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Abstract

Adaptation of a population to a new environment is driven by the emergence

of bene�cial mutations and their spread due to natural selection. For this reason,

the rate and e�ect of the bene�cial mutations are key parameters in determining

the degree of adaptation of a population in a new environment. Stochastic mod-

els for this process have been developed, however, many of the relevant population

parameters are poorly known, largely due to the di�culty of using experiments to

understand the underlying stochastic process of mutations. In this thesis, we analyze

the experiments that track the dynamics of neutral markers, for the evolving asexual

populations of bacteria Escherichia coli to study the e�ect of newly arising bene�-

cial mutations. We present a new simulation approach, to estimate the rate and size

of these bene�cial mutations, and to develop e�cient estimators of mutation rates

and selective advantages. We evaluate the accuracy of these estimators through our

comprehensive simulations. These estimators are quite robust to the use of relatively

low experimental replications. To study the validity of our model, we compare exper-

imentally determined estimates of selective advantages to our theoretically obtained

estimates of selective advantages. We �nd that our theoretical predictions are not

very di�erent from selective coe�cients obtained experimentally. We perform the

study �rst under the simplifying assumption that only one irreversible mutation is

available to the population, and then extend this to a model that allows multiple

mutations to be available to the population. Application of our method to suitably

designed experiments will allow estimation of how evolvability of population depends

on demographic and initial �tness parameters.
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5.5.2 Loss of Accuracy of ŝ due to Complementary Sub-sampling . . 108
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CHAPTER 1

Introduction

1.1 Historical Background

In the introduction to The Origin of Species, Darwin (1859) [9] states the following:

"As many more individuals of each species are born than can possibly

survive; and as, consequently, there is a frequently recurring struggle for

existence, it follows that any being, if it vary however slightly in any

manner pro�table to itself, under the complex and sometimes varying

conditions of life, will have a better chance of surviving and thus naturally
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selected. From the strong principle of inheritance, any selected variety

will tend to propagate its new and modi�ed form. "

Although much progress has been made in biology since Darwin's time, his theory of

natural selection still remains as the only scienti�cally acceptable theory to explain

why organisms are so well adapted to their environments. As an intuitive idea for

the de�nition of adaptation, Rice (1961) [47] proposes that organisms evolve traits

that maximize size of the population of those organisms in a particular environment.

Adaptive evolution is driven by the emergence of bene�cial changes in the DNA

sequence of a cell's genome, and their subsequent spread due to natural selection.

The occurrence of bene�cial changes in a cell's genome is termed �Mutation". New

factors arise in an organism by the process of mutation. If a mutant with high

selective advantage appears in a population, then it has a positive probability of

survival, (Kimura (1983) [32]) however large the population may be. Haldane (1927)

[21] in his work about developing a mathematical theory for natural selection, shows

that in a constant size population, the probability that a mutation with selective

advantage s will survive random changes in allele frequency due to random sampling

is approximately 2s. These changes in allele frequency in a population due to random

sampling are termed "Genetic Drift".

In population genetics, it is assumed that selection acts on individuals based on their

phenotype and these phenotypes are determined by individuals' genotype. Thus, the

distinction of �tness as a property of an individual or as a property of a genotype is

not an issue in population genetics (Rice (1961) [47]). Fitness de�nes the ability of

an individual to both survive and reproduce in an environment. The distribution of
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�tness re�ects the selection coe�cient relative to the �ttest alleles in the population.

It is common in the literature to assume that there is an underlying distribution of

absolute �tnesses from which the relative �tnesses are derived. The absolute �tnesses

are the expected number of surviving or successful o�springs. The relative �tnesses

are simply the values of absolute �tnesses scaled in some way. For example, one

could obtain relative �tnesses if one divides the �tness value of each genotype by the

largest absolute �tness value so that the �ttest genotype has a relative �tness of 1.

There are two main �tness distributions that have been commonly used. Ohta (1977)

[43] investigated a model in which selection coe�cients against the mutants follow

an exponential distribution; if σ denotes the standard deviation characterizing the

dispersion in the distribution, and if s denotes the selective advantage, then the

exponential distribution is given by

fe(s) =
1

σ
es/σ, s < 0.

Kimura (1979) [31] restricted the study to deleterious mutations, and disregarded

bene�cial mutations. He studied a model of nearly neutral mutations that assumes

that the selection coe�cient against mutant at various sites within a gene follows a

gamma distribution given by

f(s) =
αβ

Γ(β)
(−s)β−1eαs s < 0

where α = β/σ. This model is based on the idea that selective neutrality is the

limit when the selective advantage becomes inde�nitely small. Kimura was led to

the gamma distribution precisely, because, as he states in his (Kimura (1969) [31])

paper,
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"Ohta's model has a drawback in that it cannot accommodate enough

mutations that behave e�ectively as neutral when the population size

gets large. "

The gamma distribution has considerably more probability mass near zero, sug-

gesting that selective coe�cients would be much larger than for the exponential

distribution. In 1991, Gillespie [19] gave an argument using extreme value theory,

to conclude that Ohta's exponential distribution is the preferred distribution to be

used for the selection coe�cients. His (Gillespie (1991) [19]) argument goes as fol-

lows: Suppose at a particular locus, the absolute �tnesses of m alleles are given by

the random variables X1 > X2 > · · · > Xm, which are ordered m random variables

drawn independently from some probability distribution. It is possible to �nd a se-

quence of numbers an and bn such that the distribution Zn = X1−an
bn

converges to

the extreme value distribution limn→∞ P (Zn < z) = exp(−e−z). The fact that the

limiting distribution does not depend on the Xi is reminiscent of the Central Limit

Theorem. Thus, as m→∞, the extreme value theory tells us that the distribution

of s approaches an exponential distribution rather than a gamma, no matter what

the distribution of the Xi. Any fast decreasing density for the selective advantages

of bene�cial mutational e�ects, would also, like the exponential, assume that there

are many more bene�cial mutations of small e�ect than of large e�ect.

Fisher (1930) [16] outlined a view of evolutionary adaptation in terms of intuitive,

geometrical considerations. Fisher illustrated how adaptation is determined by a

number of di�erent features of an organism. An organism was described as having n

quantitative traits. These quantitative characters of an organism are then viewed as
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the Cartesian coordinates in an n-dimensional "space of characters", and a particular

organism, with its particular set of n characters, was then geometrically represented

as a point in this space. The level of adaptation of an organism was determined from

its distance from a �xed point in the n−dimensional character space. The closer

an organism is to this �xed point, the higher is its �tness. This �xed point was

thus implicitly taken as a �tness optimum. A mutation is adaptive if an individual

carrying a newly arisen mutation is closer to the location of the �tness evolutionary

adaptation.

Models of the process of adaptive evolution have been developed, for example, by

Haldane (1927) [21], Fisher (1930) [16], Kimura (1962) [30], and Ohta (1977) [43].

Adaptive evolution is driven by the emergence of bene�cial mutations and their sub-

sequent spread due to natural selection. These models demonstrated the importance

of stochastic sampling events in the establishment of bene�cial mutations in evolv-

ing populations. A key di�culty in the application of these models is that many of

the relevant population genetics parameters are poorly known, limiting their ability

to predict general features of evolutionary dynamics in real populations. In 1991,

Lenski et al. [35] measured the degree to which adaptation of independent evolving

populations is associated to evolving populations as a whole. The models of adap-

tation assume that mutations are rare, and the fate of each bene�cial mutation is

decided on its own merits. Further in 1998, Gerrish and Lenski [18] modeled the fate

of bene�cial mutations by considering clonal interference, whereby, two or more ben-

e�cial mutations arise independently and interfere in their respective growth. Some

of the main conclusions of their work include
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(i) The probability of �xation of a given bene�cial mutation decreases with both

population size and mutation rate.

(ii) As population size or mutation rate increase, adaptive substitutions result in

larger �tness increases.

(iii) The rate of adaptation is an increasing, but decelerating, function of both

population size and mutation rate.

(iv) Bene�cial mutations that become transiently common but do not achieve �x-

ation because of interfering bene�cial mutations are relatively abundant.

In sexual populations, bene�cial mutations that occur in di�erent lineages may be

recombined into a single lineage (Peters and Otto (2003) [45]). However, in asex-

ual populations, the clones that carry such alternative bene�cial mutations compete

with one another, and interfere with the expected progression of a given mutation

to �xation. The idea that bene�cial mutations must compete in asexual popula-

tions was originally proposed by Muller in 1932 [42]. Clonal interference is thus

the phenomenon whereby the fate of the bene�cial mutation is altered by the ap-

pearance of a superior alternative mutation (Atwood et al. (1951) [2], Helling et al.

(1987) [24], Visser et al. (1999) [1]). Such competition between bene�cial mutations

slows the spread of and may even eliminate the �rst mutation. Asexual populations

adapt to their environment by the occurrence and subsequent rise in frequency of

the bene�cial mutations. Clonal interference ensures that those bene�cial mutations

that do achieve �xation are of large e�ect. In 1999, Miralles et al., [41] measured

the e�ects of clonal interference in asexual RNA virus vesicular stomatitis virus. In
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large asexual population, bene�cial mutations compete with each other for �xation.

Recent work (Wilke (2004) [53]) shows that as the population size increases, the

rate of substitution approaches a constant which is equal to the mean e�ect of new

bene�cial mutations. Wilke also shows that mean e�ect of new bene�cial mutations

is smaller than the mean e�ect of new deleterious mutations, and that the new ben-

e�cial mutations are exponentially distributed. The mean e�ect of �xed mutations

grows logarithmically with the population size. Wilke derives a formula whether at

a given population size, the bene�cial mutations are expected to compete with each

other or go to �xation.

In large asexual populations, recent work (Joseph and Hall (2004) [26], Desai et. al.

(2007) [12], Desai and Fisher (2007) [11], Fogle et al. (2008) [17]) has shown that

bene�cial mutations can be very common. When bene�cial mutations are common,

many will occur before any of the mutation can �x, so there will be many di�erent

mutant lineages in the population concurrently. In asexual populations, these di�er-

ent mutant lineages interfere and not all can �x simultaneously (Perfeito et al. (2007)

[44]; Gresham et al. (2008) [20], Kao and Sherlock (2008) [27]). Work of (Visser and

Rozen (2006) [10] and Desai and Fisher (2007) [11]) for instance, analyzes dynam-

ics of such multiple mutations and the interplay between multiple mutations and

interference between clones.
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1.2 Recent Developments

In the experimental population evolution studied in this thesis, the populations of

bacteria Escherichia. coli evolve over generations with daily {growth + dilution}

cycles. These daily dilutions create "bottlenecks" in the population in which a rare

bene�cial mutation might also be lost. An important feature of these population

bottlenecks in experimental systems is their extreme regularity. Unlike stochastic

environmental factors, experimental bottlenecks occur at �xed intervals. At the end

of each interval, the population is reduced by a �xed dilution ratio. Levin et al.

(2000) [37] studied the cumulative e�ects of periodic bottlenecks in such growth di-

lution models. The work of Gerrish and Wahl (2001) [52] establishes the probability

that the bene�cial mutations ultimately become extinct in a population with peri-

odic dilutions. Periodic dilutions a�ect evolution, and thus increase the probability

that bene�cial mutations will be lost. These bottlenecks occur at random and pe-

riodic intervals, with a �xed dilution ratio. The authors, Gerrish and Wahl (2001)

[52] use a discrete approach based on branching process and a continuous di�usion

process, solving the Kolmogorov backward equation; in order to derive this probabil-

ity that a bene�cial mutation is lost in a population with periodic dilutions. These

authors conclude that both approaches lead to the same extinction probability. This

probability drops steeply with increasing time and decreasing selective advantage s,

i.e, mutations that occur late or have low selective advantage s are unlikely to sur-

vive. Usually population size is largest just before a dilution, and more mutations

occur when population size is large. Further in 2002, He�ernan and Wahl [22] ex-

plore the e�ects of introducing genetic drift into models of evolution of population
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with periodic bottlenecks. These experiments, similar to the ones considered for this

thesis, are characterized by exponential growth or logistic growth, for the bacterial

populations, with periodic bottlenecks. He�ernan and Wahl [22] also determine the

probability that rare mutations are eliminated from the populations due to periodic

bottlenecks.

In the stochastic setup of the experimental model considered for this thesis, the num-

ber of mutations is assumed to have a Poisson distribution dependent on the size

of the population. Fluctuations in bacterial populations that occur between genera-

tions cannot be modeled using a deterministic growth. Stochastic distributions, such

as the Poisson distribution, for mutants in each generation, allow for random �uctu-

ations in population sizes. These �uctuations may also sometimes eliminate a rare

bene�cial mutation, a process known as genetic drift. The probability that a bene-

�cial mutation will reach �xation, in a constant size population, was �rst addressed

by Haldane (1927) [21] and Fisher (1930) [16], using a discrete treatment based on

branching process. A more general continuous solution was developed by Kimura

(1957) [29]; (1962) [30]) based on Kolmogorov backward equation. Gerrish and Wahl

(2001) [52], derive approximation for extinction probability that a rare mutation will

eliminate from the population which undergoes periodic dilutions. But in all these

cases, a weak selection is assumed with a deterministic exponential model to approx-

imate bacterial growth. Thus the probability that a rare mutation is eliminated by

population bottlenecks alone is determined ignoring other factors which may in�u-

ence survival, for instance, �uctuations in bacterial population. He�ernan and Whal

(2002) [22] derive �xation probabilities for mutations, with large selective advantage
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as well, and thus not assuming weak selection alone. In 1967, Ewen [13] derives

this probability as well, but assumes that the mutant has a selective advantage in

every generation, i.e, the mutants have the same selective advantage in surviving

the bottleneck as it has during the growth period before bottleneck. However, the

more likely scenario in the evolution of bacterial population, is that an advantageous

mutant may have a selective advantage during growth, but the periodic bottleneck

will select individuals at random from a population.

Experimental and theoretical analyses of evolving viral populations have been able

to test the key predictions of adaptation models, including the distribution of bene-

�cial mutation e�ects (Rokyta et al. (2005) [49]; (2008) [48]). This work has taken

advantage of the small genome size, high mutation rate and large mutation e�ect size

of viruses to isolate genotypes that were shown to have single adaptive mutations

and that experienced minimal selection through competition between co-occurring

lineages, to determine mutational parameters directly. In bacterial systems, however,

direct estimates of mutational parameters is currently unfeasible (Rozen et al. (2002)

[51]). Notably, it is technically di�cult to ensure that observed �tness changes are

due to single mutations, and to evaluate the e�ect that interference between com-

peting mutations will have on biasing the �tness e�ect of the mutations that �x

(Rozen et al. (2002) [51]). Bene�cial mutations are very rare events and are thus

di�cult to observe. Bacterial populations seem ideal for studying bene�cial muta-

tions because these bacterial populations have large sizes and short generation times.

Bacterial populations propagated in the laboratory over a relatively short period of

time can undergo billions of replications. In such experiments, bene�cial mutations
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are sure to arise, however, become detectable when they have achieved observable

frequencies in the population. This can be seen, as in, Rozen et al. (2002) [51].

To achieve observable frequency in a population, a bene�cial mutation must survive

both drift and clonal interference, thus creating a bias in the bene�cial mutations

that are observed. Some experimental designs reduce these issues, but they typically

consider adaptation caused by a subset of all available bene�cial mutations (Kassen

and Bataillon (2006) [28]; MacLean and Buckling (2009) [39]; McDonald et al. (2011)

[40]). Kassen and Bataillon (2006) [28], for instance, restricted attention to muta-

tions with a speci�c phenotype, and their pleiotropic e�ects in di�erent environments

rather than the full spectrum of mutational e�ects in any speci�c environment. Thus

considering mutations that represent a fraction of all possible mutations in a given

environment. Alternatively, these parameters have generally been estimated indi-

rectly by inferences from their e�ect on the linked observable markers, as seen in

Imhof and Schlotterer (2001) [25], Rozen et al. (2002) [51]; Hegreness et al. (2006)

[23]; Perfeito et al. (2007) [44]; Barrick et al. (2010) [5]. Details of these experiments

di�er, but most have in common the application of some kind of model to infer un-

derlying evolutionary parameters from changes in the frequency of a neutral marker

linked to the new arising bene�cial mutation.

1.3 Outline of the Thesis

Analysis of marker divergence experiments allow estimation of an e�ective bene�cial

mutation rate, which is not possible through any direct measure of evolved genotypes.
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Here, we extend the existing published results by focusing on stochastic modeling

and estimation techniques for the mutational parameters in individual evolution ex-

periments tracking the dynamics of neutral markers in the evolving populations. We

focus our analysis on evolution trajectories for which emerging mutants reaching

non-negligible frequencies actually have nearly identical selective advantages.

We �rst develop the theoretical background and study the detailed Poisson process

model for the �rst step of the evolutionary dynamics of an asexual bacterial pop-

ulation evolving under the simplifying assumption that a single type of irreversible

mutation is available to the population. We introduce new estimators µ̂ of mutation

rate µ and ŝ of mutations' selective advantage s and we precisely study the accuracy

of estimators µ̂ of mutation rate µ and ŝ of selective advantage s.

We apply our mutation parameters estimation techniques to six sets of experimental

data collected from populations of bacteria Escherichia coli by T. Cooper's labora-

tory at University of Houston Biology Department.

We analyze the in�uence of key parameters of the experimental design such as the

number N of population replicates on the accuracy of our estimates µ̂ and ŝ . By

studying the results of six T. Cooper experiments and of another set of similarly

designed experiments performed by Hegreness et al. (2006) [23], we can de�ne a

priori practical ranges for the parameters µ and s in E. Coli populations .

Our stochastic models formalizes the T.Cooper as well as the Hegreness et al. ex-

periments. Each one of these experiments evolves N E. Coli replicate populations

starting with cells having, except for a neutral marker, identical genotypes. Each

initial population undergoes a daily dilution at the end of each daily growth period,
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before being transfered to a fresh well for the next daily dilution.

Compared to previous work on the evolutionary dynamics of the initial adaptive step

in an evolving asexual population (Hegreness et al. (2006) [23]; Barrick et al. (2010)

[5]), we have extended both the simulation algorithm as well as the analysis of the

underlying evolutionary model.

We have developed new algorithms by determining the adequate discrete approxima-

tions of the daily continuous time growth phase by dividing it into 50 time intervals

in our simulations, as opposed to 12 time intervals previously used by [23]. The key

probability of the e�ect of mutations, mainly the probability of successful bottleneck

crossing, is proved to be much closer to the one prevailing in the continuous time

growth process.

We have focused on developing new estimators ŝ and µ̂ for two fundamental evolu-

tionary parameters: the selective advantage s of newly arising adaptive mutations,

and the rate µ at which these mutations occur. We study the asymptotic behavior

of these estimators as the number of experimental populations N becomes large and

implement intensive simulations to study the accuracy of our estimators for various

values of N .

We then develop estimators ŝ and µ̂ for the case when the population undergoes a

complementary sub-sampling after each daily transfer to a new well. This comple-

mentary sub-sampling is simply used to evaluate daily the color markers frequencies.

A few hundreds of cells are extracted from the new well and transferred to a "plate"

dedicated to frequency counting.

We study the errors on ŝ and µ̂ introduced by these approximate marker frequencies

13
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evaluations. We show how the accuracy of our estimators ŝ and µ̂ is decreased due

to the e�ect of frequency estimation by this complementary sub-sampling.

We then extend the previous model, where all mutants are assumed to have approxi-

mately the same selective advantage , to models involving multiple mutations types.

In these models, when a random mutation occurs, it has a random selective advan-

tage s, and the probability distribution of s is determined by a �xed density function

f(s). We have studied di�erent parametrized models for the density function f of

selective advantages, namely :

1. Model ”E(µ, λ)”: the density function f(s) of selective advantages is the expo-

nential density f(s) = λexp(−λs)1s>0 , where λ is a positive parameter. The

mean selective advantage is s̄ = 1
λ
.

2. Model ”EB(µ, λ, a, b)”: the density function f(s) of selective advantages is

the exponential density f(s) = c(λ)exp(−λs)1a<s<b , where λ is a positive

parameter. The mean selective advantage is s̄ = 1
λ

+ ae−λa−be−λb
e−λa−e−λb .

3. Model ”EMP (Histfirst, Histwin)”: the density function f(s) of selective ad-

vantages is generated by smoothing Empirical Histograms of experimentally

observed selective advantages.

We develop new algorithms based on intensive simulations to estimate the mean

selective advantage s̄ and the occurrence rate µ of mutations. We apply these new

identi�cation algorithms to the �tting of "multiple mutation types" models to ex-

perimental data. The T. Cooper E. coli evolution experiments focus on six di�erent

initial genotypes. We identify the best multiple mutation model which best �ts each
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one of these six experiments, each of which involves 11 replicate populations.

We also present similar bacterial evolution experiments and associated models stud-

ied by Hegreness et al. (2006) [23] (HK experiments). The experimental setup used

for HK experiments is similar to the TC experiments, with quite di�erent structural

design parameter values. We present the HK estimation method for the evaluation

of the mean selective advantage and mutation occurrence rate. We compare the

HK method to the statistical techniques we have introduced to select a "multiple

mutation types" model among the 3 categories of models presented above. We then

provide the accuracy of these estimators for the HK estimation technique, and the

estimation technique developed in this thesis for the multiple mutation models.
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CHAPTER 2

Experimental Design: Escherichia coli Evolution Experiments

2.1 Biological Experimental Design

The Escherichia coli bacterial evolution experiments that we studied and explored

were carried out at Tim Cooper's laboratory at the UH department of Biology. These

experiments study the genetic evolution of populations of bacteria Escherichia Coli.

We concentrate primarily on the experiments carried out by T.C. (hereafter will be

called TC experiments), but also include a previously described experiment (Hegreness

et al., [23], hereafter will be called HK experiment) as a point of reference and to

demonstrate the e�ect of a realistic range of the experimental parameters on the
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2.1. BIOLOGICAL EXPERIMENTAL DESIGN

application of our model.

Both the TC experiments, as well as the HK experiments, start with a number N of

culture wells of replicate populations, containing a population of size N0 of E. coli

cells. Experimental populations of E. coli bacteria have evolved for 20,000 gener-

ations in a uniform environment. Twelve populations of these were founded from

a common ancestor (Lenski et al. (1991) [35] and Barrick and Lenski (2009) [4]).

These populations have evolved under the uniform environment with glucose as the

density limiting resource (Lenski et al. (1991) [35], Lenski et al. (1994) [36], Lenski

et al. (2000) [7]). The populations adapted to this environment by the substitution

of spontaneous bene�cial mutations.

In each one of the six TC experiments we have studied , the N replicate populations

start with a distinct initial population composed of cells having identical genotypes.

One of the six initial genotypes is the common ancestor Ara-1 of the 5 other initial

genotypes. In the HK experiments, all populations were started from a single, dif-

ferent genotype MC4100 (Hegreness et al. (2006) [23]).

In each well, the initial population was composed of a single genotype, except that

half of the cells were of one marker type and the other half were of another. In these

experiments, an arabinose marker was used (Lenski et al. (1991) [35]). The arabinose

marker has been shown to be e�ectively neutral under the culture conditions used

in the present series of experiments (Lenski (1988) [34]). This strain of E. coli is

considered to be strictly asexual. L− arabinose (Ara−) is mainly used as a culture

medium in most of the experiments. An Ara+ mutant was isolated from this strain

(Lenski (1988) [34]). The Ara− and the Ara+ colonies form red and white colonies,
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respectively (Levin et al. (1977) [38] and Lenski et al. (1991) [35]) on the indicator

medium. In HK experiments, yellow and cyan �uorescent protein markers were used.

In both the experiments, the color markers used were neutral, having no detectable

e�ect on the individual.

The values of the structural design parameters for the TC as well as for the HK

experiments are displayed in table 2.1.

2.1.1 Daily Growth

At the beginning of each daily growth period, the initial numbers of red and white

cells in each well are equal to N0/2, where N0 is the size of the population in each

one of the wells at the beginning. After the nutrients of a well have been exhausted,

(which occurs after approximately 8 to 12 hours) the population growth stops. The

daily terminal cell population size in each well, after nutrient exhaustion, is essentially

�xed and equal to Nsat. Thus, the growth of cells in each one of the wells increases

from N0, at the beginning, to Nsat, at the end of the daily growth period.

2.1.2 Daily Dilution

Every 24 hours, once the population in each well has reached size Nsat, a subpopula-

tion of approximate size N0 is sampled from each one of the wells with a �xed daily

dilution factor given by D = Nsat/N0. The extracted cells are then transferred to a

new well, containing fresh growth medium. This transfer step is repeated daily for

all the N populations. These "growth + dilution" cycles above are performed daily.
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Table 2.1: Structural design parameters for the TC and HK experiments

Parameter TC experiment HK experiment
N 11 72
N0 5× 104 2.5× 105

Nsat 107 8.25× 108

D 200 3300

2.1.3 Complementary Sub-sampling

Once the daily "growth + dilution" cycle above has been completed, and after trans-

fer of the diluted population to a new well, another small random sample is extracted

from the N0 cells in the new well. These complementary samples of sizes ranging

between 300 and 400 are extracted from each one of the new N populations, and

transferred onto N culture plates, where the cells are allowed to grow again. This

complementary sub sampling is dedicated to daily estimation of color markers fre-

quencies. On each cell plate, after a few days, the complementary subsample of 300

to 400 cells, can be inspected by a laboratory technician who determines by visual

counting the frequencies of red and white cells.

2.1.4 Data Acquisition

Once the daily "growth + dilution" cycles above have been performed, and the cor-

responding culture plates have been inspected for color marker frequency evaluation,

these frequencies are recorded and indexed by the acquisition date t, encoded as the

number of days since the start of the experiment. Actually, this marker frequency

recording occurs only very few days at the beginning of each experimental population
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Table 2.2: Observed red and white cells daily counts for well population Pop1 with
identical initial ancestor genotype

days 1 8 15 23 25 29 32 34 36

# Red 26 138 115 42 172 425 320 300 300
# White 24 136 75 22 48 18 1 0 0

evolution.

Table 2.2 gives an example of the observed data for one well population, recording the

numbers of red and white cells, and the days at which these numbers were recorded.

In the HK experiments, the daily frequencies of the two cell marker types were

recorded by direct �uorimetric measurements, which generate more accurate evalu-

ations of the daily red and white cell frequencies.

2.1.5 Inferring Dynamics of Mutants

The bacterial evolution experiments described above were designed and carried out

to estimate the rate and selective advantage of the newly arising bene�cial mutations.

We develop new algorithms to estimate these parameters directly from the observed

red and white daily frequency data.

The selective advantage is essentially the basis for evolution by natural selection. It

is the characteristic of an organism that enables it to survive and reproduce better

than other organisms in a given environment. Thus, only the organisms best adapted

to their environment tend to survive, increasing their numbers in succeeding gener-

ations while eliminating those that are less adaptive.
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During population growth, and the daily "growth + dilution" cycles, mutant geno-

types with various selective advantages s > 0 can occur with a small probability µ at

each cell division. All individuals are asexual and, therefore, when a �tter genotype

(as explained above, well adapted to the environment) reaches �xation (i.e. reaches

a frequency close to 1) in a population, it will drive the ancestral genotype to ex-

tinction, and thus will eliminate it from the population. This will simultaneously

cause the �xation of the color marker type in which it occurred. Because adaptive

mutations can arise at many sites in the genome, it is usually impossible to exper-

imentally follow their dynamics directly. For this reason, one of the goal of these

experiments is to infer the underlying genotypic dynamics from the changes in the

frequencies of the two marker types.

2.2 Biological Fitness Assays

Fitness of an individual or genotype is de�ned as its ability to survive and reproduce,

and measures its contribution to the gene pool in the next generation.

In the �rst TC experiment, to determine ground truth values for the selective advan-

tages of the winning genotypes in 10 replicate populations staring with Ara-1, and

where one color marker had reached �xation, experimental �tness estimates were

obtained from four evolved clones of the �winning� marker type isolated from each of

the N replicate populations. The �tness of each clone was measured relative to the

ancestor. A green �uorescent protein (GFP) is a protein that exhibits bright green

�uorescence when exposed to blue light. The �tness of each clone was measured
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using a GFP expressing derivative of the ancestor as the reference strain (Lenski et

al. 1991 [35]). The use of a GFP marker enabled distinguishing competing ances-

tor and evolved clone sub-populations by �ow cytometry, a technology that allows

large population samples to be screened, increasing measurement precision over pre-

vious plate-based approaches. The ability to store these bacterial populations in a

nonevolving state and to maintain a strictly clonal system of propagation enables one

to estimate directly the mean �tness in a particular environment. In brief, the GFP

ancestor and the evolved clones were inoculated from the frozen stocks into separate

wells of 2ml 96-well plates containing lysis broth (LB). All populations were grown

overnight and then diluted 104-fold into the same environment used for the evolution

experiment-Davis Minimal medium supplemented with glucose to 25ug/ml (DM25).

Populations were incubated with shaking for one day to complete one growth cycle

and then transferred 1:100 to the same medium to ensure they were physiologically

acclimated to this environment. The next day, each evolved clone (GFP-) was in-

dividually mixed with the ancestor (GFP+) and a 1:100 dilution made into fresh

DM25. Competitions were carried out over two growth cycles. At the beginning and

end of each competition, samples were screened by �ow cytometry to determine the

fraction of GFP+:GFP- cells. To do this, a 1:10 dilution of cells was made in puri-

�ed water and SYTO17, a dye that �uoresces red when bound to DNA, was added

to a �nal concentration of 200 nM. This cycle allowed to reduce background noise

by only recording events that were above a threshold red �uorescence characteristic

of bacterial cells. At least 10,000 events were recorded for each sample time point.

Fitness of the evolved clone was calculated relative to the ancestor as the ratio of
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each strain's Malthusian parameter, estimated as log(Ff × 104/Fi), where Ff and Fi

are the �nal and initial frequencies of one cell type, respectively, and the 104 factor

accounts for growth during the competition.
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CHAPTER 3

Stochastic Model for E. coli Evolutionary Dynamics

3.1 Stochastic Population Growth Model

To estimate rigorously, the evolutionary parameters underlying the dynamics of

new adaptive mutations in experiments of the type described above (chapter 2),

we present a theoretical model which can

1. Account for the stochastic occurrence and subsequent dynamics of adaptive

mutations, and
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2. Relate these dynamics to the observable dynamics of the deliberately intro-

duced colored markers that initially separate each evolving population into

two distinguishable subtypes: "red" and "white" cells.

We develop an analytical model describing the dynamics of evolutionary populations

in each of the N wells, and estimating the rate and selective advantage of the newly

occurring bene�cial mutation in the population.

Random Cell Splitting as a Continuous Poisson Process: The growth phase

of cells in one day is due to cell splitting at random times, and we model the random

process of cell splitting by a continuous Poisson process. Our model describes the

dynamics of a population of a unicellular, asexual organism, for instance, E.Coli

in terms of a cell dividing into two cells with identical genotypes, perturbed by

mutations. Each cell eventually divides into two daughter cells. The genotypes of

the mother and daughter cells are identical, unless a mutation occurs in one of the

daughters. We begin by considering the dynamics of cell division in the absence of

mutation.

The initial size of the populations is N0 = 5 × 104, and these cells grow until the

saturation capacity Nsat = 107, at the saturation time tsat. Typically, this growth

phase duration ranges from 8 to 12 hours, in the TC experiments. During the growth

phase, the population expands by a �xed factor D = Nsat/N0 = 200. When all cells

in the initial population have the ancestral genotype ("ancestor"), and in the absence

of mutations, the population expands D−fold during this growth phase.

We assume that individual cells wait a random time between division events, and
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that this time follows an exponential distribution with probability density f(x) =

λ exp(−λx) for all x > 0. The rate of cell division is given by λ > 0, and is determined

by the genotype of the particular cell. The mean waiting time before a cell divides

is then given by 1/λ. We also assume that the division times for any pair of cells are

independent. We ignore the e�ect of cell death during the daily growth phase.

The growth phase in each well ends at the (random) saturation time tsat when

population size reaches and stationarizes at the �xed level Nsat.

Discretization of Continuous Poisson Process Growth Model To simulate

the growth phase using Poisson process for cell splitting, we generate a discrete ap-

proximation of this process, by dividing the daily growth period into a large number

τ of equal small time intervals J1, . . . , Jτ , and keep track of the simulated random

number of cell divisions, and hence the associated mutations, in each time interval.

Denote by Nk the population size at the end of interval Jk, where k = 1, . . . , τ , so

E[Nτ ] = Nsat. The Poisson process assumption implies that, given Nk, the number

S(Jk+1) of cells dividing during time interval Jk+1 has a conditional Poisson distri-

bution with conditional mean value Sk+1 = cNk for some constant c. Hence for any

lineage of cells with genotypes identical to the initial genotype, the successive mean

population sizes grow exponentially, and we have E[Nk] = N0F
k, where F > 0 is a

multiplicative factor of progenitor cells per time interval Jk. Since E[Nτ ] = Nsat, we

get that

F =

(
Nsat

N0

) 1
τ

= D
1
τ
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and we have E[S(Jk+1)|Nk] = (F − 1)Nk.

The modeling parameters and their values, for the TC and HK experiments are

displayed in table 3.1.

Table 3.1: Modeling parameters for the TC and HK experiments

Parameter TC HK

τ 50 12
F 1.11 1.18
s [0.01, 0.2] [0.01,0.2]
µ [2× 10−8, 10−6] [2× 10−8, 10−6]

Deterministic Approximation of Random Growth Models: Given Nk, the

conditional distribution of the number S(Jk+1) cells dividing during time interval

Jk+1, given Nk, the size of population at the end of interval Jk, has a standard

deviation std(S(Jk+1)|Nk) =
√

(F − 1)Nk, and hence the dispersion, also called the

coe�cient of variation, of S(Jk+1) is de�ned by the ratio of standard deviation to

the mean:

std(S(Jk+1)|Nk)

E[S(Jk+1)|Nk]
=

1√
(F − 1)Nk

has a maximum CVmax = 1/
√

(F − 1)N0 reached for k = 0, and decreases to a mini-

mum value CVmin = 1/
√

(F − 1)Nsat, reached for k = τ−1. These numbers are quite

small, for instance, for the TC experiments, CVmax = 0.0134 and CVmin = 0.001. For

HK experiments, CVmax = 0.005, and CVmin < 0.0001.

Thus, in simulations, S(Jk) can be approximated by its conditional mean Sk =

(F − 1)Nk−1, and Nk can be approximated by the deterministic growth formula

Nk ≈ F kN0, so that Sk ≈ (F − 1)F k−1N0.
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We consider �rst the case where we have only one type of irreversible mutation avail-

able to the population, and that mutants cannot mutate further. Thus, we assume

that there is single �tness locus A, with two alleles, A and a, with A for the ancestor

allele. A alleles mutate irreversibly to a alleles with very small probability µ per cell

division, and a cannot mutate back into A. These mutations are independent events.

The mutant allele confers a selective advantage s > 0, such that mutant individuals

have a faster cell division rate of (1 + s)λ relative to A.

In a growth phase, mutants proliferate as described above, but with a stronger mul-

tiplicative growth factor per time interval Jk+1, given by M = F 1+s. In the presence

of mutants, in each growth period, the population reaches saturation at the end of

some time interval Jn where the random integer n veri�es n ≤ τ .

Once the growth phase is completed, N0 cells are transferred from the current wells

into new wells containing fresh medium. During the growth phase, the ancestor cells

have mutated into mutants, thus the current well consists of both the ancestor cells

as well as the mutants. These daily dilutions introduce "bottlenecks" that reduce

the probability that emerging mutants will persist in population. This daily dilution

thus may eliminate a bene�cial mutant present in the well.

Initially, a population contains N0 cells, with each marker carrying half of the cells.

Let p(t) be the frequency of one marker. Themarker frequency ratio p(t)/(1−p(t))

remains initially at 1 because marker has no e�ect on �tness. Most of the time, none

of the occurring bene�cial mutations survive the daily dilution. At some point later,

after a number of successive daily {growth + dilution} cycles have completed, a

bene�cial mutation with a selective advantage s, will eventually cross the dilution
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successfully, and thus appears in the population, typically within a single marker sub-

population. If the bene�cial allele is not lost by genetic drift, it will rise in frequency,

dragging along with it, the marker carried by the individual that �rst acquired the

mutation. Thus p(t)/(1− p(t)) will be pushed away from 1, towards either 0 or +∞.

All individuals in the population are asexual, and therefore, when a �tter genotype

�xes in a population, it will drive the ancestral genotype extinct and cause the �x-

ation of the marker type on which it occurred. Thus, to follow the dynamics of the

new bene�cial mutation in �tter genotypes, we infer the dynamics of the bene�cial

mutations through their e�ect on the frequency of the observable markers, and hence

use the dynamics of p(t)/(1 − p(t)).We develop a theoretical framework for this in

the next Section.

3.1.1 Detailed Study of Growth Phase

New mutant lineages generated: Let Ut be the total number of mutants ran-

domly sampled at the end of day (t− 1) for transfer. Note that the time t is discrete

and counted in days. These mutants will multiply to generate a mutant subpopula-

tion of size UtM
n at the end of time interval Jn in day t. Then the number of divisions

of ancestral genotypes in the time interval Jk, is approximately (F−1)F k−1(N0−Ut).

Note that the growth rate of the ancestor cells, in any time interval, is given by

F = D
1
τ as the day is discretized into τ time intervals. A mutant arises with selec-

tive advantage s, and thus has an advantage of (1 + s) relative to the progenitor cell.

The multiplicative growth factor per time interval is then given by M = F 1+s.
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Let Xk(t) be the number of mutants born on day t in the time interval Jk. The con-

ditional distribution of Xk(t) given the number of cell divisions S(Jk) in the time in-

terval Jk is assumed to have a Poisson distribution with mean µ(F−1)F k−1(N0−Ut).

All the new mutants born on day t will multiply during the remaining of day t, thus

generating new mutant lineages, and at the end of time interval Jn, the union of

all these new mutant lineages form a total population of Zt,n mutants, where Zt,n is

given by

Zt,n = Mn−1X1(t) +Mn−2X2(t) + · · ·+MXn−1(t) +Xn(t).

The total number of mutantsMt,n present at the end of time interval Jn is then given

by

Mt,n = MnUt + Zt,n.

Given Ut, the Xk(t) are independent Poisson distributed random variables. The

conditional mean and variance of Xk(t) given Ut are then identical, and have the

form:

E[Xk(t)|Ut] = var(Xk(t)|Ut) = µ(F − 1)F k−1(N0 − Ut)

Hence, the conditional mean zt,n and variance σ2
t,n of Zt,n given Ut, is given by:

zt,n = E[Zt,n|Ut] = µ(F − 1)(N0 − Ut)
Mn − F n

M − F
(3.1)

and

σ2
t,n = var(Zt,n|Ut) = µ(F − 1)(N0 − Ut)

M2n − F n

M2 − F
. (3.2)

These expressions for zt,n and σt,n imply that for all n ≤ τ ,

zt,n
Nsat

< µ(F − 1)
M τ − F τ

D(M − F )
= µ

(
1− 1

F

)
Ds − 1

Ds/τ − 1
,
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and (
σt,n
Nsat

)2

<
µ(F − 1)

N0

M2n − F τ

D2(M2 − F )

≤
µ
(
1− 1

F

)
N0

D2s

D(1+2s)/τ − 1
.

For TC experiments, we have τ = 50 and the other parameters D = 200, 0.01 < s <

0.2, µ < 10−6, and F = 2001/50 = 1.11, and hence ∀ n ≤ τ ,

zt,n
Nsat

< 5× 10−6

and

σt,n
Nsat

< 1.25× 10−5 (3.3)

For HK experiments, we get

zt,n
Nsat

< 7.6× 10−6

and

σt,n
Nsat

< 9.7× 10−6

Asymptotic study of pure mutant growth If we let Qt be the random size of

the population generated at time t < τ by the initial single mutant, then we have

that Q0 = 1. Suppose the selective advantage of this initial mutant is given by s.

To approximate by continuous time, suppose the number of discrete steps before

dilution, given by τ , is large. Suppose τ = 500. Then the random growth of the

population Qt has an increment (Qt+1−Qt) which follows Poisson distribution with

mean

E[Qt+1 −Qt|Qt] = D(1+s) 1
τQt −Qt

= (D(1+s) 1
τ − 1)Qt
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In this random growth, there are no new mutation since we assume that mutants do

not mutate again, and we consider only pure mutants in this population Qt. When

t→ τ , the probability distribution of the random variable Qt
E[Qt]

converges to a �xed

probability distribution, and all moments can then be computed explicitly. However,

this distribution does not have a simple form. We can see from these calculations,

that the mean and variance of this distribution are both identical to 1.

We generate simulations which start with only one mutant, and generate empirical

histograms for the random variable

Rt =
Qτ

E[Qτ ]
=

Qτ

D1+s
.

Generating 1000 virtual independent one day random growths of pure mutants, we

approximate this theoretical distribution by empirical distribution. Figure 3.1 dis-

plays the empirical distribution of this random variable. The empirical mean and

standard deviation are quite close to 1, which con�rm our theoretical �ndings.

Computation of the day t saturation time nt: Next, let nt ≤ τ be the index of

the �rst time interval Jnt during which the day t population reaches the saturation

size Nsat. Given the last inequalities (equations 3.3), we see that for each time t,

given Ut, the actual value of Zt,n has practically no in�uence on the value of nt. At

the beginning of day t, the fresh medium contains Ut mutant and N0 − Ut ancestral

genotypes. After k time intervals Jk, the deterministic growth of these two groups

would generateMkUt mutants and F
k(N0−Ut) ancestral genotypes, if we ignore the
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Figure 3.1: The empirical distribution of the random variable Qt
E[Qt]

, for the sim-
ulations starting with only one initial mutant, with selective advantage 0.12, and
generating pure mutant growth. The empirical mean is 0.98, and the empirical stan-
dard deviation is given by 1.02, which con�rm our theoretical �ndings.

mutants arising at day t. The corresponding size Nk of the population veri�es

|MkUt + F k(N0 − Ut)−Nk| < Zt,k.

Since Zt,k/Nsat is negligible (as seen in the above calculations 3.3), we see that, given

Ut, the saturation time nt is extremely close to the unique solution k in [1, τ ] of the

deterministic equation

MkUt + F k(N0 − Ut) = Nsat = N0D. (3.4)

This mathematical conclusion has been con�rmed by simulations (see below). In the

following theoretical and numerical computations, we shall therefore consider that

the day t saturation time nt is equal to the integer part of the solution of equation

(3.4).
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This de�nes an integer nt = g(Ut, s) where g(u, s) is a deterministic function of s > 0,

de�ned completely for all u ∈ [0, N0] as soon as τ, D, N0 are given. In particular,

we have g(0, s) = τ for every value of s by construction.

At saturation time, the random number Zt of mutants present in the day t cell colony,

and which are descendants of new mutants born on day t is given by Zt = Zt,nt .

Hence, since nt is deterministic, we obtain

E[Zt|Ut] = E[Zt,nt |Ut] = zt,nt = µ(F − 1)(N0 − Ut)
Mnt − F nt

M − F
.

The total number of mutantsMt present at the saturation time in day t is given by

Mt = MntUt + Zt.

3.1.2 Bottleneck Crossing

Here we explain how the transition of sample from the pool of cells, from day t to

day t+ 1 is a Markovian transition. At the end of day t, a random sample of size N0

is extracted from the saturated day t cell colony, which has size

Nsat = MntUt + Zt + (N0 − Ut)F nt

where Zt/Nsat is negligible, and nt is such that MntUt+(N0−Ut)Fnt
Nsat

≈ 1. The number

of mutants Ut+1 present in this sample has a conditional distribution given (Ut, Zt),

which is binomial with parameters N0 and "success" probability

ps =
Mt

Nsat

=
Zt + UtM

nt

N0D
. (3.5)

We thus see that the random vectors (Ut, Zt) de�ne a Markov chain. Given Ut, the

conditional distributions of Zt, Mt, and Ut+1 are completely determined, and we
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have

ut = E[Ut+1|Ut] = E[psN0|Ut]

=
1

D
(E[Zt|Ut] + UtM

nt)

=
UtM

nt

D
+

µ(F − 1)

D(M − F )
(Mnt − F nt)(N0 − Ut) (3.6)

var(Ut+1|Ut) = E[N0ps(1− ps)|Ut]

= E[Ut+1|Ut]−
1

N0D2
(E[Z2

t |Ut] + 2UtM
ntE[Zt|Ut] + U2

tM
2nt)

= E[Ut+1|Ut]−
1

N0D2
(σ2

t,nt + z2
t,nt + 2UtM

ntzt + U2
tM

2nt) (3.7)

where nt = g(Ut, s) is obtained by solving equation (3.4), and σt,nt , zt,nt are obtained

as mentioned above in equations (3.1) and (3.2).

The conditional distribution of Ut+1 given (Ut, Zt) is a binomial distribution with

mean ut. Since N0 ≥ 5 × 104 is large, this binomial can be well approximated by a

Poisson distribution with the same mean as long as ut < 10.

At the end of day t, the total mutant subpopulation has size Mt and is the union

of two disjoint pools of mutants: the Zt "new" mutants which gathers the lineages

of all mutants produced on day t, and the UtM
nt "old" mutants descended from the

Ut mutants already present in the population at the beginning of day t.

The sample of N0 individuals from the saturated day t population will contain Ut+1 =

Yt+1 +Kt+1 mutants, where Yt+1 is the member of mutants extracted from the "new"

pool, and Kt+1 is the member of mutants extracted from the "old" pool. Clearly

the random variables Yt+1 and Kt+1 are conditionally independent given (Ut, Zt),
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and their conditional distributions are binomial with parameters N0 and respective

"success" probabilities equal to Zt/Nsat and M
ntUt/Nsat. Their conditional means

are then given by

yt = E[Yt+1|(Ut, Zt)] =
Zt
D

kt = E[Kt+1|(Ut, Zt)] =
MntUt
D

.

Since in the experiments, N0 ≥ 5 × 104, these two binomial distributions are well

approximated by Poisson distributions with means yt and kt, as long as, yt ≤ 10 and

kt ≤ 10. An analysis of the tail of the variable Zt shows that for TC experiments

P (Zt/D < 2.75) > 0.99. For HK experiments, P (Zt/D < 11) > 0.99 Also, kt =

MntUt/D ≤ M τUt/D = DsUt which gives numerical bounds kt ≤ 2.9 Ut for TC

experiments, and kt ≤ 5Ut for HK experiments.

Hence, as long as Ut ≤ 2, we can consider that the conditional distributions of Yt+1

and Kt+1 given (Ut, Zt) are independent Poisson distributions with means yt and kt.

In particular, this is true as long as Ut = 0.

The �rst successful bottleneck crossing: Consider as above the evolution of a

single lineage starting withN0 progenitor cells, and submitted to daily {growth+dilution}

cycles. Every day, a random sample of size N0 is taken from a saturated population

and transferred to a fresh medium. These daily dilutions introduce "bottlenecks" in

the population, reducing the probability of survival of the emerging mutant in the

population. The date t = Tbot of the �rst bottleneck crossing is de�ned by Ut = 0 for

t < Tbot and UTbot > 0. It is the �rst time at which any mutants born during a growth

period are transferred to fresh medium. Figure 3.2 displays examples of times Tbot
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when the mutant �rst emerges in the population. This time is not directly observed

from the experiments, but can be computed from the simulations. We display the

histograms of Tbot as obtained from simulations for a �xed s and di�erent values of

µ.
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Figure 3.2: Histograms of Tbot for �xed s = 0.12 and for three di�erent values of µ.
As the rate µ increases, the emergence times for mutants become small.

As long as t < Tbot, the saturation time nt is equal to g(0, s) = τ . As just seen,

as long as t < Tbot, the conditional distribution of Ut+1 given (Ut, Zt) is practically

identical to a Poisson distribution with parameter Zt/D. The conditional proba-

bility Pbot of bottleneck crossing given Ut = 0 does not depend on t, and is a key

characteristic of the population's evolutionary dynamics. By de�nition,

1− Pbot = P (Tbot > t+ 1|Tbot > t) = P (Ut+1 = 0|Ut = 0). (3.8)

We will compute an explicit formula for Pbot below. The �rst bottleneck crossing
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time Tbot has geometric distribution with parameter Pbot.

P (Tbot = u) = Pbot(1− Pbot)u−1, for u = 1, 2 . . . .

The mean and standard deviation of Tbot are then given by

E[Tbot] =
1

Pbot

and

std(Tbot) =

√
Pbot

1− Pbot
.

By applying the chain rule for conditioning, we get

1− Pbot =
∑
z≥0

P (Ut+1 = 0|Zt = z)P (Zt = z|Ut = 0)

=
∑
z≥0

e−z/DP (Zt = z|Ut = 0).

Given Ut = 0, we get

Zt/D =
τ∑
k=1

αkXk, with αk = M τ−k/D.

where Xk = Xk(t) have independent Poisson distributions with respective means

λk = µN0(F − 1)F k−1, which implies

1− Pbot = E[exp (−Zt/D)|Ut = 0] = E[exp (−
τ∑
k=1

αkXk)].

Hence

1− Pbot =
τ∏
k=1

E[exp (−αkXk)],

since Xk are independent Poisson variables with respect to λk. The explicit Laplace

transform of Poisson distributions yields then that

1− Pbot =
τ∏
k=1

exp [λk exp (−αk)− 1].
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We can then compute log(1− Pbot) as

log(1− Pbot) = µN0(F − 1)
τ∑
k=1

F k−1(e−M
τ−k/D − 1) = −µN0ζτ (s),

where

ζτ (s) = (F − 1)
τ∑
k=1

F k−1(1− e−Mτ−k/D).

Since F = D1/τ and M = D(1+s)/τ , this expression becomes

ζτ (s) = D − 1− (D1/τ − 1)
τ∑
k=1

D(k−1)/τ exp (−Ds−(1+s)k/τ ).

The true value of log(1− Pbot) is naturally reached only when the number τ of time

intervals discretizing the daily growth period tends to∞. Since D1/τ−1 ∼ log(D)/τ ,

the approximation of integrals by Riemann sums yields the explicit limit

ζ(s) = lim
τ→∞

ζτ (s) = D − 1− log(D)

� 1

0

Dx exp (Ds−x(1+s))dx.

The change of variable ω = Dx transforms this expression into

ζ(s) = D − 1−
� D

1

exp (Ds/ω(1+s))dω. (3.9)

Note that this is a function of the selective advantage s only. The value of Pbot is

�nally given by

log(1− Pbot) = −µN0ζ(s). (3.10)

Thus

Pbot = 1− exp (−µN0ζ(s)) ' µN0ζ(s)

when µN0ζ(s) is numerically small, and hence

log(Pbot) ' log(µ) + logN0 + log(ζ(s)) (3.11)
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and hence 0.0025 ≤ Pbot ≤ 0.3162. Figure 3.3 displays the actual values of Pbot for

the TC experiments, as computed using the formula derived above. Also �gure 4.11

displays the values of Pbot in comparison to the simulated Pbot. Figure 3.4 displays

the values for the function ζτ (s) as a function of s for both the TC as well as for the

HK experimental parameters. Also, �gure 3.5 plots the function ζτ (s) as a function

of s for di�erent values of τ , for the TC experiment.
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Figure 3.3: The values of Pbot as computed from di�erent values of µ and s, using
the function ζτ (s). We see 0.0025 ≤ Pbot ≤ 0.3. Pbot increases with increasing s and
µ.

Comparative accuracy provided by increasing �ne time discretization:

The probability Pbot of bottleneck crossing just computed is a crucial process charac-

teristic. When we evaluate Pbot by intensive process simulations after discretization

of the growth phase into τ time intervals, the simulated value of log(Pbot) will be an

accurate estimator of log(µ) + log(ζτ (s)) + log(N0) instead of the desired expression
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Figure 3.4: The function ζτ (s), displayed for di�erent values of s, for the TC as well
as for the HK experimental parameters.

log(µ) + log(ζ(s)) + log(N0). Hence simulation error due to time discretization is

given by | log(ζτ (s)/ζ(s))| and decreases with τ . So it is important not to choose too

small a value of τ such that the accuracy of the approximation is compromised. We

have calculated log(ζτ (s)) numerically for a range of values of τ and s. The e�ect of

time discretization when τ = 50 is 0.052, when τ = 100, this value becomes 0.026,

and for τ = 200, this value is 0.0129. These values are the maximum values of the ac-

curacy statistic | log(ζτ (s)/ζ(s))| over a range of selective coe�cients 0.01 < s < 0.2

for di�erent values of time discretization. In view of the range of values for Pbot

in the experiments, we expect our choice of τ = 50 to yield an acceptable level of

accuracy for the experiments. Figure 3.5 plots the value for ζ(s) as a function of s,

for di�erent values of τ .
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Figure 3.5: Plot for the ζτ (s) as a function of s for di�erent values of τ , for the TC
experiment. The x-axis represents di�erent s, and the y-axis plots the values ζ(s).

3.1.3 Path to Fixation

Initial increase in mutant frequency: After the �rst bottleneck crossing, the

bene�cial mutation will go to �xation with probability close to 1. With no loss of

generality, we assume that p(t)/(1 − p(t)) → ∞, i.e, p(t) → 1. However, there

is also a possibility that competing lineages of mutants emerge within both the

marker subpopulations before the �xation of one population, and survives the daily

dilutions. Then, since all mutants have the same selective advantage in our model,

the frequencies of the two markers will reach a neutrally stable equilibrium. Thus

the population will contain only mutants, and marker proportions will remain stable

at some frequency. Thus, there is also a possibility of stabilization of the population.

Such an example is displayed later, in �gure 3.9. The probability of stabilization

depends on the parameter values, for the simulations. For instance, for the TC
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experimental simulations, this probability of stabilization is 0.64 when s = 0.05 and

µ = 2×10−8, but this probability is reduced to 0.20 when s = 0.15 and µ = 3×10−7.

For the analysis below, we are assuming that the white cells have almost reached

�xation before red mutant cells reaches a sizable frequency. We let p(t) thus be the

frequency of the white marker in the experiments.

Let Vt = Ut/N0 be the frequency of mutants at the beginning of day t. The frequency

of ancestral cells is then 1 − Vt. Let wanc(t) and ranc(t) be the frequencies of white

and red ancestral cells at the beginning of day t. Let h(t) = wanc(t)
ranc(t)

be the ratio of

the frequencies of white and red ancestral cells at the beginning of day t. The white

and red progenitor cells divide at the same rate, so that at the end of day t, there

will be wanc(t)F
nt and ranc(t)F

nt white and red progenitor cells, neglecting the small

frequency Zt/Nsat of the pool of day t "new mutants", which are the descendants

of lineages generated on day t by spontaneous mutants born on day t. After the

bottleneck at the end of day t, the new frequencies wanc(t+ 1) and ranc(t+ 1), have

conditional expectations wanc(t)F
nt/D and ranc(t)F

nt/D, and a small conditional

standard deviation (this follows from similar arguments as those developed above for

Zt/Nsat), at least as long as Vt < 0.90. Therefore, until the �nal approach to �xation,

the ratio h(t) remains quite close to 1 and wanc(t) ' ranc(t) ' 1−Vt
2

.

Since Vt denotes the frequency of mutants at the beginning of day t, hence all our Vt

mutants have a white marker. Consequently, p(t) = 1−Vt
2

+ Vt = 1+Vt
2

. The function

log

(
p(t)

1− p(t)

)
= log

(
1 + Vt
1− Vt

)
→∞ as t→∞.
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Mutant rise towards �xation: As seen in equation (3.4), given Ut and s, the

day t saturation time nt = g(Ut, s) = g(N0Vt, s), is the integer part of the solution k

of equation

VtM
k + (1− Vt)F k = D

In particular, we have approximately

VtM
nt + (1− Vt)F nt ' D.

In view of equations (3.1) and (3.2), the conditional mean and variance of Vt+1 given

Vt verify

E[Vt+1|Vt] =
E[Ut+1|Ut]

N0

and

var[Vt+1|Vt] =
var[Ut+1|Ut]

N2
0

.

A numerical calculation for the TC experiments, shows that the conditional dis-

persion or the coe�cient of variation std(Vt+1|Vt)
E[Vt+1|Vt] is smaller than 0.01 when Vt ≥ 0.176

for all pairs (s, µ). The joint time evolution of the two variables nt and Vt is hence

driven by the following approximate, but quite accurate in practice, iterative deter-

ministic system

VtM
nt + (1− Vt)F nt ' D (3.12)

Vt+1 '
VtM

nt

D
+

µ(F − 1)

D(M − F )
(Mnt − F nt)(1− Vt). (3.13)

Since Mnt

D
' 1

Vt
− 1−Vt

Vt
Fnt

D
> 1

Vt
− 1−Vt

Vt
= 1, the �rst term in (3.13) is greater than Vt.

The second term is always positive. Hence Vt increases to 1 as t→∞, and the system

is valid for all t > T where T = inf{t|Vt ≥ 0.176}. Notice that Vt is unobservable,
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and T can only be observed through p(t). Given that p(t) = (1 + Vt)/2, we get

T = inf{t : p(t) ≥ 0.588}.

Since Mnt

D
> 1, the ratio R of the second term to the �rst term in (3.13) is bounded

by

R <
µ(F − 1)

D(M − F )
(Mnt − F nt)

1− Vt
Vt

.

For the experiments, the range of nt is [42,50], and the numerical evaluations show

that the preceding bound for the ratio R is inferior to 1.03× 10−4 when Vt ≥ 0.176.

Hence the second term in (3.13) is negligible when Vt ≥ 0.176. We therefore obtain

a simpler iterative deterministic system:

VtM
nt + (1− Vt)F nt = D (3.14)

Vt+1 = VtM
nt/D, when t > T. (3.15)

We now study the speed of convergence of 1− Vt to 0 as t→∞. Solving the system

(3.14), we obtain

1− Vt ' (1− VT )
F

P
t

Dt−T where
∑
t

=
t∑

k=T+1

nk.

For large t, we have Vt ' 1, and hence Mnt ' D, which implies nt ' τ/(1 + s).

Hence, we see that
∑

t '
τ

1+s
(t−T ) for large times t. A numerical study of

∑
t shows

that in fact
∑

t is approximately a linear function of t− T , with slope τ/(1 + s), as

displayed in �gure 3.6.
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Figure 3.6:
∑

t is approximately linear with respect to t− T .

Thus,

1− Vt ' (1− VT )
(D

1
τ )

τ
1+s

(t−T )

Dt−T

= (1− VT )
D

t−T
1+s

Dt−T

= (1− VT )D
t−T
1+s
−(t−T )

= (1− VT )D−
s

1+s
(t−T ).

We conclude that (1− Vt) converges to 0 with exponential speed given by

1− Vt ' (1− VT )/D
s(t−T )

1+s .

We can now study log
(

p(t)
1−p(t)

)
= log

(
1+Vt
1−Vt

)
, replacing 1 − Vt by the expression
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just computed, to get

log

(
p(t)

1− p(t)

)
= log

(
1 + Vt
1− Vt

)
(3.16)

' s

1 + s
(t− T ) logD + log

2

1− VT
.

Taking the derivative of log
(

p(t)
1−p(t)

)
with respect to t, we see that the slope of

log
(

p(t)
1−p(t)

)
is approximately linear in t for t > T , with slope s

1+s
logD. Note that

this slope is an increasing function of s.

3.2 Examples of Evolution of Frequency

In both Hk and TC experiments, the experiments start with the same initial number

of cells for both the markers (red and white), thus the frequency p(t) of winner and

(1− p(t)) of looser remain close to 0.5, until the emergence of a bene�cial mutation

in any one of the markers and thus increasing the frequency of that marker. This

can be seen in �gure 3.7. The white marker is the winner, thus p(t), the frequency of

white marker is close to 0.5 until the emergence of the bene�cial mutation and hence

causing the frequency curve to signi�cantly deviate away from the straight line. We

also present the corresponding log p(t)
1−p(t) , curve studied above, in �gure 3.8.

Figure 3.9 gives an example of the evolution of frequency of the markers when

mutants appear in both the color markers with approximately same selective ad-

vantage and compete with each other, and hence causing the frequency of any one

marker �uctuating around the initial 0.5.
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Figure 3.7: Winner = White marker. Example of evolution curve for the white
frequency p(t), when there is only mutation in white marker that appeared and thus
the population of white marker reaches �xation. For this example, s = 0.12 and
µ = 2× 10−7.

Figure 3.8: Winner = White marker. Example of evolution curve for log p(t)
1−p(t) , when

there is only mutation in white marker that appeared and thus the population of
white marker reaches �xation. This is the curve corresponding to the frequency of
winner plot 3.7. For this example, s = 0.12 and µ = 2× 10−7.
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Figure 3.9: Frequency of one marker plotted against days, when mutations occur in
both the marker colors and hence cause the marker frequencies to �uctuate around
0.5. For this example, s = 0.12 and µ = 3× 10−7.
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CHAPTER 4

Parameter Estimations for Single Mutation Model

In this chapter, we introduce new methods to quantify the accuracy of the estima-

tors. We explain the construction of con�dence intervals to quantify the errors of

estimation, and we then give a description of the numerical database used for these

computations. After describing the methods to quantify accuracy, we will present

the construction of the estimators.

As mentioned in the description of the biological experiments and the correspond-

ing mathematical stochastic model, the parameters: N0 (the initial population),

Nsat (saturated population at the end of the growth day) and the dilution factor

D = N0/Nsat are �xed. Once we �x the number τ of time intervals used to discretize
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the growth periods, the multiplicative growth factor of the ancestral genotype per

time interval Jk is given by F = D
1
τ . The unknown model parameters to be esti-

mated are then the selective advantage s of the mutants and the mutation rate µ of

the winning mutation.

4.1 Quantifying the Accuracy of Estimators

Any estimator of s and µ must be computable as a deterministic function of the

random observed experimental data, and hence has a speci�c probability distribu-

tion depending on the underlying unknown true parameter values of s and µ. For

our stochastic model, these probability distributions have no explicit closed form ex-

pression, and we will generate good approximate empirical distributions by intensive

process simulations to compute the accuracy characteristics of our estimators. Clas-

sically, when θ̂ is an arbitrary estimator of an unknown parameter θ, one quanti�es

the accuracy of θ̂ by several indicators, including:

� the Bias of θ̂, which is the average of θ̂ − θ.

� the error of estimation Err which is the average of |θ̂ − θ|.

� the average width of the 90%- con�dence intervals of θ̂.

51



4.1. QUANTIFYING THE ACCURACY OF ESTIMATORS

4.1.1 Empirical Con�dence Intervals

We now present the construction of empirical con�dence intervals. These con�dence

intervals once computed, will provide concrete view of the accuracy of the parameter

estimates. For the estimators of the selective advantage, as we will see, the com-

putation of con�dence intervals is not essential since our estimators of the selective

advantage have good absolute and relative accuracy. However, the estimators of the

mutation rate computed below, as we will see, have much higher dispersion, and

computation of the con�dence intervals provides a implementable way to evaluate

their accuracy. Appropriate algorithmic analysis of the simulation data will enable

us to generate the empirical con�dence intervals. Asymptotic con�dence intervals

for this estimator will be discussed in the later sections. We now present a general

method for the computation of con�dence intervals.

Consider an unknown model parameter θ ∈ Θ ⊂ R. Let θ̂ be any speci�c estimator

of the unknown model parameter θ. The probability distribution Fθ of θ̂ also depends

on θ. Fix two functions A(u) < B(u) of the potential values u of θ̂. These functions

determine the family of intervals CI(u) = [A(u), B(u)]. This family of intervals is

called a family of "con�dence intervals" at level α ∈ [0, 1], for the estimator θ̂, if the

following is satis�ed for allθ:

P (A(θ̂) ≤ θ ≤ B(θ̂)) ≥ α when θ is the true parameter. (4.1)

Typically, the con�dence level 0 ≤ α ≤ 1 is �xed at a large value such as 90%. Once

the two functions A and B are available and verify (4.1), the con�dence interval

CI = CI(θ̂) = [A(θ̂), B(θ̂)]
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is computable from the available observations, via θ̂, and will contain the unknown

true parameter value θ with probability larger than α.

Explicit closed form expressions of two functions A(u) ≤ B(u) de�ning bona �de

con�dence intervals are not available for the complicated processes and estimators

we consider. But, by algorithmic analysis of pre-simulated data, one can actually

compute accurate empirical con�dence intervals for all our estimators, by the follow-

ing algorithm.

Fix a desired con�dence level 0.9 ≤ α < 1. When θ is the true unknown parameter

value, consider the two quantiles

η− = η−(θ) and η+ = η+(θ)

of θ̂ de�ned by

P (θ̂ < η−) =
1− α

2
and P (θ̂ < η+) =

1 + α

2
.

For each potential value u of θ̂, we then de�ne two deterministic functions A(u) <

B(u) by

A(u) = inf{x : η−(x) < u < η+(x)}

B(u) = sup{x : η−(x) < u < η+(x)}. (4.2)

The con�dence intervals CI(u) = [A(u), B(u)] are then the bona �de con�dence

intervals for the estimator θ̂, verifying the key "con�dence inequality" (4.1).

Given an arbitrary vector of observations Λ, we will then systematically compute the

estimates θ̂, an then compute the associated con�dence interval for the unknown θ

as indicated above, given by

CI = CI(θ̂) = [A(θ̂), B(θ̂)].
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Note that CI is a deterministic function of the random estimator θ̂. These generic

con�dence intervals do verify the key "con�dence inequality" 4.1.

4.1.2 Pre-computed Simulation Data Base

We now describe our pre-computed simulation data base. To pre-simulate the po-

tential TC experiments, we �xed a rectangular grid of 1,000 pairs (s, µ), de�ned by

20 equally spaced values of s in [0.01, 0.2], and 50 equally spaced values for µ in

[2× 10−8, 10−6]. We then simulate 1,100 random population evolutions for each one

of these 1,000 pairs of (s, µ). We have thus generated 1.1× 106 process trajectories.

Each trajectory has a duration of 200 days, and provides a sequence of 200 observa-

tions p(t) for the frequency of the marker observed to be winning on the 200th day.

For each �xed threshold frequency level β ≥ 0.55, each simulated sequence p(t) gen-

erates a value for the "post-emergence" time Tβ = inf{t : p(t) > β}. Since �xation

of one marker occurs in most trajectories, we only have a few among our trajectories

such that Tβ = ∞. For instance, table 4.1 displays few examples of pairs s and µ

such that Tβ =∞.

Table 4.1: Displaying some pairs (s, µ) for Pty(Tβ =∞).

s \ µ 2× 10−7 6× 10−7

0.1 0.0018 0.0136
0.15 0.0036 0.0064

For each pair (s, µ) in the grid, we thus generate an empirical sample of more

than 1000 random Tβ values, which accurately de�nes the histogram Dis Tβ(s, µ) of

Tβ.
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On the random time interval beginning at T0.588 and ending at the �xation time

Tfix = T0.95, we apply linear regression to approximate the curve log[p(t)/(1− p(t))]

by a regression line with slope â. For each pair (s, µ) in the grid this generates a

random sample of more than 1000 values of â, de�ning the histogram Dis â(s, µ) of

â.

The pre-computed simulation data base (SDB) stores our 1.1 × 106 trajectories of

p(t), as well as the histogram of both Tβ and â for each one of the 1000 pairs (s, µ)

in the grid.

The unknown parameter θ to be estimated is either s or µ. Once we specify further

on an adequate estimator θ̂ of θ, we will compute its accuracy characteristics by

algorithmic analysis of the pre-computed SDB.

For each pair of (s, µ) in the grid, and for each trajectory in this, we compute the

value of θ̂. For each pair (s, µ) in the grid, this generates a random sample of more

than 1000 values of θ̂. By averaging the corresponding 1000 values of θ̂ − θ and

|θ̂ − θ|, we obtain accurate approximations of the bias Biass,µ and the estimation

error Errs,µ for the estimator θ̂.

To calculate the empirical con�dence intervals for our estimators of s and log µ, the

functions A and B must �rst be numerically pre-computed for all potential values

u of θ̂. For each pair (s, µ) and for each trajectory in the simulation database,

we compute the value of θ̂, thus generating a sample of around 1000 values of θ̂ by

repeated simulations, which provide empirical estimates of the two quantiles η− < η+

de�ned above. An inversion algorithm (as we will see below) is then applied to the

two functions η− and η+ to compute the two functions A and B as determined by
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(4.2). For each pair (s, µ) in the grid, we then use our sample of 1000 random

values of the estimator θ̂, to compute 1000 con�dence intervals [A(θ̂), B(θ̂)]. We �x

the con�dence level at α = 0.90. These con�dence intervals will then contain the

unknown value of θ for 90% of all experiments, i.e, at least 900 of these con�dence

intervals contain the true value θ. The average width B(θ̂)−A(θ̂) of these con�dence

intervals is a deterministic function l(CI) of θ, and gives a robust evaluation for the

accuracy of the estimator θ̂.

The three evaluations of accuracy mentioned above, tends to be small when s or µ

are close to their boundaries on the grid. This is due to the boundary e�ect. Hence,

for the following sections, we consider these three aspects on a interior of the interval

of s and µ.

4.2 Parameter Estimation

In this section we develop the estimators ŝ and ν̂ of s and log µ. For this section we

restrict our study to considering the assumption that only one irreversible mutation

is available to the population, for which we have developed the theoretical framework

previously as mentioned in chapter 3. We �rst develop and construct the estimator

ŝ of the selective advantage s, independently of the other unknown parameter µ. We

then develop the estimator ν̂ of log µ using the fact that estimator ŝ is known.
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4.2.1 Selective Advantage

We �rst develop a preliminary estimate ŝpr of s and then transform it to form the

�nal unbiased estimator ŝ of s. As mentioned above, we apply linear regression on

a random time interval beginning T0.588 and ending at Tfix = T0.95, to approximate

the curve log[p(t)/(1 − p(t))] by a regression line with slope â. By equation (3.16),

we see that the curve log p(t)
1−p(t) is approximately linear in t for t > T , with slope

s
1+s

logD. Thus we have

â =
s

1 + s
logD

â(1 + s) = s logD

s(logD − â) = â

And thus we de�ne a preliminary estimate ŝpr of s by,

ŝpr =
â

logD − â
. (4.3)

Figure 4.1 displays an example of the curve of log p(t)
1−p(t) . Displayed in red is the

linear part, and the black dotted line is the regression line obtained after applying

linear regression on this part.

For each of our parametric grid of 1000 pairs (s, µ), the empirical distribution

Dis â(s, µ) allows us to evaluate accurately the empirical mean and median of this

estimator ŝpr. The median of ŝpr is a function of s and µ, denoted by G(s, µ). But

G(s, µ) turns out to be practically independent of µ, as displayed in �gure 4.2.

This function is close to a linear function of s for �xed µ. Since G(s, µ) is

practically independent of µ, a linear regression of G(s, µ) with respect to s generates
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Figure 4.1: An example of the curve log p(t)
1−p(t) , which becomes linear after the �rst

strong deviation from the straight line in the curve of frequency of winner p(t).
Applying linear regression after this time and displaying the regression line in dotted
black line.

the linear approximation

G(s) = G(s, µ) ' 0.787s− 0.003.

The estimate ŝpr is biased because the derivative G(s, µ) with respect to s is close to

0.787 < 1. We hence generate a new unbiased estimator ŝ of s by

ŝ = G−1(ŝpr) = (ŝ+ 0.003)/0.787 (4.4)

=

(
â

logD − â
+ 0.003

)
/0.787 (4.5)

=
1.26 â+ 0.002

5.29− â
. (4.6)

Since G(s) = G(s, µ) is an increasing function of s, the median of the estimator ŝ is

G−1(·) evaluated at the median ŝpr, G(s). So, the median of ŝ is G−1[G(s)] = s and
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Figure 4.2: The empirical median of ŝpr as a function of s for two extreme values of
µ, is independent of µ and not equal to s.

ŝ is an unbiased estimator of s.

Let Dis ŝ(s, µ) be the empirical histogram of ŝ for �xed s and µ generated by simu-

lations, using the SDB. Figures 4.3�4.4 show that Dis ŝ(s, µ) is centered at s and is

practically independent of µ.

The median of ŝ is a function of s and µ, denoted by MED(s, µ). We plot

MED(s, µ) as a function of s for two extreme values of µ, for µ = 2× 10−8 and 10−6

in �gure 4.5. The slopes of these two lines are both close to 1, con�rming that ŝ is

an unbiased estimator.
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Figure 4.3: Empirical histograms of ŝ for 3 values of µ are almost identical for a �xed
s = 0.1 .
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Figure 4.4: Empirical histograms of ŝ are centered at s as displayed for 4 values of s
and for a �xed µ = 2× 10−7.
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ŝ
(s

,µ
)

 

 

µ = 2 × 10−8

µ = 10−6

Figure 4.5: Empirical median of ŝ is approximately s, and hence con�rming the
estimator ŝ is unbiased.
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4.2.2 Accuracy of the Selective Advantage Estimator

We characterize the accuracy of the estimator ŝ by the indicators described above in

Section 4.1, the average bias Biass,µ, the average estimation error Errs,µ, the average

width l(CI)s,µ of the con�dence intervals at con�dence level 90%. In our range of

parameters, as explored by the �nite grid of pairs (s, µ), we have numerically veri�ed

that the histograms of the estimator ŝ of the selective advantage of the winner, as

shown above, are practically independent of the unknown µ value. Thus our accu-

racy characteristics Bias, Err, and l(CI) depend essentially on the true value of s.

Figures 4.7, 4.8 and 4.9 display the plots for the three accuracy characteristics: Err,

Bias and the mean length of CI, of estimation, for a single population (N = 1).

Also, �gure 4.6 displays an example of the quantile curves and the computation of

CI for s using the inversion algorithm as detailed above in Section 4.1.1.
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Figure 4.6: Example of Quantile curves and con�dence intervals: The solid horizontal
line gives a value of ŝ = 0.1, the absicca of the intersection of ŝ = 0.1 to the quantile
curves give the lower and upper limit of the con�dence interval.
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Figure 4.7: The accuracy indicator Err of estimation for ŝ is plotted as a function of
s for �xed µ, based on an observation of a single population (N = 1). The solid lines
display the Err for two extreme range values for µ = 2 × 10−8 (bottom solid line)
and for µ = 10−6 (top solid line). The dotted line displays the Err for a mid-range
values of µ = 5× 10−7.
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Figure 4.8: The accuracy indicator Bias of estimation for ŝ is plotted as a function of
s for �xed µ, based on an observation of a single population (N = 1). The solid lines
display the Bias for two extreme range values for µ = 2 × 10−8 (bottom solid line)
and for µ = 10−6 (top solid line). The dotted line displays the Bias for a mid-range
values of µ = 5× 10−7.
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Figure 4.9: The mean length of CI of estimation for ŝ is plotted as a function of s
for �xed µ, based on an observation of a single population (N = 1). The solid lines
display the curves for two extreme range values for µ = 2× 10−8 (bottom solid line)
and for µ = 10−6 (top solid line). The dotted line displays the mean length of CI for
a mid-range values of µ = 5× 10−7.
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Figures 4.7 and 4.8 show that the average bias and the average error of estimation

are always quite small and always remain inferior to 0.02. The impact of µ on the

bias and error of estimation is quite weak, but increases as s increases. Thus, the

estimator ŝ is an unbiased estimator regardless of the value of µ. The average width

of the 90% con�dence interval remains inferior to 0.09. Con�dence intervals naturally

have smaller width when the true s is close to the boundary of the s− values range

due to the boundary e�ect.

These numerical results, as displayed in �gures 4.7, 4.8, and 4.9, show that our

unbiased estimator ŝ based on an observation of a single population is already quite

accurate, but the accuracy is improved by experiments withN populations, providing

N trajectories of the log(p(t)/(1− p(t))), each of which yields an independent value

of ŝj with j = 1, . . . ,N . The estimate of s is then given by

ŝ(N ) = median ŝj, for j = 1, . . . ,N .

By the Law of Large Numbers, ŝ(N ) converges to the median ŝ = s when N →∞.

The estimation error of ŝ(N ) is approximately Err/
√
N . For the TC experiments

mentioned above, N = 11. The error of ŝ(11) remains inferior to 0.02/
√

11 = 0.006.
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4.2.3 Logarithmic Mutation Rate

The logarithm of the mutation rate, ν = log µ, is related to the logarithm of the

conditional probability Pbot of bottleneck crossing on day t given that there were

no mutants at the beginning of that day (3.11). In this Section we construct and

study the estimator ν̂ of the logarithmic mutation rate. Since we considered the grid

µ = 10−8 to µ = 10−6 for µ, the range of values for ν = log µ is (−18.42,−13.82).

We �x a discretization of this range by a grid GR of 13 potential values of ν:

GR = {−17.73,−16.12,−15.53,−15.16,−14.89,−14.68,

− 14.51,−14.36,−14.23,−14.12,−14.01,−13.92,−13.84}.

The exponentials of the values in GR are evenly spaced. Given N trajectories for

the marker frequencies, the unknown selective advantage s can be estimated by the

method detailed above. Since our estimator ŝ is quite accurate, and does not require

the previous knowledge of µ, we treat the estimate ŝ as the true value of the unknown

parameter s and develop a method to then estimate ν.

The distribution of the �rst bottleneck crossing time Tbot is unbiased and E[Tbot] =

1
Pbot

. Since the logarithm of the mutation rate is related to the logarithm of the

conditional probability Pbot, after estimating s, we could obtain an estimate of ν

using equation (3.11) if Pbot is estimated. However, Tbot cannot be directly observed

in the TC experiments, and hence we �rst develop an algorithm using the maximum

likelihood to estimate the unobservable Tbot using the random observed time Tβ which

is the �rst time the frequency p(t) of winning genotype exceeds a �xed threshold

β ≥ 0.55. For the calculations below, we select β = 0.55.

66



4.2. PARAMETER ESTIMATION

The conditional probability distribution of Tbot given Tβ = tβ veri�es for all pairs

t < tβ

P (Tbot = t|Tβ = tβ) · P (Tβ = tβ) = P (Tbot = t, Tβ = tβ)

= P (Tβ − Tbot = tβ − t, Tbot = t).

The waiting time from the time the mutant emerges and to the time it reaches

�xation, Twait = Tβ − Tbot is independent of Tbot, and since Tbot follows geometric

distribution with parameter Pbot,

P (Tbot = t) = (1− Pbot)t−1Pbot,

and hence we obtain,

P (Twait = tβ − t, Tbot = t) = P (Twait = tβ − t) · P (Tbot = t)

= P (Twait = tβ − t)(1− Pbot)t−1Pbot.

Thus, the conditional distribution of Tbot given Tβ = tβ is given by

P (Tbot = t|Tβ = tβ) =
P (Twait = tβ − t)(1− Pbot)t−1Pbot

P (Tβ = tβ)
. (4.7)

Given Tβ = tβ, the maximum likelihood estimate T̂bot of Tbot is obtained by maxi-

mizing in t, the above equation (4.7), that is:

T̂bot = arg max
t|0≤t≤tβ

P (Twait = tβ − t)(1− Pbot)t−1. (4.8)

Since s is already estimated and considered known, then for each �xed potential

value u of the unknown parameter ν = log µ, the corresponding theoretical value of

Pbot becomes only a function of u, since this value can be computed using (3.8) and
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(4.8).

The unknown probability distribution of Twait, for a potential value u of ν, can be

approximated by the empirical distribution obtained from the simulations of 1100

evolution process trajectories associated with each potential value u ∈ GR.

Thus for each potential value u, and for each integer tβ, by using the maximum like-

lihood approach we can compute the value of the estimator T̂bot. This estimate thus

depends on the potential value u of the unknown parameter ν, and on the observed

value tβ of Tβ. Figure 4.10 displays example of distribution of Tβ for a �xed value of

s = 0.12 and for three di�erent values of µ.

Figure 4.10: Distribution of Tβ for �xed s = 0.12 and three di�erent values of µ,
when β = 55%.

Let u be any �xed value in the grid GR, and assume that the unknown parameter

ν = log µ, has the true value u. The N observed population trajectories, generate N
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observed values of Tβ, denoted by T 1
β , . . . , T

N
β . To each of these values of T iβ, we can

then apply the above maximum likelihood approach to compute the corresponding

N estimates of T̂ ibot, for i = 1, . . . ,N . The average of these N estimates gives the

estimate of Pbot, namely,

P̂bot(N ) =
1

T̄bot(N )
≈ 1

E[Tbot]
. (4.9)

where

T̄bot(N ) =
1

N

N∑
i=1

T̂ ibot.

Figure 4.11 displays the probability Pbot as computed from the explicit formula

derived above in chapter 3, and compares it to the simulated probability Pbot, along

with the 95% con�dence intervals. From simulations, the actual times Tbot at which

the mutants emerge and survive a bottleneck successfully, can be determined, and

thus by using equations 3.8, we compute the values Pbot empirically, using the em-

pirical times for the emergence of mutants in the trajectories.

A crude estimate of ν, can be deduced from equation (3.11),

ν = log µ ≈ logPbot − logN0 − log ζ(s).

Thus H(u) is given by

H(u) = − log(T̄bot(N ))− logN0 − log ζ(s). (4.10)

Note that this numerical value of H(u) is a function of the potential value u we had

temporarily �xed as a hypothetic value for the unknown parameter ν. The value

H(u) is not an estimator per se. But we expect H(u) to be quite close to u when the
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Figure 4.11: Comparison of simulated (along with 95% CI) and actual Pbot values,
for three �xed values of µ, and for di�erent s. For all values of µ, the actual Pbot is
contained inside the 95% CI of the simulated P̂bot. From above, we have P̂bot = 1

E[Tbot]
.

potential value u is equal to the true unknown value of the parameter ν. Thus, to

discover the unknown value ν, a natural approach is to determine, in the �nite grid

GR, which potential value u actually minimizes the absolute value |H(u)− u|. This

minimizing u is the intermediary estimator of ν, and is denoted by ν̂int, de�ned by

ν̂int = arg min
y∈GR

|H(y)− y|. (4.11)

The algorithmic computation of ν̂int only requires knowledge of the observed values

of the N times T 1
β , . . . , T

N
β , and hence ν̂int is a bona �de estimator of ν.

For each pair (s, µ), our SDB stores an empirical histogram DisTβ(s, µ) for Tβ (�gure
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Figure 4.12: The empirical histogram of the estimator ν̂int when s = 0.10, ν =
−15.24 and N = 11. We see that the estimator ν̂int tends to underestimate the true
value ν.

4.10). Fix s and the number N of populations. For each ν = log µ ∈ GR, we launch

repeated independent random sampling from the histogram DisTβ(s, µ), in order to

generate 1,000 lists of N random values of Tβ, denoted T 1
β , . . . , T

N
β . Applying the

estimation algorithm mentioned above to each one of these 1000 lists we generate a

sample of 1,000 random values of ν̂int, which provides an accurate empirical histogram

Dis ν̂int(s, ν,N ) for the estimator ν̂int. Figure 4.12 displays an example of empirical

histogram (Disν̂int(0.10, 1.2∗10−7, 11)) for the estimator ν̂int for s = 0.10, ν = −15.93

and N = 11.
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4.2.4 Asymptotic Con�dence Interval for ν for Large N

Assume that the �rst emergence times T ibot, of mutants, for the number of popu-

lations, N , is actually observed. Then by equation (4.10), we see that the pre-

liminary estimator H of ν is a deterministic smooth function (call it g, where

g(x) = − log(x) − log ζ(s) − logN0) of the average times T̄bot(N ). Since ζ(s) and

N0 are �xed, the function g(x) has two continuous derivatives g′(x) = −1/x and

g′′(x) = 1/x2.

When N →∞, the distribution of T̄bot(N ) is asymptotically Gaussian by the Central

Limit Theorem, and as seen in chapter 3 previously,

E[Tbot] =
1

Pbot
, and std[Tbot] =

√
Pbot

(1− Pbot)
√
N
.

Since, g is a smooth deterministic function as above, it preserves asymptotic nor-

mality, (see, for instance, Azencott, 1980 [3]) and hence the estimator H must be

asymptotically Gaussian as N → ∞, with mean g(1/Pbot) = ν and standard devi-

ation |g′(1/Pbot)|std[Tbot] =
P

3/2
bot

(1−Pbot)
√
N . This means in particular that the estimator

H converges to the true value ν as the number of populations N →∞, and that the

size of the estimation error is proportional to 1√
N .

Asymptotic con�dence intervals for ν based on the estimator H can then be calcu-

lated theoretically using the fact that for large N , the random variable

√
N (H(ν)− ν)(1− Pbot)P−3/2

bot

is approximately a standard Gaussian random variable with mean 0 and variance 1.

For standard Gaussian variables. the con�dence intervals at 95% con�dence level are
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centered at 0 and have a half-width 1.96, so for large number of populations N , we

have

Prob

[
H(ν)− 1.96P

3/2
bot

(1− Pbot)
√
N

< ν < H(ν) +
1.96P

3/2
bot

(1− Pbot)
√
N

]
∼ 0.95. (4.12)

For the experiments considered, Pbot is often small, and these asymptotic con�dence

intervals have a width inferior to 2/
√
N , which is as good an asymptotic bound as

one could theoretically expect, but which only becomes e�ectively valid for N > 100.

However, the number of populations used in the experiments considered are too small

to consider that the large N asymptotic are applicable. To deal with smaller values

of N , we have thus constructed the empirical con�dence intervals, as explained above

in general.

In the next Section, we �rst illustrate how the empirical con�dence interval com-

putation algorithm is applied to calculate the con�dence intervals for the estimator

ν̂.

4.2.5 Empirical Con�dence Interval of ν̂

For �xed values of s and N , for each potential value u ∈ GR of the unknown

parameter ν, we �rst simulate 1100 trajectories of the evolutionary population pro-

cess. We generate for each pair of (s, µ), corresponding empirical distributions of

Twait = Tβ − Tbot, and the empirical distributions of Tβ.

After this preliminary step, we use the empirical distributions of Tβ repeatedly to

generate 1000 random samples of N independent virtual values (T 1
β , . . . , T

N
β ). To

each one of these random samples of size N , we apply the estimation algorithm
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above to compute the corresponding "virtual" value of the estimator ν̂. The his-

tograms of the 1000 virtual values of ν̂ thus provides the empirical distribution of

the estimator ν̂, when the current �xed potential value u is the true value of the

logarithmic mutation rate. From these, we can compute the quantiles η− and η+, for

�xed con�dence level α. Note that these depend on the true unknown value u and

the other model parameters s and N .

After repeating this process for each potential value u ∈ GR, we can then display the

two curves η− : u→ η̂−(u) and η+ : u→ η̂+(u). Once these two curves are generated,

they can then be used to generate a con�dence interval at con�dence level α for the

unknown true value of ν, as soon as the value of the estimator ν̂ has been computed.

For the asymptotic situation where the number of populations N → ∞, formula

(4.12) shows that η− < η+ are continuous, non-decreasing functions. Thus,

P (η−(θ) ≤ θ ≤ η+(θ)) = α

linking the random estimator θ̂ and the true value θ of the parameter. Also,

θ̂ ≤ η+(θ) and η−(θ) ≤ θ̂ (4.13)

and by construction, this (equation (4.13)) is true 90% of the time. We can thus write

an equivalent form of these inequalities, and can solve for η+(x) = y or x = Z+(η+(x))

and η−(x) = y or x = Z−(η−(x)), and thus inequalities (4.13) are equivalent to

Z+(θ̂) ≤ θ and θ ≤ Z−(θ̂) (4.14)

which gives Z+(θ̂) ≤ θ ≤ Z−(θ̂) and P (Z+(θ̂) ≤ θ ≤ Z−(θ̂)) = α.

The functions A(θ̂) and B(θ̂) are given as above in equation (4.2), and the con�dence

74



4.2. PARAMETER ESTIMATION

−18 −17.5 −17 −16.5 −16 −15.5 −15 −14.5 −14 −13.5
−18

−17.5

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

true values of ν

5
%

 a
n

d
 9

5
%

 Q
u

a
n

til
e

 C
u

rv
e

s

 

 
5% quantile curve
95% quantile curve

Figure 4.13: Con�dence intervals for θ̂ computed using the quantile curves.

interval is then de�ned as CI(θ̂) = [A(θ̂), B(θ̂)] where A(θ̂) and B(θ̂) are the abscissas

of the points having ordinate θ̂ on η+ and η− respectively.

Figure 4.13 displays an example of the quantile curves, and how the con�dence

interval is computed by applying the inversion algorithm explained above. This

example displays the quantile curves η+ and η− for instance for s = 0.1 and N =

50, and α = 90%. If the experimental data, for instance, were generated by 50

populations, for s = 0.1 and some unknown ν, let the estimated value to be suppose

θ̂ = −16.12, then �gure 4.13 shows that the 90% con�dence interval corresponding

to the value θ̂ = −16.12 is CI(−16.12) = [−16.36,−15.77], since the horizontal line

of ordinate −16.12 intersects the curves η+ and η− at points with abscissas −16.36

and −15.77. The interval CI(−16.12) should thus contain the unknown true θ̂ with

probability 90%.
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For α = 90%, we have validated numerically that η− and η+ are nondecreasing

and that η− < η+, holds for moderate numbers of populations N , and that the

preceding algorithm correctly generates families of con�dence intervals. This nu-

merical veri�cation was performed for each s ∈ {0.01, 0.02, . . . , 0.2} and for each

N = 11, 30, 50, 70, 90, 100. However, the property that u ∈ CI(u) may fail for ex-

treme or isolated values of u. This point has led us to algorithmically improve the

estimator ν̂ to decrease its bias, as indicated below.

4.2.6 Final Re-centered Estimator

Extensive numerical exploration shows that for moderate values of N , the estimator

ν̂int of ν tends to underestimate the true value of ν (�gure 4.12 for example displays

empirical histogram ν̂int when N = 11), so that this slant naturally tends to "push"

the estimator ν̂int towards the left boundary of the con�dence interval CI(ν̂), and

sometimes beyond it. Hence we have implemented and tested the following empirical

re-centering technique for the estimator ν̂int.

Fix the number of populations N . Once the selective advantage s has been esti-

mated, and hence can be considered known, we compute as indicated above, the

histogram Dis ν̂int(s, u,N ) of the estimator ν̂int, for each potential value u ∈ GR of

the unknown true ν. Now for each �xed u ∈ GR, perform the following steps:

1. Apply the algorithm (4.2.5) to compute the empirical con�dence interval for

any potential value φ of the estimator ν̂int. We generate the 90% con�dence in-

tervals CI(φk) = [A(φk), B(φk)] for each potential value φk for k = 1, . . . , 1000.
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2. By repeated independent sampling of the histogram Dis ν̂int(s, u,N ), generate

1000 virtual values φk of the estimator ν̂int, and compute the corresponding

1000 intervals CI(φk),

3. Use these intervals to generate 1000 random coe�cients

coeff k = (u− A(φk))/(B(φk)− A(φk))

4. Compute the empirical median γ(u) of the 1000 coe�cients coeff k.

We have thus pre-computed a deterministic numerical function γ(u) for each u ∈ GR.

For each φ ∈ GR, let Γ(φ) be the average of γ(y) over all y ∈ CI(φ)∩GR, and de�ne

the pondering coe�cient δ(φ) ∈ [0, 1] by

δ(s) =


Γ(φ) if 0 ≤ Γ(φ) ≤ 1

0 if Γ(φ) < 0 .

1 if Γ(φ) > 1

When we use the results of the experiment to compute the associated actual value

φ of the estimator ν̂int, we may assume with probability larger than 90%, that the

unknown true parameter ν lies somewhere in the interval CI(φ) = [A(φ), B(φ)]. To

get a better idea of how the unknown ν is positioned in CI(φ), it would be quite useful

to know the pondering coe�cient γ(ν) but this is not feasible since we do not know ν.

Hence we replace this unreachable coe�cient γ(ν) by its quite computable conditional

average value δ(φ) given the observed value φ of ν̂int. A fairly natural guess for the

unknown ν would be the barycenter (1−γ(ν))A(φ) +γ(ν)B(φ), so we conclude that

a good computable estimation of ν should be given by (1−δ(φ))A(φ)+δ(φ)B(φ). By
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Table 4.2: Displays the pre-computed three deterministic functions A(φ), B(φ), and
δ(φ) for all φ ∈ GR.

φ A(φ) B(φ) δ(φ)

-16.12 -17.72 -15.42 0.0006
-15.53 -17.72 -14.68 0.0939
-15.56 -17.72 -14.74 0.0939
-14.89 -15.81 -14.01 0.4638
-14.68 -15.69 -13.89 0.5515
-14.51 -15.53 -13.81 0.6499
-14.36 -15.34 -13.81 0.7219
-14.23 -15.20 -13.81 0.7219
-14.12 -15.16 -13.81 0.7219
-14.01 -14.91 -13.81 0.7219
-13.92 -14.50 -13.81 0.8386
-13.84 -14.47 -13.81 0.8386

simulations described above, we can pre-compute the three deterministic functions

A(φ), B(φ), and δ(φ) for all φ in the grid GR. These are displayed below in table

4.2.

Given the N observed trajectories recorded in an actual experiments, we can �rst

compute the intermediary estimator ν̂int of the unknown true ν. We then de�ne and

compute a new �nal estimator of ν, denoted ν̂ by

ν̂ = (1− δ(ν̂int))A(ν̂int) + δ(ν̂int)B(ν̂int).

This construction implements a self adaptive re-centering of the intermediary esti-

mator, so one should expect the �nal estimator ν̂ to have less bias and more accuracy

than the intermediary estimator ν̂int. Figure 4.14 displays an example of the empir-

ical histogram of the �nal estimator ν̂ of ν = log (µ), when s = 0.10 is �xed and for

N = 11.
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Figure 4.14: The empirical histogram of ν̂ for �xed s = 0.12 and N = 11. The true
value of ν = −15.16. We see that re-centering improves the intermediary estimator
ν̂int (�gure 4.12.)

4.2.7 Accuracy of the Logarithmic Mutation Rate Estimator

We have studied and compared the performances of the two estimators ν̂int and ν̂

for the representative values of s and moderate values of N . The estimator ν̂ clearly

performs better than ν̂int over the whole range of potential values of ν = log µ.

We now evaluate the quantitative performance of the estimator ν̂. For each �xed

triplet s, ν,N , we calculate the empirical histogram of ν̂. We use the histogram

Hist ν̂int(s, u,N ) to generate 1000 values of the intermediary estimator ν̂int. Then,

applying the self adaptive re-centering algorithm as above, we obtain 1000 values of

the �nal estimator ν̂.

We can then compute the three indicators described above in Section 4.1, the Bias,

the error of estimation Err, and the average width l(CI) of the 90% con�dence
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intervals for the �nal estimator ν̂. Since, the �nal or intermediary estimator of

log µ is computed based on a given s, we present the performances of the �nal es-

timator ν̂ for a single representative value of s = 0.1 and for 4 di�erent values of

N = 11, 30, 50, 100. For each of these cases, we display the curves for the Bias, Err,

and l(CI) of ν̂ as a function of true ν as displayed in �gure 4.15.
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Figure 4.15: Accuracy of the �nal estimator ν̂ of the logarithmic mutation rate :
the bias and the error of estimation, and average width of con�dence interval are
displayed as functions of ν = log µ for s = 0.1 and N = 11, 30, 50, 100. The dotted
line curves correspond to N = 11, the solid line curves correspond to N = 30,
the dotted and dot line curves correspond to N = 50, and the tiny dotted curve
correspond to N = 100.
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We see su�cient improvement in the accuracy when N increases from 11 to 30.

For N = 30, 50, 100, the Bias and the average error Err of estimation of the �nal

estimator ν̂ are both inferior to 3% of the true value of ν. The 90% con�dence

intervals generated by this estimator have an average width inferior to 10% of the

true value of ν. The Bias and the average error Err of the estimator ν̂ are both small

even for the moderate number of populations N = 30, so increasing this number to

100 does not reduce the two quantiles signi�cantly. However, the average width of

the 90% con�dence intervals for ν decreases signi�cantly when N increases from 30

to 100, and is in fact roughly multiplied by the theoretical factor
√

30/100 = 0.54.

When the number N of the experimental populations becomes large, one can show

that our �nal estimator ν̂ of the logarithmic mutation rate becomes approximately

Gaussian, with an asymptotic error of estimation of the order of

Err ≈ P
3/2
bot

(1− Pbot)
√
N
.

For the TC experiments, these asymptotic errors of estimation on ν = log µ have

a width inferior to 2/
√
N , but this will only become e�ectively valid for N > 100.

Table 4.3 below displays example of how
P

3/2
bot

1−Pbot
varies with di�erent s and µ.

Table 4.3: Table displaying the values for
P

3/2
bot

1−Pbot
for di�erent s and µ.

s\µ 2× 10−7 5× 10−7

0.10 0.014 0.056
0.15 0.016 0.066
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4.2.8 Another Re-centering of ν and its Accuracy

We introduce another re-centering algorithm to re-center the preliminary estimate

ν̂int of ν = log µ by computing the new re-centered estimator by taking the average of

the 90% con�dence interval as computed for the preliminary estimator, by using the

algorithm as described in Section 4.2.5. For a �xed number of populations N and the

selective advantage s, we compute as above the empirical histogram Disν̂int(s, µ,N )

of the estimator ν̂int for each potential value u ∈ GR of the unknown true ν. Now,

for a �xed u ∈ GR, we apply algorithm 4.2.5 to compute the empirical con�dence

interval for any potential value φ of the estimator ν̂int. This generates 90% con�dence

intervals CI(φk) = [A(φk), B(φk)] for each potential value φk for k = 1, . . . , 1000.

By repeated independent sampling of the histogram Dis ν̂int(s, ν,N ), generate 1000

virtual values φk of the estimator ν̂int, and compute the corresponding 1000 intervals

CI(φk). We use these 1000 intervals CI(φk) to compute the re-centered estimator ν̂

as follows:

ν̂(φk) =
A(φk) +B(φk)

2

Thus generating empirical distributions of the re-centered estimator ν̂ of ν by con-

sidering the average of the 90% con�dence intervals CI(φk) for each �xed u ∈ GR.

Figure 4.16 displays example of the empirical histogram for the re-centered estimator

when the re-centering is performed as above by considering the average of the con�-

dence intervals for each potential φk for k = 1, . . . , 1000. We studied the accuracy of

this re-centered estimator ν̂ of ν and in �gure 4.17 we display the results for the mean

length of the con�dence intervals, as the size of the number of wells N increases from

11 to 50, for a �xed value of s. We see that the mean length of con�dence intervals
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Figure 4.16: This �gure displays the empirical distribution of re-centered ν̂ using the
average of the con�dence intervals, for a �xed value of s = 0.10 and for µ = 2×10−7,
and N = 11.

decreases as the size for the number of wells N increases. Later in chapter 5, we will

show a comparison of the estimator ν̂ (re-centered using the average of con�dence

intervals) with the estimator of ν after complementary sub-sampling, and how the

accuracy is a�ected with di�erent sub-sampling sizes (Section 5.6.1).
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Figure 4.17: This �gure displays the mean length of the con�dence intervals for true
values of ν, for a �xed s = 0.10, and for di�erent N = 11, 50. The mean length of
the con�dence intervals decreases as the number of wells N increases.
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CHAPTER 5

Application to Experimental Data and E�ect of

Complementary Sub-Sampling

In the above chapters, we have introduced and studied a detailed Poisson process

model for the �rst step evolutionary dynamics of an asexual bacterial population

evolving under the simplifying assumption that a single type of irreversible mutation

is available to the population. The model formalizes experiments that evolvedN pop-

ulations starting with individuals having, except for a neutral marker, identical geno-

types, where each initial population undergoes a series of daily {growth+dilution}

cycles. The simulation study mentioned above predicts that the estimator ŝ of the
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selective advantage s has quite good accuracy within the realistic ranges of the model

parameters for the TC experiments, for estimating the selective advantages of the

�rst adaptive mutation that occurs and in�uences evolutionary dynamics. We will

test this prediction by applying our estimation algorithms as explained above to the

experimental data collected in the TC experiment and compare the predicted and

experimentally measured estimates.

5.1 Analysis of the Experimental Data

Denote by Pop1, . . . , Popk the k observed E.coli populations. As explained above (in

chapter 3), every day, after the growth saturation of these k populations, a sample

of very large �xed size N0 is randomly sampled, by dilution, from each population

Popj, and transferred to a fresh well. The frequencies wt and rt of the two cell marker

types in a fresh well on day t are then assayed from a complementary sub-sample

randomly extracted from the newly transferred population.

For TC experiments, the size Nsub of the complementary sub-sampling is moderate,

typically ranging between 300 and 400. A sample size of 300 is still reasonable to

estimate frequencies, but the experimental value for p(t) will have associated sam-

pling error which cannot be a priori neglected in the accuracy study of the parameter

estimators. Hence application of our estimator ŝ to actual TC experimental data re-

quires several systematic numerical modi�cations to remain e�cient. We will give an

analysis of the complementary sub-sampling e�ect in the later part of this chapter.

In table 5.1, we present an example of a typical data set for the TC experiments we
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have studied. This example displays the recorded instances of daily red and white

cells counts for one replicate population in the �rst TC experiments, which start with

a pure population of Ara-1 ancestor cells. Figure 5.1 displays two examples of the

curve log p(t)
1−p(t) where p(t) is the frequency of the white winning marker. This �gure

displays examples for population 2 and population 10 obtained from the TC experi-

ments with pure population of ancestor cells in the beginning of the experiments.

Table 5.1: Example of recorded daily red and white cell counts data for Pop1 exper-
imental population of E. coli with initially identical ancestor genotype.

days 1 8 15 23 25 29 32 34 36 50
# Red 26 138 115 42 172 425 320 300 300 250

# White 24 136 75 22 48 18 1 0 0 0
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Figure 5.1: Curve log p(t)
1−p(t) displayed over days for population 2 in �gure (a) and

for population 10 in �gure (b), for the 1st experimental data of the TC experiments;
which consisted of the pure ancestor population at the beginning of the experiments.
the dots represents the days at which the counts for red and white were recorded for
the experimental data.
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ADVANTAGES

5.2 Comparison of Estimated and Actual Selective

Advantages

Here we compare the estimated and the actual selective advantages for one TC ex-

periment. Out of the 6 distinct TC experiments, the "ground truth values" are

only available for the �rst TC experiment, where the initial genotype is the ancestor

genotype (with no mutation present in the beginning). We focus on the N = 11

independently evolved and monitored populations of initially identical ancestor cells.

We present the analysis for 10 of the 11 independently evolved and monitored pop-

ulations of initially identical ancestor cells, as described above, excluding one popu-

lation which exhibited unusual complex marker dynamics that are likely to indicate

the presence of more than one bene�cial mutation. These populations are monitored

until an emerging mutant reaches �xation.

To evaluate the "ground truth values" of s, complementary experimental manip-

ulations are needed as explained above in Section 2.2. For each population, four

individuals of the winning marker type were isolated from a time point as close as

possible to when the winning marker reached a frequency of greater than 0.9. These

individuals are likely to di�er from the original ancestral genotype by the addition of

the bene�cial mutation that drove the change in the marker dynamics. The �tness of

each individual was measured relative to the ancestor (Lenski et al. (1991) [35]), by

using a GFP expressing derivative of the ancestor as the reference. The use of GFP

marker enabled distinguishing competing ancestor and evolved clone sub-populations

by �ow cytometry (as explained in Section 2.2). The mean of these measures provides
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ADVANTAGES

a direct experimental value sdir(j) for the actual selective advantage of the bene�cial

mutation causing the winning marker to �x in population Popj. These values for

sdir are called the "ground truth values" of s.

For each population, we also computed an estimate ŝ(j) of the selective advantage

by applying our algorithmic estimator to the sequence of recorded experimental es-

timates of the frequency p(t). The 10 pairs of sdir(j) and ŝ(j) together with their

errors (standard deviations) are displayed in the �gure 5.2.

Figure 5.2: Comparison of "ground truth values" to our estimates of selective advan-
tages in 10 evolved populations. The experimental "ground truth values" sdir, and
our estimated values ŝ are displayed. The horizontal line indicates 95% con�dence
intervals on sdir and the vertical lines are ± standard deviations for the estimation
errors attached to ŝ.

The mean 0.111 of the 10 experimental "ground truth values" sdir(1), . . . , sdir(10)
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ADVANTAGES

is quite close to the mean 0.114 of our estimates ŝ(1), . . . , ŝ(10). Moreover, the square

root of the mean quadratic di�erences (MQD) between our estimated values and the

"ground truth values" of the selective advantages in these 10 populations is 0.036.

The standard deviation of the "ground truth values" sdir(j) has been evaluated to

be of the order of σdir = 0.007. The standard deviation of the estimation errors for

our estimators ŝ(j), obtained by analyzing the observed experimental data is close

to σ̂ = 0.03 for each of the 10 populations studied.

Let σ2
dir(j) be the variance corresponding to sdir(j) and let σ̂2(j) be the variances

corresponding to ŝ(j). Then we want to compare the two variances σ2
dir(j) and σ̂

2(j).

Consider σ2
dir(j) to be known, then we compare to σ̂2(j). Let V1 = σ2

dir(j) + σ̂2(j) be

the combined variance of the two sets of estimates, and let V2 =
∑10

i=1(ŝ(i)−sdir(i))2

be the sum of squared di�erences between direct and model estimates. To further test

the agreement of the direct and model-based estimates, we calculated the statistic

X2 =
V2

V1

.

Under our null hypothesis, each di�erence sdir(j) − ŝ(j) follows a distribution with

mean zero and variance V1, and X
2 is expected to follow a χ2 distribution with 10

degrees of freedom. Thus performing the hypothesis test, we test the null hypothesis

that these two variances are equal.

Hence we �nd that our model estimated values of selective advantages are compatible

with the "ground truth values".
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5.3 Estimate of Bene�cial Mutation Rate

Direct measurement of occurrence rates for bene�cial mutations is notoriously di�-

cult, and is currently possible for only a limited number of strain-mutation combina-

tions [8]. Thus, standard biological experiments cannot directly assess the accuracy

of our estimates for the occurrence of bene�cial mutations as derived from the ex-

perimental data.

The overall estimate of ν, as computed from the model, for the 10 replicate popula-

tions depend on the estimate of s. If we take the mean of the 10 estimates ŝ as an

overall estimate of s, the estimate of logarithm of mutation rate using the method

described above in (4), for the simulation model is given by ν̂ = −15.16 with error

size |ν̂ − ν| is 0.7. This value corresponds to a mutation rate µ between 1.3 × 10−7

and 5.2× 10−7. The square root of the mean quadratic error
√
mean(ν̂ − ν)2 is 0.8.

5.4 E�ect of the Complementary Sub-sampling

In the experimental growth evolution experiments, as explained above, after the

growth saturation of the cells, every day, �rst a sample of a large �xed size N0 is

randomly sampled, by dilution and transferred to a fresh well. A complementary

sub-sample, of size Nsub is then randomly extracted from this newly transferred

population, and allowed to grow on culture plates, to extract current frequency of

color markers by visual counts. The maximum of number of cells, after growth on

culture plates is restricted to between 300 and 400. The frequencies for the two
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color marker types cells are then assayed at di�erent days from these culture plates.

For the TC experiments, the size of this sub-sampling Nsub is moderate, typically

between 300 and 400.

In our simulations of the preceding process, at the end of each day, after the "growth

+ �rst dilution" cycle has been simulated, the complementary random sub-sample

of size Nsub is virtually extracted. This sub-sampling follows a binomial distribution

∼ Bin(Nsub, pr), where the parameters for this binomial are the total sub-sampling

size given by Nsub and probability pr denotes the proportion of cells for any one

marker type in the population. The sub-sampling generated random number of cells

for the white marker type, for each day t.

5.4.1 Algorithm for Automatic Extraction of the "Almost

Linear Growth" Time Segment

Let g(t) = log p(t)
(1−p(t)) . We present an algorithm for the automatic extraction of the

fast almost linear increase " time segment" from the curves of g(t), to analyze the

markers frequency data after the complementary sub-sampling.

As mentioned in Section 4.1.2, we have computed a simulation data base giving the

daily numbers of red and white cells as counted after the daily complementary sub-

sampling. For each pair of (s, µ) in their respective ranges, we have simulated 1000

such trajectories. We have developed an algorithm to automatically detect the �rst

time the deviation from the straight line occurs in the trajectory g(t), and extract,

from the g(t) trajectory, the time segment of roughly linear growth from this point
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onwards. Since the complementary sub-sampling size is much smaller, we have a

larger error attached to the p(t), which increases the �uctuations in the observed

trajectory of g(t). The following algorithm allows us to extract the roughly linear

time segment from the g(t)-trajectory .

1. For each day t starting from day 2 and going up to day T , break up the

trajectory into two parts, the �rst, denoted by [0, t] from day 1 to day t, and a

part [t, T ], from day t to day T , where T is the �rst time at which the frequency

of winner p(t) reaches 99%.

2. Compute the best �t least squares line, called ft(u), modeling the g(u)-trajectory

for u in [0, t]. The squared error of �t between ft(u) and g(u) has meanm(L, t),

median = med(L, t) and 75% quantile Q(L, t). Similarly, compute the best �t

least squares line fT modeling the trajectory on [t, T ]. The squared error of

�t between fT (u) and g(u) have mean m(R, t), median = med(R, t) and 75%

quantile Q(R, t). Figures 5.3, 5.4, and 5.5 displays example of these curves for

a particular trajectory g(t) displayed in �gure 5.7.

3. Compute σ1(t) = m(L, t) +m(R, t), σ2(t) = med(L, t) +med(R, t) and σ3(t) =

Q(L, t) + Q(R, t), where σi(t) denotes the sum of the mean (i = 1), median

(i = 2), or the 75th quantile (i = 3) for the best �t least squares line ft and fT

for each day t. Figures 5.3, 5.4, and 5.5 displays these curves.

4. Compute D0 = 't' which minimizes [min{σ1(t), σ2(t), σ3(t)}]. D0 is the the day

on which the �rst signi�cant trajectory deviation occurs, and is a candidate for

Tbegin. However, it is possible that D0 overestimates Tbegin by a few days. We
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will correct for this error later. Figure 5.6 displays the three sums computed

above, σ1(t), σ2(t), and σ3(t).

5. Let D̂ = max(D0, argmintσ1(t)). D̂ is either D0, or is the day on which the

minimum sum of mean squared errors is obtained. Starting from D̂, check to

see if, for each 1 ≤ i ≤ T − D̂

σ1(D̂ + i) ≥ σ1(D̂ + i− 1).

If i0 is the �rst i for which σ1(D̂+ i0) < σ1(D̂+ i0− 1), we let D1 = D̂+ i0. If

this condition is never met, set D1 = Tfix. D1 is our preliminary estimate for

Tend, but it is possible that D1 underestimates Tend by a few days.

6. We now adjust the preliminary estimates D0 and D1 to get our estimates

for Tbegin and Tend. Fix a length parameter L = 5 , and consider the intervals

[D0−L,D0+L] and [D1−e,D1+e]. These intervals should be truncated so that

no part of these intervals lies outside [0, Tfix]. Pick a day d1 ∈ [D0 − e,D0 + e]

and d2 ∈ [D1 − e,D1 + e]. The trajectory now has three parts: [0, d1], [d1, d2]

and [d2, T ]. Compute the best �t least squares line for these three parts. On

each part, compute the average squared error of the residuals, and sum over

the three parts to obtain σ(d1, d2). Then

(Tbegin, Tend) = argmind1,d2σ(d1, d2).

Figure 5.7 displays the curve g(t) along with the Tbegin and Tend as obtained

using the algorithm described above. Figure 5.8 displays another example for

the curve g(t) and plots the Tbegin and Tend as computed by using the algorithm

detailed above.
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Figure 5.3: (a): Displays the plot for the average of the left (m(L, t)) and right
(m(R, t)) residuals squares at each time point. (b): Displays the sum σ1(t).
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Figure 5.4: (a): Displays the plot for the median of the left (m(L, t)) and right
(m(R, t)) residuals squares at each time point. (b): Displays the sum σ2(t).
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Figure 5.5: (a): Displays the plot for the 75% quantile of the left (Q(L, t)) and right
(Q(R, t)) residuals squares at each time point. (b): Displays the sum σ3(t).
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Figure 5.6: Plots for σ1(t) in the solid line, σ2(t) in the dashed line, and
σ3(t) in the dotted line. The red round dot displays the ”t” which minimizes
min {σ1(t), σ2(t), σ3(t)}, which occurs at day 49.
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Figure 5.7: The curve g(t) versus days, displaying the Tbegin and Tend as computed
using the algorithm above.
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Figure 5.8: The curve g(t) versus days, displaying the Tbegin and Tend as computed
using the algorithm above.
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5.5 Estimation of s after Complementary Sub-sampling

De�ne a grid of one thousand (s, µ) values GRID as the discretized rectangle built

by pairing 20 values of s ∈ [0.01, 0.2] with 50 values of µ ∈ [2× 10−8, 10−6].

For any given pair (s, µ) in GRID, we simulate a large number of trajectories of the

evolution model parametrized by (s, µ). To each simulated g(t)-trajectory, we apply

the automatic algorithm presented in Section 5.4.1 to extract the roughly linear

growth time segment SEG = [Tbegin, Tend] of the g(t)-trajectory.

As in Section 4.2.1, we apply linear regression between Tbegin and Tend to approximate

g(t) on SEG, and denote by â the estimated slope of this linear regression line. From

equation (3.16), we see that the curve g(t) = log p(t)
1−p(t) is approximately linear in t

with slope given by s
1+s

logD. Thus we have

â =
s

1 + s
logD

â(1 + s) = s logD

s(logD − â) = â

and we generate our preliminary estimate of s as follows

ŝpr =
â

logD − â

Repeating this for all trajectories in the simulation data base, we obtain, for each

pair (s, µ) in GRID, the associated empirical distributions Dis â(s, µ) of â and

this enables us to evaluate the empirical mean as well as the median G(s, µ) of the

preliminary estimator ŝpr. Our intensive simulations de�nitely show that the median

G(s, µ), is practically almost independent of µ, and is quite close to a linear function

G(s) of s, which essentially does not depend on µ, as displayed in �gure 5.9.

101



5.5. ESTIMATION OF S AFTER COMPLEMENTARY SUB-SAMPLING

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

s

G
(s

,µ
)

 

 

µ=2× 10−8

µ=10−6

Figure 5.9: The empirical median G(s, µ) = G(s) of the preliminary estimator ŝpr as
a function of s for two extreme values of µ, is almost independent of µ, and is not
equal to s.

A linear regression of G(s, µ) with respect to s generates the linear approximation

G(s) ' 0.8558s− 0.0009.

which is valid for all µ in GRID. The estimator ŝpr is biased because the derivative

G(s, µ) with respect to s is close to 0.8558 < 1. We hence generate the new unbiased

estimator of s by inverting the linear approximation of G(s) as follows:

ŝ = (ŝpr + 0.0009)/0.8558 (5.1)

=

(
â

logD − â
+ 0.0009

)
/0.8558

=

(
â

5.3− â
+ 0.0009

)
/0.8558

=
1.17 â+ 0.005

5.29− â

Since G(s) = G(s, µ) is an increasing function of s, the median of the estimator ŝ is
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G−1(·) evaluated at the median of ŝpr, G(s). So the median of ŝ is G−1[G(s)] = s

and ŝ is an unbiased estimator of s.

Let Hŝ(s, µ) be the empirical histogram of ŝ for �xed s and µ generated by simu-

lations, then as can be seen from �gures 5.10 and 5.11, the histogram Hŝ(s, µ) is

centered at s and is practically independent of µ.

Figure 5.10: Empirical histograms of ŝ for 4 values of µ are almost identical for a
�xed s = 0.1, is independent of µ.

We plot the median of ŝ as a function of s for two extreme values of µ, for

µ = 2×10−8 and 10−6 in �gure 5.12, we can see that the new estimator of s based on

marker frequencies estimated by complementary sub-sampling of size Nsub = 300 is

not as accurately independent of µ as was the estimator ŝ based on exact evaluations

of marker frequencies, corresponding to ideal complementary sub-sampling size where

Nsub would be equal to N0 = 50, 000 (�gure 4.5). Thus the estimator ŝ based on

evaluations of marker frequencies by small size complementary sub-sampling is not
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Figure 5.11: Empirical histograms of ŝ are centered at s as displayed for 4 values of
s and for a �xed µ = 2× 10−7.

completely unbiased.
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Figure 5.12: The empirical median of ŝ as plotted for two extreme values of µ. The
empirical median of ŝ is approximately s but this reduces for large values of µ.
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5.5.1 Accuracy of ŝ and Comparison to the Experimental

Data

As seen above, the estimator ŝ of s is not completely an unbiased estimator of s with

respect to µ, as was the case for the estimator of s when there is no complementary

sub-sampling. We apply the above described algorithm to the experimental data, as

these data gave numbers of red and white cells at the end of the day after the 2nd

sub sampling had been performed. We compute an estimate, called the predicted

estimates of s for each of the populations Pop1, . . . , PopN . The direct experimental

values sdir(j) for the selective advantage for each population Popj is obtained as

before in Section 5.2. The predicted estimates ŝ(j), using the simulation model, and

the "ground truth" value sdir(j) of selective advantages are displayed below in the

table 5.2.

The accuracy of the predicted estimates, using simulations, can be calculated by

computing the square root of the mean square error σ =
√
E[ŝ− s]2.

Next, to compare the accuracy of the Predicted ŝ(i) and Observed sdir(i), we

compare the two variances τ 2
i corresponding to sdir(i) and σ

2
i corresponding to ŝ(i)

for i = 1, . . . , 11.

Let the variances τ 2
i be known, then we want to compare to the variance σ2

i . Let

V1 = τ 2
i + σ2

i

106



5.5. ESTIMATION OF S AFTER COMPLEMENTARY SUB-SAMPLING

Table 5.2: Predicted estimates ŝ and Observed direct experimental values sdir of
selective advantages for populations of experiments starting with ancestor cells.

Population ŝ± σ sdir ± τ
Pop1 0.14 ± 0.03 0.10 ± 0.004
Pop2 0.09 ± 0.02 0.09 ± 0.005
Pop4 0.13 ± 0.03 0.14 ± 0.005
Pop5 0.08 ± 0.02 0.12 ± 0.006
Pop6 0.13 ± 0.03 0.08 ± 0.004
Pop7 0.11 ± 0.02 0.10 ± 0.008
Pop8 0.08 ± 0.02 0.10 ± 0.009
Pop9 0.11 ± 0.02 0.15 ± 0.005
Pop10 0.13 ± 0.03 0.13 ± 0.004
Pop11 0.11 ± 0.02 0.10 ± 0.004

be the combined variance and

V2 =
1

10

10∑
i=1

(ŝ(i)− sdir(i))2

be the mean of squared di�erences. Then to test the agreement of the direct and

model based estimates, we calculated the statistic

X2 = 10 ∗ V2

V1

.

Under our null hypothesis, each di�erence sdir(j) − ŝ(j) follows a distribution with

mean zero and variance V1, and X
2 is expected to follow a χ2 distribution with 10

degrees of freedom. We reject the hypothesis that these two variances are almost the

same, when

10 ∗ V2

V1

< χ2(α/2, 10)

or

10 ∗ V2

V1

> χ2(1− α/2, 10).

107



5.5. ESTIMATION OF S AFTER COMPLEMENTARY SUB-SAMPLING

Now, for the above case, we get that 10∗ V2

V1
= 12.6582. And if we check the hypothesis

at 5% signi�cance level for α, then we get χ2(α/2, 10) = 3.247 and χ2(1−α/2, 10) =

20.483. Here using the values χ2(α, 10) such that
� χ2(α,10)

0
f(x)dx = α. Thus we

accept the hypothesis that the two variances are compatible. Hence, the predicted

estimates using our estimation method, and the observed direct experimental values

for s are still compatible.

5.5.2 Loss of Accuracy of ŝ due to Complementary Sub-sampling

In this Section, we give a brief comparison between the estimators ŝ when there is

no complementary sub-sampling (Section 4.2.1), and when ŝ is computed after the

complementary sub-sampling is applied, as in Section 5.5. As seen before (in Section

4.2.1), when marker frequencies are ideally estimated with no error, our estimator ŝ

is computed by the following formula:

ŝideal =
1.26 â+ 0.002

5.29− â
. (5.2)

When marker frequencies are estimated by daily complementary sub-sampling of

size 300, our estimator ŝsub of s is computed by the formula:

ŝsub =
1.17 â+ 0.005

5.29− â
. (5.3)

For each one of these two situations, �x µ = 5 × 10−7. We compute the error of

estimations Err for each s associated to µ, to see how far the true value of s is

from the estimate ŝ. Call ŝideal the estimate of s based on ideal exact values of

marker frequencies. Let ŝsub denote the estimate of s based on marker frequencies
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evaluated by complementary sub-sampling (extraction of approximately 300 cells

from new culture wells and transfer of these 300 cells onto culture plates for visual

cell counting). The mean estimation error Err(s, µ) for each s and when µ = 5×10−7

is �xed, is de�ned by Err(s, µ) = mean(|ŝ − True s|) and calculated by empirical

mean on simulated trajectories. Figure 5.13 displays the plot for these errors as

calculated for the two estimators (ŝideal and ŝsub). We see that the accuracy for the

estimator of s is reduced when the complementary sub-sampling is performed. While

the Err ≤ 0.018 for the estimator ŝideal, we see that the Err for the estimator ŝsub

after the complementary sub-sampling increases to 0.035.
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Figure 5.13: The plots for Err as computed for the estimator ŝideal when there is no
complementary sub-sampling (in solid line) and Err as computed for the estimator
ŝsub based on frequencies estimated by complementary sub-sampling (in dashed line
curve) when µ = 5× 10−7.
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5.5.3 Accuracy of ŝ for Di�erent Sub-sampling Sizes

We display accuracy results for the estimator ŝ as we increase the size Nsub of the

daily complementary sub-samples. We compute the indicator Err = mean(|ŝ − s|)

for all s for a �x value of µ = 2×10−7. We display the results for Err as we increase

the size for Nsub = 400, 1000, 5000, 10, 000, and 50, 000. This last value of Nsub

corresponds to ideal exact evaluation of marker frequencies. Figure 5.14 displays

these curves for Err for di�erent Nsub. We see that the accuracy of estimator ŝ

increases as we increase the size Nsub of the daily complementary sub-samples.

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

true values of s

E
r
r

o
n

ŝ
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Figure 5.14: The curves for Err for the estimator ŝ based on frequencies estimated
by daily complementary sub-samples of size Nsub is displayed for all values of s ∈
[0.05, 0.2] and for a �xed µ = 2 × 10−7. The accuracy for the estimator increases
as the size Nsub increases from 400, 1000, 5000, 10,000, to the maximal ideal size
50,000.
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WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY

SUB-SAMPLING

5.6 Accuracy for Estimator of Logarithmic Muta-

tion Rate when Frequencies are Estimated by

Complementary Sub-sampling

As mentioned above, the logarithmic mutation rate ν = logµ cannot be measured

directly in the TC nor in the HK experiments. But by simulations of the underlying

process, we can compute accuracy for our estimator ν̂ of ν. Hence the computed

accuracy of ν̂ cannot be evaluated by comparison with non existing experimental

"ground truth values" of ν.

We link ν = log µ to the logarithm of the conditional probability Pbot of daily bottle-

neck crossing on day t given that there were no mutants at the beginning of that day.

The range of values for ν = log µ is (−18.42, 13.82). We estimate ν by the algorithm

detailed above in Section 4.2.3. During the estimation of the logarithmic mutation

rate, we treat the estimate ŝ as the true value of the unknown parameter s. We

�rst compute the intermediary estimator ν̂int and then form the �nal estimator ν̂ by

using a re-centering technique similar to the technique presented in Section 4.2.8.

Here we de�ne the re-centered estimator ν̂ of ν as the midpoint of the 90 % con�dence

interval for ν based on ν̂int. We have indeed veri�ed that in the context of frequency

estimation by complementary sub-sampling, this simpler re-centering technique is

more robust than the re-centering technique introduced above in Section 4.2.6.

Indeed in the context of complementary sub-sampling and for small number of wells

N = 11 the con�dence intervals for ν based on ν̂int tend to be less precise as com-

pared to the case when marker frequencies are assumed to be known exactly. The
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WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY
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adaptive re-centering weights outlined in 4.2.6, indeed tend to be less precise when

frequencies are measured with strong accuracy, and thus often shift the �nal estima-

tor ν̂ of ν too much to the right in the presence of complementary sub-sampling. For

this adaptive weights technique, and in the presence of complementary sub-sampling,

we display in �gure 5.17 a typical example for the histogram of ν̂. Thus, when com-

plementary sub-sampling is used, we de�nitely use the simpler re-centering by taking

the midpoint of a con�dence interval based on ν̂int which gives a robust accuracy for

the �nal estimator ν̂.

The algorithmic computation of ν̂int only requires to know the observed values of the

N times T 1
β , . . . , T

N
β , and the estimate ŝ of s. Since the recorded frequency p(t) is

more corrupted by errors when frequencies estimates are based on complementary

sub sampling, we consider a percentage β slightly higher than 55% to de�ne the times

Tβ, namely β = 60%, where Tβ = inf{t|p(t) > β}. To compute estimator accuracy

for ν̂ given a �xed s and a �xed number N of replicate populations, we simulate 1000

values of ν̂int to generate an empirical histogram for the estimator ν̂int. To compute

con�dence intervals CI(ν̂int) for ν, we implement the algorithm outlined in chapter

4, and then one generates ν̂ as the midpoint of CI(ν̂int).

The re-centered estimator ν̂ performs better than the preliminary estimator ν̂int.

Figures 5.15 and 5.16 display examples of histograms for the preliminary estimator

ν̂int and for the �nal estimator ν̂. To evaluate the performance of the two estimators,

as mentioned above, we compute the indicator Err. This is displayed in �gures 5.18

for di�erent values of s. Clearly, the accuracy is improved for the �nal estimator ν̂

as compared to the preliminary estimator ν̂int, as can be seen in �gure 4.15.

112



5.6. ACCURACY FOR ESTIMATOR OF LOGARITHMIC MUTATION RATE

WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY
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As could be expected, the accuracy for the estimator ν̂ of ν based on daily frequencies

is decreased by the errors on frequencies due to the complementary sub-sampling and

cell plating. When marker frequencies are measured "exactly", the mean absolute

error of estimation Err for the estimator ν̂ of ν = log µ is less than 0.8 (�gure 4.15)

for N = 11 and when s = 0.10 is �xed. In the presence of daily complementary

sub-sampling of size Nsub = 400, the mean absolute error for estimator ν̂ increases

to 1.5 in the same context (N = 11 and s = 0.10).
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Figure 5.15: Displays the plot for the histogram of the preliminary estimator ν̂int of
ν when s = 0.10, and µ = 2×10−7 (or ν = −15.43), and when N = 11 is �xed. This
tends to underestimate the true value of ν.
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Figure 5.16: Displays the plot for the histogram of the �nal estimator ν̂int of ν when
s = 0.10, and µ = 2× 10−7 (or ν = −15.43), and when N = 11 is �xed, which now
is centered around the true value of ν.
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Figure 5.17: Displays the plot for the histogram of the �nal estimator (computed
using the algorithm 4.2.6), when s = 0.12, µ = 2.6× 10−7 and when N = 11, which
does not work very well for estimation of ν after the complementary sub-sampling is
performed.
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5.6. ACCURACY FOR ESTIMATOR OF LOGARITHMIC MUTATION RATE

WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY

SUB-SAMPLING
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Figure 5.18: The accuracy of the �nal re-centered estimator ν̂ is better than the
accuracy for the intermediary estimator ν̂int. This is displayed in �gure (a) when
s = 0.05 and in (b) when s = 0.10. The mean absolute errors of estimation are
displayed by the solid line for the preliminary estimator ν̂int and by the dashed curve
for the �nal re-centered estimator ν̂, as functions of the 13 values of ν = log µ present
in our grid.
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5.6. ACCURACY FOR ESTIMATOR OF LOGARITHMIC MUTATION RATE

WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY

SUB-SAMPLING

5.6.1 Accuracy of ν̂ for Di�erent Sizes of the Complementary

Sub-sampling

We next display the accuracy results for the estimator ν̂ as we increase the size

Nsub of the daily complementary sub-samples. We display the results for the sizes

Nsub = 400, 1000, 5000, 10, 000 and 50, 000. The computation of the estimator ν̂

depends on the �rst time Tβ when the frequency p(t) reaches a percentage β%. We

see that when β = 60%, the empirical histograms of Tβ for di�erent Nsub do not

change much (see �gure 5.19). The accuracy of our estimator ν̂ increases slightly as

the size Nsub is increased. This is displayed in �gure 5.20 where accuracy is quanti�ed

by mean squared errors.
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Figure 5.19: The plot for the empirical histograms of times Tβ for di�erent Nsub.
These histograms do not change much when Nsub is modi�ed when β = 0.60, s = 0.10
and µ = 2× 10−7.
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5.6. ACCURACY FOR ESTIMATOR OF LOGARITHMIC MUTATION RATE

WHEN FREQUENCIES ARE ESTIMATED BY COMPLEMENTARY

SUB-SAMPLING
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Figure 5.20: Plot of the mean squared estimation errors for ν̂ for di�erent sizes Nsub

of the daily complementary sub-samples , and s = 0.10. Even though the errors on
ν̂ do not change much when β = 0.60, we can still see that mean squared errors
decrease as the complementary sub-sampling size is increased from Nsub = 400 to
Nsub = 50000. The circles denote the mean squared error of estimation for di�erent
true ν ∈ GRID values.
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CHAPTER 6

Extension to Multiple Mutations

In this chapter, we extend the preceding study to models where we allow multiple

types of mutations. Ancestor cells, as well as mutants, keep mutating further on.

As before, we approximate the growth phase in 50 generations. The initial numbers

for the two markers (red and white) are 2.5 × 104 respectively. Within the growth

phase, mutations appear in both color markers, from ancestors as well as previous

mutants, to reach a saturation growth capacity of Nsat = 107. The model, as before,

consists of daily {growth + dilution} cycles.
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6.1. MODEL

6.1 Model

As before, we start with two initial sub-populations of the same initial genotype.

Thus, we consider equal populations of red and white marker cells of identical "An-

cestor Type". The total initial population of cells is 5 × 104. In the model, daily

{growth + dilution} cycles are similar to those described above. The �rst daily phase

is the "growth phase", while the second daily phase is the dilution process.

6.1.1 Growth Phase

The daily growth phase is a {growth + dilution} cycle. We divide a day into 50 time

intervals, and hence each day involves 50 successive generations. Within the daily

growth phase, the population well grows to a total maximum size of 107 cells until

all nutrients have been consumed. The growth of red and of white cells within a day

are modeled separately. Consider �rst the population of red cells. The growth phase

for the population of white cells is modeled similarly. Consider a time interval J(t)

for t = 1, . . . , 50. Let mr(t) be the number of di�erent mutations or genotypes in the

red cells at time J(t). The population of red cells at the end of time interval J(t)

then consists of the initial ancestor genotype and the mutants that appeared until

time interval J(t), namely

(R0(t), R1(t), . . . , Rmr(t)(t))

where Ri(t) for i = 1, . . . ,mr(t) denotes the size of genotype i, in the red population

at the end of time interval J(t), and R0(t) denotes the size of the ancestor genotype
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6.1. MODEL

in the red population at time interval J(t).

Let sRi denote the selective advantage of cell type Ri(t). The selective advantages of

a cell type are computed with respect to the ancestor population, hence the selective

advantage of the ancestor genotype is 0. Let NR(t) =
∑mr(t)

j=0 Rj(t) be the size of

the total number of red cells in the population at time interval J(t). Occurrence of

mutations during each growth time interval is random. The number of mutations at

each time interval J(t) within a day is distributed according to a Poisson distribution

with parameter µNR(t), where the mutation rate µ is the input to the model.

Let NmR(t) be the number of mutations occurring at time interval J(t) in the red

cells. These mutations occur in the di�erent genotypes and the probability that

a mutation occurs in the ith genotype is Ri(t)/NR(t). To assign these mutations,

therefore, we do the following:

1. Create a vector (p0, . . . , pmr(t)) of length mr(t) + 1 so that pi =
Pi
j=0Rj(t)

NR(t)
∀i =

0, . . . ,mr(t). This creates a partition of the unit interval.

2. Let RR = {r1, . . . , rNmR(t)} where each ri ∼ U(0, 1) are random numbers

sampled from the uniform distribution on the unit interval. Compute a vector

(Nm0
R(t), . . . , Nm

mr(t)
R (t)) where Nmi

R(t) = #{r ∈ RR : pi−1 ≤ r ≤ pi} for

each i = 0, . . . ,mr(t).

Thus Nmi
R(t) = # of mutations in genotype i in the red population at the end

of time interval J(t). To determine the selective advantages of these new emerging

mutants, we explore di�erent stochastic models. The selective advantages for the

mutations depends on whether the mutation occurred from the ancestor genotype
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6.1. MODEL

or the mutation emerged from a previous mutant. To simulate the model described

above, along with the mutation parameter, we need to specify

1. The density function or the histogram HA for random selective advantage

assigned to mutants born from the ancestor genotype.

2. The density function or histograms HW for random selective advantage as-

signed to mutants born from a currently existing mutant.

The choice of HA and HW will de�ne the stochastic model. If a new mutant is

born from the ancestor, then its selective advantage is picked at random using the

histogram HA. If a new mutant is born from an existing mutant population with

selective advantage sex, then its selective advantage is sampled from the conditional

density of HW , conditioned on the event {s > sex}.

Thus the set of genotypes present at time interval J(t+1) is the union of the genotypes

present at time t and the number of mutations that occurred at time J(t). The new

population is thus formed with selective advantages assigned as described above, to

the new mutations that occur at each time interval within the growth cycle.

A similar model drives the population of white cells. Call N(t) = NR(t) + NW (t)

the total number of cells in the population at the end of time interval J(t) (sum of

red and white cells at the end of time interval J(t)). The daily {growth + dilution}

cycle terminates when the total population reaches the maximum size of Nsat = 107

at the time τ when the nutrients in the wells are exhausted.
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6.2. DIFFERENT MODELS FOR SELECTIVE ADVANTAGES

6.1.2 Dilution Phase

Suppose the growth phase terminates at time τ for 0 ≤ τ ≤ 50. At time τ , we

have a population Pop(τ) of red and white cells. We extract a random sample

of size Nsat/200 = 5 × 104. The composition of the extraction of random sample

has a multinomial distribution with parameters S(τ) = size of Pop(τ) and with

probabilities Ri(τ)
S(τ)

and
Wj(τ)

S(τ)
for i = 0, . . . ,mr(t) of red cells and j = 0, . . . ,mw(t) of

white cells respectively. The randomly extracted population has size 5 × 104, and

becomes the initial population for the next daily {growth + dilution} cycle.

This succession of {growth + dilution} daily cycles is performed until either the

maximum number of days for which the experiments are recorded is reached, orPmr(t)
j=0 Rj(τ)

S(τ)
≤ 0.01 or

Pmw(t)
j=0 Wj(τ)

S(τ)
≤ 0.01, which corresponds to the event when the

population of red or white cells captures the entire population and �xation of one

color has occurred.

6.2 Di�erent Models for Selective Advantages

Di�erent models for assigning the selective advantages of mutants have been stud-

ied, for instance, by Hegreness et al. (2006) [23]. To assign the selective advantages

to mutants, Hegreness et al. explore several distributions of bene�cial mutations,

including the exponential distribution, as suggested by Gillespie in (1991) [19]. The

authors (Hegreness et al. (2006) [23]), show that very dissimilar underlying distribu-

tions: exponential, uniform, lognormal, and even an arbitrary distribution; all yield

a similar distribution of successful mutations.
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6.2. DIFFERENT MODELS FOR SELECTIVE ADVANTAGES

Based on this motivation, we explore di�erent densities to draw the selective advan-

tages of bene�cial mutations, and to obtain the best �tting model to our experimental

data (obtained from T. Cooper's laboratory). We explore

1. Model E(µ, λ) where the selective advantages are sampled from exponential

distribution.

2. Model EB(µ, λ, a, b) where the selective advantages are sampled from expo-

nential distribution on a bounded interval.

3. Model EMP (Histfirst, Histwin) where the selective advantages are picked from

histograms of estimated selective advantages of winner (using 6.5) from experi-

mental data. This will be some arbitrary distribution for sampling the selective

advantages of the bene�cial mutations.

We discuss these models in detail below and in chapter 7.

6.2.1 Model ”E(µ, λ)”: Exponential Densities for Selective Ad-

vantages

Here the histograms HA and HW both coincide with the exponential densities

E(µ, λ) de�ned by f(s) = λ exp(−sλ)1s>0 where λ > 0. The mean selective ad-

vantage is then given by 1
λ
.

We simulate the stochastic model de�ned above, where the random selective

advantages assigned to emerging mutants have exponential densities with mean pa-

rameter 1
λ
. We systematically explore a whole range of potential values for λ, and
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6.2. DIFFERENT MODELS FOR SELECTIVE ADVANTAGES

for the mutation rate µ.

6.2.2 Model ”EB(µ, λ, a, b)”: Exponential Densities on a Bounded

Interval

We have studied, by simulations, the stochastic evolution model described above,

where the random selective advantage assigned to mutants have an exponential den-

sity restricted to a bounded interval. The histograms HA and HW above both

coincide with an exponential density EB(µ, λ, a, b) on bounded interval, with den-

sity given by f(x) = c(λ, a, b)e−xλ1a<x<b for x ∈ I, where I is the range of selective

advantages. More explicitely, the density for such an exponential is rede�ned and

given by

fa,b(x, λ) =
1� b

a
λe−λ xdx

λe−λx1[a,b](x) =
λe−λx

e−λa − e−λb
1[a,b](x).

The mean s̄ of this exponential is then given by:

s̄ =
1

λ
+
ae−λa − be−λb

e−λa − e−λb
.

6.2.3 Model ”EMP”: Based on Empirical Histograms

Our experimental data (Tim Cooper's laboratory) provides two empirical histograms

HA and HW , which can be estimated from the experimental data. We use there

data to compute a histogram Histfirst for the estimated selective advantages of the

mutants arising from the ancestor genotype. Fix HA = Histfirst for each mutation

scenario studied (which we will explain below). We also form histograms Histwin for
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6.3. SIMULATIONS OF THE MULTIPLE MUTATIONS MODELS

the estimated selective advantages of the winning mutations. Fix HW = Histwin for

each mutation scenario studied. We will explain (in Section 6.5 below) the estimation

of histograms Histfirst and Histwin.

6.3 Simulations of the Multiple Mutations Models

For stochastic models E(λ) and EB(λ) explained above, we explore a wide range

of the parameters: λ (for the exponential distribution), and for the mutation rate

µ. We �x µ ∈ {10−7, 2 × 10−7, . . . , 10−6}, and explore various values for λ for each

model. For each pair of λ and µ (for the model used), we generate 1100 simulation

trajectories. For each trajectory, some of the things that the simulations track include

the times at which the mutations emerge, the selective advantage of each mutation,

the color and genotype of the emerging mutation, the proportion of each genotype

in the population.

6.4 Examples of Dynamic Evolution of Mutants

In this Section, we display some examples of the plots for the evolution of population.

We display the trajectories for g(t) = log p(t)
1−p(t) for some cases. Then the evolution

on mutations corresponding to such trajectories is displayed. These plots display

dynamics for the emergence and fall of mutants frequency. We let simulations run

until the maximum number of days considered for the growth of the population,

and display the dynamics of mutants growth even after until �xation has occurred.
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6.4. EXAMPLES OF DYNAMIC EVOLUTION OF MUTANTS
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Figure 6.1: Example of the plot for the trajectory g(t) = log p(t)
1−p(t) .

Figures 6.1 and 6.4 display examples of two such curves, along with the correspond-

ing �gures displaying the proportion of the mutants that emerged, displaying their

dynamics, in �gures 6.2 and 6.5 respectively. Only the mutants that emerged and

stayed for a few days or have signi�cant proportion in the population are displayed

in these plots. The plots for the corresponding genealogy trees are also displayed

(�gures 6.3 and 6.6). These plots display the emergence of mutants, from ancestor

or from previous mutants. These trees displays all the mutants that ever emerged in

that particular population.

The �rst mutant emerges in the white population, from ancestor at time T1 = 55
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Figure 6.2: Dynamics for the evolution of the mutants that emerged in the population
displayed in 6.1.

with selective advantage s1 = 0.05. Thus proportion of ancestor genotype starts to

decline and this being the only mutation, starts to increase. Right at the time of

�xation, another mutation emerged (in white) from the previously existing mutant,

with higher selective advantage s2 = 0.11, causing mutant 1 to decrease in proportion.

Third mutant emerges, in white (from mutant with selective advantage s2) at day

195 (after �xation) with selective advantage s3 = 0.12, but simulations terminate at

day 200.
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6.4. EXAMPLES OF DYNAMIC EVOLUTION OF MUTANTS
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Figure 6.3: Genealogy trees displaying the order of emergence of mutants. The height
of the tree is 3. Note that y-axis is not needed here.

Mutant 1 emerges in white with a selective advantage of s1 = 0.05 and drags the

trajectory g(t) to �xation. Two other mutations, as seen in �gure 6.2 also emerge in

white, but after the day at which �xation. Mutant 2 with higher selective advantage

0.11 emerges from 1, and mutant 3 with selective advantage 0.12 emerges from 2.
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Figure 6.4: Example of the plot for the trajectory of g(t) = log p(t)
1−p(t) .
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Figure 6.5: Dynamics for the evolution of the mutants that emerged in the population
trajectory displayed in 6.4.

Mutants emerge in both red and white cells and compete with each other. First

mutation emerges in white at day 22 with selective advantage s1 = 0.04 and starts

to increase until emergence of another mutant in red population at day 40, with

equal selective advantage s2 = 0.04. The increase of this mutation is slow as its

selective advantage is equal to the existing mutation. Yet another mutant with

almost same advantage s3 = 0.04 appears in white at day 61 but does not increase

in proportion. This mutation is then followed by another mutant emerging at day 78

in white population with higher selective advantage s4 = 0.1. This mutation drags

the population to �xation. We see that it takes longer for the population to go to

�xation due to emergence of more weaker mutants, and due to mutants emerging in

both red and white cells.
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Figure 6.6: Plots for the genealogy trees displaying the order of emergence of mutants.
The height of this tree is 2. Note that the y-axis is not needed for this tree plot.

Initially mutants with almost equal selective advantage appear in both red and

white cells, until mutant 4 with higher selective advantage 0.10 emerges in white

from an existing mutant 1 in white and drags the population to �xation.
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6.5. ESTIMATION OF HISTOGRAMS HISTFIRST AND HISTWIN

6.5 Estimation of Histograms Histfirst and Histwin

In our research group, a non-linear least squares modeling algorithm has been devel-

oped and implemented by Wei Zhang to �t the observed experimental data with the

iterative deterministic systems for each mutation scenario. This is mentioned here

for completeness. Let r0(t), r1(t) and r2(t) be the day t frequencies of red ancestors,

mutants occurring from ancestors and mutants arising from the previous mutants,

respectively. Let w0(t), w1(t) and w2(t) be the day t frequencies of the white ances-

tors, mutations occurring from ancestors, and mutants occurring from the previous

mutants, respectively. Let s1 and s2 be the respective selective advantages of the

mutants arising from the ancestors, and for mutants arising from the previous mu-

tants, respectively. And let µ1 and µ2 be the corresponding mutation rates for these

mutants. The multiplicative growth factor per time interval for the ancestors is

F = D1/m where m = 50 is the number of time intervals during a day growth, and

D is the dilution factor. The multiplicative growth factor per time interval for the

mutants born from the ancestor genotype is then given by M = F 1+s1 , and the

multiplicative growth factor for the mutants born from existing previous mutants is

given by G = F 1+s2 .

For a given observed trajectory, for each possible scenario for occurrence of mu-

tations, one �ts the experimental data by the iterative deterministic system, and

apply non linear least squares �tting to obtain estimates for the unknown selective

advantages s1 and s2.
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Figure 6.7: An example of the frequency of winner plot for a population generated
by "ancestor".

From �gure (6.7), we see that this population trajectory has two mutants emerg-

ing at times T1 and T2. The plot displayed is for the frequency of the white marker

cells. We form the following two scenarios:

1. Scenario A: Emergence of �rst mutantM1 at time T1 = 8. This has the selective

advantage as estimated to be s1 = 0.01. The second mutant M2 emerges at

time T2 = 29 with a selective advantage of s2 = 0.15. The second mutant also

arises from the progenitor or the ancestor. This mutant with a higher selective

advantage drags the population to �xation, which occurs at time Tfix = 38.

2. Scenario B: The �rst mutant M1 emerges at time T1 = 8 with a selective

advantage s1 = 0.01 as estimated using the method described above of �tting

by non-linear least squares. Second mutant further emerges from the previous

M1 mutant at time T2 = 29 with a selective advantage of s2 = 0.15 as computed
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Figure 6.8: Possible genealogy trees of mutants.

with respect to the progenitor. This drags the population to �xation at time

Tfix = 38.

The possible genealogy trees of the two mutants that emerged in this particular pop-

ulation are displayed in �gure 6.8. For trajectories �tted with multiple scenarios, an

F test was applied to evaluate the quality of �t.

Given a trajectory, the red and white marker frequencies r(t) and w(t) can be

extracted and are thus known. The iterative deterministic system describing the

average growth dynamics is speci�ed by the following three equations

w0(t+ 1) = w0(t) F nt/D (6.1)

w1(t+ 1) = w1(t) Mnt/D (6.2)

r0(t+ 1) = r0(t) F nt/D. (6.3)
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6.5. ESTIMATION OF HISTOGRAMS HISTFIRST AND HISTWIN

The constraints are given by

w(t+ 1) D = w0(t) F nt + w1(t) Mnt + [w(t)− w0(t)− w1(t)] Gnt (6.4)

r(t+ 1) D = r0(t) F nt + [r(t)− r0(t)] Mnt . (6.5)

The integer solution for nt can be solved from the following equations

(w0(t) + r0(t)) F nt + (w1(t) + r1(t)) Mnt + w2(t) Gnt = D.

Note that this modeling algorithm does not require knowing the mutation rate

µ, and estimates the mutation scenario parameters s1, s2, . . . separately for each ob-

served process trajectory. The distinction between which mutation scenario best �ts

a particular population or in which population some mutation scenarios are equiv-

alent is determined by applying the F test as explained above. The details for this

can be seen in the joint paper to appear. For each experiment trajectory (obtained

from Tim Cooper's laboratory), we obtain estimates for the selective advantages of

the emerging mutations, and thus generate histograms Hfirst and Hwin.
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CHAPTER 7

Fitting Multiple Mutation Models to Experimental Data

In this chapter, we present a set of statistical tests to quantify the quality of �t

between multiple mutation models and experimental data. The goal is to develop a

method for evaluating the �tting of multiple mutation models to experimental data.

We will present this generic method and apply it to 6 di�erent sets of data with N

populations each. The di�erence between these 6 experiments is the genotype of the

initial N identical populations. The list of initial genotypes for the 6 sets of data is

below:

1. Experiment 1: consists of the initial genotype with no mutation present at the
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beginning: The Ancestor genotype.

2. Experiment 2: consists of the initial genotype with the 1st kind of mutation,

called the Ribose.

3. Experiment 3: consists of the initial genotype with 1st and 2nd kind of muta-

tions, namely, Ribose and TopA. Thus experiment 3 has initial genotype with

2 mutations, called RiboseTopA.

4. Experiment 4: consists of the initial genotype with 1st, 2nd and the 3rd kind

of mutations, namely, Ribose, TopA, and spoT. Thus experiment 4 has initial

genotype with 3 mutations, called RiboseTopAspoT.

5. Experiment 5: consists of the initial genotype with 1st, 2nd, 3rd, and 4th kind

of mutations, namely, Ribose, TopA, spoT, and glmus. Thus experiment 5 has

initial genotype with 4 mutations, called RiboseTopAspoTglmus.

6. Lastly, Experiment 6: consists of the initial genotype with 1st, 2nd, 3rd, 4th,

and 5th kind of mutations, namely, Ribose, TopA, spoT, glmus, and pykF. Thus

experiment 6 has initial genotype with 5 mutations, called RiboseTopAspot-

glmuspykF.

For each of theN populations, the �xation time Tfix is de�ned as Tfix := inf{t|p(t) >

0.99}, i.e, the �rst time the frequency of winner exceeds 99%. For each of the N

observed population trajectories, as de�ned in chapter 6(6.5), in our research group,

we compute the selective advantages of the mutants present in that trajectory.
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7.1. STRATEGY FOR FITTING MODELS TO DATA

7.1 Strategy for Fitting Models to Data

7.1.1 Simulations of Multiple Mutation Models

Given a set of N experimental trajectories recording the evolution of N identical

initial populations, we will use intensive simulations of the multiple mutation models

introduced in chapter 6. We allow ancestors, as well as mutants, to mutate further.

We start with two sub-populations of the same initial genotype. The size of the initial

population is N0 = 5× 104. The model undergoes daily {growth + dilution} cycles

until a population reaches a maximum size of Nsat = 107, when the nutrients in the

wells are exhausted. The selective advantages of the mutants depends on whether the

mutation occurred from the ancestor genotype or the previous mutant, as explained

in chapter 6. Call M, the multiple mutation model and Θ the set of parameters

determining the modelM. The model parameters are the mutation rate µ, and the

parameters of the density function de�ning the selection of selective advantages. We

explore di�erent models based on selection of selective advantages as introduced in

chapter 6, namely,

1. Model ”E(µ, λ)”: Exponential densities for selective advantages. Let this rep-

resent a model M(Θ) with parameters Θ = (µ, λ), with λ > 0 being the

parameter for the exponential.

2. Model ”EB(µ, λ, a, b)”: Exponential densities on a bounded interval. Let this

represent a modelM(Θ) with parameters Θ = (µ, λ, a, b), where a, b are the

end-points for the bounded interval considered, and λ is the parameter for the
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exponential.

3. Model EMP : based on empirical densities, and hence let this represent a model

M(Θ) with parameters Θ = (µ, Histfirst, Histwin).

For each set of parameters, and hence each parameterized modelM(Θ), we generate

1000 trajectories and store the simulation data base for further exploration steps.

7.1.2 Testfix: Comparison of Fixation Times

For each simulated parameterized model M(Θ), we obtain by simulations, a set of

1000 trajectories. From this simulation data base, we can compute the empirical

histograms for the �xation times. Call these �xation times to be Tsim. Further,

as stated above, we also compute the �xation times for each of the N observed

populations. The experimental data give us a list of N experimental values for the

�xation times (call these T 1
obs, . . . , T

N
obs). Let Tmin, obs = min{T 1

obs, . . . , T
N
obs}, be the

minimum of these N observed �xation times, and let Tmax, obs = max{T 1
obs, . . . , T

N
obs},

be the maximum of these N observed �xation times. We calculate the probability

p(Θ) = Pty(Tmin, obs < Tsim < Tmax, obs), that the �xation times generated by

the model M(Θ) falls between Tmin, obs and Tmax, obs. Since we are observing N

independent populations, the probability that Tmin, obs < Tsim < Tmax, obs for all

N trajectories is p(Θ)N . Hence at signi�cance level α = 5%, we will accept the

hypothesis (Θ = Θ0) when p(Θ0)N ≥ α = 5%.

We explore this for a wide range of the values for the parameters Θ.
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7.1.3 Testswin: Comparison of Histograms for the Selective

Advantages of the Winner

We want to compare the histograms for swin, the selective advantages of the winner,

from simulated and observed N trajectories. For each of the above simulated pa-

rameterized modelM(Θ), we obtain by simulations, a set of 1000 trajectories. From

this simulation data base, we compute the empirical histograms histsim(Θ), for the

selective advantages of the winner. Using the 1000 simulated s values, we create

histogram with 41 bins that we smooth in the manner described below. To smooth

this histogram, for each s value, we take 4 bin centers to the left of this s value, and

4 to the right, and de�ne the density at s to be the average of the density over these

8 bins. For the �rst 4 bins, and for the last 4 bins, we set the density equal to the

density on the left (or right) end-points. Further, as stated in the beginning of this

chapter and in chapter 6, we estimate the selective advantages of the winner, (using

non-linear least squares �tting, Section 6.5) for each of the N observed populations;

call this set Z = (Z1, . . . , ZN ). Let fΘ(Zi) represent the density of Zi derived from

the estimated densities. Then the likelihood function LΘ(Z) =
∏N

i=1 fΘ(Zi) is given

as the product of the N densities as observed in the histogram histsim(Θ). Thus the

log-likelihood of observing Z is

LLΘ(Z) = log(LΘ(Z)) =
N∑
i=1

log(fΘ(Zi)).

The average log-likelihood VΘ(Z) is then de�ned by

VΘ(Z) =
1

N
LLΘ(Z).
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This represents the average log-likelihood value of the true experimental estimates

of swin. We now create another histogram of the average log-likelihood values by

extracting a random set of N selective advantages from the simulated histogram

histsim(Θ) of swin and computing the corresponding average log-likelihood VΘ(Z)

as above. That is, we form VΘ(X1), . . . , VΘ(X500) where X i = (X i
1, . . . , X

i
N ) for

i = 1, . . . , 500, is the set ofN values sampled from the histogram histsim(Θ) and then

compute VΘ(X i) = 1
NLLΘ(X i)). Note that the density for each X i

j for i = 1, . . . , 500

and for j = 1, . . . ,N is computed with respect to the simulated histogram of swin.

This generates an empirical histogram for the average log-likelihood values. Let

V Vsim(Θ) = (VΘ(X1), . . . , VΘ(X500)).

For the estimates of swin extracted from the experimental data, we have N trajecto-

ries and thus N estimates for swin, and a corresponding true value VΘ(Z). From the

above empirical histogram of the average log-likelihood values V Vsim(Θ), we form

the two quantiles Q− = 5% quantile and Q+ = 95% quantile. If our true average

log-likelihood VΘ(Z) value lies inside the quantile range obtained from simulations,

i.e, Q− ≤ VΘ(Z) ≤ Q+, then we accept the hypothesis Θ.

The best quality of �t to experimental data is based on our probability p(Θ) and the

result based on our second test Testswin.

We also computed the empirical distribution of the number of mutants in the

winning branch, and the simulated densities of the number Nwin of mutants in the

winning branch. When this number Nwin = 2, this means that a �rst mutant is born

from the progenitor and the second mutant born from the previous mutant. This

probability in simulations is low. Table 7.1 displays the results for this probability
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Prob(Nwin = 2) in simulations when modelE(µ, λ) is used to assign selective advan-

tages, for di�erent pairs of µ and the mean selective advantage s̄(Θ) = 1
λ
. We have

much often winning mutants born directly from the progenitor.

Table 7.1: Displaying probability Prob(Nwin = 2) for di�erent pairs of µ and mean
selective advantage s̄(Θ) for model E(µ, λ).

µ\s̄(Θ) 0.03 0.05 0.11

4× 10−7 0.10 0.12 0.11
8× 10−7 0.23 0.19 0.17

10−6 0.23 0.22 0.18

7.2 Study of Experiment 1

In this Section, we study experiment 1 where starting initial genotype= Ancestor

genotype, where no mutation has yet occurred. We explore quality of �t to data for

the models described above in chapter 6.

By convention, the winning color marker is called white. The �xation times as

computed from the trajectories of the frequency of white markers for the ancestor

experimental populations is displayed in table 7.2. We also display the estimates for

selective advantage swin of the winner as obtained by the non-linear least squares

algorithm explained in 6.5.

7.2.1 Exponential Density: Model E(µ, λ)

This multiple mutation modelM(Θ) is parameterized with model parameters Θ =

(µ, λ) with λ > 0. We explore systematically a wide range of values for µ and λ, and
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Table 7.2: The estimates of swin and �xation times Tfix as obtained for each popu-
lation of Experiment 1.

Population swin Tfix
Pop1 0.13 32
Pop2 0.16 40
Pop3 0.13 54
Pop4 0.13 32
Pop5 0.10 40
Pop6 0.15 45
Pop7 0.10 38
Pop8 0.07 36
Pop9 0.13 25
Pop10 0.15 38
Pop11 0.09 52

hence for the mean selection advantage s̄(Θ) = 1
λ
. The selective advantages of the

mutants are randomly de�ned using an exponential density function as explained

previously (chapter 6). The selective advantages of the mutations occurring from

the progenitor are picked at random from the exponential density with parameter λ,

and the selective advantages of the mutations occurring from the previous mutants

is picked from the exponential distribution conditional on the fact that the selective

advantage of this second mutant is greater than the selective advantage of the �rst

mutant (as in chapter 6). The mean selective advantage s̄(Θ) for this model is given

by s̄(Θ) = 1
λ
. The simulated selective advantages of winners for this model are much

higher than the observed range for swin. We obtain the best µ and best s̄(Θ) as

follows:

1. Compute the pairs (µ, λ) which maximize the probability p(Θ) for Testfix.

2. From these pairs, then compute the pair for best (µ, λ) by using Testswin, as the
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pair which maximizes the true VΘ(Z), average log-likelihood for the observed

swin.

In this way, we compute the best µ and s̄(Θ). From the table below (7.3) we see

that, even for the best µ and s̄(Θ) (in bold), one cannot reach a signi�cant level

of even 1% for the p-value of the �t between observed and models based �xation

times density function. Also, we display the histograms obtained from simulation

data corresponding to the best pair of µ and s̄(Θ) (in bold). We display these

histograms for swin, and we see that the simulated selective advantages obtained

are much higher than the observed swin from the experiments. Figure 7.1 displays

this histogram. The range for the experimentally observed selective advantages of

winner, swin is indicated in this �gure by the green bar.

Thus the model E(µ, λ) with parameters Θ = (µ, λ) does not �t very well, the

experimental data for the ancestor genotype.

Table 7.3: Quality of �t for model E(µ, λ) with parameters Θ = (µ, λ). The estimate
of µ, and the mean selective advantage is in bold.

λ Mean selective advantage Best µ p(Θ)N

27 0.037 8× 10−7 7× 10−5

22 0.045 10−6 2× 10−3

20 0.05 10−6 4× 10−3

18 0.056 10−6 5× 10−3

12.5 0.08 8× 10−7 5× 10−3

9 0.11 5× 10−7 10−3

4.5 0.2 2× 10−7 4× 10−4
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Figure 7.1: The empirical histogram of the selective advantage of the winner for
the best exponential density Exp(12.5) with µ = 8 × 10−7. The green bar indi-
cates the range [0.05, 0.17] covered by the N = 11 experimentally observed selective
advantages of winner.
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7.2.2 Model EB(µ, λ, a, b): Exponential Density on Bounded

Interval

We see from the above multiple mutation model M(Θ) that the free exponential

density tends to over estimate the selective advantages of the winner. For this reason,

we use the exponential density but restricted on a bounded interval. We form the

model M(Θ) with parameters Θ = (µ, λ, a, b), where µ denotes the mutation

rate and λ > 0 denotes the parameter for the exponential on a bounded interval

de�ned by [a, b]. Here we pick the selective advantages of the mutants arising from

the progenitor from EB(µ, λ, a, b), the exponential density restricted on a bounded

interval [a, b] while the selective advantage of the mutants arising from the previous

mutants are picked from the exponential conditioned on the interval [sexisting, b] where

sexisting is the selective advantage of the existing mutant from which the new mutation

occurred. The determination of the bounded interval is made such that the observed

swinner all lie in this interval. We explore systematically a wide range of values for µ

and λ. We also explore di�erent intervals, namely [a, b] for a = {0.01, 0.02, 0.03, 0.04}

and for b = {0.14, 0.15, 0.16}, but we did not observe any signi�cant of changing the

interval for the bounded exponential. The best µ and the best parameters Θ are

obtained as explained above in 7.2.1. We obtain the best µ = 10 × 10−7 for the

exponential on a bounded interval [0.01, 0.16] with parameter λ = 1.5. The best

mean selective advantage is s̄(Θ) = 0.08. The probability p(Θ) = P (Tmin, obs ≤

Tsim ≤ Tmax, obs) = 0.78, which when raised to the power N = 11, gives a p-value

of 6× 10−2. For this data, we get Tmin,obs = 23 and Tmax,obs = 56. We have a small

probability Pty(Tsim > 56) = 0.15 and Pty(Tsim < 23) = 0.08. Figures 7.2 and 7.3
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displays the empirical histogram for selective advantage swin for the winner, and for

the �xation times for the best model.

The empirical histogram of the average log-likelihood values is displayed in �gure 7.4

below. The red dots indicate the quantiles Q− and Q+ of the average log-likelihood as

obtained from the observed data. The green dot indicates the average log-likelihood

VΘ(Z) as obtained from the estimates swin of selective advantage of winner from the

experimental trajectories.
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Figure 7.2: The empirical histogram for the selective advantage, swin of the winner.
Here the model M(Θ) is based on Θ = (10 × 10−7, 1.5, 0.01, 0.16) for exponential
density on a bounded interval. Here s̄(Θ) = 0.08.

147



7.2. STUDY OF EXPERIMENT 1

0 50 100 150 200 250
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

days

fr
eq

ue
nc

y

Figure 7.3: The empirical histogram for the �xation times. Here the model M(Θ)
is based on Θ = (10 × 10−7, 1.5, 0.01, 0.16) for exponential density on a bounded
interval. Here s̄(Θ) = 0.08, and p(Θ)N = 6%. The red dots indicate the min and
max of �xation times observed from the experimental data directly.
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Figure 7.4: The empirical histogram average log likelihood values. Here the model
M(Θ) is based on Θ = (10 × 10−7, 1.5, 0.01, 0.16) for exponential density on a
bounded interval. Here s̄(Θ) = 0.08. The true average log-likelihood pf observed
swin lies inside the quantiles Q− and Q+ of the simulated average log likelihood
computed from swin values.
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7.2.3 Multiple Mutation Models Based on Empirical Densi-

ties

For the ancestor data set, modelM(Θ) where Θ = (µ,Histfirst, Histwin) represents

the multiple mutation model based on empirical densities. We pick random selective

advantages for the mutants by using the empirical histograms that we obtain by

studying the mutation scenarios for the ancestor data for the numbers of red and

white marker type cells, as explained in chapter 6 (Section 6.5). We estimate his-

tograms Hfirst consisting of the selective advantages of the mutants arising from the

progenitor. By studying the mutation scenarios, we see that we have 6 trajectories

out of N = 11 with 2 possible mutation scenarios. This generates a total of 26 = 64

di�erent choices for the histogram Hfirst. Lets call these as 64 di�erent hypothesis

histograms that we have to study, since we will have these many di�erent choices

for the input histograms HA. We use Kolmogorov-Smirnov test at 5% signi�cance

level to test if hypothesis HAi and HAj for i, j = 1, . . . , 64 are the same hypothesis.

Thus, we obtain 14 di�erent hypothesis in which we can combine the 64 hypothesis

histograms. Lets call these 14 di�erent groups for HA. For each group, we have a

list of hypothesis histograms that are similar. We consider the average histogram of

these similar hypothesis histograms to represent our histogram HA corresponding

to that group, thus generating 14 di�erent hypothesis histograms for HA. However,

the empirical histogram for the selective advantage swin of the winner is �xed for

all the hypotheses. We study these di�erent 14 groups and apply the two statistical

tests (Testfix and Testswin) explained above, to obtain the best group hypothesis

histogram that �ts the observed data. We compute the corresponding p− values. For
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di�erent groups, these results are displayed in the table 7.4 below. The group max-

imizing these p-values obtained from the computations of Testfix and Testswin, is

called the best group hypothesis. Group 4 hypothesis turns out to be the best group

with the probabilities p(Θ) = P (23 ≤ Tsim ≤ 56) = 0.77 and P (Tsim > 56) = 0.16

and P (Tsim < 23) = 0.07. This corresponds to a p− value of 6%.

Table 7.4: This table displays the results for the best µ that we obtain for the
di�erent hypothesis. The best µ and group is in red.

Group best µ p(Θ)11

1 7× 10−7 3× 10−2

2 9× 10−7 3× 10−2

3 10−6 3× 10−2

4 10−6 6× 10−2

5 10−6 4× 10−2

6 8× 10−7 2× 10−2

7 9× 10−7 2× 10−2

8 9× 10−7 4× 10−2

9 9× 10−7 2× 10−2

10 10−6 3× 10−2

11 9× 10−7 2× 10−2

12 10−6 3× 10−2

13 10−6 2× 10−2

14 9× 10−7 1× 10−2

The best model in quality of �t to the ancestor experimental data would be when

we use exponential density on a bounded interval. We display the three best density

plots below in �gure 7.5.
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Table 7.5: Displays di�erent multiple mutation models and their quality of �t. The
model EB(µ, λ, a, b) shows the best quality �t, with the parameters below.

Model p(Θ)11 µ Mean swin
Best Model E(µ, λ) 5× 10−3 8× 10−7 0.08

Best EB(µ, λ, 0.01, 0.16) 6× 10−2 10× 10−7 0.08
Best Empirical Histogram 6× 10−2 10× 10−7 0.12
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Figure 7.5: The density plot for the hypothesis group 4, the density plot for the best
exponential Exp(12.5), with mean 0.08 and the density plot for the best exponen-
tial with parameter λ = 1.5 on bounded interval [0.01, 0.16], and hence with mean
selective advantage 0.082.
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7.3 Study of Experiment 2

In this Section, we study the 2nd set of experiments, that were started with the initial

genotype as the genotype with one mutation, Ribose. From the above exploration, we

see that using the model E(µ, λ) with exponential density for assigning the selective

advantages of mutants , over estimates the selective advantages of the winner. Using

the model Emp(µ,Histfirst, Histwin) with empirical density hypothesis or using the

model EB(µ, λ, a, b) with exponential density on a bounded interval are kind of

equivalent to study the experimental data. For this data set and others, we restrict

our study to using the model EB(µ, λ, a, b) with exponential on a bounded interval.

We choose the interval such that the observed estimates all lie inside that interval.

We explore systematically a wide range of values for µ and λ, and hence for the mean

selection advantage s̄(Θ) = 1
λ
. We display the result for the best pair that we obtain

(as mentioned in above, 7.2.1) on maximizing the probability for Testfix, and for the

comparison of the selective advantages, swin of the winner, using the test Testswin.

For this data set, the observed estimates of selective advantages of winner and the

times it takes for the genotype to reach �xation are as follows displayed in Table

7.6. The estimates for the selective advantage are estimated with respect to their

progenitor.

The best model estimates that we obtain for the mutation rate with this exper-

imental data are for the exponential density EB(µ, λ, a, b) with parameter λ = 13

on the bounded interval [0.01, 0.19] . The estimate for µ is 9 × 10−7 and the mean

selective advantage is s̄(Θ) = 0.07. We get a very good �t to the model, which
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Table 7.6: The estimates of selective advantages and the �xation times as obtained
for each population

Population swin Tfix
Pop1 0.11 34
Pop2 0.03 80
Pop3 0.17 32
Pop4 0.16 32
Pop5 0.15 34
Pop6 0.10 25
Pop7 0.17 38
Pop8 0.04 42
Pop9 0.17 90
Pop10 0.12 36
Pop11 0.08 52

can be seen from the �gures as well as by the probabilities obtained by apply-

ing the above tests. The Tmin, obs = 23 and Tmax, obs = 92. Thus the probability

Pty(23 ≤ Tsim ≤ 92) = 0.89, which when raised to the power N = 11 gives a p-

value 0.24. The empirical histogram of the times to �xation is displayed in �gure 7.6

below. The empirical histogram obtained for the selective advantages of the winner

for this best model is also displayed (�gure 7.7). The comparison of the swin using

the average log-likelihoods test Testswin can be seen from the histogram displayed in

�gure 7.8. The plot for the exponential density with mean selective advantage 0.07

is also displayed.
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Figure 7.6: The empirical histogram of the �xation times for the best model
EB(µ, λ, a, b), exponential density on a bounded interval [0.01, 0.19] with µ =
9 × 10−7, and mean selective advantage 0.07. The red dots indicate the min and
max of �xation times observed from the experimental data directly. We obtain
p(Θ)11 = 0.24.
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Figure 7.7: The empirical histogram of the selective advantage of the winner for the
best model EB(µ, λ, a, b), exponential density on a bounded interval [0.01, 0.19] with
µ = 9× 10−7, and mean selective advantage 0.07.
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Figure 7.8: The empirical histogram average log-likelihood values for the best model
EB(µ, λ, a, b) with µ = 9 × 10−7, and mean selective advantage 0.07, on bounded
interval [0.01, 0.19]. The true average log-likelihood pf observed swin lies inside the
quantiles Q− and Q+ of the simulated average log likelihood computed from swin
values.
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Figure 7.9: The density of selective advantages is plotted for best exponential density
with parameter λ = 13 on bounded interval [0.01, 0.19] and hence with mean selective
advantage 0.07.
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7.4 Study of Experiment 3

In this Section, we study the 3rd set of experiments, that were started with the

initial genotype consisting of the genotype with 2 types of mutations, namely, Ri-

bose and TopA. We compute the estimates of the selective advantages, swin of win-

ner. This is computed as explained before (6.5) by performing the non-linear least

squares �tting to the populations. We again use the model EB(µ, λ, a, b) with ex-

ponential density on a bounded interval [a, b] to assign the selective advantages of

the mutants. We apply the tests (Testfix and Testswin) explained above to sys-

tematically explored values of µ and λ and hence for mean s̄(Θ). We display the

result for the best pair of s̄(Θ) and µ that we obtain by maximizing the proba-

bility p(Θ) = P (Tmin, obs ≤ Tsim ≤ Tmax, obs) using Testfix. We also perform the

log-likelihood comparison, Testswin for the selective advantages of the winner. The

observed estimates that we obtain for the selective advantages of winner for this

data set are displayed in the table 7.7 below. The �xation times observed from each

population trajectory for frequency of winner are also displayed. One population out

of the N = 11 populations, in this case, did not go to �xation, so we ignore that

population from this study.

The best model estimate for the mutation rate was obtained for model EB(µ, λ, a, b)

exponential density with parameter λ = 30 on a bounded interval [0.02, 0.16]. The es-

timate of µ is 10−6 and mean selective advantage is 0.05. The minimum Tmin, obs = 30

and the maximum Tmax, obs = 73. The probability for the range test p(Θ) = P (30 ≤
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Table 7.7: The estimates of selective advantages and the �xation times as obtained
for each population

Population swin Tfix
Pop1 0.07 50
Pop2 0.13 40
Pop3 0.03 71
Pop4 0.15 32
Pop5 0.09 38
Pop6 0.08 48
Pop7 0.12 58
Pop8 0.11 32
Pop9 0.10 38
Pop10 0.04 50

Tsim ≤ 73) = 0.72 which when raised to 11 power gives a p-value of 0.03. The em-

pirical histogram for the times to �xation is displayed in �gure 7.10. The empirical

histograms obtained from simulations for the selective advantage of the winner is

also displayed (�gure 7.11). The histogram for the average log-likelihood values is

also displayed (�gure 7.12). The best exponential density on a bounded interval with

mean s̄(Θ) = 0.05 is also displayed (�gure 7.13).
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Figure 7.10: The empirical histogram of the �xation times for the best EB(µ, λ, a, b)
exponential density on a bounded interval [0.02,0.16] with µ = 10×10−7 and s̄(Θ) =
0.05. The red dots indicate the min and max of �xation times observed from the
experimental data directly.
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Figure 7.11: The empirical histogram of the selective advantage of the winner for
the best EB(µ, λ, a, b) exponential density on a bounded interval [0.02,0.16] with
µ = 10× 10−7 and s̄(Θ) = 0.05.
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Figure 7.12: The empirical histogram average log-likelihood values for the best
EB(µ, λ, a, b) exponential density on a bounded interval [0.02, 0.16] with µ =
10 × 10−7 and s̄(Θ) = 0.05. The true average log-likelihood pf observed swin lies
inside the quantiles Q− and Q+ of the simulated average log likelihood computed
from swin values.
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Figure 7.13: The density of selective advantages is plotted for exponential on the
bounded interval [0.02,0.16] with mean selective advantage 0.05.
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7.5 Study of Experiment 4

In this Section, we now study the 4th set of experiments that were started with

initial genotype consisting of 3 mutations. It consists of mutations: Ribose, TopA,

and SpoT. The initial genotype is the genotype with which the experiments are

started and the selective advantage is computed with respect to this genotype, called

the progenitor. The estimates of the selective advantages of the winner are computed

by applying the non-linear least squares �tting as explained before in 6.5. We again

explore the model with exponential density EB(µ, λ, a, b) on a bounded interval

to assign the selective advantage of the mutants. We apply the tests Testfix and

Testswin and display result for the best pair below. We explore systematically a wide

range of values for µ and λ and hence for the mean s̄(Θ). The estimates that we

obtain for the selective advantages, swin of winner applying non-linear least squares

�tting (Section 6.5) are displayed in the table 7.8 below.

Table 7.8: The estimates of selective advantages and the �xation times as obtained
for each population of Experiment 4.

Population swin Tfix
Pop1 0.05 125
Pop2 0.15 38
Pop3 0.04 162
Pop4 0.08 74
Pop5 0.17 65
Pop6 0.08 192
Pop7 0.14 186
Pop8 0.2 131
Pop9 0.06 134
Pop10 0.06 80
Pop11 0.11 56
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The best model estimate for the mutation rate and the best quality �t was ob-

tained for the model EB(µ, λ, a, b) with exponential density on the bounded interval

[0.03, 0.2], with parameter λ = 30. The estimate for the mutation rate is µ = 7×10−7

and mean selective advantage s̄(Θ) = 0.06. We obtain a very good quality �t.

The minimum Tmin, obs = 36 and the maximum Tmax, obs = 194. The probability

p(Θ) = P (36 ≤ Tsim ≤ 194) = 0.78 for Testfix. The comparison of selective ad-

vantages, swin of winner by computing the average log-likelihood is performed using

Testswin. The empirical histograms for the times to �xation are displayed below in

�gure 7.14. The empirical histograms for the selective advantages swin of winner are

also displayed (�gure 7.15). We also display the empirical histograms for the average

log-likelihoods (�gure 7.16) as computed for the comparison (Testswin). The plot for

the exponential density with mean s̄(Θ) = 0.06 is also displayed (�gure 7.17).
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Figure 7.14: The empirical histogram of the �xation times for the best EB(µ, λ, a, b)
exponential density on a bounded interval [0.03,0.2] with µ = 7 × 10−7 and s̄(Θ) =
0.06. The red dots indicate the min and max of �xation times observed from the
experimental data directly. The p-value p(Θ)11 = 6× 10−2.
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Figure 7.15: The empirical histogram of the selective advantage, swin of the winner
for the best EB(µ, λ, a, b) exponential density on a bounded interval [0.03,0.2] with
µ = 7× 10−7 and s̄(Θ) = 0.06.
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Figure 7.16: The empirical histogram average log-likelihood values for the best
EB(µ, λ, a, b) exponential density on a bounded interval [0.03,0.2] with µ = 7× 10−7

and s̄(Θ) = 0.06. The true average log-likelihood pf observed swin lies inside the
quantiles Q− and Q+ of the simulated average log likelihood computed from swin
values.
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Figure 7.17: The density of selective advantages plotted for the best EB(µ, λ, a, b)
exponential on bounded interval [0.03,0.2] with mean s̄(Θ) = 0.06.
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7.6 Study of Experiment 5

In this Section, we study the 5th set of experiments that were started with initial

genotype with 4 mutations. The initial genotype consisted of the 5 kinds of mu-

tations, namely, Ribose + TopA + SpoT + glmus. The selective advantages of

the winner are computed with respect to the initial genotype called the progeni-

tor. These estimates are computed as explained above by applying the non-linear

least squares �tting (Section 6.5) to the experimental population trajectories. We

explore the model where the selective advantages of mutants are assigned based on

EB(µ, λ, a, b) an exponential density on a bounded interval. We systematically ex-

plore a wide range of values for µ and λ. The estimated values for the selective

advantage using the non-linear least squares �tting (6.5) of the data, and the times

it takes for the mutation to reach �xation are given below in table 7.9:

Table 7.9: The estimates of selective advantages, swin and the �xation times as
obtained for each population of Experiment 5.

Population swin Tfix
Pop1 0.08 87
Pop2 0.02 116
Pop3 0.03 80
Pop4 0.14 45
Pop5 0.07 80
Pop6 0.05 109
Pop7 0.03 80
Pop8 0.02 131
Pop9 0.04 147
Pop10 0.02 116
Pop11 0.05 58
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The best quality �t model and the best estimate for the mutation rate was ob-

tained for EB(µ, λ, a, b) the exponential density on bounded interval [0.01, 0.15] with

parameter λ = 50 and the estimate of µ = 7 × 10−7 and mean selective advan-

tage is s̄(Θ) = 0.03. For this model, we obtain a very good quality �t. The

Tmin, obs = 43 and the Tmax, obs = 149. The probability as obtained for Testfix is

p(Θ) = P (43 ≤ Tsim ≤ 149) = 0.84. The comparison for the selective advantages

swin for winner, using Testswin is performed. The empirical histograms for the times

to �xation, and the empirical histograms for the selective advantages of the winner

are displayed below (�gures 7.18 and 7.19 respectively). We also display the empiri-

cal histograms for the average log-likelihood (�gure 7.20). The density for selective

advantages is plotted with mean s̄ = 0.03 (�gure 7.21).
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Figure 7.18: The empirical histogram of the �xation times for the best EB(µ, λ, a, b)
exponential density on a bounded interval [0.01,0.15] with µ = 7× 10−7 and s̄(Θ) =
0.03. The red dots indicate the min and max of �xation times observed from the
experimental data directly. We get p(Θ)11 = 0.15.
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Figure 7.19: The empirical histogram of the selective advantage swin of the winner
for the best EB(µ, λ, a, b) exponential density on a bounded interval [0.01,0.15] with
µ = 7× 10−7 and s̄(Θ) = 0.03.
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Figure 7.20: The empirical histogram average log-likelihood values for the best
EB(µ, λ, a, b) exponential density on a bounded interval [0.01,0.15] with µ = 7×10−7

and s̄(Θ) = 0.03. The true average log-likelihood pf observed swin lies inside the
quantiles Q− and Q+ of the simulated average log likelihood computed from swin
values.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

10

20

30

40

50

60

s

f(
s)

Figure 7.21: The density for selective advantages is plotted for EB(µ, λ, a, b), expo-
nential on a bounded interval [0.01,0.15] with s̄(Θ) = 0.03.
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7.7 Study of Experiment 6

In this Section, we study the last set of experimental data for the experiments that

were started with initial genotype to have 5 mutations. The initial genotype con-

sisted of the 5 kinds of mutation, namely, Ribose + TopA + SpoT + glmus + pykF.

The selective advantages swin of the winners are computed with respect to the initial

genotype called the progenitor. These estimates are computed by non-linear least

squares �tting algorithm as explained above (6.5). We explore systematically a range

of values for the parameters µ and λ for the model EB(µ, λ, a, b) using an exponen-

tial density on the bounded interval with parameter λ. From the 11 experimental

population trajectories of the winner, we can compute the time at which mutation

goes to �xation. We display these values along with the estimated selective advan-

tages using the non-linear least squares �tting (6.5) for winner for each population

in Table 7.10.

Table 7.10: The estimates of selective advantages and the �xation times as obtained
for each population of Experiment 6.

Population swin Tfix
Pop1 0.05 77
Pop2 0.05 200
Pop3 0.02 200
Pop4 0.02 159
Pop5 0.03 80
Pop6 0.07 106
Pop7 0.06 200
Pop8 0.04 143
Pop9 0.02 200
Pop10 0.04 143
Pop11 0.02 189
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The best quality of �t to the model is obtained when we consider EB(µ, λ, a, b),

the exponential on a bounded interval [0.01, 0.08] and with parameter λ = 80 for

µ = 1×10−7 and mean selective advantage s̄(Θ) = 0.02. We obtain a good quality �t

for this model as well. From above table, we see that Tmin, obs = 75 and Tmax, obs =

200. The probability from Testfix is p(Θ) = P (75 ≤ Tsim ≤ 200) = 0.92. The

comparison of the selective advantages using the average log-likelihood using Testswin

is performed. The empirical histograms for the times to �xation and the empirical

histograms for the selective advantages of winner are displayed (�gures 7.22 and 7.23

respectively). The empirical histogram for the average log-likelihood values are also

displayed (�gure 7.24). The plot for the exponential density function on the bounded

interval with mean s̃ = 0.02 is also displayed (�gure 7.25).
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Figure 7.22: The empirical histogram of the �xation times for the best EB(µ, λ, a, b)
exponential density on a bounded interval [0.01,0.08] with µ = 1 × 10−7 and mean
selective advantage s̄(Θ) = 0.02. The red dots indicate Tmin,obs and Tmax,obs of �xation
times observed from the experimental data directly. The p-value p(Θ)11 = 0.4.
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Figure 7.23: The empirical histogram of the selective advantages swin of the winner
for the best EB(µ, λ, a, b) exponential density on a bounded interval [0.01,0.08] with
µ = 1× 10−7 and mean selective advantage 0.02.

172



7.7. STUDY OF EXPERIMENT 6

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

log−likelihood values

fr
eq

ue
nc

y

Figure 7.24: The empirical histogram average log-likelihood values for the best
EB(µ, λ, a, b) exponential density on a bounded interval [0.01,0.08] with µ = 1×10−7

and s̄(Θ) = 0.02. The true average log-likelihood pf observed swin lies inside the
quantiles Q− and Q+ of the simulated average log likelihood computed from swin
values.
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Figure 7.25: The density of selective advantages plotted for exponential on the
bounded interval [0.01,0.08] with mean s̄ = 0.02.
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7.8 Summary: Estimators and Accuracy

We have developed estimates for the mutation rate µ, as well as estimates for the

mean s̄(Θ) for the bounded exponential mean selective coe�cient, for each of the

experimental data set as obtained from T. Cooper's laboratory for the evolution

of the population for the bacteria Escherechia coli. These estimates as above are

obtained by using a maximum likelihood technique, where we �rst maximize over

the probability for the range of �xation times (Testfix), and then using the log-

likelihood approach to compare the estimates for the selective advantages swin of

the winner using test Testwin. We summarize these results for all the experimental

datasets, ranging from genotypes with no mutation, to genotypes with �ve di�erent

mutations.

To compute the accuracy of these estimators µ̂ and ˆ̄s, for each experiment, treat µ̂

and λ̂ as the true unknown values for µ and λ. Thus for each experiment, let µ̂ = µ0

and λ̂ = λ0 be the true values. We then generate 100 estimates of µ and λ over the

respective grids for µ and λ for each of the experiment (as mentioned in the above

Sections). The mean selective advantage s̄ can be computed from λ accordingly

(chapter 6). We generate empirical distributions for estimates µ̂ and ˆ̄s using the

model EB(µ, λ, a, b) where the selective advantage of mutants are randomly sampled

from exponential distribution on a bounded interval [a, b]. For each experiment, the

interval [a, b] for the model EB(µ, λ, a, b) is chosen such that the this interval contains

the estimated selective advantages swin of the winner (as computed using 6.5) for that
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experiment. The mean s̄ is then given by

s̄ =
1

λ
+
ae−λa − be−λb

e−λa − e−λb
.

Table 7.11 below displays the estimates µ̂ of the mutation rate and ˆ̄s of mean selective

advantage. The accuracy of these estimators can then be studied by computing the

square root of the mean square error (σ), as follows:

σµ̂ =

√√√√ 1

100

100∑
i=1

(µ̂i − µ0)2 and σˆ̄s =

√√√√ 1

100

100∑
i=1

(ˆ̄si − s̄0)2

Table 7.11: The estimates for the mutation rate µ and mean selective advantage,
as obtained for di�erent experimental data studied above with multiple mutations
model.

Experiment µ̂ σµ̂ ˆ̄s σˆ̄s

Experiment 1 10 ∗ 10−7 1× 10−7 0.08 0.002
Experiment 2 9 ∗ 10−7 1.3× 10−7 0.07 0.003
Experiment 3 10 ∗ 10−7 1.6× 10−7 0.05 0.003
Experiment 4 7 ∗ 10−7 1.8× 10−7 0.06 0.005
Experiment 5 7 ∗ 10−7 2.3× 10−7 0.03 0.003
Experiment 6 1 ∗ 10−7 1.3× 10−7 0.02 0.001

For each of the empirical distributions of the estimators µ̂ and ˆ̄s, we compute a

range of quantiles such that the 90% of the data lies within that range. Table 7.12

below displays these values.
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Table 7.12: The 90% quantile range for the estimators µ̂ and ˆ̄s

Experiment quantile range for µ̂ quantile range for ˆ̄s

Experiment 1 [8× 10−7 , 10−6] [0.079 , 0.084]
Experiment 2 [6.5× 10−7 , 11× 10−7] [0.062 , 0.069]
Experiment 3 [8× 10−7 , 12× 10−7] [0.048 , 0.056]
Experiment 4 [6× 10−7 , 10−6] [0.055 , 0.068]
Experiment 5 [8× 10−7 , 10−6] [0.027 , 0.035]
Experiment 6 [0.5× 10−7 , 3× 10−7] [0.022 , 0.024]
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CHAPTER 8

Multiple Mutations: HK Experiments

In this chapter, we present similar bacterial evolution experiments and associated

models studied by Hegreness et al. (2006) [23]. These (call them HK experiments)

use an experimental setup similar to the TC experiments, to study the evolution

of E. coli bacterial populations. The parameter values for the HK experiments, as

mentioned earlier in chapter 3, are di�erent from those for the TC experiments. Ta-

ble 8.1 summarizes all the parameter values for both the TC and HK experiments.

We �rst give a brief description of the simulation model for the HK experiments,

and present their method of estimation for the mean selective advantage. We then
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provide the accuracy for the estimators of mutation rate and mean selective advan-

tage for HK estimation techniques as well the estimation technique developed in this

thesis (chapter 7).

Table 8.1: Parameter values for the TC and HK experiments

Parameter TC experiment HK experiment

Experimental:
N 11 72
N0 5× 104 2.5× 105

Nsat 107 8.25× 108

D 200 3300
Model:
τ 50 12
F 1.11 1.18
s [0.01, 0.2] [0.01, 0.2]
µ [2× 10−8, 10−6] [2× 10−8, 10−6]

8.1 Simulation Model

For the HK experimental setup, as before, the experiments begin with an initial geno-

type with N replicate populations, where N = 72 is larger than the TC experiments,

for which N = 11. The number of initial E.coli bacterial cells in the beginning of

the experiments is N0 = 2.5×105. They are evenly divided into "yellow" and "cyan"

cells (tagged by neutral color markers). These N replicate populations, as before for

the TC experiments, grow in parallel and are allowed to grow freely every day until

the exhaustion of the nutrients, which occurs when the population reaches saturation

size Nsat = 8.25 × 108 cells. At the end of each daily growth phase, the population
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undergoes a dilution with a dilution factor D = Nsat
N0
≈ 3300, i.e, N0 cells are ex-

tracted from the current saturated population well and transferred to fresh medium,

and allowed to grow again until population size Nsat. These {growth + dilution}

cycles are performed daily. The counts for the numbers of the two marker cells are

recorded at the end of each growth phase. These measurements are taken when the

cells are in stationary phase. A plate reader, Victor III Perkin Elmer, recording the

�uorescence readings is used to record numbers for the two sub-populations. This

will add an error on the measurements. This is equivalent to the complementary

second sub-sampling in the TC experiments, with higher accuracy.

We perform similar, multiple mutation simulations as described in chapter 6, by re-

placing the parameter values for the HK experiments. The counts for the number of

yellow and cyan markers are recorded at the end of each growth phase. The simu-

lations run until color �xation occurs. If the �xation has not occurred for 39 days,

the simulation is stopped.

The selective advantage of the new emerging bene�cial mutation, for this multiple

mutation modelM(s̄, µ), is sampled from exponential distribution with mean selec-

tive advantage, given by s̄. Thus if a mutation occurs from the ancestor cells, then

the selective advantage of that mutant with respect to the ancestor, is sampled from

an exponential distribution with mean selective advantage s̄. However, if the new

mutation arises from the previously born mutant with selective advantage sold, then

the selective advantage of this new arising mutation is given as below:

snew = sold +4s
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where 4s is sampled from exponential distribution with mean s̄. Thus, the selec-

tive advantage of the new arising mutation from a previously born mutant is the

sum of the selective advantage of the mutant from which the new mutation arises

incremented by an randomly sampled 4s picked from exponential distribution with

mean s̄. This method of selecting selective advantages for newly arising mutations,

is equivalent to the conditional method (as studied above in chapter 7) for the ex-

ponential density on [0,∞].

The ratios of the counts for the size of the yellow and cyan sub-populations at the

end of the growth day are recorded. Let NY (d) and NC(d) denote the measurements

for the yellow and cyan markers respectively, at the end of the growth day d.

8.2 Simulation Data Base

We consider a grid of pairs (µ, s̄) as follows: 10 values of mutation rate, µ ∈

{10−7, 2 × 10−7, . . . , 10−6} and 20 equally spaced values of mean selective advan-

tage s̄ ∈ [0.01, 0.2]. For each pair (µ, s̄), we ran the simulations of the multiple

mutations HK model described above in Section 8.1, we generate 500 random evolu-

tion process trajectories. Thus generating 500 random evolution process trajectories

for 200 pairs, to consist of our simulation data base.
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8.3 HK Estimation: Fitting the Initial Divergence

of g(t)

The two sub-populations start with the same initial size and initial genotype. Mu-

tations occur in both sub-populations and causes initial �uctuations in the curve

g(t) = log p(t)
1−p(t) , until a mutant with stronger selective advantage emerges causing

the curve to deviate from the almost �at line. Thus, bene�cial mutations cause the

curve g(t) to deviate from its starting value. We describe here the �tting of the

marker ratio curves concentrating on the initial phase of the experiment, thus �tting

this initial divergence of the marker ratio curves for the HK experiments. The sizes

of the yellow and cyan populations are recorded as explained above. For each one of

the 72 populations monitored, the following statistical model is used to �t the initial

divergence of the marker ratio curves:

g(t) = log

(
1 +

1

2
exp (α̂(t− κ̂))

)
+ ct + εt (8.1)

where α̂ and κ̂ are the parameters of the growth curve speci�c to each well. Here,

κ̂ denotes the �rst time when a signi�cant deviation from the �at line in the curve

g(t) occurs, and α̂ is the slope of this deviation. The ct denotes the daily biases

observed in the data due to the technique used for recording the sizes of the two

sub-populations and εt ∼ N(0, σ2) are independent and describe the uncertainty in

each measurement.

The time t in equation (8.1), denotes the number of generations, i.e, t = 12d where

d is the day at which the measurement was taken. Since these experiments are per-

formed for approximately 450 generations, we have days, d = 1, . . . , 39.
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A non-linear least squares (NLLS) regression is applied to �t the curve g(t) by equa-

tion (8.1). The residuals of the �t are checked for conditions C(1) and C(2) below.

The curve g(t) is �t until the last time the conditions C(1) and C(2) are both sat-

is�ed, and thus extracting α̂ and κ̂ from this �tting. The authors (Hegreness et

al. (2006) [23]) make use of the Lilliefors test to test the null hypothesis that the

data comes from a normally distributed population (when the null hypothesis do not

specify the mean and variance of the normal distribution). The measurements in

each well are included in the �t up to a time t which is the latest time satisfying the

following two conditions:

C(1) Goodness of �t to the data: Lilliefors test at 5% signi�cance level is used to

accept or reject the hypothesis.

C(2) The standard deviation of the residuals of the �t does not exceed 0.15.

Estimating these times κ̂ and slopes α̂ for each of the 72 marker-ratio trajectories,

thus generates virtual values of α̂ and κ̂. Call these 72 virtual values of α̂ and κ̂, the

values obtained from the E. coli experimental data. Figure 8.1 displays an example

of the curve g(t) for the HK simulations, when the modelM(0.02, 5× 10−7) is used

(see 8.1). We plot the curve g(t), and the �tted curve log (1 + 0.5 exp (α̂(t− κ̂)))

to estimate the �rst signi�cant deviation time κ̂ = 200 generations (i.e 16 days),

slope α̂ = 0.07 of this deviation. This �tting is performed on g(t) up to time t, such

that the conditions C(1) and C(2) are satis�ed. The conditions C(1) and C(2) are

satis�ed up to generation 276 (i.e up to day 23) for this trajectory.
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Figure 8.1: The blue dots display the curve g(t), versus time in generations. The
best �t curve (α̂ = 0.07 and κ̂ = 200 generations) is displayed in red (solid line) and
κ̂ = 200 generations is indicated by the green line. For this example, s̄ = 0.02 and
µ = 5× 10−7.

8.4 Evaluating the Performance of Estimators

For each pair (s̄, µ) in the simulation data base above in Section 8.2, we have gen-

erated 500 random evolution process trajectories. We apply the �tting to the curve

g(t), as explained in Section 8.3 to each of the 500 process trajectories for each of the

200 pairs. This generates empirical histograms for α̂ and κ̂ from simulation trajecto-

ries. We use the simulated data (described in Section 8.1 and 8.2), generated by our

simulations of the HK model using the HK experiment parameters. We separately

apply the HK estimation technique described in Section 8.3, on this simulated data.

This generates the above empirical histograms of α̂ and κ̂ for each pair (s̄, µ). To

evaluate the performance of the estimators, the 72 virtual values of α̂ and κ̂ obtained
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from experimental data are compared with the 500 empirical samples of α̂ and κ̂ for

each pair (s̄, µ). Kolmogorov-Smirnov (KS) test is applied at 2.5% signi�cance level

to compare the 72 virtual values of α̂ with the empirical histograms of α̂ for all pairs

(s̄, µ), with the null hypothesis that the 72 virtual values of α̂ from experimental data

and the empirical histograms of α̂ come from the same distribution. This generates

pairs (s̄, µ) for which the null hypothesis is accepted at 2.5% signi�cance level, for

α. Similarly, KS test is applied at 2.5% signi�cance level to compare the 72 virtual

values of κ̂ from experimental data with the empirical histograms of κ̂ for all pairs

(s̄, µ), with the null hypothesis that the 72 virtual values of κ̂ from experimental data

and the empirical histograms of κ̂ come from the same distribution. This generates

pairs (s̄, µ) for which the null hypothesis is accepted at 2.5% signi�cance level, for κ̂.

This generates estimates for pairs (s̄, µ) where the null hypothesis is not rejected for

both α̂ and κ̂. Since these two distributions of α̂ and κ̂ are not independent, these

common pairs of (s̄, µ) where the null hypothesis is not rejected for both α̂ and κ̂

represents at least a 95% con�dence regions for the estimators (ˆ̄s, µ̂) of mutation

rate, µ and mean selective advantage, s̄.
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8.5 Application to Virtual Experimental Values

Since we do not have access to the actual HK experimental data, we generate virtual

experimental values. We apply the HK estimation method for the evaluation of

the mean selective advantage ˆ̄s and the mutation occurrence µ̂. We compare the

HK method to the statistical techniques we have introduced to select a multiple

mutations model among the 3 categories of models presented above in chapter 7 .

We then provide the accuracy of these estimators for the HK estimation technique,

and the estimation technique developed for the multiple mutation models in chapter

7 .

8.5.1 HK Estimation Technique

We extract 72 virtual values of α̂ and κ̂ using the technique described in 8.3 by

simulating the true model M(s0, µ0) where s0 = 0.08 and µ0 = 7 × 10−7. We

consider these 72 virtual values as the estimated values for α̂ and κ̂ derived from

the experimental data. We then apply the estimation technique for HK as described

above (8.2, 8.3 and 8.4). This generates empirical histograms of α̂ and κ̂ for each

pair (s̄, µ). Comparing the virtual values with empirical histograms of α̂ and κ̂ for all

the 200 pairs of (s̄, µ) (as described in 8.4), we generate the HK con�dence regions

at 95% con�dence level. Figure 8.2 displays this region using the HK estimation

technique (Section 8.3 and 8.4). Note that the HK estimation technique provides the

pairs of (s̄, µ) representing the 95% con�dence region, and we compute the estimate

(ˆ̄s, µ̂) as the barycenter of these pairs.
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Figure 8.2: The con�dence region obtained on applying the HK estimation for true
(s0, µ0) = (0.08 , 7 × 10−7). Points (s̄, µ) indicate the pairs for which the null
hypothesis (that 72 virtual values and 500 empirical histograms of α̂ and κ̂ come
from the same distribution) using KS test at 2.5% signi�cance is not rejected.

We veri�ed by the following algorithm, the HK- con�dence regions at 95% con�-

dence level:

1. Fix a true pair (s0, µ0).

2. Extract 72 virtual values of α̂ and κ̂ representing the values of α̂ and κ̂ as

derived from experimental data.

3. Compare these 72 virtual values with the 500 empirical values of α̂ and κ̂

for each pair (s̄, µ) (as above in 8.4). This generates a region of pairs (s̄, µ)

for which the null hypothesis is not rejected by KS test at 2.5% signi�cance.

Example of one such region is displayed in �gure 8.2.
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4. Repeat steps 2 and 3 above 100 times generates 100 such regions, and each

time check whether the true pair (s0, µ0) ∈ region or not.

We see that 96 out of 100 runs above, the true pair (s0, µ0) ∈ region, thus verifying

that comparison as above (in 8.4) generates HK-con�dence region at least at 95%

con�dence level.

To compute an estimate (ˆ̄s, µ̂) from the pairs (s̄, µ) ∈ region, we consider the barycen-

ter of that region. This process generates empirical histograms for estimates ˆ̄s and

µ̂. For the region displayed in �gure 8.2, the estimate (ˆ̄s, µ̂) = (0.08, 6×10−7). Since,

the true pair (s0, µ0) = (0.08, 7 × 10−7) is known, we compute the accuracy of the

estimators ˆ̄s and µ̂ by computing the square root of the mean square error as below:

msqˆ̄s =

√√√√ 1

100

100∑
i=1

(ˆ̄si − s0)2 and msqµ̂ =

√√√√ 1

100

100∑
i=1

(µ̂i − µ0)2

We obtain msqˆ̄s = 0.01 and msqµ̂ = 2× 10−7.

8.5.2 Thesis Estimation Technique

In chapter 7, we developed estimators ˆ̄s and µ̂ for multiple mutation models using the

maximum likelihood approach as in Testfix and Testswin. We simulate the model

with exponential density on [0,∞] for randomly selecting selective advantages of

mutants, with the HK experimental and model parameters (8.1). We thus obtain as

above 500 replications of random evolutionary trajectories for each pair (s̄, µ). We

then apply the tests Testfix and Testswin to obtain estimates ˆ̄s and µ̂.

We randomly extract 72 virtual replications from true (s0, µ0) = (0.08, 7 × 10−7).
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Figure 8.3: The selective advantages swin of winner as obtained from simulations, for
estimates of HK (ˆ̄s = 0.05 and µ̂ = 10−6).

Consider these to be the experimental data from HK experiments. Repeating this

100 times, provides 100 sets for experimental data of 72 replications. We apply the

estimation technique (as in chapter 7), to maximize the probabilities obtained from

Testfix and Testswin, and obtain 100 estimates for ˆ̄s and µ̂. The accuracy can then

be computed as above by calculating the square root of the mean square error. We

obtain msqˆ̄s = 0.02 and msqµ̂ = 2× 10−7.

In conclusion, we can make the following comparison between our estimation

method and that in the Hegreness et al. [23] paper.

1. First, if we compare the selective advantages of the winner from the exper-

imental data obtained from TC's experiments with the selective advantages

of the winner from the simulated data generated by using the exponential
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distribution for picking the selective advantages, then the simulated selective

advantages that we get for the winner are much larger than those seen in the

experiments. Figures 7.1 and 8.3 display these examples.

Since we don't have access to the HK experimental data, we are generating

their virtual values for the experimental data by following the scheme described

above. For this reason there is a better match between the �experimental data�

for HK and the simulated data for HK than we expect there to be. Even then,

our accuracies are comparable to the accuracies obtained from their estimation

method.

2. The parameter ranges that we are interested in are di�erent from the parameter

ranges for which they claim the exponential distribution is the correct model.

For the parameter ranges of our interest, the model that they choose is the

dirac delta distribution.

3. Finally, as of now, to compute the best �t model by the estimation technique,

we have compared two histograms: for swin and Tfix. A more detailed com-

parison may yield a better understanding of the strengths of each estimation

method.
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CHAPTER 9

Conclusions and Further Discussion

We have introduced and rigorously studied a detailed Poisson process model for the

evolutionary dynamics of evolving populations of asexual Escherichia coli bacte-

ria. The model formalizes two types of biological experiments (the TC and HK

experiments), which evolve N replicate bacterial populations starting with initial

individuals having identical genotypes. All initial cells are tagged by one of two

neutral markers, red or white, which are transmitted by cell divisions. Each of these

populations was submitted to a daily {growth + dilution} cycle before daily transfer

to a new well. The TC experiments have a daily complementary dilution step , which

involves extracting a few hundred cells from each new well in order to estimate the
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current frequency of color markers by visual counts. The �rst daily dilution intro-

duces what is known as genetic drift in the population and rare bene�cial mutations

may get lost through these daily dilutions.

We �rst study a stochastic model for the dynamics of asexual bacterial popula-

tion evolving under the simplifying assumption that there is only one single type

of irreversible mutation. We have focused on developing e�cient estimators for two

fundamental evolutionary parameters, the selective advantage, s, of newly arising

adaptive mutations and the rate, µ, at which these mutations occur. We have devel-

oped new algorithms to estimate these parameters with no bias and to analyze the

precision of these estimates and their sensitivity to the number N of experimental

replications.

We have also studied the asymptotic behavior of these estimators as N becomes

large and implemented simulations to study the estimation accuracy for realistic

much smaller numbers of experimental populations such as N = 11 or N = 72.

Our estimator ŝ of the selective advantage s is quite accurate, even for moderate

values of N . We �nd that ŝ has no appreciable bias. The root mean squared error

of estimation for ŝ decreases from 0.02 for N = 1 replicate population to 0.006 when

replication is increased to N = 11 as in the TC experiment, and to 0.002 when

replication is increased to N = 72 as in the HK experiment. The "ground truth

values" of s measured experimentally for populations evolved in the TC experiment,

were only available for one of the six TC experiments. Our estimators were able to

accurately predict the "ground truth" values of s. This is important because it is

likely that the N population replicates have di�erent types of bene�cial mutations.
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This situation deviates from the single class of bene�cial mutation considered in our

�rst model. Evidently, our method is robust to this kind of deviation from our un-

derlying simpli�cation. The main reason for this is that smaller e�ect mutations

are out-competed when they are at low frequency and thus do not reach frequencies

high enough to in�uence the dynamics of neutral marker (Rozen et al. (2002) [51]).

This explanation was explored in a previous paper, which demonstrated that similar

color marker dynamics result even when very di�erent distributions of underlying

bene�cial mutation e�ects are available to the evolving population (Hegreness et al.

(2006) [23]).

We then explored the e�ect of the complementary sub-sampling dedicated to the ex-

perimental evolution of daily color marker frequencies, as was the case with the TC

experiments. We have modi�ed our estimators ŝ and µ̂ to better handle this speci�c

experimental feature which increases the errors of marker frequencies experimental

evaluations. We compare the accuracies of these modi�ed estimators to their accu-

racy when daily red and white marker frequencies are acquired with high precision.

We have also studied the accuracy of our estimators ŝ and µ̂ as the size Nsub of the

second sub-sampling is increased. Note that this complementary sub-sampling does

not modify the evolution of the population.

We �nd that the accuracy of the estimator ŝ is reduced when color marker frequen-

cies are evaluated by complementary sub samples of small sizes 300 to 400. The

root mean squared error for ŝ is inferior to 0.02 when we have N = 1 replicate pop-

ulation and highly precise evaluations of daily color marker frequencies; this error

increases to 0.03 when frequencies are evaluated by complementary sub-samples of
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size Nsub = 400 (as was the case for the TC experiments). The error for the estima-

tor ν̂ is less than 0.8 for N = 11 and highly precise marker frequencies evaluations,

while this error increases to 1.5 in the context of complementary sub-sampling of size

Nsub = 400. We studied the asymptotic behavior of our estimators as Nsub becomes

large. We show that the accuracy of our estimators increases as Nsub increases, and

this enables us to recommend more realistic numbers for the size of Nsub to ensure

adequate experimental accuracy.

Direct measurement of bene�cial mutation rates is notoriously di�cult, and is cur-

rently possible for only a limited number of strain-mutation combinations (Cooper

et al. (2001) [8]). Thus, it was not possible to compare against ground truth our

estimator µ̂ of mutation occurrence rates based on color marker dynamics. We have

shown that our estimates of bene�cial mutation rates are sensitive to the number

N of population replications. For small values of N , such as N = 11, the error of

estimation associated to our estimators of logarithmic mutation rate approaches 6%

when there is no complementary second sub-sampling e�ect. However, for N ≥ 30,

our estimates ν̂ of ν = log µ becomes much more accurate, with error of estimation

less than 2% of the true value. Similar experiments designed to enable estimation

of the underlying bene�cial mutation rate, should take into account the fairly fast

increase in accuracy due to higher experimental replication number N .

We have then developed and studied parametric estimation for more complex mod-

els involving multiple mutations types. We applied new model �tting techniques

to determine the best �t model for TC experimental data. Each one of these 6

TC experiments start with a distinct initial genotype and has N = 11 replications.
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We show that for the 6 best �t models associated to these 6 TC experiments, the

density function for the random selective advantages of bene�cial mutations can be

e�ciently modeled by an exponential density with a suitable parameter λ, restricted

to a speci�c bounded interval [a,b]. To select and parametrize multiple mutations

models which have the best �t to experimental data, we �rst compute, for a large

�nite family of model parameters, the simulated empirical histograms of the �xation

times and of the selective advantage swin of the winning mutant. We then develop

statistical tests Testfix and Testswin based on precise log-likelihood comparisons be-

tween each one of the two preceding histograms and its corresponding counterpart

histogram extracted from the experimental data.

We also compute the accuracy for the two estimators µ̂ and ˆ̄s derived from our model

�tting techniques, for each of the six TC-experiments.

We have analyzed the previous multiple mutation models studied in (Hegreness et

al. (2006) [23]) and (Barrick et al. (2010) [5]). We have extended their multi-

ple mutations model as well as their parameter estimation techniques. To improve

the precision of simulations for this type of process, we approximate the continuous

growth phase by dividing it into 50 time intervals instead of 12 intervals in previous

work; in particular, the key probability of successful bottleneck crossing, is proved to

be much closer to its true values using our simulations techniques. We have developed

e�cient estimators of the rate and mean selective advantage of bene�cial mutations

based on the evolution of color frequency markers, and we have also provided detailed

accuracy evaluations for these two estimators in the context of multiple mutations

models.

194



Bibliography

[1] J.G. Arjan, M. De Visser, C.W. Zeyl, P.J. Gerrish, J.L. Blanchard, and R.E.
Lenski. Diminishing returns from mutation supply rate in asexual populations.
Science, 283(5400):404�406, January 1999.

[2] K.C. Atwood, L.K. Schneider, and F.J. Ryan. Periodic selection in E. coli.
Genetics, 37:146�155, 1951.

[3] R. Azencott. Grandes deviations et applications. Lecture notes in Mathematics,
774:1�176, 1980.

[4] J.E. Barrick and Lenski R.E. Genome-wide mutational diversity in an evolving
population of Escherichia coli. Cold Springs Harbor Symposia on Quantitative

Biology, 74(18):119�129, 2009.

[5] J.E. Barrick, C.C. Strelio�, and R.E. Lenski. Escherichia coli rpob mutants
have increased evolvability in proportion to their �tness defects. Molecular Biol.

Evol., 27:1338�1347, 2010.

[6] T. Bataillon, T. Zhang, and R. Kassen. Cost of adaptation and �tness e�ects of
bene�cial mutations in pseudomonas �uorescens. Genetics, 111, August 2011.

[7] V.S. Cooper and R.E. Lenski. The population genetics of ecological specializa-
tion in evolving E. coli populations. Nature, 407:736�739, 2000.

195



BIBLIOGRAPHY

[8] V.S. Cooper, D. Schneider, M. Blot, and R.E. Lenski. Mechanisms causing rapid
and parallel losses of ribose catabolism in evolving populations of Escherichia
coli. B. J. Bacteriol, 9(183):2834�2841, 2001.

[9] C. Darwin. The origin of species by means of natural selection. Publisher John
Murray, November 1859.

[10] J. De Visser and D.E. Rozen. Clonal interference and periodic selection of new
bene�cial mutations in Escherichia coli. Genetics, 172:2093�2100, 2006.

[11] M.M. Desai and D.S. Fisher. Bene�cial mutation-selection balance and the e�ect
of linkage on positive selection. Genetics, 176:1759�1798, 2007.

[12] M.M. Desai, D.S. Fisher, and A.W. Murray. The speed of evolution and mainte-
nance of variation in asexual populations. Current Biology, 17:385�394, March
2007.

[13] W.J. Ewens. The probability of survival of a new mutant in a �uctuating envi-
ronment. Heredity, 43:438�443, 1967.

[14] W.J. Ewens. Mathematical population genetics: I. theoretical introduction.
Springer, New York, 2004.

[15] W. Feller. An introduction to probability theory and its applications. John

Wiley and Sons Inc, 1968.

[16] R.A. Fisher. The distribution of gene ratios for rare mutations. Contributions
to mathematical statistics, 50:205�220, May 1930.

[17] C.A. Fogle, J.L. Nagle, and M.M. Desai. Clonal interference, multiple mutations
and adaptation in large asexual populations. Genetics, 180:2163�2173, 2008.

[18] P.J. Gerrish and R.E. Lenski. The fate of competing bene�cial mutations in an
asexual population. Genetica, 102(103):127�144, 1998.

[19] J.H. Gillespie. The causes of molecular evolution. Oxford University Press, 1991.

[20] D. Gresham, M. Desai, Tucker C.M., H.T. Jenq, and D.A. et al Pai. The reper-
toire and dynamics of evolutionary adaptations to controlled nutrient-limited
environments in yeast. PLoS Genetics, 4(12):e1000303, December 2008.

[21] J.B.S. Haldane. A mathematical theory of natural and arti�cial selection part
v: Selection and mutation. Proceedings of Cam Phil Sc, pages 838�844, July
1927.

196



BIBLIOGRAPHY

[22] J.M. He�ernan and L.M. Wahl. The e�ects of genetic drift in experimental
evolution. Theoretical Population Biology, 62:349�356, July 2002.

[23] M. Hegreness, N. Shoresh, D. Hartl, and R. Kishony. An equivalence principle
for the incorporation of favorable mutations in asexual populations. Science,
311:1615�1617, 2006.

[24] R.B. Helling, C.N. Vargas, and J. Adams. Evolution of E. coli during growth
in a constant environment. Genetics, 116:349�358, 1987.

[25] M. Imhof and C. Schlotterer. Fitness e�ects of advantageous mutations in evolv-
ing Escherichia coli populations. Proc. Nat. Acad. Sci. USA, 98(3):1113�1117,
Jan 2001.

[26] S.B. Joseph and D.W. Hall. Spontaneous mutations in diploid saccharomyces
cerevisiae: More bene�cial than expected. Genetics, 168:1817�1825, December
2004.

[27] K.C. Kao and G. Sherlock. Molecular characterization of clonal interference
during adaptive evolution in asexual populations of Saccharomyces cerevisiae.
Nat. Genetics, 40(12):1499�1504, December 2008.

[28] R. Kassen and T. Batailon. Distribution of �tness e�ects among bene�cial muta-
tions before selection in experimental populations of bacteria. Nature Genetics,
38(4):484�488, April 2006.

[29] M. Kimura. Some problems of stochastic processes in genetics. Ann. Math.

Stat., 28:882�901, 1957.

[30] M. Kimura. On the probability of �xation of mutant genes in a population.
Genetics, 47(6):713�719, 1962.

[31] M. Kimura. Model of e�ectively neutral mutations in which selective constraint
is incorporated. Proceedings of the National Academy of Sciences of the United
States of America, 76(7):3440�3444, July 1979.

[32] M. Kimura. The neutral theory of molecular evolution. Cambridge Univ Press,
1983.

[33] Leslie A. Lamport. The gnats and gnus document preparation system. G Ani-

mals Journal, 41(7):73+, july 1986.

197



BIBLIOGRAPHY

[34] R.E. Lenski. Experimental studies of pleiotropy and epistasis in Escherichia coli
variation in competitive �tness among mutants resistant to virus t4. Evolution,
42:425�433, 1988.

[35] R.E. Lenski, M.R. Rose, S.C. Simpson, and S.C. Tadler. Long-term experi-
mental evolution in Escherichia coli. i. adaptation and divergence during 2000
generations. American Naturalist, 138(6):1315�1341, Dec 1991.

[36] R.E lenski and M. Travisano. Dynamics of adaptation and diversi�cation: a
10000 generation experiment with bacterial populations. Proc Natl Acad Sci

USA, 91:6808�6814, 1994.

[37] B.R Levin, V. Perrot, and N. Walker. Compensatory mutations, antibiotic resis-
tance and the population genetics of adaptative evolution in bacteria. Genetics,
154:985�997, 2000.

[38] B.R. Levin, F.M. Stewart, and L. Chao. Resource limited growth, competition,
and predation: a model and experimental studies with bacteria and bacterio-
phage. American Naturalist, 111:3�24, 1977.

[39] R.C. MacLean and A. Buckling. The distribution of �tness e�ects of bene�cial
mutations in pseudomonas aeruginosa. PLoS Genet., 5(3), March 2009.

[40] M.J. McDonald, T.F. Cooper, H.J.E. Beaumont, and P.B. Rainey. The distri-
bution of �tness e�ects of new bene�cial mutations in pseudomonas aeruginosa.
Biol. Lett, 7(1):98�100, Feb 2011.

[41] R. Miralles, P.J. Gerrish, A. Moya, and S.F. Elena. Clonal interference and the
evolution of RNA viruses. Science, 285:1745�1747, 1999.

[42] H.J. Muller. Further studies on the nature and causes of gene mutations. Pro-
ceedings of Sixth International Congress of Genetics, pages 213�255, 1932.

[43] T. Ohta. Extension of the neutral mutation drift hypothesis. Proceedings of

the Second Taniguchi International Symposium on Biophysics, pages 148�167,
1977.

[44] L. Perfeito, L. Fernandes, C. Mota, and I. Gordo. Adaptive mutations in bac-
teria: high rate and small e�ects. Science, 317(5839):813�815, August 2007.

[45] A.D. Peters and S.P. Otto. Liberating genetic variance through sex. BioEssays,
25:533�537, 2003.

198



BIBLIOGRAPHY

[46] E. Pollack. Fixation probabilities when the population size undergoes cyclic
�uctuations. Theoretical Population Biology, 57:51�58, 2000.

[47] Sean H. Rice. Evolutionary theory: mathematical and conceptual foundations.
Sinauer Associates Inc Publishers, 1961.

[48] D.R. Rokyta, C.J. Beisel, P. Joyce, M.T. Ferris, C.L. Burch, and H.A. Wichman.
Bene�cial �tness e�ects are not exponential for two viruses. J. Mol. Evol.,
67:368�376, 2008.

[49] D.R. Rokyta, P. Joyce, S.B. Caudle, and H.A. Wichman. An empirical test
of the mutational landscape model of adaptation using a single stranded DNA

virus. Nat. Genet., 37:441�444, 2005.

[50] I.M. Rouzine, E. Brunet, and C.O. Wilke. The travelling-wave approach to
asexual evolution: Muller's ratchet and the speed of adaptation. Theoretical

Population Biology, 73:24�46, 2008.

[51] D. Rozen, J. de Visser, and P. Gerrish. Fitness e�ects of �xed bene�cial muta-
tions in microbial populations. Current Biology, 12:1040�1045, June 2002.

[52] L.M. Wahl and P.J. Gerrish. The probability that bene�cial mutations are lost in
populations with periodic bottlenecks. Evolution, 55(12):2606�2610, December
2001.

[53] C.O. Wilke. The speed of adaptation in large asexual populations. Genetics,
167:2045�2053, 2004.

199


	Introduction
	Historical Background
	Recent Developments
	Outline of the Thesis

	Experimental Design: Escherichia coli Evolution Experiments
	Biological Experimental Design
	Daily Growth
	Daily Dilution
	Complementary Sub-sampling
	Data Acquisition
	Inferring Dynamics of Mutants

	Biological Fitness Assays

	Stochastic Model for E. coli Evolutionary Dynamics
	Stochastic Population Growth Model
	Detailed Study of Growth Phase
	Bottleneck Crossing
	Path to Fixation

	Examples of Evolution of Frequency

	Parameter Estimations for Single Mutation Model
	Quantifying the Accuracy of Estimators
	Empirical Confidence Intervals
	Pre-computed Simulation Data Base

	Parameter Estimation
	Selective Advantage
	Accuracy of the Selective Advantage Estimator
	Logarithmic Mutation Rate
	Asymptotic Confidence Interval for  for Large N
	Empirical Confidence Interval of 
	Final Re-centered Estimator
	Accuracy of the Logarithmic Mutation Rate Estimator
	Another Re-centering of  and its Accuracy


	Application to Experimental Data and Effect of Complementary Sub-Sampling
	Analysis of the Experimental Data
	Comparison of Estimated and Actual Selective Advantages
	Estimate of Beneficial Mutation Rate
	Effect of the Complementary Sub-sampling
	Algorithm for Automatic Extraction of the "Almost Linear Growth" Time Segment

	Estimation of s after Complementary Sub-sampling
	Accuracy of  and Comparison to the Experimental Data
	Loss of Accuracy of  due to Complementary Sub-sampling
	Accuracy of  for Different Sub-sampling Sizes

	Accuracy for Estimator of Logarithmic Mutation Rate when Frequencies are Estimated by Complementary Sub-sampling
	Accuracy of  for Different Sizes of the Complementary Sub-sampling


	Extension to Multiple Mutations
	Model
	Growth Phase
	Dilution Phase

	Different Models for Selective Advantages
	Model "E(,)": Exponential Densities for Selective Advantages
	Model "EB(,,a,b)": Exponential Densities on a Bounded Interval
	Model "EMP": Based on Empirical Histograms

	Simulations of the Multiple Mutations Models
	Examples of Dynamic Evolution of Mutants
	Estimation of Histograms Histfirst and Histwin

	Fitting Multiple Mutation Models to Experimental Data
	Strategy for Fitting Models to Data
	Simulations of Multiple Mutation Models
	Testfix: Comparison of Fixation Times
	Testswin: Comparison of Histograms for the Selective Advantages of the Winner

	Study of Experiment 1
	Exponential Density: Model E(,)
	Model EB(,,a,b): Exponential Density on Bounded Interval
	Multiple Mutation Models Based on Empirical Densities

	Study of Experiment 2
	Study of Experiment 3
	Study of Experiment 4
	Study of Experiment 5
	Study of Experiment 6
	Summary: Estimators and Accuracy

	Multiple Mutations: HK Experiments
	Simulation Model
	Simulation Data Base
	HK Estimation: Fitting the Initial Divergence of g(t)
	Evaluating the Performance of Estimators 
	Application to Virtual Experimental Values
	HK Estimation Technique
	Thesis Estimation Technique


	Conclusions and Further Discussion
	Bibliography

