion are explored with special a emphasis on wavelet-based non-linear regularization.

Finally the sensitivity of the algorithm to noise is studied. Numerical results for all

cases are provided.

The outline of an analytical proof for the convergence conditions is provided. The

convergence is validated by the computation of the spectral radius of the iteration

operator in various cases. A detailed analysis of the eigenvalues and eigenvectors

leads to an apriori condition on convergence.
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CHAPTER 1

Introduction

1.1 Background

Computed Tomography (CT) is a widely used medical imaging method which is em-

ployed to visualize interior organs within the human body and to obtain information

on their structural properties. Starting with its introduction in the 1970s, CT has

become an essential tool in medical diagnostic and preventive medicine, and its usage

has increased very rapidly over the last decade due to technological advances which

have made the procedure much more user-friendly to both patients and radiologists.

Over 72 million CT scans were performed in the USA in 2007 [84]. In particular,
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in recent years, the application of CT has been expanded rapidly due to the intro-

duction of new imaging technology such as multi-detector scanners for applications

such as angiography [36, 63]. However, the acceptance of new imaging instruments

has been slow in past due to concerns about radiation safety and the dose that is

needed [57, 39] to acquire CT images with high spatial resolution. Furthermore, in

preclinical studies where high-resolution CT technique could be routinely used for

longitudinal imaging of animal models, there is a great need for reducing radiation

dose during imaging studies of tumors. Nevertheless, by its nature, CT involves the

exposure of the patient to X-ray radiation and this is associated with health risks (in

the form of radiation-induced carcinogens) which are essentially proportional to the

levels of radiation exposure. Indeed, it is estimated that currently about 2% of can-

cers in the United States may be attributed to the radiation from CT examinations

[10].

The method presented in this thesis aims to reduce the overall radiation exposure

from CT when primarily the reconstruction of a specific region of interest within

the human body or within an organ is required. This is the typical situation, for

example, of patients undergoing regular CT screenings to monitor the progress of

a tumor (when longitudinal studies with frequent scanning are needed). It is clear

that, if the objective is to reconstruct only a “small” region of interest within a 3D

object, it is possible in principle to dramatically reduce the radiation dose during

a CT scan by using collimated X-ray projections, i.e., by limiting the irradiation

mainly to the X-ray passing through the region of interest.

Indeed, in this thesis we show that it is possible to reconstruct a specific region
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of interest in collimated three-dimensional X-ray tomography by employing a new

reconstruction algorithm which ensures numerically stable and accurate reconstruc-

tion. The new algorithm, called Searchlight Computed Tomography, is based on an

iterative procedure, which converges rapidly inside the region of interest and whose

performance was validated on both synthetic and experimental data. The develop-

ment of this new algorithm, which is able to maintain image quality while reducing

incident dose of radiation, could have significant impact on the field of bio-medical

imaging.

1.2 Framework

The objective of X-ray Tomography consists in converting a set of projection images

of an object, usually obtained by measuring the attenuation of a certain radiation

traveling along various directed paths, into a representation of the object structure.

The X-ray Transform is the mathematical model used to establish a formal relation-

ship between the observed data (i.e., the projection images) and the object under

investigation. Specifically (in 3D), for a compactly supported Lebesgue-integrable

function F on R3, its X-ray Transform XF is a function defined on the set of all

straight lines l in R3. That is, for w ∈ R3 and θ ∈ S2 a unit vector, the X-ray Trans-

form of F at (w, θ) is the line integral of F over the straight line l(w, θ), through w

with direction θ.For a formal mathematical definition refer to Section 5.1

The objective of recovering F from the values of XF is formally achieved by

inverting the X-ray Transform. The formula for the inversion of the X-ray Transform
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is the so-called filtered back-projection which is an application of the Fourier Slice

Theorem [3, 65]. Unfortunately, this is a classical ill-posed problem, in the sense

the reconstructing F from the values of its X-ray Transform is numerically unstable.

The mathematical term ‘well-posed problem’ originates from a definition given

by Jacques Hadamard [33]. He believed that mathematical models of physical phe-

nomena should have the properties that

1. A solution exists

2. The solution is unique

3. The solution depends continuously on the data, in some reasonable topology.

A mathematical problem or model not satisfying these conditions is said to be

‘ill-posed”.

This numerical instability becomes even more challenging if one desires to re-

cover F , or part of it, from an incomplete set of X-ray data [66]. Here, we are

interested in a special instance of reconstruction from incomplete data where the

goal is the reconstruction of a specific region of interest C of an unknown object F

using mainly the X-rays passing through C. As expected, direct reconstruction at-

tempts from collimated X-ray projections introduce many undesirable artifacts due

to the ill-posedness of the inversion problem. To overcome this, that some form of

regularized reconstruction is required. The regularized reconstruction method which

is introduced based on an iterative procedure which is able to provide accurate re-

constructions of the specific region of interest C mainly employing the collection of
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X-rays collimated on C.

1.3 Outline of Thesis

The thesis is divided into thirteen chapters including the Introduction.

Chapter 2 introduces the 2D problem. The basic definitions and results are given

for 2D. Data acquisition from parallel (cylindrical) beam and conical beam X-rays

are discussed. The completion of X-ray data from a minimal number of projections

is described. The concept of a collimated acquisition is defined and the causes for its

non locality are outlined. We describe the algorithm for reconstruction of a region

of interest from collimated projections.

In Chapter 3 we give an outline to the analytical proof for the convergence of

our algorithm. An apriori condition on the spectral radius which ascertains whether

convergence is possible or not. A detailed validation through eigenvalues and eigen-

vectors is carried out (in 2D) using the spectral radius. The effect of expanding

eigenvectors on the convergence is studied.

The Numerical results for the algorithm introduces in Chapter 2 are given in

Chapter 4. Uncollimated reconstruction from both parallel and cone beam acquisi-

tion are visualized along with the collimated reconstruction which is very inaccurate.

For our algorithm, the performance of the reconstruction is validated through var-

ious performance measures on Shepp Logan phantoms and comparisons with the

standard reconstruction are given.
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In Chapter 5 the basic theory is extended to 3D. The definitions and results are

restated in this case. First we state the method of reconstructing a 3D object from 2D

slices and why it is not suitable. The general data acquisition and inversion formula

are described. Collimation is introduced and a collimation condition is derived. The

algorithm is extended to 3D and its convergence analysis using the spectral radius

is given.

The implementation methods of 2D cannot be directly extended to 3D due to

computational efficiency issues. Hence faster techniques need to be introduced which

we develop in Chapter 6. Using the Fourier Slice Theorem, we introduce a new

technique of data acquisition which is computationally much faster. The inversion

formula is adapted to this type of data acquisition. We introduce the Spherical

acquisition model. The algorithm we described in the previous chapter is slightly

modified to suit the 3D case.

Chapter 7 presents a detailed numerical analysis for our algorithm’s recon-

struction in 3D. The algorithm is tested on Shepp Logan phantoms and randomly

generated phantoms. Also testing on real data of a mouse and a human jaw is carried

out. Detailed numerical results are provided for the same including the correlation

of errors with edges. Another condition for convergence of the algorithm is stated

using the concept of Relative Density.

The local averaging regularization technique used up to this point is elementary.

The performance of our algorithm can be significantly improved by using sophis-

ticated regularization techniques. Such regularization techniques are explored in

Chapter 8. There is a special emphasis on wavelet-based regularization methods.
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We review the basics of wavelets in one dimension. Non-linear regularization tech-

niques such as hard thresholding (truncation) and soft thresholding (shrinkage) are

studied in detail while linear regularization techniques are stated. The performances

of reconstruction using different regularization techniques in our algorithm are com-

pared. Finally the effect of regularization in the convergence analysis is detailed.

Chapter 9 deals with the performance of our algorithm in case the data is noisy.

The various types of noise which occur naturally in image proceesing are described.

We study the case of an acquisition device corrupted by additive Gaussian white

noise. The algorithm is tested in such a case and the results are compared to the

ones obtained previously. The algorithm is also tested after an initial denoising step.

The industrial approach of the proposed algorithm is described in Chapter 10.

In most cases of CT scans, a spiral acquisition is used, where the source is moving in

a spiral helix around the object. The geometry of spiral tomography is studied. The

first theoretically exact reconstruction formula (based on the filtered back-projection)

for 3D uncollimated data is given in [41, 43]. This formula is explained in detail.

Our algorithms is stated for spiral tomography and the convergence is again studied

through spectral radius.

In Chapter 11 the implementation for data acquisition and numerical perfor-

mance of our algorithm is given. The data acquisition technique suggested using the

Fourier Slice Theorem is adapted to the spiral setting. The algorithm is tested on

simulated phantoms and real data for which numerical results are provided. The

dependence of the algorithm on parameters is experimented to arrive at a set of

optimal parameters for best performance as well as realistic viability.
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Chapter 12 provides a brief historical overview of Computed Tomography. Since

the collimated 3D problem is relatively unexplored, the attempts on the local recon-

struction problem is mainly in 2D. In one case we compare our results with another

algorithm (in 2D). The historical attempts at uncollimated as well as collimated

reconstruction in 3D (including spiral tomography) are reviewed. In particular the

works of Tim Olson and Joe Destefano, Adel Faridani, Alexander Katsevich, David

Finch, and Ge Wang are discussed.

Chapter 13 states the advantages and shortcomings of the described algorithm.

It discusses the need to eliminate the shortcomings. Some possible changes to the

algorithm to make it medically viable are discussed. Finally the prospects of future

research in this area are discussed.

Note: Material in this thesis has appeared elsewhere. Parts of Sections 5.2-5.5

and Sections 7.1-7.4 have been published in [5].
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CHAPTER 2

Reconstruction of 2D Collimated Data

This is a simpler case of the actual problem we want to study in 3D. The goal of

computed tomography is to recover the density function F of whose supported will

be denoted by Ω. In this chapter we develop the theory and the algorithmics in 2D.

A 2D image can be considered as a function F : R2 → R with support Ω. Since

images are finite, we can assume F : I2 → R, where I is a closed and bounded

interval in R+. We first define the ‘tomographic’ acquisition of data.

9
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2.1 Data Acquisition in 2D

As mentioned in Chapter 1, the X-ray Transform is the mathematical model used

to establish a formal relationship between the observed data (i.e., the 1D projection

acquired by tomography) and the object under investigation.

Definition 2.1.1. Let F : I2 → R be a compactly supported, Lebesgue integrable

function, θ a unit vector in S1 and w ∈ R2. The X-ray Transform of F along the

line l(w, θ), passing through w and in the direction θ is,

XF (w, θ) =

� ∞
−∞

F (w + tθ)dt. (2.1)

The X-ray Transform F −→ XF is a map from the set V (R2) of all lines l(w, θ)

where w ∈ R2 and θ ∈ S1 into the set R.

Tomographic acquisition in 2 D can be modeled by the X-ray Transform. The

X-rays are emitted from a radiating source. The source rotates around the object Ω.

The X-rays are emitted by a radiating source. The X-rays pass through Ω where they

are attenuated and the resulting attenuation intensities are recorded by a detector,

(which is rotating along with the source) placed beyond the Ω. This data acquisition

can be formalized in two ways, namely the parallel beam acquisition model and

the cone beam acquisition model.

2.1.1 Parallel Beam Acquisition Model

In this type of acquisition, for each source position, the X-rays are parallel to each

other. The source is at an infinite distance from the object. The detectorD is

10
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Figure 2.1: Parallel Beam Acquisition Model for a projection angle θ

perpendicular to the X-rays. The detector and the source rotate around the object

Ω. Each source position is characterized by the angle θ, measured with respect to the

horizontal axis. This angle is called the projection angle. The size of the detector is

determined by the diameter of the object Ω, that is the maximum possible distance

between two points in the object. Usually the detector is slightly larger than the

diameter of Ω. This size remains constant for all source positions. The model for

parallel beam acquisition is shown in Figure 2.1.

Due to the symmetrical nature of parallel beams, we only need to vary θ between

0 and π. As mentioned above the detector has a fixed size, say L. A position on the

detector is denoted by x ∈ [0 L]. A line can thus be characterized by the pair (x, θ),

with θ the projection angle and x position on the detector.

11
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This acquisition model, though simple is not practical. We require a setup where

the source is at a finite distance from the object. So we introduce the cone beam

acquisition model.

2.1.2 Cone Beam Acquisition Model

The cone beam acquisition model is more standard in industrial applications. The

point source S, is placed at a finite distance d, from the the center O, of the object.

The source S, rotates around the object Ω in a circle of radius d. It is assumed that

d is large enough to contain the entire support Ω. From S, X-rays are emitted in all

directions. For each source position, the projection angle θ is the angle which the

ray OS passing through O makes with the horizontal. The size L of the detector

is determined as in the parallel beam case. The cone beam acquisition model is

shown in Figure 2.2. Though the detector might seem larger than the diameter of

Ω, through a simple one-one correspondence it is seen that only the diameter of the

object determines L.

Since conical beams are not symmetric, we will require acquisition data for all

θ ∈ [0 2π]. It will be shown in Section 2.2 the range on θ can be reduced by removing

redundancies. So a ray is characterized by (x, θ) where θ is the projection angle and

x ∈ [0 L]. The higher number of required projections is a drawback of the conical

acquisition model as it leads to higher exposure to radiation. Despite this, due to its

realistic feasibility, this model is widely used. Henceforth we will use this model for

several theoretical and numerical developments.

12
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Figure 2.2: Cone Beam Acquisition Model for a source position S with projection
angle θ at distance d from the center O, of the object

2.2 Acquisition from Minimal Projections

A major objective of tomographic acquisition is to reduce the patient’s exposure to

radiation, we recall that it is possible to carry out the cone beam data acquisition

without requiring all projections for 0 ≤ θ ≤ 2π. Unlike the parallel beam model,

the cone beam model is not symmetric, but as shown in Figure 2.3, redundancies do

exist. The integrals calculated by the rays SY and S̃Ỹ are the same.

The source is rotating in a circle with center O and radius d. The detectors are

placed at distance d′ from O. The arrows on the detector show its orientation. The

object, Ω is placed with its center at O. Let the initial position of the source be at S

with projection angle θ. Let a ray from S hit the detector at position Y intersecting

13
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Figure 2.3: Presence of redundancy in Cone Beam Acquisition Model when the
segment between source positions S and S̃ gets projected from both these positions

the circle of source rotation at S̃. The ray from S through O hits the detector at P

which is the position L
2

in the detector. The angle between the central ray and the

ray SY is given by,

tan γ =
L
2
− Y

d+ d′
.

Note that as the value of Y changes on the detector, the angle γ will change but

will remain within the limits [−α α] where α is given by tanα = τ
d

and τ is the

radius of the object.

Now let the source position move to S̃ and θ̃, Ỹ and P̃ be the corresponding

positions of θ, Y and P . The angle between the central ray and the ray S̃Ỹ is given

14
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by,

tan(−γ) =
L
2
− Ỹ

d+ d′
.

Equating the two expressions for γ we get,

L

2
− Y = Ỹ − L

2

⇒ Ỹ = L− Y. (2.2a)

Also by the properties of exterior angles,

θ̃ = π + θ − 2γ. (2.2b)

From (2.2a) and (2.2b) we get the Geometric Redundancy Formula,

XF (Ỹ , θ̃) = XF (L− Y, π + θ − 2γ). (2.3)

Now assume that the acquisition data is missing for θ ∈ [0 T ), and available for

θ ∈ [T 2π]. To be able to recover the full data from this, we need

0 ≤ θ ≤ T ⇒ T ≤ π + θ − 2γ ≤ 2π ∀γ ∈ [−α α],

which leads to the two conditions,

T ≤ π − 2α,

π + T + 2α ≤ 2π.

This is the same as the single condition,

T ≤ π − 2α. (2.4)
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Hence if (2.4) holds we can recover the whole acquisition data set when the data

is only known for θ ∈ [T 2π]. The maximum such T will correspond to the case with

minimal projections and hence minimal exposure.

2.3 Inversion of the X-ray Transform

The problem of interest is to recover F from its X-ray Transform XF . Before deriving

the inversion formula, we state the Fourier Slice Theorem in 2D [3, 65].

Theorem 2.3.1. (Fourier Slice Theorem) Let F (x, y) be a 2D function which is

Lebesgue integrable and has compact support. Let l be a line with direction θ. Denote

XF θ(w) = XF (w, θ). Then the 1D Fourier Transform of XF θ on a subspace (line),

normal to l equals the 2D Fourier Transform of the F on that subspace.

X̂F θ(ξ) = F̂ (ξ),�
h(θ)

XF (w, θ)e−i〈ξ.w〉dw = F̂ (ξ), (2.5)

where h(θ(ξ)) is the subspace with normal vector θ(ξ), and θ(ξ) is any vector orthog-

onal to ξ.

The classical formula for the inversion of the X-ray Transform is the so-called

filtered back-projection which is an application of the Fourier Slice Theorem,

obtained by applying the 2D inverse Fourier Transform to (2.5).
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F (x, y) = X−1(XF )(x, y)

=

�
R2

X̂F θ(ξ)ei((x,y)·ξ)dξ. (2.6)

The inversion formula works well when the acquisition data is complete. Notice

that this approach requires the complete knowledge the X-ray Transform of F . As

we will see below, this approach becomes unstable if only partial knowledge of the

X-ray Transform of F is available.

In general for any function Y , defined on the set of rays V (R2) we can define the

Inverse X-ray Transform, X−1 as,

X−1Y (x, y) =

�
R2

Ŷ θ(ξ)ei((x,y).ξ)dξ, (2.7)

where Y θ(ξ) = Y (θ, ξ).

2.4 Collimation

We are interested in reconstructing a specific region of interest ROI of an object, Ω

when only the values of the X-ray Transform associated with the lines of integration

passing trough the ROI are available. All other rays are blocked. This collimated

acquisition using the cone beam model is shown in Figure 2.4.

Definition 2.4.1. Let F : I2 → R be a compactly supported, Lebesgue integrable

function, θ a unit vector in S1 and w ∈ R2. Let C be a circular region within the

support Ω of F . The Collimated X-ray Transform of F is defined by,

17
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Figure 2.4: The Collimated Cone Beam Acquisition Model for a source position S
with projection angle θ at distance d from the center O, of the object and a circular
region of interest C

X̃(w, θ) =

 XF (w, θ) l(w, θ)
⋂
C 6= ∅

0 l(w, θ)
⋂
C = ∅

. (2.8)

The Region of Interest is chosen to be a circle C of center (p, q) and radius

R. Consider a line l(w, θ), which has equation y = tan θx + (w2 − w1 tan θ) with

w = (w1, w2). For C and l(w, θ) to intersect the following system of equations must

have a solution in x and y.

(x− p)2 + (y − q)2 = R2,

y = x tan θ + (w2 − w1 tan θ).

18
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Eliminating y we get a quadratic in x which has a solution if the following con-

dition holds:

(tan θ(w2 − w1 tan θ − q)− p)2 − sec2 θ(p2 + (w2 − w1 tan θ − q)2 −R2) ≥ 0. (2.9)

2.5 Non-locality of the Collimated X-ray Trans-

form

Inverting the X-ray Transform is an ill-posed problem, that is the attempt to invert

the collimated X-ray Transform through the classical filtered back-projection formula

(2.6) is highly inaccurate. We will outline some of the reasons for this in view of

[71, 76, 72, 70]. Recall the inversion formula (2.6),

F (x, y) =

�
R2

X̂F θ(ξ)ei((x,y)·ξ)dξ.

In terms of the polar coordinates t and θ, the integration can be stated as,

F (x, y) =

�
S1

�
R
X̂F θ(t)|t|eit((x,y)·θ)dtdθ. (2.10)

The filtered back-projection uses the inverse Fourier Transform which is infa-

mously non-local. Hence even a local reconstruction requires global properties of the

function. Also while computing, the reconstruction is taking place on a radial grid.

So to convert back to rectangular coordinates, interpolation or approximation is re-

quired. This can create inaccuracies the magnitude of which depend on the nature

of F .
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For the collimation, we introduce a window function which is usually the charac-

teristic function of an interval χ[−r r],

F (x, y) =

�
S1

�
R
X̂F θ(t)(χ[−r r]|t|)eit((x,y)·θ)dtdθ.

This can in fact be written as a convolution. Denoting the 1D inverse Fourier

Transform by F−1
1 we get,

F (x, y) =

�
S1

XF θ(t) ∗ F−1
1 (χ[−r r]|t|)dθ. (2.11)

The strict cutoffs at −r and r cause discontinuities and lead to inaccuracies at

the edge of the ROI. The absolute value function is not differentiable at the origin.

This will also cause problems in local properties, as seen below.

As the name suggests, the filtered back-projection is expressed in two steps. The

filtering,

Qθ(t) = |t|X̂F θ(t),

and the back-projection operator,

F (x, y) =

�
S1

Qθ〈v, θ〉dθ where v = (x, y).

The filtering can further be expressed in two steps [76], the differentiation with

respect to t and then the application of the Hilbert Transform H, which is given by

(H(g))(t) = − 1

π
P.V.

� ∞
−∞

g(u)

t− u
du. (2.12)
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So,

Qθ(t) = H
∂

∂t
XF θ(t). (2.13)

The Hilbert Transform is again not local. It induces a discontinuity of the Fourier

Transform at 0. The imposition of the discontinuity at the origin in the Fourier

domain will spread the support of the function in the time domain, that is, the Hilbert

Transform of a compactly supported function can never be compactly supported

[71, 76]. For this reason, a local basis will not remain local after filtering. Moreover,

this implies that all values of XF must be known in order to recover F at (x, y)

exactly from this formula.

2.6 Variants of Collimated X-ray Acquisition

Though such variants of collimation are defined rigorously in a mathematical sense,

they may not be feasible practically. Hence before using a complicated model for

collimation, care should be taken to make sure it is feasible to implement it by

realistic modification of CT scan machines.

The collimated acquisition we have described is complete (that is all rays outside

C are completely blocked) and hard (that is strict cutoffs are created at the edge

of C). This acquisition modality can be relaxed slightly to attempt a better recon-

struction. For a better understanding of various variants of collimation we introduce

the notion of Intensity function.

Definition 2.6.1. The Intensity function is a function from the set of all rays in R2
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2.6. VARIANTS OF COLLIMATED X-RAY ACQUISITION

to [0, 1]. For any ray l(w, θ) the Intensity function J , maps it to the fraction of

the intensity which is allowed to pass after collimation.

In general we express J as a function of the distance ρ = ρ(w, θ), of l(w, θ) from

(p, q) which is the center of C.The exact expression for ρ is

ρ(w, θ) =
|p tan θ − q + (w2 − w1 tan θ)|

sec θ
. (2.14)

For complete and hard collimation introduced above we have,

J(ρ) =

 1 ρ ≤ R

0 ρ > R
. (2.15)

In Partial Collimation the rays through C are retained fully, while for the other

rays a very small fraction ε is retained. Typically ε ≤ 0.1. For partial collimation,

J(ρ) =

 1 ρ ≤ R

ε ρ > R
. (2.16)

If we relax the condition on strict cutoffs which cause discontinuities and instead

taper the intensity factor rapidly down to 0 we get Soft or Tapered Collimation.

The tapering takes place within 10% of R. The simplest way to taper is through a

linear function.
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2.6. VARIANTS OF COLLIMATED X-RAY ACQUISITION

J(ρ) =


1 ρ ≤ R

11− 10ρ
R

R < ρ ≤ 1.1R

0 ρ > 1.1R

. (2.17)

This definition clearly implies that that any tapered collimation is always partial.

However in most cases we can slightly increase the size of C to make the collima-

tion complete and yet not compromise on the actual interest zone. An interesting

approach could be to combine the tapered and the partial collimation. This is the

Soft Partial Collimation.

J(ρ) =


1 ρ ≤ R

11− 10ε+ 10ρ(ε−1)
R

R < ρ ≤ 1.1R

ε ρ > 1.1R

. (2.18)

Tapering forces J to be continuous. However it may not be differentiable (as in the

example just given). We also can use a Gaussian Kernel to obtain a smooth function

J . To describe such a Smoothed Soft Partial Collimation simply, instead of ρ

we use the distance ρ̄, of a line from C. Of course for any line through C, ρ̄ = 0

while in other cases ρ̄ = ρ−R.

J(ρ̄) = e−
αρ̄2

R2 . (2.19)

The coefficient α > 0 controls the tapering rate. If we use the same tapering

region as before then α = 460.
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2.7 Regularization Operators

A major step in our reconstruction algorithm is the regularization of the estimated

values of F outside the region of interest C. Several variants of the regularization

operator σ can be employed, and will be discussed for the 3D case in Chapter 8.

Here we give the first basic example of a regularization operator. We partition the

complement of C into subsets {Qj}, having the same fixed area v, and perform local

averages. The regularization operator σ is given by:

σF (x, y) =

 F (x, y) (x, y) ∈ C

τ(F,Qj) (x, y) ∈ Qj

, (2.20)

where τ(F,Qj) =
1

v

�
Qj

F (x, y)dxdy.

For discretized coordinates averages are taken on 2 × 2 squares. Then the sets

Qj are just these 2 × 2 squares. Coordinate-wise this can be described by defining

for every coordinate (x, y) ∈ I2,

x̃ = x− 1 + (x mod 2),

ỹ = y − 1 + (y mod 2).

The function τ defined in (2.20) becomes,

τ(F (x, y)) =
1

4

1∑
i=0

1∑
j=0

F (x̃+ i, ỹ + j).
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2.8. A NEW RECONSTRUCTION ALGORITHM

2.8 A New Reconstruction Algorithm

We fix a Region of Interest C. In view of the definition (2.4.1), we denote the fully

retained set of rays in the collimated X-ray Transform as T and we let U be the

complement of T in the set of all rays V (R2).

T = {(w, θ) : l(w, θ)
⋂

C 6= ∅}.

Our CT Reconstruction Algorithm for collimated data is initialized by setting

G = X̃F = 1T .XF, (2.21)

where F is the unknown density function and the dot denotes point-wise multi-

plication, and by computing the initial approximation of F as f0 = X−1G. The

subsequent approximations fn, n ≥ 1, of F are obtained through the following itera-

tive procedure. Let σ be a fixed regularization operator. Here σ will be of the form

(2.20).

1. Compute σfn as in (2.20).

2. Compute Xσfn, the standard X-ray Transform of σfn, using (2.1). Since T

and U are complementary sets, we have,

Xσfn = 1T .Xσfn + 1U .Xσfn.

3. Replace 1T .Xσfn by the known collimated data G = 1T .XF in the preceding

formula to define Yn = G+ 1U .Xσfn.
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2.8. A NEW RECONSTRUCTION ALGORITHM

4. Compute fn+1 by applying the X-ray inversion formula (2.7) to Yn, so that

fn+1 = X−1Yn = X−1G+X−11U .Xσfn. (2.22)

Under mild assumptions, inside the region of interest C the sequence of functions

fn converges to the regularization σF of the unknown density function F . The

analysis of the convergence is outlined in the next chapter.
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CHAPTER 3

Convergence of Reconstruction Algorithm for Collimated Data

We will call the reconstruction algorithm we have just presented as Searchlight

CT. We have described the Searchlight CT algorithm for the 2D case. This chapter

provides a theoretical approach to analyze the convergence of Searchlight CT. We

will begin with an outline of the convergence argument in a general setting. The

same arguments hold true for any type of collimated acquisition. This is followed by

a numerical analysis of the convergence for the 2D case.

27



3.1. ANALYSIS OF CONVERGENCE

3.1 Analysis of Convergence

Let σ be a regularization operator such as the operator described in (2.20). In

addition we assume that the regularization operator σ is a projection, i.e. σ2 = σ.

To discuss the convergence of the algorithm, we need some technical assumptions on

the unknown density function F . Specifically, we assume that the support of F is

contained in a fixed closed ball B ⊂ R2 (or B ⊂ R3) for the 3D case), and that the

regularized density σF is sufficiently close to F .

The set of X-ray source positions P which could be a circle (or a sphere or

a circular helix in 3D) is taken to be disjoint from B and assumed to be large

enough to ensure the existence of a formal inverse X−1 which is correctly defined for

uncollimated data. In 3D this situation is satisfied, in particular, if P is a complete

sphere. With notations being exactly the same as Chapter 2, recall the iteration

given by (2.22).

fn+1 = X−1Yn = X−1G+X−11U .Xσfn.

The iterative algorithm generates fn+1 from fn by (2.22), starting from the given

collimated data G = 1T .XF . Since σ is idempotent, the functions hn = σfn satisfy

the iterative formula,

hn+1 = σX−1G+ σX−1(1U .Xhn). (3.1)

Denote by A the fixed function

A = σX−1G
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3.1. ANALYSIS OF CONVERGENCE

on R2, taking values in R+ and by M the linear operator which maps h to

Mh = σX−11U .Xσh.

Hence, we have

hn+1 = A+Mhn, (3.2a)

which implies

hn+1 − hn = M(hn − hn−1). (3.2b)

Assume that the density functions F lies in a vector spaceH such that the space σ(H)

of regularized densities can be endowed with a Banach norm for which the operatorM

becomes a strict contraction in the Banach space σ(H), then the iteration converges

to the fixed point.

The sequence of functions hn converges to a limit h in σ(H), and the limit h

satisfies

h = A+Mh. (3.3)

Since M is a strict contraction, this last equation has a unique solution in σ(H)

which is the fixed point of the iteration (3.2a).

We now prove that F̃ = σF verifies

A+MF̃ = σX−1(1T .XF̃ ) + σX−1(1U .XF̃ ) = σF̃ = F̃ , (3.4)

which, by the uniqueness of h, implies h = σF . The iteration always converges to

σF and hence for F ∈ σ(H), the iterative approximations hn converge to the true

density function F .
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3.2. NUMERICAL ANALYSIS OF CONTRACTION PROPERTIES IN 2D

However, in general, F 6∈ σ(H) and, in this situation, the iterative procedure

will only produce an approximation of the unknown F by σF . Since M is a strict

contraction, the operator Id−M has a bounded inverse and hence the solution h of

the equation h = A + Mh is continuous in A. Thus, if F and σ(F ) are sufficiently

close, then the limit h of hn, as n→∞, is as close as desired to the unknown function

F .

A necessary condition for convergence is that the norm of the function F outside

S is sufficiently small. This can be verified by considering a function which vanishes

inside C. Extensive numerical tests have indeed verified that the algorithm con-

verges under reasonable conditions on the space H and the regularization operator

σ, provided that the circular region of interest C is large enough, and provided that

the indicator function 1U is regularized in the space of rays by convolution with a

Gaussian kernel.

3.2 Numerical Analysis of Contraction Properties

in 2D

In this section, we will analyze the convergence properties of the algorithm in 2D

by calculating the spectral radius, ρ of the iteration matrix M = σX−11UXσ. To

make this numerically feasible, we use small data size. The procedure for this is

summarized below.

To keep the dimensions reasonable we will consider a small object Ω of dimension
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3.2. NUMERICAL ANALYSIS OF CONTRACTION PROPERTIES IN 2D

45 × 45 pixels. The discretization of the circle of positions of the rotating source is

kept at a relatively large 6°. So there are 60 source positions. The size of the detector

is 69 pixels. This makes the size of each projection image 69 × 60. The discretized

X-ray Transform can then be viewed as an image of size 69 × 60. Hence the X-ray

Transform X, can be interpreted as a linear operator X : R45×45 −→ R69×60 or

alternatively X : R2025 −→ R4140.

However, due to regularization by local averaging we know that outside the region

C, the densities will be constant in 2 × 2 boxes. This fact can be used to signifi-

cantly reduce the dimensions of the iteration matrix M . Of course this reduction

is dependent upon the size of C. To compute the matrix Q of X, we will consider

the following basis. For a point (i, j) inside C, we associate a matrix of size 45× 45

with 1 in the (i, j)-th coordinate and zeros in the rest. For a point (i, j) outside C,

it will be 1
4

at the four coordinates in the 2× 2 box where (i, j) is located and zero

otherwise. These canonical basis matrices are denoted by Ek. The size of this basis

is the reduced dimension and denoted by z.

XEk is the discretized X-ray Transform image of size 69 × 60. Listing this as a

vector we get a vector of length 4140 which is the k−th column of Q. Carrying this

out for each of the basis matrices we get Q of size z × 4140.

We can find the matrices for σ (dimension z × z) and X−1 (dimension 4140× z)

in a similar way. Note that 1U is an affine transformation which involves a projection

first which is followed by an addition of a vector. We just need to calculate the the

matrix of the projection (dimension 4140 × 4140) the projection in the calculation

of the spectral radius. Denote M as the matrix for σX−11UXσ. We calculate the
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3.2. NUMERICAL ANALYSIS OF CONTRACTION PROPERTIES IN 2D

eigenvalues of M and in turn the spectral radius.

Definition 3.2.1. Let A be a matrix in Rn×n. The spectral radius ρ(A) of A is

defined as,

max
i
|λi|, (3.5)

where λ1, . . . λn are eigenvalues of A.

The set B of eigenvectors of M , forms orthonormal basis of Rn where n is the

reduced dimension, z of R2025 as seen in Table 3.1. Hence the function F can be

expanded as a linear combination of the eigenvectors,

F =
n∑
i=1

γivi =
n∑
i=1

〈F, vi〉vi vi ∈ B. (3.6)

We also introduce the following terminology.

Definition 3.2.2. For a matrix E, let ς(E) be its spectrum. For any eigenvalue

λ ∈ ς(E) we say λ is a contracting eigenvalue if |λ| < 1 and the correspond-

ing eigenvector is called a contracting eigenvector. If |λ| ≥ 1 then λ is said

to be a expanding eigenvalue and the corresponding eigenvector a expanding

eigenvector.

The subspace spanned by all contracting eigenvectors of E is the contracting

subspace of E and the one spanned by the expanding eigenvectors is the expanding

subspace of E.

The spectral radius ρ(M) is tabulated in Table 3.1, where for radii of C between
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Table 3.1: Spectral radius ρ(M) for various ROI-radii

ROI-radius Reduced Dimension,z ρ(M)
4 pixels 552 14.55
7 pixels 652 9.26
8 pixels 700 7.81
9 pixels 756 4.06
10 pixels 812 0.82
13 pixels 1024 0.69
16 pixels 1300 0.63

4 and 16 pixels, we calculated the spectral radius, ρ(M) of M . The corresponding

plot is shown in Figure 3.1

Figure 3.1: Spectral radius, ρ(M) plotted as a function of ROI radius

The observations from Table 3.1 indicate that, for convergence to occur, the

radius of C has to be sufficiently large. A minimal radius of 10 pixels was required

for ρ(M) to be less than 1. For a case where convergence occurs (with a radius of 13

pixels), the histogram for the eigenvalues of M is shown in Figure 3.2 showing that

all the eigenvalues and hence ρ is less than 1.
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Figure 3.2: Histogram for the eigenvalues of M for a converging case when the radius
of C is 13 pixels

The regularization step used in the technique mentioned above is very important.

Without this regularization, the spectral radius ρ(N) of the operator N = X−11UX,

is significantly larger. Some examples are given in Table 3.2.

By contrast, for very small ROI-radius, some eigenvalues are greater than 1 which

Table 3.2: Comparison of Spectral radii ρ(M) and ρ(N) for various ROI-radii

ROI-radius 8 pixels 9 pixels 10 pixels 13 pixels 16 pixels
ρ(M) 7.81 4.06 0.82 0.69 0.63
ρ(N) 10.36 7.54 2.43 2.12 1.79
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lead to divergence. The histogram for the eigenvalues of M in a case when conver-

gence does not occur (with a radius of 8 pixels) is shown in Figure 3.3, showing that

several eigenvalues are greater than 1.

Figure 3.3: Histogram for the eigenvalues of M for a diverging case when the ROI
has a small radius of 8 pixels

Note that our numerical analysis of the spectral radius of M does not depend

on the unknown density function F but only on the size of data and the radius of

the ROI, C. If we change the object but keep the same C we will obtain the same

spectral radius for M . This can be stated as the following theorem:

Theorem 3.2.3. Let F : R2 −→ R be a Lebesgue integrable function with compact

support Ω. For a given 2D acquisition geometry let X be the X-ray Transform (on
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3.3. ANALYSIS OF THE EXPANDING EIGENVECTORS

a set of rays V ) and X−1 be its corresponding inverse. Let σ be a regularization

operator such that σ2 = σ. For a region of interest C ⊂ Ω let T ⊂ V be the set of

rays which pass through C and U = V \ T . Set G = 1T .XF and f0 = X−1G. Then

sequence of iterates given by,

fn+1 = A+Mfn,

with A = X−1G and M = σX−11UXσ, converges to σF within C if and only if the

spectral radius ρ(M) < 1.

However if we change the regularization operator σ we can expect to modify the

spectral radius associated to a given ROI C. This is studied in Section 8.5.

3.3 Analysis of the Expanding Eigenvectors

For the diverging cases of the algorithm it is of interest to analyze the expanding

eigenvectors (corresponding to the eigenvalues of M higher than 1). The concentra-

tion of these eigenvectors on certain zones of in the support of F show how these

eigenvectors affect the convergence. For this purpose we need to identify the ‘high in-

tensity coordinates’ of the eigenvector. Since we fail to get convergence inside C, we

expect these eigenvectors to be concentrated within C. That is done in the following

way.

For an eigenvector v, let vn be the vector where the n coordinates of v with

highest modulus are retained and the rest are set to zero. Let

εn = ‖v − vn‖. (3.7)
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Let m be the smallest integer such that εm
‖v‖ < 85%. Now the support of vm will iden-

tify the ‘high intensity zones’ of v. For the case shown in Figure 3.3, the eigenvector

corresponding to the highest eigenvalue was plotted and its high intensity zones were

located as just described. This is shown in Figure 3.4 confirming that a substantial

fraction of the high intensities are within C.

Figure 3.4: For the diverging case when radius of C is 8 pixels (a) Image of the
eigenvector corresponding to the highest eigenvalue and (b) The location of the
m = 76 coordinates of v with highest modulus

When the diameter of C is smaller than the critical diameter (of 10 pixels in this

case), the operator M is not a contraction but it might be still possible to get an

acceptable reconstruction of C. This can happen if the weights (absolute coefficients

in the expansion (3.6)) associated to the expanding eigenvectors are small enough.

For convenience assume that the first k eigenvectors are the expanding ones.

Definition 3.3.1. For any eigenvector vi the associated weight is |γi| = |〈F, vi〉|
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Table 3.3: Expansion weight, ω for various small radii of C

C-radius Reduced Dimension Expansion Weight, ωd
4 pixels 552 6.52%
5 pixels 576 5.36%
6 pixels 616 4.01%
7 pixels 652 3.13%
8 pixels 700 1.86%

where γi is as described in (3.6). The expansion weight ωd, is the fraction of the

total weights associated with expanding eigenvectors. That is,

ωd =

k∑
i=1

|〈F, vi〉|

n∑
i=1

|〈F, vi〉|
. (3.8)

Consequently the contraction weight ωc is given by ωc = 1− ωd.

To determine the effect of the expanding eigenvectors we calculate expansion

weights for various (small) radii of C between 4 and 8 pixels. This is tabulated in

Table 3.3.

Next we see the effect of these expanding eigenvectors on the objective function

F which we assume F to be already regularized. To achieve this, we project F

into the contracting subspace to obtain an approximation of F , that is, we set to

zero the coefficients (weights) corresponding to the expanding eigenvectors in (3.6),

obtaining:

PF =
n∑

i=m+1

γivi =
n∑

i=k+1

〈F, vi〉vi. (3.9)
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It is expected that in cases ωd is small enough, PF is sufficiently close to F .

It is observed that ωd increases with the decrease in radius of C. However when

regularizing by local averages, only for the largest radius of 8 pixels is the projection

PF close enough to P . For smaller radii PF is not an accurate approximation. Both

these cases of accurate and inaccurate projections are shown in Figure 3.5.

Figure 3.5: (a) The Shepp-Logan phantom of size 45 (b) The phantom regularized
outside the region C of radius 8 pixels (c) The projection of the regularized phantom
with radius of C 8 pixels on to the contracting subspace of MN(d) The projection of
the regularized phantom with radius of C 5 pixels on to the contracting subspace of
MN
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The approximation by projecting on to the contracting subspace can be improved

by using sophisticated regularization operators as will be seen in 8.5. In future work

we plan to study further this effect in order to extend the reconstruction algorithm

provided here.
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CHAPTER 4

Numerical Results for Reconstruction of 2D Collimated Data

In this chapter we present the numerical and visual results of our algorithm in 2D

and compare it to the standard reconstruction case in terms of various performance

measures. For simulations we need to discretize the settings. The 2D density function

F is now assumed to be defined on N ×N pixel grid I2 → [0 1], where I is a set of

discrete pixel coordinates of the form I = {1, 2, 3, . . . N}.

For our experiments we have used the 2D Shepp-Logan phantom with N =

257 as our simulated phantom. The phantom is shown in Figure 4.1.
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Figure 4.1: 2D Shepp-Logan phantom

To simulate the acquisition, we discretize the projection angle θ. We use a dis-

cretization, a = 0.4°.

4.1 Reconstruction for 2D Uncollimated Acquisi-

tion

For the parallel beam case, this discretization of θ leads to 450 source positions enu-

merated as Si. The size of the detector (determined by the diameter of the phantom)

is 369 pixels. When the acquisition (Figure 4.2) is uncollimated the inversion using

the standard reconstruction method (2.6) gives an accurate reconstruction as shown

in Figure 4.3.
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Figure 4.2: Uncollimated X-ray Transform of the Shepp-Logan phantom 4.1 using
the parallel beam acquisition model

Figure 4.3: Inversion from the uncollimated X-ray Transform 4.2 using the Stan-
dard Reconstruction
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In the cone beam case the only difference is that for a = 0.4°, we get 900 source

positions enumerated as Si. When the acquisition (Figure 4.4) is uncollimated, the

standard reconstruction again gives an accurate reconstruction (Figure 4.5).

Figure 4.4: Uncollimated X-ray Transform of the Shepp-Logan phantom 4.1 using
the cone beam acquisition model

4.2 Reconstruction from 2D Collimated Acquisi-

tion

Next we consider the collimated case (complete and hard). We choose a region C of

radius 50 pixels within the phantom, which is shown in Figure 4.6. Since only the

X-rays though C are allowed to pass through, the collimated X-ray Transform looks

truncated as in Figure 4.7.

As expected this gives an inaccurate reconstruction. The inaccuracies are espe-

cially pronounced at the edges. This correlation will be discussed in more detail in
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Figure 4.5: Inversion from the uncollimated X-ray Transform 4.4 using the Stan-
dard Reconstruction

Section 7.5. The Searchlight CT algorithm attempts a better reconstruction which

is evident in Figure 4.8(b). A comparison between the standard reconstruction, the

Searchlight CT reconstruction and the ground truth is shown in Figure 4.8.

As it is seen in Figure 4.8 The Searchlight CT algorithm performs a far better

reconstruction. The standard reconstruction produces high intensities at the edges

and several artifacts inside C. The reconstruction through Searchlight CT on the

other hand is comparable to the ground truth.

The iteration is very fast in 2D. Each iteration ran in less than a minute. We

required at most 15 iterations for convergence which ran in a total of 13 minutes.
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Figure 4.6: Collimated Acquisition: Position of the region of interest C of radius 50
pixels in the Shepp-Logan phantom

Figure 4.7: The collimated X-ray Transform corresponding to the region C of radius
50 pixels, 4.6 in the Shepp-Logan phantom 4.1
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Figure 4.8: A comparison of reconstruction methods for the region of interest C 4.6
(a) Standard Reconstruction through the filtered back-projection (b) Reconstruction
through Searchlight CT (c) Ground Truth

4.3 Numerical Quantification of Reconstruction Ac-

curacy

While visual inspection give a good qualitative comparison between various recon-

struction accuracies, they often fail to quantify the minute differences. We now

quantify reconstruction accuracy much more precisely.

Definition 4.3.1. Let F be the density function to reconstruct and Frec be a recon-

struction of F . The Relative Reconstruction Error, Rel is defined by,

Rel =
∑
v∈C

‖F (v)− Frec(v)‖
‖F (v)‖

, (4.1)

where C is a circular region of interest in the support of F .

We can use the L1 or the L2 norm. Table 4.1 provides the relative reconstruction
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Table 4.1: Performance of reconstruction methods for various ROI-radii

ROI-radius Rel (Standard) Rel (Searchlight CT) Exposure
50 11.2% 4.1% 27%
60 11.0% 3.8% 35%
70 10.8% 3.7% 46%

errors for various radii of C methods (in the mentioned region) using the L2−norm

when reconstructed through Searchlight CT. For soft partial collimation ε = 0.01.

Another important performance measure for a is the exposure of a patient to

radiation.

Definition 4.3.2. The radiation dose δ(v) received by a pixel v is defined as the

number of rays passing through v. Let c =
∑

v∈I2 δ(v) be the sum of received doses

over all pixels, in the case of collimated irradiation, and m be the maximal dose

which is received in the uncollimated case. We define the Radiation Exposure E,

as

E =
c

m
. (4.2)

The radiation exposure, E for various radii of C is also tabulated in Table 4.1.

Note that the Searchlight CT algorithm and standard reconstruction have the

same exposure levels however Searchlight CT has significantly higher accuracy. Re-

construction from uncollimated acquisition performs well but the exposure is 100%

which is much higher than Searchlight CT. Hence Searchlight CT saves on signifi-

cantly on exposure with minimal compromise in reconstruction accuracy. A more

detailed analysis of the numerical quantification will be presented for the 3D case in

Chapter 7.
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Figure 4.9: (a)The soft partial collimated X-ray Transform corresponding to the
region C (b) a zoomed view of the adjoining figure emphasizing the tapering

4.4 Soft Partial Collimation

Instead of using complete and hard collimation we can use one of the variants. For

example, in soft partial collimation, the tapering is evident in the acquisition (Figure

4.9). Here we have used a linear tapering and ε = 0.1 in (2.18).

The reconstruction which does not look significantly different from Figure 4.8(b)

is slightly better, as will be seen in the next section. This is shown is Figure 4.10.

For a soft partial collimation with ε = 0.01 and radius of C 50 pixels Relative

Reconstruction Error is 3.9% while exposure is 34%. Here the reconstruction error

is slightly lower but exposure is slightly higher as compared to complete and hard

collimation.
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Figure 4.10: Reconstruction through Searchlight CT from the soft partial collimated
X-ray Transform shown in Figure 4.9
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CHAPTER 5

Reconstruction of 3D Collimated Data with Spherical

Acquisition

In real life all objects and acquisition devices are three dimensional. Hence all the

theoretical and practical applications from the previous chapter need to be extended

to 3D to be applicable in industrial contexts. The next three chapters discuss the 3D

problem with spherical acquisition, that is when the source is assumed to rotate in

a spherical surface. In Chapter 10 it will be seen that our reconstruction algorithm

for collimated acquisition data works well even when the source positions are on a

spiral helix.
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5.1. 3D RECONSTRUCTION FROM 2D SLICES

Though most of the theory from circular acquisition in the 2D case can directly

be extended to spherical acquisition in 3D, the numerical extension is far more chal-

lenging due to the much higher computational burden. Direct implementation of the

theory would lead to unacceptably high CPU time which would be impractical in the

medical 3D imaging applications. Hence it is crucial to devise computationally viable

methods in the implementation. In the next chapter such methods will be presented

after the general theory in this chapter. We begin with the 3D reconstruction from

2D slices.

5.1 3D Reconstruction from 2D Slices

The simplest way to extend a 2D method to 3D is to use 2D slices in a 3D object.

The 3D object is divided into 2D slices. On each of the slices the 2D method is

applied individually. Though this seems a natural extension, several problems arise.

First, it is computationally very expensive to reconstruct every slice specially in the

case of our algorithm where acquisition and reconstruction are iterated. Hence we

have analyzed a scheme where one would reconstruct only a fraction of the slices and

interpolate between them. This is shown in Figure 5.1.

The interpolation could be carried out in several ways. It can be done in the X-ray

domain right after the data acquisition. Alternatively the known slices can first be

reconstructed and then interpolation be performed in the image domain. A slightly

more advanced technique could be to detect the edges (through any gradient-based

edge detector, for example [34]) and interpolate between edges by using the wavelet
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5.2. DATA ACQUISITION IN 3D

Figure 5.1: Reconstruction of 2D slices: The object is reconstructed on a few hori-
zontal slices as shown and interpolated in the space between them

transform [86].

However all these methods fail to retain major characteristics of the original

image. For example the piece-wise constant nature of the Shepp-Logan phantoms is

not retained anymore. In real data the inaccuracies are magnified due to the irregular

nature of the image.

After several numerical experiments with 3D phantom data, we have concluded

that 3D reconstruction from 2D slices is inaccurate and practically infeasible. We

omit the presentation of these negative results which has led us to develop a far more

efficient reconstruction technique.

5.2 Data Acquisition in 3D

We start by defining the X-ray Transform in 3D.

Definition 5.2.1. Let F : I3 → R be a compactly supported, Lebesgue integrable
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5.2. DATA ACQUISITION IN 3D

function, θ a unit vector in S2 and w ∈ R3. The X-ray Transform of F along the

line l(w, θ), passing through w and in the direction θ is,

XF (w, θ) =

� ∞
−∞

F (w + tθ)dt. (5.1)

The X-ray Transform can be viewed as a real valued function on the set V (R3)

of rays in R3 which associates to each ray l the line integral of F along the ray l.

Remark 5.2.2. It must be noted that the X-ray Transform is different from the

Radon Transform [65, 2]. In general in n dimensions the Radon Transform computes

integrals over (n − 1)-dimensional hyper-planes while the X-ray Transform always

computes integrals over lines. In 2D the two coincide. But is 3D the X-ray Transform

is a set of line integrals whereas the Radon Transform is a set of plane integrals.

There can be several ways to acquire data in 3D. We will study the situation the

source is rotating on a fixed sphere surrounding the object Ω ∈ R3. Note that Ω

is essentially identical to the support of the unknown density function F . This is

shown if Figure 5.2.

The direct calculation of the X-ray Transform from the definition is computation-

ally expensive. Hence we will introduce a method using the Fourier Slice theorem

the simulation of collimated acquisition of the X-ray Transform data. The Fourier

Slice Theorem for 3D functions is stated below.
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5.2. DATA ACQUISITION IN 3D

Figure 5.2: The Spherical Data Acquisition model for a source position S and detec-
tor D orthogonal to SO
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5.3. INVERSION OF THE 3D X-RAY TRANSFORM

Theorem 5.2.3. (Fourier Slice Theorem) Let F (x, y, z) be a real valued function

on R3 which is Lebesgue integrable and has compact support Ω. Let l be a ray with

direction θ. Let F̂ be the 3D Fourier Transform of F .

F̂ (ξ) =

�
R3

F (v)e−i〈ξ,v〉dv where v = (x, y, z). (5.2)

For all ξ ∈ R3 and all unit vectors θ ∈ S2 that are orthogonal to ξ we have,

�
h(θ)

XF (w, θ)e−i〈ξ.w〉dw = F̂ (ξ), (5.3)

where h(θ) is the subspace (plane) orthogonal to θ.

5.3 Inversion of the 3D X-ray Transform

The classical formula for the inversion of the X-ray Transform is the 3D filtered

back-projection which is an application of the Fourier Slice Theorem, obtained by

applying the 3D inverse Fourier Transform to (5.3). Let,

X̂F θ(ξ) =

�
h(θ)

XF (w, θ)e−i〈w,ξ〉dw, (5.4)

then,

F (x, y, z) =

�
R3

X̂F θ(ξ)ei((x,y,z)·ξ)dξ. (5.5)

In general for any function Y on the set of rays V (R3), the 3D Inverse X-ray

Transform can be defined similarly. Let,

Ŷ θ(ξ) =

�
h(θ)

Y (w, θ)e−i〈w,ξ〉dw, (5.6)
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5.4. COLLIMATED ACQUISITION

Figure 5.3: The collimated spherical acquisition model corresponding to a source
position S, a spherical region of interest C and the detector placed orthogonal to SO

then,

X−1Y (x, y, z) =

�
R3

Ŷ θ(ξ)ei((x,y,z)·ξ)dξ. (5.7)

5.4 Collimated Acquisition

To model the collimated acquisition we only allow the rays passing through a region

of interest C to pass through the object. The physical setup of this is shown in

Figure 5.3.

Formally the collimated X-ray Transform in 3D is defined exactly as in the 2D

case.

Definition 5.4.1. Let F be a real valued function in R3 which is compactly supported
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5.4. COLLIMATED ACQUISITION

and Lebesgue integrable, w ∈ R3 andθ ∈ S2. Let C be a spherical region within the

support of F . The Collimated X-ray Transform of F is defined as,

X̃(w, θ) =

 XF (w, θ) l(w, θ)
⋂
C 6= ∅

0 l(w, θ)
⋂
C = ∅

. (5.8)

We have chosen the region of interest C to be a sphere with center (p, q, r) and

radius R. For a ray l(w, θ) to intersect the region C the following system of equations

must have a solution in x, y and z.

(x− p)2 + (y − q)2 + (z − r)2 = R2,

x− w1

θ1

=
x− w2

θ2

=
x− w3

θ3

.

Eliminating x and y by,

x = w1 +
θ1

θ3

(z − w3),

y = w2 +
θ2

θ3

(z − w3),

we get, [
w1 +

θ1

θ3

(z − w3)− p
]2

+

[
w2 +

θ2

θ3

(z − w3)− q
]2

+ (z − r)2 = R2,

which simplifies to,[
θ2

1

θ2
3

+
θ2

2

θ2
3

+ 1
]
z2 +

[
−2

θ1

θ3
w3 + 2

θ1

θ3
(w1 − p)− 2

θ2

θ3
w3 + 2

θ2

θ3
(w2 − q)− 2r

]
z +[

(w1 − p)2 +
θ2

1

θ2
3

w2
3 − 2

θ1

θ3
w3(w1 − p) + (w2 − q)2 +

θ2
2

θ2
3

w2
3 − 2

θ2

θ3
w3(w2 − q) + r2 −R2

]
= 0.
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5.5. 3D RECONSTRUCTION ALGORITHM FOR COLLIMATED DATA

Hence the condition for the ray l(w, θ) to intersect C is Q(w, θ) ≥ 0 where Q has

the following expression,[
−2

θ1

θ3
w3 + 2

θ1

θ3
(w1 − p)− 2

θ2

θ3
w3 + 2

θ2

θ3
(w2 − q)− 2r

]2

− 4
[
θ2

1

θ2
3

+
θ2

2

θ2
3

+ 1
]

[
(w1 − p)2 +

θ2
1

θ2
3

w2
3 − 2

θ1

θ3
w3(w1 − p) + (w2 − q)2 +

θ2
2

θ2
3

w2
3

−2
θ2

θ3
w3(w2 − q) + r2 −R2

]
. (5.9)

All collimation variants mentioned for the 2D case such as tapered collimation or

smoothed collimation can be applied here.

As expected the standard reconstruction given by the inversion formula (5.7) for

collimated acquisition fails. It creates several artifacts and is inaccurate. Hence we

introduce the Searchlight CT reconstruction algorithm to overcome these problems.

5.5 3D Reconstruction Algorithm for Collimated

Data

For 3D collimated data the reconstruction algorithm is essentially the same as in the

2D case. As before we introduce the regularization operator in 3D. One of our basic

examples of regularization operator is the following. We partition the complement

of the region of interest C into subsets {Qj}, each one of fixed volume vol(Qj) = v,
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5.5. 3D RECONSTRUCTION ALGORITHM FOR COLLIMATED DATA

and perform local averages. The regularization operator σ is given by:

σF (x, y, z) =

 F (x, y, z) (x, y, z) ∈ C

τ(F,Qj) (x, y, z) ∈ Qj

, (5.10)

where τ(F,Qj) =
1

v

�
Qj

F (x, y, z)dxdydz.

Note that we require σ2 = σ. Several other regularization operators will be

discussed in Chapter 8.

In view of the definition (5.8), we denote the set of rays where the X-ray Transform

is uncensored as T ⊂ V (R3) and the complement of T as U = V (R3) \ T .

T = {(w, θ) : l(w, θ)
⋂

C 6= ∅}.

Our reconstruction is initialized by setting G = X̃F = 1T .XF , where F is the

unknown density function and the dot denotes point-wise multiplication, and by

computing the initial approximation of F as f0 = X−1G. Note that G is exactly the

collimated X-ray Transform of F . The subsequent approximations fn, n ≥ 1, of F

are obtained through the following iterative procedure.

1. Compute σfn as in (5.10).

2. Compute Xσfn, the standard X-ray Transform of σfn, using (5.1). By pro-

jecting the data into the complementary sets T and U , write

Xσfn = 1T .Xσfn + 1U .Xσfn.

3. Replace 1T .Xσfn by the known data G = 1T .XF in the preceding formula to

define Yn = G+ 1U .Xσfn.
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5.6. NUMERICAL ANALYSIS OF CONVERGENCE THROUGH SPECTRAL
RADIUS

4. Compute fn+1 by applying the X-ray inversion formula (5.7) to Yn. Hence,

fn+1 = X−1Yn = X−1[G+ 1U .Xσfn]. (5.11)

As mentioned under mild assumptions and if the ROI-radius is greater than

a critical radius, the sequence of functions fn converges to the unknown density

function σF inside the region of interest C. The same convergence argument as

Section 3.1 is valid here as it was independent of dimension and acquisition method.

5.6 Numerical Analysis of Convergence through

Spectral Radius

Recall that the convergence of the Searchlight CT iteration depended on the matrix

M of the operator σX−11UXσ.

A detailed numerical analysis for the eigenvalues and eigenvectors of the matrix

M was carried out in 2D (see Chapter 3) as in 3D the computations become very

expensive. However we can do a very simple test to ascertain that the Searchlight CT

algorithm will converge in 3D. Instead of computing all the eigenvalues of M , we just

need to compute its spectral radius, ρ(M). We study the 3D spherical acquisition

case here and and we will present a similar study for the collimated spiral acquisition

is Chapter 10.

We will consider a fairly small 3D object Ω included in a cubic box B of 323

voxels. The density function F : Ω −→ R has its support Ω included in the box
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RADIUS

B. This implies that our unknown data, namely F , can be viewed as a 3D image

and hence as a vector in R32768. We consider the standard basis in this space, i.e.

Eijk is the matrix with 1 at the (i, j, k)-th position and zeros everywhere else. We

consider regions of interest with radii between 3 and 9 voxels and report the spectral

radius for the operator M = σX−11UXσ in Table 5.1, with X being the 3D X-ray

Transform through spherical acquisition.

Table 5.1: Spectral Radius ρ(M) of M for ROI’s of various ROI-radii (with 3D
spherical acquisition)

ROI-radius 3 voxels 5 voxels 6 voxels 7 voxels 9 voxels 11 voxels
ρ(M) 10.41 9.22 4.53 0.89 0.72 0.65

We observe that for an ROI radius higher than 7 voxels convergence occurs. Also

notice that as for the 2D case this condition on spectral radius is independent of the

data and just depends on the data size, the ROI and the techniques of acquisition,

inversion and regularization. Hence the theorem 3.2.3 can be restated for the 3D

case as:

Theorem 5.6.1. Let F : R3 −→ R be a Lebesgue integrable function with compact

support Ω. For a given 3D acquisition geometry let X be the X-ray Transform (on

a set of rays V ) and X−1 be its corresponding inverse. Let σ be a regularization

operator such that σ2 = σ. For a region of interest C ⊂ Ω let T ⊂ V be the set of

rays which pass through C and U = V \ T . Set G = 1T .XF and f0 = X−1G. Then

sequence of iterates given by,

fn+1 = A+Mfn
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RADIUS

with A = X−1G and M = σX−11UXσ, converges to σF within C if and only if the

spectral radius ρ(M) < 1.

In this chapter we have used the data acquisition geometry to be spherical acqui-

sition and the set V of rays on which we require the X-ray Transform is described in

6.1.1.
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CHAPTER 6

Numerical Implementation for Reconstruction of 3D Collimated

Data with Spherical Acquisition

In 2D the numerical implementation in 2D reconstruction algorithm was simple, effi-

cient, and followed from definitions. A similar approach in 3D leads to unacceptable

computational time. Hence there is a need to devise fast implementation strategies

to speed up the acquisition and inversion process. Due to certain aspects of the 3D

case minor modifications are also required in the algorithm to avoid numerical errors

in the implementation. We will consider these numerical implementation aspects in

this chapter.
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6.1. IMPLEMENTATION OF SIMULATED DATA ACQUISITION IN 3D

6.1 Implementation of Simulated Data Acquisi-

tion in 3D

Simulating data acquisition to compute numerically the X-ray Transform requires

sophisticated implementation to reach acceptable CPU times. We introduce a sim-

ulated acquisition technique based on the Fourier Slice Theorem. This technique is

independent of the mode of acquisition.

6.1.1 Spherical Acquisition

To describe the full set of rays required for spherical acquisition let the source points

on a sphere of radius D be denoted by

W = {(D cosα sin β, D sinα, sin β, D cos β) : α ∈ [0, 2π), β ∈ [0, π)}. (6.1)

Note that α and β will be discretized. Recall that for a ray l(w, θ) the unit vector

specifies the direction. The range of the values for θ depend upon the support Ω of

the density function, F . The set of ray directions Θ is specified by,

Θ =

{
(x− w1, y − w2, z − w3)

‖(x− w1, y − w2, z − w3)‖
: (w1, w2, w3) ∈ W, (x, y, z) ∈ P

}
. (6.2)

So the set of rays required for spherical acquisition is,

{(w, θ) : w ∈ W, θ ∈ Θ}. (6.3)
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6.1. IMPLEMENTATION OF SIMULATED DATA ACQUISITION IN 3D

Note that W is discretized as well as Ω, which implies Θ is discretized. The X-ray

Transform along these rays an be calculated by as follows.

6.1.2 The Implementation

Recall that by the Fourier Slice Theorem (5.3), if F̂ is the 3D Fourier Transform of

F , we have

X̂F θ(ξ) = F̂ (ξ),

which gives,

XF (w, θ) =

�
h(θ)

F̂ (ξ)ei〈ξ,w〉dξ, (6.4)

where h(θ) is a plane orthogonal to θ.

Practically this requires first to compute the 3D Fourier Transform of F . For

every unit vector θ we need to select a plane h(θ) passing through the origin and

orthogonal to θ. We compute the 2D Inverse Fourier Transform on these planes. We

will describe this set of planes as follows.

Consider a unit vector Φ in the xz-plane, making an angle φ with the x-axis. The

angle φ defines a rotation around the y−axis. Another unit vector Ψ in the xy-plane,

at an angle of ψ with the x-axis defines a rotation about the z-axis. There exists a

unique plane containing the pair of unit vectors (Φ,Ψ). By varying the angles φ and

ψ we obtain a family of planes. In fact given any direction θ we can find a plane

characterized by (Φ,Ψ), which is perpendicular to it. Such a plane is denoted by

P (φ, ψ). Due to redundancy it is enough to consider φ ∈ [0, 2π] and ψ ∈ [0, π]. A

visual idea of these planes is given in Figure 6.1 and Figure 6.2.
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6.1. IMPLEMENTATION OF SIMULATED DATA ACQUISITION IN 3D

Figure 6.1: Special cases of the planes characterized by (φ, ψ) (a) Planes correspond-
ing to ψ = 0 (b) Planes corresponding to φ = 0

We have used a discretization of 2° for both φ and ψ. So the set Π of discretized

pairs (φ, ψ) is

Π = {(φi, ψj) : i = 2, 4, . . . 360 and j = 2, 4, . . . 180},

The steps for data acquisition by the Fourier Slice theorem using this enumeration

for the planes are listed below.

1. Compute F̂ , the 3D Fourier Transform of F .

2. Choose (φi, ψj) ∈ Π.

3. Denote (φi, ψj) by (φ, ψ).

4. Restrict F̂ to the plane P (φ, ψ). Call the restriction of F̂ to P (φ, ψ) as F̂φ,ψ.

5. Compute the 2D Inverse Fourier Transform of F̂φ,ψ and store the result.

6. Return to Step 2 until the whole of Π has been exhausted.

67



6.1. IMPLEMENTATION OF SIMULATED DATA ACQUISITION IN 3D

Figure 6.2: A portion of a general plane P (φ, ψ) characterized by the unit vectors Φ
and Ψ

Note that we have obtained XF in terms of φ, ψ and the planar coordinates of

each plane. We will reconvert to our original coordinates in terms of w and θ in the

next subsection.

6.1.3 Conversion of Data to Original Coordinates

Let the coordinate system on a plane P (φ, ψ) be given by two orthogonal vectors W1

and W2. Hence we have the X-ray Transform data in terms of W1, W2, φ and ψ.

We choose W1 to be along the direction on Φ and W2 in an orthogonal direction on

P (φ, ψ). We need to reorder this in terms of our original coordinates w and θ. Let

w = (w1, w2, w3) and θ = (θ1, θ2, θ3) with ‖θ‖2 = 1. The positions of the original and

the new coordinates are shown in Figure 6.3.

By definition Φ = (cosφ, 0, sinφ) and Ψ = (cosψ, sinψ, 0). The normal to the

plane P (φ, ψ) is then given by Φ×Ψ. Hence the unit normal is Φ×Ψ
‖Φ×Ψ‖ . We also know
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Figure 6.3: Position of the coordinate systems (w, θ) and (W1,W2, φ, ψ) used in
converting from one system to the other

that θ is the unit normal. Equating the two we get,

θ1 =
− sinφ sinψ√

sin2 φ+ cosφ sin2 ψ
, (6.5a)

θ2 =
cosψ sinφ√

sin2 φ+ cosφ sin2 ψ
, (6.5b)

θ3 =
cosφ sinψ√

sin2 φ+ cosφ sin2 ψ
. (6.5c)

Without losing generality we can assume the point w to lie on the plane P (φ, ψ)

orthogonal to θ. From the position of Φ we have,

w1 = W1 cosφ, (6.6a)

w3 = W1 sinφ. (6.6b)
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Finally since w lies on the plane P (φ, ψ), (w1, w2, w3) satisfy its equation θ1x +

θ2y + θ3z = 0. So,

w2 =
−θ1w1 − θ3w3

θ2

. (6.6c)

Hence we now have the data in terms of w and θ.

Remarks 6.1.1. It must be noted that:

1. For a particular type of acquisition we just need to identify the set of rays

required for reconstruction and then apply the method as done for spherical

acquisition in Section 6.1.1.

2. For the implementation of collimated acquisition, for any (W1,W2, φ, ψ) as

described in Section 6.1.2, compute the corresponding values of w and θ using

Section 6.1.3. Then check if Q(w, θ) ≥ 0 (Section 5.9). If so then X̃F (w, θ) =

XF (w, θ) otherwise set X̃F (w, θ) = 0.

6.2 Numerical Implementation for Inverse X-ray

Transform

Since we employed a specific technique to implement the X-ray Transform we need

a corresponding technique to implement X−1G for a function G on the set of rays

V (R3). The steps for inversion follow exactly by reversing the steps for the acquisi-

tion. The details are not provided but the steps are briefly summarized.
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Recall the set Π of discretized pairs (φ, ψ),

Π = {(φi, ψj) : i = 2, 4, . . . 360 and j = 2, 4, . . . 180}.

Also recall that during the implementation of the acquisition the data had been

stored in an enumeration of (φ, ψ) corresponding to the plane P (φ, ψ). The steps for

the inversion are as follows.

1. Choose (φi, ψj) ∈ Π. Denote (φi, ψj) by (φ, ψ).

2. Gφ,ψ is the acquired data corresponding to the plane P (φ, ψ).

3. Compute the 2D Fourier Transform Ĝφ,ψ of Gφ,ψ on the plane P (φ, ψ).

4. Ĝφ,ψ corresponds to the 3D Fourier Transform of X−1G restricted to the plane

P (φ, ψ).

5. Return to Step 1 until the whole of Π has been exhausted.

6. Let Ĥ be the collection of Ĝφ,ψ for all (φ, ψ) ∈ Π. Interpolate Ĥ on 3D rect-

angular coordinates by using the weighted average of the 4 nearest neighbors.

7. Compute the 3D Inverse Fourier Transform of Ĥ to obtain the reconstructed

function H.

The implementation of both the acquisition and the inversion are computationally

faster than direct techniques. For a cubical data of size 257 acquisition took about

6 minutes while inversion took about 3 minutes. The computations by applying the

direct formulae were also tested but computation time ran into several hours.
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6.3 Boundary Smoothing

There are certain aspects of our algorithm which we need to modify for the 3D

case. We have already described the alternative technique for the data acquisition

and inversion which were primarily adopted for computational feasibility. Here we

describe another such modification.

We are using the Fourier Transform in our algorithm for both acquisition and

inversion. The density function F is defined only on a compactly supported set Ω

but the calculation of the Fourier Transform for points within Ω will require values

of the function for points outside of Ω. In such cases during the implementation of

the Fourier Transform its periodic extension is used. This means that the function

is extended periodically outside its support. The periodic extension may cause jump

discontinuities.

The effect of these discontinuities is more pronounced in the 3D case than in

2D. Hence we smooth along the boundaries (faces, edges and corners) to reduce the

jump discontinuities. This step takes place right after every inversion (Step 4 of the

algorithm).

We describe this procedure in discretized coordinates. Assume that the support

Ω of F is included in a cubical voxel grid box B = {(x, y, z) : x, y, z = 1, 2, . . . L}.

The smoothing has to be carried out along faces, edges and corners of B. Due to

their relative large size the we do a multi-step smoothing on the faces while on the

edges and corners a single step is enough. We start by defining smoothing on the

faces. This needs to be done along all three coordinates. Consider the x−coordinate,
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i.e the faces of the box B which are parallel to the yz-coordinate plane. Define,

SxF (x, y, z) =



1
2
(F (L− 1, y, z) + F (1, y, z)) x = L

1
2
(F (L− 2, y, z) + F (L, y, z)) x = L− 1

1
2
(F (L, y, z) + F (2, y, z)) x = 1

1
2
(F (L− 3, y, z) + F (L− 1, y, z)) x = L− 2

1
2
(F (1, y, z) + F (3, y, z)) x = 2

F (x, y, z) otherwise

(6.7a)

Note that the operations must be carried out in the given order. Similarly we can

define Sy and Sz for smoothing along the other faces. Hence the resultant operator

for smoothing along the faces is Sfac = SzSySx. Next we need to smooth along the

edges. Let K = {1, L}2. Define,

SxyF (x, y, z) =


1
4

∑
(x,y)∈K

F (x, y, z) (x, y) ∈ K

F (x, y, z) (x, y) /∈ K
. (6.7b)

Similarly define Syz and Szx for smoothing along other edges. The resultant

operator for smoothing along edges is Sedg = SzxSyzSxy. Lastly we smooth at the

corners. Let J = {1, L}3. Define,

SxyzF (x, y, z) =


1
8

∑
(x,y,z)∈J

F (x, y, z) (x, y, z) ∈ J

F (x, y, z) (x, y, z) /∈ J
. (6.7c)
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Thus the operator to smooth along corners is Scor = Sxyz. Combining the above

steps we get the boundary smoothing operator SB.

SBF = (ScorSedgSfac)F

= (SxyzSzxSyzSxySzSySx)F. (6.7d)
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CHAPTER 7

Numerical Results for Reconstruction of 3D Collimated Data

with Spherical Acquisition

We present a detailed analysis for the performance of the our reconstruction al-

gorithm for 3D collimated data. Some of the performance measures mentioned in

Chapter 2 like Relative Reconstruction Error and Radiation Exposure. We

restate them here for the 3D case. The basic properties assumed for F remain the

same. F is a density function with compact support Ω and is Lebesgue integrable.

The density functions we use for our experiments are all bounded.

Definition 7.0.1. Let F be the density function in R3 to be reconstructed and Frec
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be a reconstruction of F . The Relative Reconstruction Error, Rel is defined by,

Rel =
∑
v∈C

‖F (v)− Frec(v)‖
‖F (v)‖

, (7.1)

where C is a spherical region of interest in the support Ω of F .

Definition 7.0.2. The radiation dose δ(v) received by a voxel v is defined as the

number of rays passing through v. Let c =
∑

v∈I3 δ(v) be the sum of received doses

over all pixels, in the case of collimated irradiation, and m be the maximal dose

which is received in the uncollimated case. We define the Radiation Exposure E,

as

E =
c

m
. (7.2)

Another measure for accuracy used in the industry is the Peak Signal to Noise

Ratio or PSNR.

Definition 7.0.3. Let F be a function and Frec be its reconstruction with Relative

Reconstruction Error Rel. Then the PSNR is defined as,

PSNR = 20 log10

(
max(F )

Rel

)
. (7.3)

The discretization of the coordinates is also the direct extension of the 2D case.

In particular, the regularization operator σ averages over 2× 2× 2 cubes which are

precisely the sets Qj described in (5.10). Coordnitewise this can be described by

defining for a coordinate (x, y, z) ∈ Qj ⊂ I3, the function τ (as in Section 5.10),

τ(F (x, y, z)) =
1

8

∑
(x̃,ỹ,z̃)∈Qj

F (x̃, ỹ, z̃).

76



7.1. RELATIVE DENSITY AND CONVERGENCE CRITERION

7.1 Relative Density and Convergence Criterion

In Chapter 3 we have outlined the condition on the ROI-radius which ensures con-

vergence of the Searchlight CT Algorithm in the region of interest C. We require

the norm of the density function outside C to be small enough. To get an accurate

numerical evaluation of this aspect we introduce the concept of Relative Density.

Definition 7.1.1. The Relative Density, D of a region C is defined as the ratio

between the sum of densities over voxels on C and the sum of densities over all

voxels, i.e.

D(C,F ) =

∑
v∈C

F (v)∑
v∈Ω

F (v)
. (7.4)

We will seek a critical threshold value α of D(C,F ) such that we have accurate

reconstruction for an ROI C if and only if D(C,F ) > α. α depends on the nature of

the unknown density function F . Naturally requiring D(C,F ) > α will be roughly

equivalent to require the radius of C to be larger than a fixed critical radius.

A few aspects of D(C,F ) must be studied in order to get a better idea about

the convergence condition. First for a spherical region C with fixed radius but

variable center the variation in D must be noted. Next with these different centers

the least value α for convergence must be studied and the radii at which D = α

is attained should be noted. These aspects will be considered for two examples of

density functions in 3D namely the Shepp Logan phantom and a biological data set

of mouse tissue.

In the next chapter we will study the critical density ratio α for the same region
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7.2. RECONSTRUCTION TESTS ON THE 3D SHEPP-LOGAN PHANTOM

Figure 7.1: The 3 middle slices of the 3D Shepp-Logan phantom

but for different regularization operators.

7.2 Reconstruction Tests on the 3D Shepp-Logan

Phantom

We start the numerical demonstrations with the 3D Shepp-Logan phantom whose

three middle slices are shown in Figure 7.1. The phantom is discretized on a cubic

voxel grid of size 2573.

We select multiple spherical regions of interest, C within this phantom and carry

out reconstruction tests on C. The intersection of C with three middle slices orthog-

onal to the coordinate axes is shown in Figure 7.2.

As expected the standard reconstruction on collimated data fails to be accurate

when applied. Several artifacts and false edges are created as seen in resulting

reconstruction as seen in Figure 7.3. When we apply the Searchlight CT Algorithm,
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7.2. RECONSTRUCTION TESTS ON THE 3D SHEPP-LOGAN PHANTOM

Figure 7.2: Position of the region C in the 3 middle slices of the Shepp-Logan
phantom with their magnified views given below

the results are far superior (Figure 7.4 ). A comparison of the two methods (for the

XZ middle slices) along with the ground truth is shown is Figure 7.5.

Though the difference in reconstruction quality is evident in the figures, we will

quantify the gains in reconstruction accuracy by the four performance characteristics

Rel, E, D, and PSNR. These were defined at the beginning of the chapter.

Table 7.1 lists the performance of the Searchlight CT algorithm in terms of these

reconstruction performance characteristics for multiple ROI radii between 45 and 90

voxels.

Numerical tests show that for accurate reconstruction, the relative densityD(C,F )

should be larger than D > 2.5%. This corresponds to a an ROI-radius of approxi-

mately 40 voxels below which reconstruction fails. To test the variability of D(C,F )
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7.2. RECONSTRUCTION TESTS ON THE 3D SHEPP-LOGAN PHANTOM

Figure 7.3: Collimated Reconstruction: The 3 middle slices of the Standard recon-
struction of the region C (using the filtered back-projection)

Figure 7.4: Collimated Reconstruction: The 3 middle slices of the reconstruction by
Searchlight CT of the region C

with the position of C in the phantom, we divided the phantom into 33 = 27 sub-

cubes and studied the 27 potential positions of C the ROI within each sub-cube.

Since the Shepp-Logan phantom is dense at the center and sparse away from it,

D(C,F ) is significantly higher near the center. This is shown in Figure 7.11. How-

ever this doesn’t affect the critical threshold for D(C,F ) for convergence. We still

require D(C,F ) > 2.5% though this critical threshold might be attained at varying

ROI-radii.
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7.2. RECONSTRUCTION TESTS ON THE 3D SHEPP-LOGAN PHANTOM

Figure 7.5: Comparison of Reconstruction methods for the region C in the Shepp-
Logan phantom with representative 2D slices shown: (a) Standard Reconstruction
(b) Reconstruction through Searchlight CT (c) Ground Truth

Table 7.1: Performance for various ROI-radii (Shepp-Logan phantom)

ROI-radius D(C,F ) E Rel PSNR
45 voxels 3.8 % 19 % 10.3 % 58.9 dB
60 voxels 8.5 % 31 % 8.6 % 62.2 dB
75 voxels 15.3 % 44 % 7.6 % 63.4 dB
90 voxels 23.8 % 57 % 7.2 % 64.0 dB

As the ROI-radius increases the radiation exposure, E increases,(Figure 7.6) and

relative reconstruction error decreases. The fact to be noted is that even as exposure

decreases from 57% to 19%, the Relative Reconstruction Error increases quite mod-

erately from 7.2% to 10.3%. This is of great importance in the medical industry. The

mutual dependence between Relative Reconstruction Error and Radiation Exposure

is seen in Figure 7.7.
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7.3. VALIDATION ON RANDOM PHANTOMS

Figure 7.6: Variation of exposure, E (for collimated data) with the radius of the
region of interest

7.3 Validation on Random Phantoms

We need to make sure that the convergence properties of our reconstruction algorithm

are not dependent on the specific phantom. Hence we create a “phantom generator”

to generate random spherical head phantoms of random sizes. The generation steps

are described briefly as follows.

1. Choose a size L. Create a null 3D phantom with zero densities.

2. Create an outer sphere S1 with highest density 1.0 inside, which is centered at

(L+1
2
, L+1

2
, L+1

2
) and has radius 0.45L.

3. Create an inner sphere S2 with low density 0.1 inside, which is centered at

(L+1
2
, L+1

2
, L+1

2
) and has radius 0.43L. Thus the difference S1 r S2 has the

highest density and represents the skull.
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7.3. VALIDATION ON RANDOM PHANTOMS

Figure 7.7: Relationship between exposure, E and Relative Reconstruction Error
Rel for a regions of interest with same center

4. Create a small sphere s1 inside S2 with random center and radius in the range

[0.1L, 0.2L]. This sphere should have low-medium density (in [0.2, 0.5]) inside.

5. Create another small sphere s2 inside S2 with the same specifications as s1 but

it should not intersect s1.

6. Create a tumor, T with high density 0.9 inside S2 with random center and

radius less than 0.1L.

7. The region of interest, C is centered at the tumor T , and has radius equal to

twice the tumor radius.

A typical cross sectional slice of such a randomly generated spherical head phan-

tom is shown in Figure 7.8.

The performance of the Searchlight CT Algorithm for such a random phantom

is tabulated in Table 7.2. The size of the phantom generated was 129 voxels. The
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7.4. TESTS ON REAL DATA

Figure 7.8: A Typical 2D slice in a random phantom created as described in Section
7.3

radius of the tumor was fixed at 11 voxels. Various cases for the position of the

tumor were studied over randomly generated phantoms and we the algorithm was

tested for a few radii of C between 20 and 30 voxels.

Table 7.2: Relative Reconstruction Error for various ROI-radii (Random phantom)

ROI-radius Case 1 Case 2 Case 3 Case 4
20 10.8% 10.5% 11.4% 11.2%
25 9.3% 9.2% 9.8% 9.7%
30 8.1% 8.0% 8.6% 8.4%

7.4 Tests on Real Data

The final validation of our reconstruction algorithm is demonstrated on real biological

data. Generally its more challenging to work with real data. Since we are studying

spherical acquisition which is not used in practice for medical CT acquisition, we
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7.4. TESTS ON REAL DATA

could not directly work data acquired by collimated X-ray Transform. We start

from 3D density data reconstructed classically from real uncollimated acquired data.

On these density functions we simulate collimated spherical acquisition and we then

apply our reconstruction algorithm.

The first data set we studied was reconstructed classically after the full body scan

of a mouse. Its size was 512× 768× 512. The middle slices of these mouse data are

shown in Figure 7.9.

Figure 7.9: 2D views of the middle slices for the full body scan of a mouse

To carry out our tests we extracted a sub-cube Ω of these data (near the brain).

The data size was 2573. A small region of interest C was chosen in Ω and reconstruc-

tion by standard method and Searchlight CT was carried out on C after simulation

of a collimated acquisition. A comparison of the two reconstruction techniques is

shown in Figure 7.10 for the XZ middle slice. A summary of performance for various

ROI-radii between 45 and 90 voxels is given in Table 7.3.

We noted that for accurate reconstruction one needs D(C,F ) > 2.8% which
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7.4. TESTS ON REAL DATA

Table 7.3: Performance for various ROI-radii (Mouse Data)

ROI-radius D E Rel PSNR
45 voxels 4.0 % 19 % 10.8 % 53.1 dB
60 voxels 9.9 % 31 % 8.8 % 58.2 dB
75 voxels 20.7 % 44 % 7.9 % 60.7 dB
90 voxels 29.8 % 57 % 7.5 % 61.9 dB

Figure 7.10: Comparison of Reconstruction methods for the region C in the mouse
tissue data with representative 2D slices shown: (a) Standard Reconstruction (b)
Reconstruction through Searchlight CT (c) Ground Truth

corresponded to a radius of about 40 voxels. At this radius the relative reconstruction

error was 12%. Once again we checked the variance of D with position in a similar

way to the Shepp-Logan phantom. Since these real data are more evenly distributed

than the artificial phantom studied before, not much variation was observed between

the values of D(C,F ) at different positions for a fixed radius of C. This is shown in

Figure 7.11 The critical threshold α of D(C,F ) for convergence was also found to be

approximately the same throughout the data.

From the important relationship between the Radiation Exposure, E and the

Relative Reconstruction Error, Rel we see that a large reduction in exposure leads
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7.4. TESTS ON REAL DATA

Figure 7.11: Variation of relative density with the position of the region C

to only a fairly small increase in relative reconstruction error. The graph of E vs

Rel (7.12) is similar to the graph observed for the Shepp-Logan phantom.

The second biological data set we used was reconstructed classically from uncol-

limated data of a human jaw. This data set was of size 536× 536× 440. The central

slices of the data are shown in Figure 7.13.

Again we extract a sub-cube, Ω of size 2573 select a region of interest C in Ω.

A comparison of the standard reconstruction and Searchlight CT on C is shown in

Figure 7.14 for the XY middle slice. A summary of performance for various ROI-radii

between 45 and 90 voxels is given in Table 7.4.

Table 7.4: Performance for various ROI-radii (Jaw Data)

ROI-radius D E Rel PSNR
45 voxels 3.2 % 19 % 11.4 % 50.6 dB
60 voxels 9.1 % 31 % 9.6 % 55.3 dB
75 voxels 19.7 % 44 % 9.0 % 58.7 dB
90 voxels 28.5 % 57 % 8.2 % 59.9 dB
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7.5. ANALYSIS OF THE RECONSTRUCTION ERROR FOR COLLIMATED
DATA

Figure 7.12: Relationship between exposure, E and Relative Reconstruction Error
for a region C in the mouse data reconstructed through Searchlight CT

7.5 Analysis of the Reconstruction Error for Col-

limated Data

The Relative Reconstruction Error Rel provides a global measure of the error. How-

ever a closer look at the algorithm performance shows that the reconstruction error

is strongly localized on discontinuity points of the density function F i.e. along the

edges. Edges in an image can easily be detected by any simple gradient based edge

detector, (see for example [34]).

This behavior is illustrated in Figure 7.15, where, for a representative 2D slice

of the mouse data inside the region of interest C, the gradient of F and the voxels

where the reconstruction error is large are displayed side by side.
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7.5. ANALYSIS OF THE RECONSTRUCTION ERROR FOR COLLIMATED
DATA

Figure 7.13: 2D views of the middle slices for the scan of a human jaw

Figure 7.14: Comparison of Reconstruction methods for the region C in the mouse
tissue data with representative 2D slices shown: (a) Standard Reconstruction (b)
Reconstruction through Searchlight CT (c) Ground Truth

We compute the high gradient zone of the mouse data F as follows. At every

voxel v compute the norm of the gradient ‖∇F (v)‖. Calculate the 85th quantile q

of these norms. The voxels for which ‖∇F (v)‖ > q comprise the high gradient zone.

The correlation between edge locations and large-error points is confirmed by the

comparison of histograms for distribution of errors over the whole ROI and for the

the zone of high gradient, which is shown in Figure 7.16. Whereas over the whole of

ROI the there is a strong difference between the number of high error and low error
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7.5. ANALYSIS OF THE RECONSTRUCTION ERROR FOR COLLIMATED
DATA

points, this difference is far less pronounced in the high gradient zone.

Figure 7.15: Reconstruction of collimated mouse data: High correlation between the
(a) High density gradient zone (edge locations) and (b) high error zone shown in a
representative 2D slice
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7.5. ANALYSIS OF THE RECONSTRUCTION ERROR FOR COLLIMATED
DATA

Figure 7.16: Comparison of histograms of Relative Reconstruction Error on (a) the
whole ofC and on (b) the high gradient zone of C for the case in Figure 7.15
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CHAPTER 8

Regularization Operators

The Searchlight CT reconstruction algorithm we have introduced, includes a major

step involving regularization of densities outside the region of interest C. Up to this

point we have used a very simple regularization technique which averages over boxes

of a fixed size. In this chapter we will introduce more sophisticated regularization

techniques. We start with a slight generalization of the local averaging technique.

The other techniques we will study will be wavelet-based. For this purpose we will

provide a brief review of wavelets, mainly in one dimension. The presentation can

be naturally extended to three dimensions. The wavelet based methods will include

hard thresholding, soft thresholding, and their variants.
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8.1. ADAPTIVE LOCAL AVERAGING

Regularization techniques are used for a variety of mathematical and physical

applications. Two major aspects of a regularization operator are its performance

for the task and its computational feasibility. In the case of Searchlight CT perfor-

mance is evaluated by reconstruction accuracy comparison with the ‘local averaging’

technique. Of course sophisticated techniques that produce better performance, are

computationally more expensive. The trade off between these two aspects must be

taken into account while selecting a technique.

The numerical simulations and tests in this chapter are performed in the 3D

spherical acquisition model.

8.1 Adaptive Local Averaging

Here we study an adaptive generalization of the ‘local averaging’ operator. Earlier

we computed local averages over cubic windows of fixed (2× 2× 2). In this section

we will use windows of adaptive size depending on the visibility index.

Definition 8.1.1. Given a collimated acquisition scheme, for each point (x, y, z) in

the object Ω ⊂ I3 the visibility index V (x, y, z), is defined as the percentage of the

collimated rays which pass through (x, y, z).

Of course for points in the ROI, V = 1 and V decreases as we move away from

the ROI. For a given point the size of the window on which we average the densities

of F is determined by d 1
V (x,y,z)

e where due in the smallest integer greater than u.

The advantage of this regularization technique is that it is almost as fast as the
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8.2. A BRIEF REVIEW OF WAVELETS

local averaging. The performance is marginally better than local averaging. For

the same set of parameters, while local averaging yields a relative reconstruction

error Rel = 9.8%, adaptive local averaging does slightly better with Rel = 9.1%.

Though an improvement, we will attempt better results by implementing wavelet

based regularization. We begin by reviewing the basics of wavelets.

8.2 A Brief Review of Wavelets

In the next section, we will present an alternative approach for the implementation

of the regularization operator σ, which employs the wavelet multi-resolution analysis

to regularize the function F outside the region of interest by computing the wavelet

expansion of F followed by an appropriate thresholding procedure of the wavelet

coefficients.

Recall that a Multi-resolution Analysis (MRA), in dimension d = 1, is defined as a

sequence of closed subspaces (Vj)j∈Z in L2(R) which satisfies the following properties:

(i) {0} . . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ L2(R).

(ii)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R).

(iii) f(x) ∈ Vj if and only if f(2−jx) ∈ V0.

(iv) There exists a scaling function φ ∈ L2(R), such that {Tmφ : m ∈ Z} is an
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8.2. A BRIEF REVIEW OF WAVELETS

orthonormal basis for V0, where Tmφ(t) = φ(t−m).

Hence, the MRA enables the decomposition of functions into different resolution lev-

els associated with the so-called wavelet spaces Wj, j ∈ Z. Each Wj is the orthogonal

complement of Vj in Vj+1.

Wj := Vj+1 	 Vj, j ∈ Z.

A function fj+1 ∈ Vj+1 is decomposed as fj+1 = fj +gj ∈ Vj⊕Wj, where fj contains,

the ‘lower frequency’ component of fj+1 and gj its ‘higher frequency’ component.

The space L2(R) is then a direct sum of wavelet spaces Wj. There always exists a

wavelet ψ ∈ L2(R) such that, for each j ∈ Z, the collection

{ψj,k = 2j/2ψ(2j · −k) : k ∈ Z}

is an orthonormal basis for Vj ⊂ L2(R). Combining the various resolution levels, this

implies that the collection

{ψj,k = 2j/2ψ(2j · −k) : j, k ∈ Z}

is an orthonormal basis for L2(R) and, thus, any f ∈ L2(R) admits the wavelet

expansion

f =
∑
j∈Z

∑
k∈Z

〈f, ψj,k〉ψj,k. (8.1)

Usually, the wavelet ψ is a well-localized function, so that each element ψj,k has

effective support size 2−j. Hence, the wavelet expansion of f can be interpreted

as a decomposition of f into its components associated with various scales 2−j and

locations 2−jk.
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Essentially the same ideas hold for functions of several variables, with the dif-

ference that the wavelet ψ is replaced by a multi-wavelet (ψ1, . . . , ψL) so that, for

f ∈ L2(R3), we have the wavelet expansion

f =
∑
j∈Z

∑
k∈Z

L∑
`=1

〈f, ψ`j,k〉ψ`j,k, (8.2)

and L = 2D − 1 (hence, L = 7 when D = 3). As an example, we have computed

a 2-level (i.e., the scale parameter ranges over j = 0, 1, 2) wavelet decomposition of

the human jaw data. In Figure 8.1, we reported one planar slice extracted from this

decomposition, corresponding to the XY middle slice from the data set. Notice that

the top figure contains the coarse information in the data and the other 2 sets below

(each set contains 7 images corresponding to one of the 7 wavelet coefficients at the

resolution level), represent the information associated with finer scales.

8.3 Wavelet-based Regularization

One of the most useful properties of wavelets is that they provide optimally sparse

approximations for a large class of functions. Specifically, this holds for the func-

tion that belong to Besov spaces, a large class of functions spaces including L2 and

Sobolev spaces as special cases. If one computes the N term approximation fN of a

function f by keeping the N largest coefficients in its wavelet expansion, ‖fN − f‖ is

asymptotically minimal. Intuitively, the large wavelet coefficients capture the main

features of the function f , while the small wavelet coefficients are associated with

“noise-like” features. Two classes of regularization techniques are associated with

wavelets: Linear and Non-linear regularizations.
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Figure 8.1: Wavelet decomposition of the human jaw data (XY middle slice is shown)
where the top row is the low pass component at level 2 and the 2 rows below are the
high pass components at level 2 and 1 respectively

8.3.1 Non-linear Regularization

Non-linear methods generally perform better as we retain some of the high-pass

components. A very effective methods to remove the unwanted noise in a signal is

obtained by a procedure called wavelet (hard) thresholding. This consists in

calculating the wavelet expansion of f and computing its regularized version f̃ as

f̃ =
∑
j∈Z

∑
k∈Z

L∑
`=1

cj,k,`(f)ψ`j,k,

where cj,k,`(f) = 〈f, ψ`j,k〉, if |〈f, ψ`j,k〉| ≥ Thj, and cj,k,`(f) = 0 otherwise. In this

procedure, the threshold parameters Thj are determined as a function of the noise

level at the resolution level j [1]. In several denoising applications, a useful variant

of this thresholding is the so-called soft thresholding. where coefficients slightly
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8.3. WAVELET-BASED REGULARIZATION

above the threshold are not fully retained but attenuated [19, 69].

For f ∈ L2(R3), let (8.2) be its wavelet expansion. Then we define a hard thresh-

olding regularization operator σH as follows

σHf =
∑
j∈Z

∑
k∈Z

L∑
`=1

cj,k,`(f)ψ`j,k, (8.3)

where 

cj,k,`(f) = 〈f, ψ`j,k〉 if j ≤ j0,

cj,k,`(f) = 〈f, ψ`j,k〉 if j > j0 & |〈f, ψ`j,k〉| ≥ Thj,

cj,k,`(f) = 0 if j > j0 & |〈f, ψ`j,k〉| < Thj.

Hence σH acts essentially as a hard thresholding wavelet operator, with the only

difference that all coarse scale coefficients at scale j ≤ j0 are retained. The reason

for keeping the coarse scales is that, in the reconstruction algorithm, σH will only

be applied “locally” outside the region of interest S. Thus, in the construction of

the regularized function σHf , it is important to keep all coarse coefficients which are

associated with the “global” features of f .

Finally, we have also considered a similar regularization operator where the hard

thresholding is replaced by soft thresholding. For f ∈ L2(R3), a soft thresholding

regularization operator σS is given by

σSf =
∑
j∈Z

∑
k∈Z

L∑
`=1

cj,k,`(f)ψ`j,k, (8.4)
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where 

cj,k,`(f) = 〈f, ψ`j,k〉 if j ≤ j0,

cj,k,`(f) = 〈f, ψ`j,k〉 − Thj if j > j0 & 〈f, ψ`j,k〉 ≥ Thj,

cj,k,`(f) = 〈f, ψ`j,k〉+ Thj if j > j0 & 〈f, ψ`j,k〉 ≤ −Thj,

cj,k,`(f) = 0 if j > j0 & |〈f, ψ`j,k〉| < Thj.

8.3.2 Linear Regularization

In linear regularization the regularization is carried out by computing the n-level

Wavelet Expansion and retaining only the low-pass component of it while setting

all the high-pass components to zero. The wavelet transform is then inverted to

obtain the regularized function. We have already explored a few examples of Linear

Regularization operators. The regularization by local averages is a linear regulariza-

tion by using the Haar Wavelet. In general other wavelets such as various forms of

Daubechies wavelets or the Meyer wavelet can also be used.

To see this mathematically we consider an alternate version of the wavelet ex-

pansion. Instead of decomposing L2(R) as a direct sum of wavelet spaces Wj, j ∈ Z

we apply the following equivalent decomposition.

L2(R) = V0

⊕(⊕
j≥0

Wj

)
. (8.5)

With this decomposition the corresponding expansion to (8.2) would be

f =
∑
k∈Z

〈f, Tkφ〉Tkφ+
∑
j≥0

∑
k∈Z

L∑
`=1

〈f, ψ`j,k〉ψ`j,k. (8.6)
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The linearly regularized version of f is then given by simply eliminating the high

resolution part of the sum. Hence the linear regularization operator is defined as,

σLf =
∑
k∈Z

〈f, Tkφ〉Tkφ. (8.7)

It is well known that non-linear regularization methods give better performance

than linear methods [61] in approximations. Hence we will evaluate the numerical

performance of Searchlight CT using mostly non-linear regularization methods only.

However wavelet-based linear regularization will also be used for numerical studies

of Searchlight CT convergence.

8.4 Numerical Demonstrations

We have considered here three regularization operators σ, namely the local averaging

operator, the hard thresholding regularization operator and the soft thresholding

regularization operator. The simplest choice is the local averaging operator, which

was applied by selecting a moving window of size 2 × 2 × 2 outside the region of

interest C.

Also the thresholding regularization operators were only applied outside the

spherical region of interest C. In this case, however, to ensure that no wavelet

coefficients associated with the region C could be affected, the operators were ap-

plied on the complement of the region C̃, where C̃ is a sphere having the same center

as C, and radius 10% larger than the radius of C. In all tests, a 3-level wavelet
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decomposition was applied, using the standard Daubechies filters Daub4.

For the choice of the hard thresholding parameters, Thj was selected so that be-

tween 5− 10% of the wavelet coefficients are kept at the resolution level j. In fact,

heuristic observations shows that the best performance in the case of the hard thresh-

olding operator is achieved when 9% of the highest magnitude wavelet coefficients

are kept at the resolution level j.

In the case of soft thresholding, to maintain consistency with the hard threshold-

ing, we choose Thj in such a way that approximately 90% of the coefficients were set

to zero. Since we are altering the coefficients more than by hard thresholding, the

performance of soft thresholding may be expected to be worse.

We have studied the performances of the Searchlight CT algorithm for the 3D

Shepp-Logan phantom and for the mouse tissues data using different choices of the

regularization operator σ. In all these tests, the algorithm was run for 40 iterations

which was enough to ensure adequate convergence. The results, reported in Table

8.1 and Table 8.2 shows that the wavelet-based regularization operators perform

significantly better that the local averaging operator. In fact, the hard thresholding

regularization operator is found to provide the best performance.

We have seen in Section 7.5 that the density function can be divided into the

high gradient zone and the low gradient zone. Though the Relative Reconstruction

Error Rel provides a global measure of performance, these errors are much higher

in the high gradient zone than the low gradient zone of the density function. Hence

to assess the performance of our reconstruction algorithm, we will also compute
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Table 8.1: 3D Shepp-Logan phantom - Performance of Regularization Operators
Regularization Method Rel RelLG RelHG

Local Averaging 9.8% 5.6% 33.6%
Hard Thresholding (7% coeff.) 8.0% 4.9% 25.5%
Hard Thresholding (9% coeff.) 7.8% 4.8% 24.8%
Hard Thresholding (5% coeff.) 8.5% 5.0% 28.3%
Soft Thresholding (9% coeff.) 8.6% 5.1% 28.4%
Soft Thresholding (12% coeff.) 8.5% 5.1% 27.8%

Table 8.2: Mouse Tissue - Performance of Regularization Operators
Regularization Method Rel RelLG RelHG

Local Averaging 10.3% 5.9% 35.2%
Hard Thresholding (7% coeff.) 8.7% 5.2% 28.5%
Hard Thresholding (9% coeff.) 8.4% 5.1% 27.1%
Hard Thresholding (5% coeff.) 9.3% 5.4% 31.4%
Soft Thresholding (9% coeff.) 9.5% 5.5% 32.1%
Soft Thresholding (12% coeff.) 9.4% 5.4% 32.0%

the quantities RelHG and RelLG, measuring the Relative Reconstruction Error Rel

restricted respectively to the high gradient region and to the low gradient region.

Both thresholding methods, specially the hard thresholding leads to significantly

better performance. These methods are computationally more expensive than the

local averaging technique due to their complexity. In particular for a ROI-radius

of 50 voxels 40 iterations of the Searchlight CT reconstruction algorithm ran in 6

hours using the local averaging regularization but took 8 hours using wavelet based

hard thresholding regularization. However the improved performance outweighs the

additional computing time and leads to a better convergence criterion on the Relative

density, D(C,F ).

For accurate reconstruction with local averaging we required D(C,F ) > 2.5% for
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the Shepp-Logan phantom. With hard thresholding we only require D(C,F ) > 2.3%

which is almost a 10% improvement. The corresponding figures for the rat tissue

data were D(C,F ) > 2.8% with local averaging and D(C,F ) > 2.5% with hard

thresholding.

8.5 Effect of Regularization Techniques on Spec-

tral Radius

In this section we will discuss the effect of regularization in context of convergence

analysis for the 2D case. We have discussed different regularization techniques on the

complement of ROI. Since we have used linear theory in the context of convergence

analysis through spectral radius (see Chapter 3), we will restrict the spectral radius

study here to linear regularization methods. As in Chapter 3, a phantom of size 45×

45 is used. The basis used is the standard basis {Eij} for R45×45, where Eij is a 45×45

matrix with 1 in the (i, j)th position and 0’s everywhere else. Note that we cannot

use the same reduction of dimensions as done for the local averages regularization

method since the regularized function will not be constant on blocks. Results for the

spectral radius of the operator M = σX−11UXσ using linear regularization with the

the standard Daubechies daub4 wavelet are shown in Table 8.3. Various ROI-radii

between 4 and 16 pixels were examined.

We perform a spectral analysis similar to the study in Chapter 3. For a reason-

ably large ROI-radius (13 pixels), where convergence does hold the histogram of the
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Table 8.3: Spectral radius ρ(M) for various radii of C

ROI-radius ρ(M)
4 pixels 12.63
7 pixels 9.13
8 pixels 6.42
9 pixels 3.55
10 pixels 0.78
13 pixels 0.64
16 pixels 0.52

modulus of the eigenvalues of M is shown in Figure 8.2.

Again if we make the radius smaller, convergence does not occur. The histogram

for the modulus of the eigenvalues of M for such a case (with ROI-radius equal to 8

pixels) is shown in Figure 8.3.

We note that the spectral radii for the converging cases is lower for wavelet-based

linear regularization than local averaging. For example at the critical radius of 10

pixels wavelet based linear regularization produced a spectral radius of 0.78 while

local averaging regularization produced 0.82. This leads to a faster rate of conver-

gence. Another improvement (for the diverging cases) is the number of expanding

eigenvectors. For example, when the ROI-radius is 8 pixels local averaging regular-

ization led to 10 expanding eigenvectors as compared to 6 for wavelet-based linear

regularization. This could be exploited when the projection analysis is carried out

similar to Section 3.3 is performed.

As before we observe the eigenvector corresponding to the highest eigenvalue

and identify its high intensity zones. We note that in case of wavelet-based linear

regularization the concentration of this expanding eigenvector in the region C is
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Figure 8.2: Histogram for the eigenvalues of M for a converging case when the radius
of C is 13 pixels (using wavelet-based linear regularization)

much stronger. This is shown in Figure 8.4 for an ROI-radius of 8 pixels.

Next we will note the effect of the expanding eigenvectors with the same defi-

nitions and notations as Section 3.3. As the number of expanding eigenvectors are

fewer in this case, we expect the expansion weight defined in Section 3.3 ωd to be

lower. Hence the approximation by projecting into the contracting subspace should

be more accurate. The value of ωd for various radii between 4 and 8 pixels is shown

in Table 8.4.

In stark contrast to the local averaging case, wavelet-based linear regularization

gives a low value of ωd even for a radius of 6 pixels. Hence PF is an acceptable
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Figure 8.3: Histogram for the eigenvalues of M for a diverging case when the radius
of C is 8 pixels (using wavelet-based linear regularization)

approximation to the regularized version of the objective function F . For very low

ROI-radii (under 5 pixels) the approximation by PF is inaccurate. These cases are

shown in Figure 8.5.

For PF to be a good approximation of F the weight, ωd should be sufficiently

small. We have seen through extensive numerical tests on various data sets that the

Table 8.4: Expansion weight ωd for small ROI-radii for wavelet-based linear regular-
ization

ROI-Radius 4 pixels 5 pixels 6 pixels 7 pixels 8 pixels
Expansion Weight, ωd 5.19% 3.83% 2.23% 1.37% 0.66%
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Figure 8.4: For the diverging case when radius of C is 8 pixels (a) Image of the
eigenvector corresponding to the highest eigenvalue and (b) its high intensity zone
calculated using the described method with α = 85% (using wavelet-based linear
regularization)

upper bound for ωd is approximately 2.5%. Any value greater than this would fail to

approximate F accurately. This fact can be used to formalize an alternate version

for Searchlight CT when the ROI-radius is small.
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Figure 8.5: (a) The Shepp-Logan phantom of size 45 (b) Phantom linearly regularized
using wavelets outside the ROI of radius 8 pixels (c) Projection of the wavelet-
regularized phantom with ROI-radius 6 pixels on to the contracting subspace of
M(d) Projection of the wavelet-regularized phantom with ROI-radius 5 pixels on
the contracting subspace of M
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8.6 Searchlight CT for Small Regions of Interest

When the ROI-radius is too small during collimated acquisition the affected ROI

cannot be treated by Searchlight CT to give an accurate reconstruction. In such

cases, we propose an alternative version of Searchlight CT. We have no way of com-

puting ωd from the CT data. Hence we first assume ωd to be less than 2.5% and carry

out the computations. In case ωd is higher than 2.5% the reconstruction would fail.

This alternate version of Searchlight CT has an additional step after each regulariza-

tion namely a step to project the regularized function on the contracting subspace

of M i.e. the space spanned by the contracting eigenvectors of M . The steps for the

2D case are briefly summarized below. The notations used are exactly the same as

in Chapter 2 (2.22). Initially we need to compute the contracting subspace of M .

1. Compute σfn through local averaging (2.20) or any of the mentioned wavelet-

based techniques [(8.3) or (8.4)].

2. Compute Pσfn as in (3.9), that is project σfn into the contracting subspace

of M .

3. Compute XPσfn, the standard X-ray Transform of Pσfn, using (2.1). By

separating the XPσfn into the complementary sets T and U , write

XPσfn = 1T .XPσfn + 1U .XPσfn.

4. Replace 1T .XPσfn by the known data G = 1T .XF in the preceding formula

to define Yn = G+ 1U .XPσfn.
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5. Compute fn+1 by applying the X-ray inversion formula (2.6) to Yn. Hence,

fn+1 = X−1Yn = X−1[G+ 1U .XPσfn]. (8.8)

8.7 Other Regularization Techniques

Other regularization techniques may be used depending on the trade off between

accuracy and computational efficiency. Though both the thresholding methods are

effective, due to numerical round off errors can generate inaccuracies. To remove such

inaccuracies the regularization process can be iterated. Another variant could be to

implement a step of soft thresholding after a step of hard thresholding. The major

disadvantage of such iterated or multi-step methods is that they are computationally

very expensive.

Regularization techniques similar to the ones described in this chapter have been

explored for Computed Tomography in various papers. One of the options could be to

replace wavelets by complex wavelets. The complex wavelet transform is a complex-

valued extension of the standard discrete wavelet transform. It is a two-dimensional

wavelet transform which provides multi-resolution, sparse representation, and useful

characterization of the structure of an image. The use of complex wavelets in image

processing was originally set up in 1995 by J.M. Lina and L. Gagnon [60] in the

framework of the Daubechies orthogonal filters banks [59]. It was then generalized

in 1997 by Nick Kingsbury [51, 82, 50] of Cambridge University. Regularization

through complex wavelets in CT scans is seen in [90, 91, 77].
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Another regularization technique could be to use shearlets instead of wavelets.

The traditional wavelet transform does not posses the ability to detect directionality,

since it is merely associated with two parameters, the scaling parameter and the the

translation parameter. The shearlet transform attempts to overcome this problem,

while retaining the key aspects of wavelets’ the mathematical framework. The shear-

lets satisfy all these properties in addition to showing optimal behavior with respect

to the detection of directional information. The inversion of the Radon Transform

by using shearlets is presented for 2D in [21, 20].
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CHAPTER 9

Reconstruction from Noisy Data

In medical imaging noise can occur in several ways. In this chapter we review the

effect of noise on medical images and the various associated noise models. We test

the sensitivity of the Searchlight CT algorithm to noise.

9.1 Noise in Medical Imaging

Noise occurring in imaging devices have far-ranging effects. Noise is typically defined

as the uncertainty in a signal due to random fluctuations in that signal.There are

many causes for such fluctuations. We briefly discuss the presence and causes for
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noise in some imaging processes.

In tomography, an X-ray beam is statistical in nature. That is, the number of

photons emitted from the source per unit time varies according to a Poisson distribu-

tion [54]. These fluctuations primarily come from the inherent random variations in

the counting of photons and is related to the number of photons detected and used

for the generation of images [79]. Other sources of random fluctuation introduced by

the process of attenuation of the materials present in the path of the radiation beam

such as the patient, patient table, detector enclosure, etc. are also Poisson processes.

Finally, the detectors themselves often introduce noise. Another source of noise is

the interaction between digital and analogue signals in mixed signal systems [52].

Positron Emission Tomography (PET) is another form of tomography. The PET

system detects pairs of gamma rays emitted indirectly by a positron-emitting tracer

(radioactive material), which is introduced into the body on a biologically active

molecule. Three-dimensional images of tracer concentration within the body are

then reconstructed by computer analysis. In PET images, the main sources of noise

are in decreasing order of magnitude are emission, transmission, and blank scans

[38]. Detectors, electronics, and recorder systems together may add to the noise

[62, 92]. The choice of reconstruction algorithm significantly affect the magnitude

and texture of noise. Other factors which contribute to noise features include mode

of corrections, in particular attenuation correction.

Along with Computed Tomography, Magnetic Resonance Imaging (MRI) is an-

other important diagnostic tool in medical imaging. There are two major sources of
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noise in MRI. Rician noise arises from complex Gaussian noise in the original fre-

quency domain measurements [67]. A different type of noise in the coherent imaging

of objects is called speckle noise. This noise is, in fact, caused by errors in data

transmission [30, 32]. Speckle noise also has a major advantage. It is very useful for

viewing a MR image by following the path of noise.

Noise in digital pictures is caused by heat in the sensor. Astronomical photogra-

phers that use long exposures a lot often cool the sensor up to -20°C with a Peltier

unit, just to avoid noise. When light levels are high in any exposure this inherent

noise level will only be a tiny percentage. It’s when we come to low light shots that

noise becomes a noticeable problem as the exposure moves into the underlying sensor

noise.

9.2 Noise Models

There are various noise models which appear in different forms of images. We will

briefly describe some of these models in this section. Most of these models are based

on a probability distribution, for which details can be found in [6]. To see the effect

of noise we will consider a very simple 2D test image consisting of three identical

vertical strips with the central one having a relatively lower density (0.3) as compared

to the other two (0.7). The image along with the histogram of its intensity values is

shown in Figure 9.1.
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Figure 9.1: The test image and its histogram

Uniform Noise

The uniform noise model is based on the continuous uniform distribution, i.e. every

value in the given range has an equal probability. For a, b ∈ R the distribution is

denoted by U(a, b) and the probability density function is given by,

f(x) =


1
b−a x ∈ [a, b]

0 otherwise
. (9.1)

Generally uniform noise is not encountered in real life imaging systems but is

important for comparison purposes. It can be used to generate any other type of

noise and is also used to degrade images for denoising algorithms as it provides the

most unbiased form of noise. Uniform noise on the test image is shown in Figure 9.2
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Figure 9.2: The test image corrupted with uniform noise

Exponential Noise

The exponential noise model is based on the exponential distribution. For λ > 0 the

probability density function is,

f(x) =

 λe−λx x ≥ 0

0 x < 0
. (9.2)

This type of noise is used to model noise in laser imaging. It is shown in Figure

9.3.

Rayleigh Noise

The Rayleigh distribution models the Raleigh noise. For σ > 0 the probability

density function is given by,

f(x) =
x

σ2
e−

x2

2σ2 x ≥ 0. (9.3)
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Figure 9.3: The test image corrupted with exponential noise

It is used to model noise in range imaging and velocity images. Raleigh noise

occurs typically in Magnetic Resonance Imaging (MRI). As MRI images are recorded

as complex images but most often viewed as magnitude images, the background data

is Rayleigh distributed. Hence, a maximum likelihood estimate for the parameter

can be used to estimate the noise variance in an MRI image from background data

[83].

Figure 9.4: The test image corrupted with Rayleigh noise
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Gamma (Erlang) Noise

The Gamma distribution models the Gamma noise. For k > 0 and θ > 0 the

distribution is denoted as Γ(k, θ) and its probability density function is,

f(x) =
1

Γ(k)θk
xk−1e−

x
θ x ≥ 0 (9.4)

where Γ(z) =
�∞

0
e−ttz−1dt.

Gamma noise can be obtained by lowpass filtering exponential noise. The expo-

nential nature of the histogram of the intensities is apparent in Figure 9.5.

Figure 9.5: The test image corrupted with Gamma noise

Salt-and-Pepper (Impulse) Noise

This is one of the few types of noise that is not based on any of the regular probability

distributions. It occurs during image transmission due to malfunctioning of pixel

elements in sensors, faulty memory locations or errors in digitalization process. The

true value of the pixel gets corrupted either to a high intensity (salt) with a fixed
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probability or a low intensity (pepper) with another fixed probability, as seen in

Figure 9.6.

Figure 9.6: The test image corrupted with salt-and-pepper noise

Poisson Noise

Unlike most of the other types of noise, Poisson noise is based on a discrete probability

distribution, the Poisson distribution. For λ > 0 the probability mass function for

Poisson distribution is given by,

f(k) =
λke−λ

k!
k = 0, 1, 2 . . . . (9.5)

Poisson noise exists in situations where an image is created by the accumulation

of photons over a detector. Typical examples are found in standard X-ray films,

CCD cameras, and infrared photometers. An example on the test image is seen in

Figure 9.7.
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Figure 9.7: The test image corrupted with Poisson noise

Gaussian Noise

The Gaussian model based on the normal distribution is most often used for modeling

natural noise processes. For µ ∈ R and σ2 > 0 the normal distribution is denoted by

N(µ, σ2) and its probability density function is,

f(x) =
1

σ
√

2π
e

(x−µ)2

2σ2 . (9.6)

During the data acquisition of a CT scan process, the electronic noise is Gaussian

distributed [95]. A special type of Gaussian noise is Additive White Gaussian

Noise. This is a form of additive noise with zero mean and the noise at each voxel

is independent of other voxels. Naturally, this type of noise occurs due to vibration

of atoms due to heat (thermal noise), black body radiation etc. Some examples are

CT scans (short range) and satellite or deep space links (very long range). Gaussian

noise on the test image is seen in Figure 9.8.
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Figure 9.8: The test image corrupted with Gaussian noise

9.3 Effect of Noise on Searchlight CT

An important indicator for the performance of the Searchlight CT algorithm is its

robustness when the data are corrupted by noise. To test our algorithm in this

situation, we run several numerical experiments where additive white Gaussian noise

was added to the data. Of course, not all noise found in practical applications is of

this type, but this is a standard experiment which is indicative of the stability of the

reconstruction algorithm.

We run our experiments in two cases. First we run Searchlight CT on noisy

data to test its robustness of the algorithm to noisy data. Next we use a standard

denoising technique to denoise the data and then we run Searchlight CT on the

denoised data.

Thus, in our experiments, we manually modified the acquired X-ray data X(w, θ)

by adding a noise term δ which is a normally distributed random variable with mean
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Table 9.1: Performance of Noisy Reconstruction (Phantom)
Noise Regularization Method Er ELG

r EHG
r

σ = 0.05A Local Averaging 15.0 % 10.2 % 42.2 %
σ = 0.05A Hard Thresholding 12.1 % 8.5 % 32.5 %
σ = 0.05A Soft Thresholding 13.1 % 8.9 % 36.9 %
σ = 0.01A Local Averaging 12.4 % 8.0 % 37.3 %
σ = 0.01A Hard Thresholding 11.1 % 7.4 % 32.0 %
σ = 0.01A Soft Thresholding 11.6 % 7.6 % 34.2 %

0 and standard deviation σ.

X̄F (w, θ) = XF (w, θ) + δ, (9.7)

where δ ∼ N(0, σ). In our our tests, σ was chosen in the range [0.01A, 0.05A] where

A = mean(XF (w, θ)).

9.3.1 Searchlight CT with Noisy Data

We tested the performance of the reconstruction from noisy data using various types

of regularization. For both hard and soft thresholding 91% of the coefficients were

set to zero. The results for the Shepp-Logan phantom are given in Table 9.1.A com-

parison between the noisy reconstruction of a region C in the Shepp-Logan phantom

and ground truth is shown in Figure 9.9, where σ = 0.05A and regularization by

hard thresholding was used.

A similar experiment was carried out for the mouse tissue data. The same set of

parameters for the standard deviation of noise and wavelet thresholding were used.

The corresponding results for the noisy mouse tissue data are reported in Table 9.2.

A comparison between the noisy reconstruction of a region C in the mouse tissue

122



9.3. EFFECT OF NOISE ON SEARCHLIGHT CT

Figure 9.9: Comparison between (a) Noisy reconstruction by Searchlight CT (b)
ground truth for a 2D representative slice of the 3D Shepp-Logan phantom

Table 9.2: Performance of Noisy Reconstruction (Mouse Tissue)
Noise Regularization Method Er ELG

r EHG
r

σ = 0.05A Local Averaging 15.7 % 10.8 % 43.4 %
σ = 0.05A Hard Thresholding 12.6 % 9.0 % 33.0 %
σ = 0.05A Soft Thresholding 13.8 % 9.6 % 37.6 %
σ = 0.01A Local Averaging 13.0 % 8.5 % 38.5 %
σ = 0.01A Hard Thresholding 11.9 % 8.1 % 33.4 %
σ = 0.01A Soft Thresholding 12.4 % 8.2 % 36.2 %

data and ground truth is shown in Figure 9.10, where σ = 0.05A and regularization

by hard thresholding was used.

9.3.2 Searchlight CT on Denoised Data

We have examined the robustness of Searchlight CT to noisy data. As a final exper-

iment we tested Searchlight CT on denoised data. As mentioned in Chapter 8 one

of the most prominent denoising techniques is the wavelet thresholding. As stated
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Figure 9.10: Comparison between (a) Noisy reconstruction by Searchlight CT (b)
ground truth for a 2D representative slice of the mouse tissue data

before we simulate the noisy data by,

X̄F (w, θ) = XF (w, θ) + δ,

with δ ∼ N(0, σ). With the same notation as Section 8.2, we write the wavelet

expansion of X̄F as,

X̄F =
∑
j∈Z

∑
k∈Z

L∑
`=1

〈X̄F, ψ`j,k〉ψ`j,k. (9.8)
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Table 9.3: Performance of Reconstruction from Denoised Data (Phantom)
Noise Regularization Method Er ELG

r EHG
r

σ = 0.05A Local Averaging 14.2 % 9.3 % 41.9 %
σ = 0.05A Hard Thresholding 11.6 % 8.0 % 32.0 %
σ = 0.01A Local Averaging 11.9 % 7.8 % 35.1 %
σ = 0.01A Hard Thresholding 10.7 % 7.2 % 30.5 %

Using hard thresholding the denoised data X̌F is given by,

X̌F =
∑
j∈Z

∑
k∈Z

L∑
`=1

cj,k,`(X̄F )ψ`j,k,

where (9.9)

cj,k,`(X̄F ) = 〈X̄F, ψ`j,k〉 if j ≤ j0,

cj,k,`(X̄F ) = 〈X̄F, ψ`j,k〉 if j > j0 & |〈X̄F, ψ`j,k〉| ≥ Thj,

cj,k,`(X̄F ) = 0 if j > j0 & |〈X̄F, ψ`j,k〉| < Thj.

The threshold Thj for a scale level j is set to be the 91st quantile of the absolute

wavelet coefficients. In our experiments we perform the initial denoising step by

setting to zero, 91% of the lowest magnitude wavelet whose magnitude is below

the threshold. The other parameters are the same as the previous section. Since

hard thresholding gave a better performance than soft thresholding, we present the

experiments only for hard thresholding. The performance of Searchlight CT on the

denoised data for the Shepp-Logan phantom is detailed in Table 9.3 and a comparison

of the reconstruction with ground truth is shown in Figure 9.11. Similarly for the

mouse tissue data, the performance of Searchlight CT is detailed in Table 9.4 and a

comparison of the reconstruction with ground truth is shown in Figure 9.12.
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Figure 9.11: Comparison between (a) reconstruction by Searchlight CT on denoised
data (b) ground truth for a 2D representative slice of the 3D Shepp-Logan phantom

Table 9.4: Performance of Reconstruction from Denoised Data (Mouse Tissue)
Noise Regularization Method Er ELG

r EHG
r

σ = 0.05A Local Averaging 14.8 % 10.0 % 42.0 %
σ = 0.05A Hard Thresholding 11.9 % 8.4 % 31.7 %
σ = 0.01A Local Averaging 12.0 % 8.1 % 34.1 %
σ = 0.01A Hard Thresholding 11.2 % 7.2 % 33.8 %

Figure 9.12: Comparison between (a) reconstruction by Searchlight CT on denoised
data (b) ground truth for a 2D representative slice of the mouse tissue data
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CHAPTER 10

Reconstruction of 3D Collimated Data with Spiral Acquisition

In Chapter 3 we have adapted a 3D collimated X-ray computed tomography setup

when sources are placed in a sphere around the object Ω. Though the reconstruction

accuracy is very satisfactory, one of the major shortcomings of this method is that it

is practically infeasible. Also if a spherical CT scanner ever came into existence, the

high number of projections would require a very high radiation dose and defeat the

purpose of reducing the patient’s exposure to harmful radiation. Spiral Tomography

provides a very attractive alternative to such a problem. Instead of the source posi-

tions being required on a surface, it just requires them to lie on a curve, in particular

a circular helix.
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This chapter gives a brief explanation spiral tomography. The exact inversion

formula for inversion proved by Alexander Katsevich in [45] is explained along with

the required definitions and basic results. Finally we apply our algorithm to test

for Collimated Reconstruction. Though notations used in this chapter are consistent

withe previous ones, the introductory discussion follows [68].

10.1 Spiral Tomography

Let F be a 3D density function with support Ω. Ω is assumed to be contained in the

vertical cylinder x2 + y2 < R2, where R < R0 and R0 is the radius of the circular

helix. The region x2 + y2 < R2 is called the field of view.

As defined above the X-ray Transform of F is a set of line integrals of F on rays

from a given source position. In this chapter the sources are placed on a circular

helix, with axis as the z-axis, radius R0 and pitch (distance between successive turns)

P . This helix can be parametrically represented as,

s(λ) =

[
R0 cos(λ+ λ0), R0 sin(λ+ λ0), z0 + P

λ

2π

]
. (10.1)

Often in experiments we assume λ0 = 0. At λ = 0 the source position is on the plane

z = z0 at polar angle λ0. For a given source position, s(λ), the X-ray Transform is

given by,

XF (λ, θ) =

� ∞
0

F (s(λ) + tθ)dt θ ∈ S2. (10.2)

Note that instead of w as our previous notation, we now use s as the point deter-

mining the the ray, where s is also a source position. Since s is determined completely
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Figure 10.1: The physical setup for spiral acquisition

by λ, as seen in (10.1), we can use λ in (10.2) to define the X-ray Transform. The

physical setup for spiral tomography is shown in Figure 10.1

10.2 Geometry of Data Acquisition on a Flat De-

tector

In a flat detector geometry, X-ray projections are measured using flat panel detectors

which are placed beyond the object to be reconstructed and parallel to the z-axis.

The detector rotates around the object along with the object along with the source,

s(λ) such that it is always perpendicular to the plain containing s(λ) and the z-axis.

To describe the data acquisition better, we introduce the rotated coordinates, with
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Figure 10.2: Geometry of data acquisition on a flat detector

unit vectors eu, ev and ew defined as,

eu(λ) = (− sin(λ+ λ0), cos(λ+ λ0), 0), (10.3a)

ev(λ) = (− cos(λ+ λ0),− sin(λ+ λ0), 0), (10.3b)

ew = (0, 0, 1). (10.3c)

Thus the detector is perpendicular to ev. It is assumed that the distance between

the source and the detector always remains a constant D. The size of the detector

is determined by the size of the object for the width (number of columns) and the
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helical pitch P for the height (number of rows). A derivation for the minimum

number of rows required for exact reconstruction for a given P can be found in

[68]. The coordinate system on the detector is specified by two mutually orthogonal

coordinates u and w along eu and ew respectively. The center (u,w) = (0, 0) is at the

orthogonal projection of s(λ) on to the detector. To describe the data acquisition we

require a transformation of coordinates between (λ, θ) and (λ, u, w). This is explained

below. Denoting the projections obtained by flat panel detectors as XFf (λ, u, w),

we have,

XFf (λ, u, w) = XF (λ, θf ).

It can be geometrically seen from Figure 10.2 that,

θf =
1√

u2 +D2 + w2
(ueu(λ) +Dev(λ) + wew). (10.4)

Conversely for a given direction θ such that,

XF (λ, θ) = XFf (λ, uf , wf ),

it can easily shown by the triangle law of vector addition that,

uf = D
θ.eu(λ)

θ.ev(λ)
, (10.5a)

wf = D
θ.ew
θ.ev(λ)

. (10.5b)

There is another type of data acquisition which uses a curved detector instead of

a flat. A brief description of this method is given in [68, 96].
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Figure 10.3: The Tam-Danielsson window

10.3 Katsevich Inversion Formula

The exact inversion formula for the X-ray Transform for spiral tomography was

proved by Katsevich in [41, 43] and improved in [45]. Two key advantages of the

formula are its computational efficiency as it is essentially a filtered back-projection

and the truncation of projection in the z-direction. To have an idea of the truncation

in the z− direction, we define a Tam-Danielsson window.

Definition 10.3.1. For a given source position s(λ), the region on the detector plane

bounded immediately above and below by the projections of the helix onto the detector

plane when viewed from s(λ) is called the Tam-Danielsson window.

A visual representation of a Tam-Danielsson is shown in Figure 10.3. Before

stating the formula, we need some definitions and observations.
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10.3.1 Preliminaries

One of the basic notions in the Katsevich inversion formula is a π−line.

Definition 10.3.2. Given a circular helix (as parameterized by (10.1)). A π− line

is any segment of a line that connects two points on the the helix, s(λi) and s(λj)

such that |λi − λj| < 2π.

Equivalently a π−line connects two points separated by less than one helical turn.

π− lines satisfy the following theorem whose proof can be found in [17, 16].

Theorem 10.3.3. If x̄ is in the field of view (or support Ω of the density function

F ), then there exists an unique π−line passing through x̄.

Since the extremities of the π−line geometrically define a 180°coverage around x̄

the following conjecture regarding the exact reconstruction of F at x̄ was made in

[16] and later proved by Katsevich in [45].

Theorem 10.3.4. Let x̄ be in the field of view with sλi(x̄) and sλj(x̄) denoting the

extremities of the unique π−line through x̄. If the projection of x̄ on to the detector

lies in the Tam-Danielsson window, then F can be reconstructed exactly at x̄ from

the X-ray projection data for the source positions, s(λ), λ ∈ [λi(x̄), λj(x̄)].

A portrayal of a π−line is shown in Figure 10.4. The segment of the helix between

its end points (also called a π−segment) is highlighted. In view of the above theorem

we can define the set of rays required to reconstruct F at x̄. For source positions,

s(λ), λ ∈ [λi(x̄), λj(x̄)] let the corresponding Tam-Denielsson window be denoted by

D(λ). For a fixed λ, its set of directions is given by,
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Figure 10.4: A π-line with the π−segment highlighted

Θλ =

{
s(λ)− b
‖s(λ)− b‖

: b ∈ D(λ)

}
. (10.6)

Provided the projection of x̄ lies in the Tam-Danielsson window for every for

every λ, i.e. for each λ ∈ [λi(x̄), λj(x̄)], ∃b ∈ D(λ) such that for some t ∈ R,

x̄ = s(λ) + t s(λ)−b
‖s(λ)−b‖ , the total set of rays needed for reconstruction at x̄ is given by,

S = {l(λ, θ) : λ ∈ [λi(x̄), λj(x̄)], θ ∈ Θλ}. (10.7)

Next we define a κ−plane.

Definition 10.3.5. A κ−plane is any plane that has three intersections with the

helix such that one of them is midway between the other two.

κ−planes satisfy the following property,
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Theorem 10.3.6. If x̄ lies in the field of view and its projection from s(λ) on to the

detector lies in the Tam-Danielsson window, then there is a unique κ−plane through

x̄ and s(λ).

The points of intersection of a κ−plane with the helix are generally denoted as

s(λ), s(λ + ψ) and s(λ + 2ψ) with ψ ∈ [−π, π]. So for the result stated above, ψ is

uniquely determined. However we will see that for the Katsevich formula we require

some data outside the Tam-Daniellson window. Hence the unicity of κ−planes is

lost.

We are interested in a family of κ−planes for a given source position s(λ). A

κ−plane through s(λ) determined by ψ is denoted as κ(λ, ψ). Together π−lines and

κ−planes obey the following important property [45].

Theorem 10.3.7. For an x̄ in the field of view, let λi(x̄) and λj(x̄) define the

extremities of the π−line through x̄ with λi(x̄) < λj(x̄). For any λ ∈ [λi(x̄), λj(x̄)]

there exists a κ−plane κ(λ, ψ) at s(λ) that contains x̄.

Since unicity may not hold, there might exist more than one such κ−plane.

However there will exist a κ−plane with the least value of |ψ| and it will satisfy

λi(x̄) ≤ λ+ 2ψ ≤ λj(x̄). This plane is used in the Katsevich Formula.

Also note that the unit normal vector m(λ, ψ) to the κ−plane κ(λ, ψ) is given

by,

m(λ, ψ) =
(s(λ+ ψ)− s(λ))× (s(λ+ 2ψ)− s(λ))

‖(s(λ+ ψ)− s(λ))× (s(λ+ 2ψ)− s(λ))‖
, sign(ψ) (10.8)

keeping the angle between m(λ, ψ) and the z-axis acute.
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Figure 10.5: A portion of a κ−plane and its normal vector

A portion of a κ−plane with its normal vector is shown in Figure 10.5.

10.3.2 The Inversion Formula

Katsevich proved the inversion formula to reconstruct the density of x̄ in the field

of view by back-projecting the X-ray projections from source positions at the ex-

tremities of a π−line through x̄. The back-projection step involves the filtered data

XF `(λ, θ).

F (x̄) = X−1(XF )(x̄) = − 1

2π

� λj(x̄)

λi(x̄)

1

‖x̄− s(λ)‖
XF `

(
λ,

x̄− s(λ)

‖x̄− s(λ)‖

)
dλ, (10.9)

where λi(x̄) and λj(x̄) are the extremities of the π−line described above and λi(x̄) <

λj(x̄).
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To obtain the filtered data XF `(λ, θ) we first require the derivative XF ′(λ, θ) of

XF (λ, θ) with respect to λ for a fixed θ. Then XF `(λ, θ) can be calculated as,

XF `(λ, θ) =

� 2π

0

hH(sin γ)XF ′(λ, cos γθ + sin γ(θ ×m(λ, θ)))dγ. (10.10)

In the above equation, hH(t) stands for the the Hilbert Transform kernel,

hH(t) = −
� ∞
−∞

isign(σ)e2iπσtdσ =
1

πt
, (10.11)

and m(λ, θ) is normal to the plane κ(λ, ψ) of smallest |ψ| that contains x̄ and s(λ). It

must be noted that m(λ, θ) always exists. From (10.9) XF `(λ, θ) needs to be known

only for the directions θ specified a a source position s(λ) towards the point x̄. A

discussed before for such θ there always exists a κ-plane st s(λ) containing x̄. The

condition on |ψ| to be minimum enforces such a plane to be unique.

10.4 A New Reconstruction Algorithm in Spiral

Tomography

As we have the methods for data acquisition and inversion, we are in a position to

apply our algorithm to test the reconstruction for collimated projections. Before we

proceed, we need to describe how the various the steps are modified in case of spiral

tomography.
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Data Acquisition

We have already defined the X-ray Transform for spiral tomography in (10.2). How-

ever direct computation of this is time-consuming so we will carry out the data

acquisition by the Fourier Slice Theorem as in Chapter 6. This will be described in

the next Chapter.

Simulated Collimation

The collimated X-ray Transform is defined exactly as in Chapters 2 and 4. Let F be

a Lebesgue integrable function with compact support Ω and l(λ, θ) the line through

s(λ) ∈ R3 with direction θ ∈ S2. Let C be a spherical region within Ω. Then

Collimated X-ray Transform of F (in this spiral setting) is defined as,

X̃(λ, θ) =

 XF (λ, θ) l(λ, θ)
⋂
C 6= ∅

0 l(λ, θ)
⋂
C = ∅

. (10.12)

In view of the definition (10.12), we denote the fully retained part of the X-ray

Transform as T and U = TC .

T = {(λ, θ) : l(λ, θ)
⋂

C 6= ∅}.

The collimation condition (5.9) derived in Chapter 5 was independent of the

acquisition method. It was just a condition for a line l(w, θ) to intersect a sphere

centered at (p, q, r) and with radius R. In the case of spiral tomography the only

difference would be that the set of w’s is given by the source positions (10.1). Using
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this condition for all the source positions we can block the rays not passing through

the region of interest. For a ray with direction θ = (θ1, θ2, θ3) and passing through

s(λ) = (s1, s2, s3) and a spherical region C, centered at (p, q, r) of radius Q, the

collimation condition (i.e the condition for the ray to pass through C), is given by:[
(s1 − p)2 +

θ2
1

θ2
3

s2
3 − 2

θ1

θ3

s3(s1 − p) + (s2 − q)2 +
θ2

2

θ2
3

s2
3 − 2

θ2

θ3

s3(s2 − q) + r2 −Q2

]
≥ 0.

Inversion

The reconstruction technique given in [68] reconstructs one horizontal slice at a time

using the Katsevich inversion formula (10.9).

F (x̄) = X−1(XF )(x̄) = − 1

2π

� λj(x̄)

λi(x̄)

1

‖x̄− s(λ)‖
XF `

(
λ,

x̄− s(λ)

‖x̄− s(λ)‖

)
dλ.

For our algorithm to work, we require the reconstruction of the entire objective

function F . Since the reconstruction on a single slice is computationally very efficient

we repeat the step for all horizontal slices to obtain the complete reconstruction.

Regularization

Our regularized reconstruction from collimated X-ray data will follow essentially the

same procedure as in Chapter 5. Since we have already verified that the wavelet-

based based regularization method with hard wavelet thresholding of the wavelet

coefficients, works the best, we will use only that technique for spiral tomography.

With the same notation as Section 8.2, we write the wavelet expansion of F as,
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F =
∑
j∈Z

∑
k∈Z

L∑
`=1

〈F, ψ`j,k〉ψ`j,k.

Then the regularized version σHF is given by,

σHF =
∑
j∈Z

∑
k∈Z

L∑
`=1

cj,k,`(F )ψ`j,k, (10.13)

where

cj,k,`(F ) = 〈F, ψ`j,k〉 if j ≤ j0,

cj,k,`(F ) = 〈F, ψ`j,k〉 if j > j0 & |〈F, ψ`j,k〉| ≥ Tj,

cj,k,`(F ) = 0 if j > j0 & |〈F, ψ`j,k〉| < Tj.

The Algorithm

As above, the algorithm is initialized by setting G = X̃F = 1T .XF , and by comput-

ing the initial approximation of F as f0 by applying (10.9) to G, i.e. f0 = X−1G.

The subsequent approximations fn, n ≥ 1, of F are obtained through the following

iterative procedure.

1. Compute σHfn as in (10.13).

2. Compute XσHfn, the standard X-ray Transform of σfn, using (10.2) (by the

implementation technique described in Section 11.1). By projecting the data

into the complementary sets T and U , write

XσHfn = 1T .Xσfn + 1U .XσHfn.

140



10.5. NUMERICAL ANALYSIS OF CONVERGENCE THROUGH SPECTRAL
RADIUS

3. Replace 1T .XσHfn by the known data G = 1T .XF in the preceding formula

to define Yn = G+ 1U .XσHfn.

4. Compute fn+1 by applying the Katsevich inversion formula (10.9) to Yn. Hence,

fn+1 = X−1Yn = X−1[G+ 1U .XσHfn]. (10.14)

10.5 Numerical Analysis of Convergence through

Spectral Radius

We repeat the same experiment as in the case of spherical acquisition case, Section

5.6. We use the same size of data (in a cubical voxel grid of size 323) and adjust the

parameters accordingly.

Size of Data = 323 voxels

Helical scanning radius = 48 voxels

Source Detector distance = 96 voxels

Helical Pitch = 4 voxels

Number of detector rows, M = 8

Sources per turn = 16M = 128

The values of the spectral radius ρ(M) of the operator M = σX−11UXσ for

various ROI-radii are given in Table 10.1.
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Table 10.1: Spectral radius, ρ(M) of M for ROI’s of various ROI-radii (with 3D
spiral acquisition and wavelet-based linear regularization)

ROI-radius 3 voxels 5 voxels 6 voxels 7 voxels 9 voxels 11 voxels
ρ(M) 14.57 7.31 4.11 0.95 0.80 0.73

Again a minimal radius of 5 voxels was required for convergence. The spectral

radius is comparatively higher than the 3D spherical acquisition case.

The study of the spectral radius to ascertain convergence has a very important

practical implication. We have seen another condition for convergence in Section

7.1, which requires the calculation of the Relative Density D(C,F ), for a region of

interest C. However this value can only be estimated. The calculation of the spectral

radius gives an apriori condition for convergence which is independent of the density

function and depends only on its support size, the region C and the techniques for

acquisition, inversion and regularization. With these we can compute the spectral

radius and infer if convergence is possible.

We have verified this technique in three acquisition techniques: 2D cone-beam

acquisition, 3D spherical acquisition and 3D spiral acquisition. In addition the tech-

nique works well with two types of regularization: local averaging and wavelet-based

linear regularization. In actual practice the apriori simulated acquisition may not be

exact but an educated guess can still be made about the possibility of convergence.
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CHAPTER 11

Numerical Results for Reconstruction of 3D Collimated Data

with Spiral Acquisition

We have described the procedure for spiral tomography along with the Katsevich

inversion formula. The Searchlight CT algorithm for spiral tomography has also

been described. This chapter deals with the implementation of the Searchlight CT

algorithm in this setting and numerical results. The implementation of the Katsevich

inversion was coded by Adam Wunderlich in [96]. We have used the same code.

However for the data acquisition we will use our acquisition independent technique

described in Chapter 6. We will also discuss the dependence of the Searchlight CT
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algorithm on its various parameters.

11.1 Implementation of Data Acquisition

The data acquisition technique suggested in [68] and implemented in [96], is suitable

for piece-wise polynomial objective functions in the most general setting. We will use

the technique suggested in Section 5.2 to generalize data acquisition for any function.

Recall from Section 5.2, the data acquisition technique described was independent

of the acquisition technique. With notations as before, for any ray of direction θ,

emitted from a source position located at s(λ) we have a plane P (φ, ψ), such that

this ray is orthogonal to it. As in Section 6.1.3, we can compute the corresponding

w ∈ R3 (and θ ∈ S2) which identify a ray. Note that we had assumed w to lie on

the orthogonal plane P (φ, ψ), and hence we require to recalculate w satisfying this

extra condition. Hence every ray required for spiral acquisition can be expressed in

the form required in (10.9).

However due to the discretization in w and θ, interpolation is required. Let

l(wi, θi) be the rays for which the X-ray Transform is already known. For any ray

l(w, θ) we locate its four nearest neighbors by minimizing the distance,

ηi = ‖(w, θ)− (wi, θi)‖. (11.1)

For convenience let the four smallest distances be η1, η2, η3, and η4. Then

XF (w, θ) is calculated by using weighted linear interpolation.

XF (w, θ) =
η1XF (w1, θ1) + η2XF (w2, θ2) + η3XF (w3, θ3) + η4XF (w4, θ4)

η1 + η2 + η3 + η4

. (11.2)
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11.2 Performance of Searchlight CT with Spiral

Tomography

In this section we will examine the performance of Searchlight CT with spiral tomog-

raphy. We will first introduce a set of parameters which were used in the experiments

for this section. In the next section we will vary some of these parameters to see how

the performance varies with it.

Size of Data = 2563 voxels

Helical scanning radius = 384 voxels

Source Detector distance = 768 voxels

Helical Pitch = 35 voxels

Number of detector rows, M = 8

Sources per turn = 16M = 128

As a first test, we vary the radius of the region C and evaluate the performance of

the reconstruction algorithm. First the Shepp-Logan phantom is tested and then the

real mouse data. We expect the accuracy of reconstruction to be slightly worse than

the spherical acquisition as the number of source positions are significantly lower.

The performance measures Relative Reconstruction Error Rel, Radiation Exposure

E, Relative Density D and Peak Signal to Noise Ratio PSNR will be used as above.

It must be noted that, for best results, approximately 50 iterations are required
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Table 11.1: Performance of Searchlight CT with spiral tomography for various ROI-
radii (Shepp-Logan phantom)

ROI-radius D E Rel PSNR
45 voxels 3.8 % 21% 10.9 % 56.5 dB
60 voxels 8.5 % 33% 9.1 % 59.3 dB
75 voxels 15.3 % 47% 8.3 % 62.3 dB
90 voxels 23.8 % 60% 8.0 % 62.7 dB

but that is computationally expensive. The computation time was approximately

twelve hours as compared to eight hours for the spherical acquisition case. This is

primarily due to the recalculation of w and interpolation carried out during the data

acquisition which leads to slightly worse reconstruction. Within the iteration the

acquisition takes about twice as long as the inversion. As a compromise it is possible

to perform a lesser number of iterations. This is a trade off between performance

and computational efficiency.

The performance for Searchlight CT using spiral tomography for radii of C be-

tween 45 and 90 voxels is tabulated in Table 11.1. A comparison between the stan-

dard reconstruction and the reconstruction through Searchlight CT is shown in Fig-

ure 11.1.

A fact about exposure must be noted. From Table 11.1 and Table 7.1 in Chapter

7 it might seem that in spiral tomography the patients will be exposed to a higher

dosage of X-rays. However this is not true. Recall that exposure was defined relative

to the mode of acquisition. In spherical tomography the number of source positions

is much higher leading to a higher dosage of X-rays for the patient. In spiral to-

mography the comparatively high value of exposure is due to the smaller number of
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Figure 11.1: Comparison of reconstruction methods on a 3D Shepp-Logan phantom
with representative 2D slices are shown (a) Standard Reconstruction (b) Searchlight
CT (c) Ground Truth

Table 11.2: Performance of Searchlight CT with spiral tomography for various ROI-
radii (Mouse Tissue Data)

ROI-radius D E Rel PSNR
45 voxels 4.0 % 21% 11.4 % 52.8 dB
60 voxels 9.9 % 33% 9.7 % 56.9 dB
75 voxels 20.7 % 47% 8.8 % 58.6 dB
90 voxels 29.8 % 60% 8.4 % 60.1 dB

source positions.

Similar experiments were carried out for the mouse tissue data. The performance

is tabulated in Table 11.2 and a comparison of reconstruction methods is shown in

Figure 11.2.

Finally we compare the performance of Searchlight CT for the spherical and

spiral acquisition methods. A difference between the two methods is that while the

spherical case took 40 iterations to converge, the spiral took 50.The performance for

Shepp-Logan phantoms are tabulated in Table 7.1 for the spherical case and Table
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Figure 11.2: Comparison of reconstruction methods on the mouse tissue data with
representative 2D slices are shown (a) Standard Reconstruction (b) Searchlight CT
(c) Ground Truth

11.1 for the spiral case. The relative reconstruction error, as expected is slightly

higher for the spiral case. For example when the radius of C is 60 pixels spherical

acquisition has an error of 8.5% whereas the spiral acquisition had 9.1% error. For

the mouse tissue data the corresponding errors are 8.8% for the spherical acquisition

and 9.7% for the spiral acquisition. It must be noted that in the spiral case we

have used a better technique of regularization so the difference seems smaller than

it actually is.

11.3 Dependence of Searchlight CT on Parame-

ters

As mentioned in the previous section, there are several parameters for spiral tomog-

raphy. In this section we will observe the effect of these parameters on the quality of

reconstruction when using Searchlight CT. We use the Shepp-Logan phantom and
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for computational convenience we will keep the size of the phantom small at 643.

The parameters used in the previous section are proportionally adjusted.

Size of Data = 643 voxels

Helical scanning radius = 96 voxels

Source Detector distance = 192 voxels

Helical Pitch = 9 voxels

Number of detector rows, M = 8

Sources per turn = 16M = 128

The Relative reconstruction error with 50 iterations Rel for this set of parameters

is 10.7%. To study the effect of a particular parameter, we vary it while keeping the

other parameters constant.

One important parameters is the number of detector rows, M , which in turn de-

termines the number of sources per turn. Table 11.3 tabulates the relative error Rel,

for various values of M . Number of row detector between 4 and 20 were considered.

Table 11.3: Relative Error, Rel for various number of detectors, M

Number of rows, M 4 8 12 16 20
Sources per Turn 64 128 192 256 320

Relative Error, Rel 15.3% 10.7% 9.8% 9.3% 8.6%

Obviously the higher the number of sources, the better will be the reconstruction.

However we use just 8 detector rows (128 sources per turn) due to high computational
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times. Searchlight CT requires the reconstruction of every slice and hence becomes

computationally expensive if a higher number of detector rows is used. However

if proper technology and resources are available, this parameter can be altered to

improve performance. In the industrial applications typically 8 and 16 rows detectors

are used while development of 32 and 32+ row detectors is in process [68].

Next we look at the effect of the pitch. As shown below, the pitch used in the

previous section (which is 9 voxels for this smaller phantom) is the optimal pitch for

best reconstruction. The performance of Searchlight CT for various helical pitches

between 3 and 29 voxels is tabulated in Table 11.4.

Table 11.4: Relative Error, Rel for various values of helical pitches (in voxels)

Pitch 3 6 10 13 16 19 22 26 29
Rel 11.5% 11.0% 10.9% 16.7% 21.5% 20.7% 20.1% 20.6% 20.8%

As seen in Table 11.4 the optimal pitch is between 6 and 10 pixels. When the pitch

is too small, the scanning tends to a 2D scan, hence the reconstruction accuracy is

worse. On the other hand making the pitch too large leads to fewer source positions

which negatively affects reconstruction. This implies that the performance doesn’t

have a direct correlation with the helical pitch which can further be seen in Figure

11.3. For the size of phantom we are considering, a realistic range of pitch would be

between 7 and 13 voxels.

The effect of the helical scanning radius on the performance of Searchlight CT

was found to be minimal. Though smaller radii lead to marginally better perfor-

mance, medical reasons prevent it from being used in real life since a patient cannot
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Figure 11.3: Plot of helical pitch against Relative Error for a Shepp-Logan phantom

be located too close to the emitting source. Table 11.5 shows the performance of

Searchlight CT for various scanning radii between 64 and 160 voxels. The minimum

distance by safety standards would be around 90 voxels.

Table 11.5: Relative Error, Rel for various values of helical scanning radii (in voxels)

Scanning Radius 64 80 96 112 128 144 160
Rel 10.2% 10.5% 10.7% 11.1% 11.3% 11.5% 11.6%

The last parameter is the source-detector distance. Usually this distance is greater

than or equal to the helical scanning radius. Though greater distance leads to better

performance, too high a distance may lead to loss of intensity in practice. For a

phantom of size 64, the source-detector distance should not exceed 200 voxels. The

performance for various source-detector distances is tabulated in Table 11.6.

We have examined the effect of the various parameters on the reconstruction
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Table 11.6: Relative Error, Rel for various values of source-detector distance (in
voxels)

Source-Detector Distance 96 128 160 192 224 256
Rel 12.0% 11.6% 11.1% 10.7% 10.7% 10.6%

accuracy. For the phantom of this size we have the inferred set of parameters for

best reconstruction would be a large number of source positions, a pitch of about 9

voxels, a small scanning radius and a large source-detector distance. However there

are realistic constraints of minimum scanning radius (of 90 voxels) and maximum

source-detector distance (200 voxels). Hence we come to the conclusion that the set

of parameters used initially is essentially optimal. The Searchlight CT algorithm is

an effective algorithm for collimated reconstruction in case of spiral tomography.
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CHAPTER 12

Related Research in Tomography

We have examined the problem of local reconstruction in Computed Tomography.

Over the years there has been extensive research on the mathematics of tomography.

‘The Mathematics of Computerized Tomography’ by Frank Natterer [65] was one

of the first books to be published which dealt solely with this subject and is still

considered to be ‘Bible’ for all in this area. ‘Introduction to the Mathematics of

Medical Imaging’ by Charles Epstein [22] covered a wider range of topics, it gave

significant insight into the mathematics behind this real life problem. In this chapter

we overview some of these attempts to study the underlying mathematical principles

of tomography. The literature on 3D collimated reconstruction is very limited. Hence

153



12.1. COMPUTED TOMOGRAPHY IN 2D

we focus on the 2D collimated problem and the uncollimated 3D problem. For

one particular attempt at the 2D collimated problem, comparison of results with

Searchlight CT is provided. There are several research groups around the globe

which are working in related areas. As per the chapters in this thesis we will classify

the ongoing research into three categories: tomography in 2D, tomography in 3D

and spiral tomography.

12.1 Computed Tomography in 2D

One of the well known algorithms for collimated reconstruction in 2D was proposed

by Tim Olson and Joe Destefano first as a technical report in [71] and later on in

[72, 70]. The algorithm suggested is briefly explained here. In its simplest form, all

the rays passing through the region of interest C are allowed to pass while for the

other rays, half of them are collimated. The missing values are approximated through

interpolation in the wavelet transform. In a more general setting, the fraction of the

other rays which are collimated increases as the distance from C increases. The

X-ray Transform for the simple case is shown in Figure 12.1 and for the general case

in Figure 12.2.

We compared the performance of Searchlight CT against to the one proposed

in [71], using 2D Shepp-Logan phantoms. For this phantom, the Searchlight CT

collimated reconstruction algorithm yields Rel = 4.1% while the algorithm proposed

in [71] yields Rel = 7.7%. However the major difference concerns the performance

in terms of the exposure Ex. Using the method from [71], the radiation exposure
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Figure 12.1: The X-ray Transform when half the rays not passing through the region
C are collimated

Figure 12.2: The X-ray Transform when a progressive fraction of the rays not passing
through the region C are collimated
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is 45%, while our Searchlight CT algorithm yields radiation exposure 27%, which is

considerably smaller. Since our major objective was reducing exposure, the stated

difference is very significant.

Another group which has recently worked on local tomography is led by Adel

Faridani at the Oregon State University. Their approach to the problem is slightly

different. Instead of reconstructing the density function F directly, they reconstruct a

related function. In [24], Faridani et al. reconstructed ΛF where Λ is the square root

of the positive Laplace operator, −∆. This function ΛF has the same boundaries and

smooth regions as F . However, in the regions where F is constant, ΛF has a cupped

shape. This cupping can partially be neutralized by the addition of the operator

µΛ−1. Hence in the sequel paper [23] the function to be reconstructed locally was

chosen to be α(Λ + µΛ−1)F .

A similar method called pseudo-local tomography was explored by Katsevich and

Ramm in [49]. Rather than reconstructing F directly, an auxiliary function Fd with

local reconstruction properties was reconstructed. This function preserves the loca-

tion and sizes of the discontinuities of F as well as its derivative. In a previous paper

[48] the authors had discusses the general problem of finding the discontinuities of

a function from its tomographic data. However the major contribution of Katsevich

was in the development of exact inversion formulae for spiral tomography.

In [7] Walnut et al. have used the theory of continuous wavelet transforms to

derive the reconstruction formula for the Radon Transform. However the major

disadvantage here is that it is applicable only in even dimensions, where the recon-

struction formulae turn out to be local. Hence the formulae are not applicable in the
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realistic 3D setting. The method suggested in [78] suffers from the same shortcomings

though it performs well in terms of exposure.

Recently this problem has been tackled by Zeng et al. at University of Utah. An

algorithm using the maximum likelihood expectation method was proposed is [103].

Another approach was presented in [102] specifically for convex regions of interest.

Some other results on 2D collimated tomography include [84, 97, 74, 47]. As

stated above, most of these focus on extracting the singular component (edges)

through a related function or can be applied only in even dimensions. Even in

such cases, the performance is not fully satisfactory.

12.2 Computed Tomography in 3D

We have used spherical acquisition as an initial mode of acquisition in 3D. This mode

of acquisition is highly redundant on source positions and can be restricted to curves

in 3D. Early studies considered source positions on a circular trajectory, with conical-

beam X-rays emitting from them. This case is very close to the 2D acquisition. Even

presently this technique is used at certain medical research centers, for example at

the Methodist Hospital, Houston. Part of the data for this research was provided by

them, and it was scanned on a machine as shown in Figure 12.3.

One of the earliest and most famous reconstruction method was devised by Feld-

kamp, Davis, and Kress in [25] and named after them as FDK. This method assumes

circular acquisition and ignores the divergence of beams. The FDK algorithm has
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Figure 12.3: A CT scan machine with the source positions on a circular path (at
Methodist Hospital, Houston)

several variants for modern applications. Its application to spiral CT will be seen

in the next section. Reconstruction from circular acquisition is also discussed in

[58, 93, 11]. Finch extended circular acquisition to general planar curves in [26]. De-

spite the simplicity of its nature, the major disadvantage here is the limited number

of source positions.

As a next step, to increase the number of source positions, Zhuang et al. sug-

gested an acquisition technique in [105] which had two concentric circles lying on

orthogonal planes. A similar technique was described in [13]. Katsevich generalized

this algorithm where it was enough to use incomplete circles [46]. Finally instead

of using a circle or circles (which lie on a finite number of planes), a new approach

suggested acquisition on a saddle trajectory. This is examined and validated in

[73, 9].
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In an effort to generalize the 3D reconstruction, attempts were made to adapt the

acquisition for any bounded curve. Initially these attempts were purely theoretical.

One successful approach was given by Tuy in [94]. This was extended by Grangeat

in [31]. Finch gave another approach to this problem in [28]. Recently a team led by

Ge Wang has made further progress in this direction [104, 99].

Most of the attempts at 3D reconstruction study the uncollimated case. Hence

health hazards due to high radiation dose still remained a problem. A review of de-

velopments on the collimated X-ray Transform is given in [27]. Due to its non-locality

there were efforts to reduce the dosage by sparsifying the source positions [101, 35].

However the fewer the source positions the less accurate is the reconstruction.

Another possible approach is to use compressed sensing [12, 4] to avoid high

radiation dose. Recall that compressed sensing exploits the fact that many types of

data can be represented using only a few terms in a suitable representation. Hence,

nonlinear optimization methods such as `1 minimization can be employed to recover

such data using very few measurements. However, such measurements have to be

highly decorrelated with respect to the data and this implies that the radiations

sources have to be placed at specific locations, typically on a highly irregular grid.

As a result, the application of this type of approach requires to radically redesign

the acquisition process in CT devices.

A very recent development which used circular acquisition (C-arm tomography)

is the ATRACT algorithm. This algorithm is amongst the first designed for 3D colli-

mated X-ray tomography. It was developed by Dennerlein and results are presented

for angiographic data in [18].
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12.3 Spiral Tomography

Initial attempts at reconstruction from spiral tomographic data ignored the diver-

gence of the X-ray beams as only four detector rows were used. Such reconstruction

algorithms were explored in [87, 80]. However machines with higher number of de-

tector rows soon appeared in the market. CT scanners with 16 detector rows were

introduced in 2001. So the divergence could no longer be neglected and new algo-

rithms were introduced keeping this in account. Spiral tomography reconstruction

algorithms can be divided into two categories, exact and approximate which has

three further subcategories, a brief description of which are given below following

[68, 44].

1. Approximate Algorithms

(a) Rebinning Algorithms

(b) FDK-like Algorithms

(c) Quasi-exact Algorithms

2. Theoretically Exact Algorithms

The rebinning algorithms estimate the 2D X-ray Transforms on oblique slices.

The oblique slices can then be computed by any 2D reconstruction technique. The

reconstruction is completed by interpolating between these oblique slices. The quality

of reconstruction depends mainly on the initial estimate of the 2D X-ray Transforms.

There are several algorithms to estimate the 2D X-ray Transforms, for example the
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oblique surface reconstruction algorithm [37, 14], the nutating slice algorithm [55],

the ASSR method [40], etc. An exact formula was given in [81] but is computationally

very expensive.

As mentioned previously, in 1984 Feldkamp, Davis, and Kress (FDK) designed

an algorithm for reconstruction from circular scans [25]. These were later extended

for application to spiral tomography. The algorithm had three major steps: 1D

ramp filtering, data weighting and cone beam back-projection. The data weighting

is introduced to smooth out the discontinuities in the reconstruction of a slice. One of

the first adaptations to spiral CT was made in [15]. As in the original FDK algorithm

in [25], this paper too ignored the divergence of beams. This was countered with time

and good algorithms for a large number of detector rows were introduced in [93, 85].

The major drawback of FDK-like algorithms it that it fails to predict the presence

of artifacts in the reconstruction. This is primarily due to the lack of theoretical

support for the approximations involved in the algorithm.

The analytical formulae for reconstruction can be discretized for applications.

This constitutes the quasi-exact class of reconstruction formulae. A majority of

these are developed from Grangeat’s theory for cone-beam reconstruction using the

3D Radon Transform. These methods are not exact because some of the Radon

samples are processed incorrectly. More details regarding this can be found in [89].

Some of the major quasi-exact algorithms are the zero boundary method [17], the

virtual circle method [53] and the local-ROI method using Hilbert filtering [88]. The

quasi-exact algorithms are less computationally efficient than the rebining and FDK

algorithms and may suffer from discretization errors.
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We have already mentioned an exact reconstruction method in [81] in the descrip-

tion of rebining algorithms. A filtered back-projection formulation of this was given

in [56]. A four step local-ROI method was described in[88]. Exact reconstructions

can also be achieved by adding a correction image to quasi-exact algorithms [89].

Another class of exact reconstruction methods use the relationship between the first

derivative of the Radon Transform and the cone-beam transform [31, 75, 64].

The major difference between exact and approximate methods is that while exact

methods are more accurate they are computationally very intensive and require a

huge amount of memory to store the cone-beam projections. This gap was bridged

by Katsevich, who provided a first theoretically exact inversion formula using the

filtered back-projection [41, 43] (after deriving an approximate formula in[42]). The

formula was later implemented in an efficient way. The major advantage of the

Katsevich inversion formula is that it is proved in the most general setting and is

independent of acquisition method. As described in Chapter 10, the formula has two

steps, filtering of the derivative followed by back-projection. The drawbacks however

is the requirement of a detector array larger than the theoretically minimum and the

support of the object being smaller than the realistic case of a patient.

These drawbacks were addressed by Katsevich himself in [45] where he proposed

an improved version of the algorithm. In this variant there was no longer a restriction

on the support of the object and the detector array is much smaller than the previous

one. As an added advantage this algorithm is twice as fast. Further analysis of this

formula is given in [44]. It was shown for a phantom constant along the z-direction,

the formula was equivalent to the 2D inversion of the X-ray Transform. The formula
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remained exact as the helical pitch tended to zero and the limit was again the 2D

X-ray inversion.

The Katsevich inversion formula was tested initially on simulated phantoms in

[45]. There have been several attempts on better implementation of this formula.

One of these was discussed in detail in Chapter 10 which was based on [68]. A

different approach is given in [100].
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CHAPTER 13

Conclusion and Future Research

Over the course of the thesis, we have presented an algorithm which can reconstruct a

small region within the support of an objective function, F from the X-ray Transform

of F . This is especially useful for cases which require several follow up scans, for

example scans to monitor the progress of a tumor. If only a specific region of interest

C needs to be monitored, Searchlight CT can be used to reconstruct this region. This

method greatly reduces the radiation exposure of a patient to harmful X-rays.

Another advantage of the Searchlight CT algorithm is that it requires minimal

alteration to acquisition devices. Though we have described various variants of col-

limation the simplest one involving strict cutoffs was seen to be good enough for the
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convergence of the algorithm. This mode of collimation is the simplest to manufac-

ture in the industry. We have consulted doctors and technicians at the Methodist

Hospital, Houston, who have confirmed the viability of such collimators which are

made of aluminum.

However the current algorithm needs several improvements to be useful in prac-

tical situations.

13.1 Current Enhancements of Searchlight CT

Elimination of Redundancies

The acquisition and inversion techniques have redundancies. Removing these redun-

dancies is beneficial in more than one way. Our original objective was to reduce

radiation exposure. Reduction of redundancies will go a long way in reducing radia-

tion exposure during the initial scan. Also this will lead to a major improvement in

computational efficiency.

Computational Efficiency

The programs written for Searchlight CT have not been coded by professional pro-

grammers. By implementing better programming techniques like parallel computing,

we can significantly improve the computing time. Parallel computing requires ex-

tensive computing resources and additional licenses. Hence availability might be an
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issue. However it might be very useful especially in the implementation of the Katse-

vich inversion formula. Here each slice is reconstructed individually so parallel cores

would speed up algorithm.

Rigorous Analytical Proof

No mathematical algorithm is complete without an analytical proof. Presently we

have provided a detailed validation through eigenvalues and eigenvectors. We have

also provided an outline for the analytical proof in which we intend to relax the

assumptions of starting with a regularized objective function and regularizing the

replacement operator. An analytical proof in the most general setting is one of our

present targets.

Dependence on Parameters

Currently our algorithm is very dependent on parameters. Sometimes parameters

may not be exact. Minor variations in parameters lead to significant changes in

performance. We consider the following example to emphasize this problem.

We were provided collimated X-ray data from the Methodist Hospital to test our

algorithm. The 3D acquisition was on a circle. A 2D section of the data was chosen

to apply our version of the 2D algorithm. The data were incomplete and needed to

be completed by the method in Section 2.2. Data were available for projection angles

between 70 and 290 as shown in Figure 13.1.
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Figure 13.1: Incomplete X-ray data as provided by Methodist Hospital

The data were then completed using Section 2.2. However the parameters pro-

vided to us were inaccurate and hence the completion was not exact, as seen in

Figure 13.2. This made this data set unusable for Searchlight CT.

In view of such situations (which sometimes cannot be avoided as will be seen

in the next section) we need to modify the Searchlight CT algorithm so that it can

handle approximate parameters.

13.2 Future Research

The major long term goal is to make Searchlight CT a medically viable technique

which can be used on human patients. To get to that stage we need to address

several sources of errors. We have already seen the problems caused by the over
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Figure 13.2: Completed X-ray data from Figure 13.1

dependence on parameters. Practically parameters like distances and sizes will only

be approximate. Some other factors are mentioned below.

Naturally Occurring Noise

Though we have checked for robustness to Gaussian noise most of the noise that

occur naturally is not of this kind. Noise may occur in many other ways which may

not be suitable for Searchlight CT. We have interacted with doctors at the Methodist

Hospital who have enlightened us on some of the ways noise may occur. The source

and detectors are not fully stable during rotation which causes noisy data acquisition.

Slight malfunctions in acquisition devices can also cause noisy acquisition.
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Fixed Density Function

We have assumed the density function to be fixed. This might not always be the

case. Due to internal or external movements of a patient the function might change

with time. A classic example of this is the beating of a heart. This will complicate

the reconstruction process. Searchlight CT needs to be improved to handle such

cases. Also when the density function changes with time the parameters may also

change. This makes the problem of handling approximate parameters all the more

important. There have been some initial attempts in this direction, which is now

called 4D CT. A team [29] has been working on 4D CT in relation to blood and air

flow in the lungs.

Industrial Partnership

We have a very good understanding of the mathematical models and algorithmics

required for Searchlight CT. However viability of acquisition and collimation tech-

niques in real life is something which can best be explained by industrial scientists

and technicians. To make Searchlight CT applicable on human patients we aim to

tie up with an industrial partner.

An industrial input on Searchlight CT can go a long way in overcoming the

obstacles currently faced. With a better understanding of the acquisition devices we

can create more suitable mathematical models. Quantities like Radiation Exposure

and Relative Density will be defined slightly differently to ensure that the practical

situation is properly modeled. For example, an X-ray beam not only affects a single
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point through which it passes but also a small neighborhood around it.

We have seen the good performance of Searchlight CT for the simulations we have

tried with both simulated and real data. We expect that with proper development

this can become a medically viable diagnostic tool.
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