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Abstract

We are interested in studying the dynamics on coupled cell networks using the

network topology or architecture. The original motivation of this work comes

from the work by Aguiar et al. [4] on dynamics of coupled cell networks and Dias

and Stewart [18] on equivalence of coupled cell networks with linear phase space.

In this thesis, we give a necessary and sufficient condition for the dynamical equiv-

alence of two coupled cell networks. The results are applicable to both continuous

and discrete dynamical systems and are framed in terms of what we call input and

output equivalence. We also give an algorithm that allows explicit construction of

the cells in a system with a given network architecture in terms of the cells from

an equivalent system with different network architecture. We provide a number of

examples to illustrate the results we obtain.

The dynamics of large coupled dynamical systems can be extremely difficult to

analyze. One way of approaching the study of dynamics of networks is to start with

a simple, well-understood but interesting small network and investigate how the

simple network can be naturally embedded in a larger network in such a way that

the dynamics of the small network appears in the dynamics of the larger network.

This process is termed inflation, and was introduced by Aguiar et al. [4]. We give a

necessary and sufficient condition for the existence of a strongly connected inflation.

We also provide a simple algorithm to construct the inflation as a sequence of simple

inflations.

Finally, we give an example of a 3-cell coupled cell network having non-trivial syn-

chrony subspaces that supports heteroclinic cycles with switching between them.
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Chapter 1

Introduction

Networks are used as models in a wide range of applications in biology, physics,

chemistry, engineering, and the social sciences (for many characteristic examples,

we refer to the survey by Newman [40]). Of particular interest, especially in biology

and engineering, are networks of interacting dynamical systems. In the last two

decades, enormous work has been done on networks – analyzing the behavior of the

network by changing the coupling strength or, the connection structures, analyzing

the synchrony patterns, etc [23, 31, 10, 11, 46, 17, 20, 25, 6, 7, 26, 24, 8, 39, 45].

The network structures are quite different in various fields. When we say network

structure, we mean the number or type of nodes, the types of edges or connec-

tions – static or dynamic, presence of noise or delay in the network, etc. Following

the work of Kuramoto on networks of coupled phase oscillators with all-to-all

coupling [38], there has been an intensive effort to understand the dynamical be-

havior of networks in terms of invariants of the network and to find conditions

that imply the emergence of synchronization in complex networks. Typically the
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CHAPTER 1. INTRODUCTION

methods used for large complex networks are statistical and allow for the interac-

tion of structurally identical units which have parameters (for example, coupling

strength) and network connections distributed according to a statistical law. For

a characteristic illustration of this approach, we refer to the article by Restrepo

et al. [31] where conditions on the adjacency matrix of a network are shown to

lead to synchronization of a network. The eigenvalues of the network adjacency

matrix play an important role in understanding the network dynamics such as

synchronization, linear stability of the equillibria or synchronized states. Restrepo

et al. [32] develop approximations to the largest eigenvalue which plays a key role

in the dynamics. The adjacency matrix is an essential invariant of the network.

In a rather different direction, methods from symmetric dynamics have been

used to understand symmetrically coupled networks of identical oscillators. One of

the early works in this area is due to Ashwin & Swift [12] who study the dynamics

of weakly coupled identical oscillators. More recently, Stewart, Golubitsky, and

coworkers [23, 24, 26] have formulated a general theory for networks of interacting

(typically, identical) dynamical systems (for a overview, see [25]). Typically no

symmetry is assumed for the network architecture though local symmetries may

be present and these are described using groupoid formalism. While this type of

model is unlikely to apply exactly to large biological networks, such as neuronal

networks, it is possible that the assumption of identical dynamical system may be

applicable to an ‘averaged’ network – that is, after the addition of noise and in the

regime where there is synchronization. In any case, small (asymmetric) networks

of identical dynamical systems typically display interesting and often quite non-

generic dynamics [4, 25] and there is the significant question concerning the extent

2



CHAPTER 1. INTRODUCTION

to which the large networks that occur in say biology or engineering applications

can be modelled in a hierarchical way as a network of small networks or motifs [9].

Natasa [42] developed tools to decode the large network data sets to understand

the biological processes. They observe that local node similarity corresponds to

similarity in biological function and involvement in diseases. Network theory ap-

plies to social networks as well. Social networks are often transient, and evolve

over time. The relationship between friends may change with time, so the edges

between various nodes in the social networks are dynamic and change with time.

Peter Grindrod et al. [27] consider networks with memory dependent edges, and

analyze the long term asymptotic behavior as a function of parameters controlling

the memory dependence of the edges. They show that either the networks continue

to evolve forever or become static, which may contain dead or extinct edges.

In this work one of the questions we focus on is when two networks with ap-

parently quite different topologies or architectures are dynamically equivalent (we

give the precise definition in Chapters 3, 4, 5 – we do not mean topological equiv-

alence in the sense of conjugacy). We also consider and solve the problem of the

explicit realization of equivalence for continuous dynamics and give a partial so-

lution for discrete dynamics. These results are probably of greatest interest for

relatively small networks. Indeed, although the invariants we describe are quite

simple, they depend on the ordering of the cells and so checking of the equivalence

of two networks potentially requires consideration of many different orderings. We

emphasize that the methods we use involve precise descriptions of dynamics and

are not statistical. The approach to networks we use in this work is synthetic

and combinatorial in character. In particular, we adopt a simple and transparent

3



CHAPTER 1. INTRODUCTION

‘flow-chart’ formalism similar to that used in electrical and computer engineering.

Indeed, ideas from analog computation motivate parts of our approach to networks

(for more background, we refer to [20, 4]).

We view a network as a collection of interacting dynamical systems or ‘cells’.

The dynamics of a cell will be deterministic (specified by a vector field – continuous

dynamics; or map – discrete dynamics). A coupled cell system will then be a

specific set of individual but interacting cells. Each cell will have an output and

a number of inputs coming from other cells in the system. An output might be

the state of the cell (that is, the point in the phase space of the dynamical system

which determines the evolution of the cell) or it could be a scalar or vector valued

observable (for example, temperature and pressure or a membrane potential). Our

setup is robust enough to handle both situations. Typically, if the network is

small and cell dynamics are low dimensional, we assume the output is the state

of the cell. For large networks or high dimensional cell dynamics, a vector valued

observable is likely to be more appropriate. We emphasize that each cell has only

one (type of) output. However, the output may be connected to many different

inputs; these inputs do not have to be of the same type. (An analogy is having

several different appliances powered by the same power socket.) Given a collection

of cells there may be many different ways of connecting them into a network and

the combinatorics of this process – viewed in a general way that allows groups of

appropriately connected cells to define new types of cell – is one of the issues that

is addressed here.

A coupled cell system has a network architecture or network structure that

can be represented by a directed graph with vertices corresponding to cells and

4



CHAPTER 1. INTRODUCTION

each directed edge corresponding to a specific output–input connection. Different

input types will correspond to different edge types in the graph. We use the term

coupled cell network to refer to a network of coupled cells with a specified network

architecture. Thus vertices correspond to cells, edges to connections. If we want

to emphasize a specific coupled cell network, we often use the term coupled cell

system.

Suppose that M and N are coupled cell networks which both have n cells.

Assume that cells are modelled by vector fields (that is, continuous dynamics de-

termined by local solution of ordinary differential equations) and that the phase

space of each cell is a smooth manifold. We write M ≺ N (M is dominated by N )

if for every coupled cell system F with architecture M, there exists a coupled cell

system F⋆ with architecture N such that F and F⋆ have identical dynamics. This

definition simply means that the dynamics of any system F with network architec-

ture M can be realized by a system F⋆ with network architecture N . Implicit in

the definition is the requirement that there is a correspondence between the cells

of F and F⋆ so that corresponding cells have identical phase space. We regard M

and N as equivalent networks if M ≺ N and N ≺ M. We may similarly define

equivalence for networks modelled by discrete dynamics. Our main result (The-

orem 4.2.6) gives a simple necessary and sufficient condition for the equivalence

of two networks in terms of an invariant that depends only on the network archi-

tecture (specifically, only on the adjacency matrices of the network). This result

generalizes the linear equivalence results of Dias and Stewart [18] but the concep-

tual approach and methods are quite different. We emphasize that the algebraic

condition, formulated in terms of adjacency matrices, is simple and easy to check –

5



CHAPTER 1. INTRODUCTION

at least if we are given an ordering of the cells. However, realizing the equivalence

using an output or input equivalence is by no means straightforward, especially

when there are symmetric inputs (see Chapter 5). The second question we address

concerns the relation M ≺ N . If the coupled cell system F has architecture M,

we present an explicit algorithm that allows us to construct a coupled cell system

F⋆ with architecture N such that F⋆ has identical dynamics to F . The cells in

the coupled cell system F⋆ are constructed using the cells of F together with some

passive cells that either scale or add and subtract outputs or inputs. We also give

a number of equivalence results that hold for discrete dynamics and for various

classes of phase space (such as connected Abelian groups). In order to carry out

this program we introduce the ideas of input and output equivalence. The idea

of input equivalence is motivated by linear systems theory and involves taking

linear combinations of inputs (necessarily, cell outputs must be either vector val-

ued observables or state spaces must be linear). Output equivalence is formulated

in terms of linear combinations of outputs or linear combinations of vector fields.

Output equivalence may or may not apply to discrete systems defined on nonlinear

spaces but it does apply to discretizations of ordinary differential equations.

We now briefly describe the relation of our work to earlier results in this area.

As we indicated above, a general theory of networks of coupled cells has been devel-

oped by Stewart, Golubitsky and coworkers. Their approach is relatively algebraic

in character and strongly depends on groupoid formalism, graphs, and the idea of

a quotient network. Dias and Stewart [18] define equivalence in this setting and

prove results on equivalence of networks when the phase space is a vector space.

We provisionally refer to the definition of Dias and Stewart as ‘functional equiva-

6



1.1 OVERVIEW OF THESIS

lence’. It is easy to see that functional equivalence implies dynamical equivalence.

The converse is also true since dynamical equivalence implies dynamical equiva-

lence with phase space R. Using the results of Dias and Stewart [18], dynamical

equivalence with phase space R implies linear equivalence which implies functional

equivalence. The methods of Dias and Stewart do not apply to systems for which

the phase space is a general manifold nor do their methods give algorithms for

realizing the equivalence. On account of their use of invariant theory and Schwarz’

theorem on smooth invariants, they assume the phase space is linear and maps are

smooth (that is C∞).

Our work makes the following contribution to the problem of classification of

networks based on their dynamics. It introduces methods that extend the notion

of linear equivalence described in [18]. While our condition is similar to their

condition on adjacency matrices, it is more general in the sense that it allows the

phase space to be a general manifold. Moreover, our results give an algorithmic

construction for obtaining equivalences using input or output equivalence. The

methods we present make no use of smooth invariant theory and indeed give a

relatively elementary proof of the main results in [18].

1.1 Overview of thesis

In Chapter 2, we introduce the basic definitions and notational conventions needed

for the work. Our aim is to get the language and results as transparent as we can

and, as far as possible, hide the (notational) complexities in the proofs of the

results.

7



1.1 OVERVIEW OF THESIS

There are two aspects of networks discussed in the thesis – one relates to the

study of dynamics on the network using the architecture or the topology of the

network, the other is the network architecture itself, ignoring the dynamical struc-

ture on it. We find conditions on the adjacency matrices to study the dynamics on

the network. Also, we find conditions on the adjacency matrices to construct large

networks that contains the dynamics of a small network on an invariant subspace.

In Chapter 3, we introduce the concept of dynamical equivalence of coupled

cell networks. In Chapter 4, we define the notion of input and output equivalence

for networks with asymmetric inputs which captures the dynamical behavior of the

network using the essential invariant of the network – the adjacency matrix. We

then prove the main theorems on dynamical equivalence. Although equivalence

always implies output equivalence for continuous systems, this is not always the

case for input equivalence. In Chapter 5, we extend the notion of input and output

equivalence for general networks and give necessary and sufficient conditions for

equivalence to imply input equivalence. In Chapters 4, 5, we also present examples

that illustrate some outstanding issues for discrete networks.

In Chapter 6, we give the necessary and sufficient condition for the existence of

a strongly connected inflation of a network. We first establish the basic properties

of inflation and simple inflation for strongly connected networks as well as giving

some simple examples. We then state and prove our main result for the case of

networks with one edge type. Then we provide the straightforward extension to

general networks and multiple input types. As a consequence of our constructions,

we obtain an algorithm for the construction of a strongly connected inflation. As

the main result in this chapter is graph theoretic in character, we will not need to

8



1.1 OVERVIEW OF THESIS

discuss the dynamical structure on cells. Thus our focus in this chapter will be on

the network architecture and associated graph of the coupled cell network.

The results in Chapter 4 and 5 are joint work with my advisor, Mike Field and

appears in [2, 3], Chapter 6 is based on [1]. The parts of this thesis which do not

appear in [2, 3, 1], are also done under the constant guidance of my advisor.

9



Chapter 2

Background and Preliminaries

2.1 Generalities on coupled cell networks

We distinguish between a coupled cell network, an abstract arrangement of cells

and connections, and a coupled cell system which is a particular realization of

a coupled cell network as a system of coupled dynamical equations. If we wish

to emphasize the network graph rather than the dynamic structure, we refer to

the network architecture. We shall be particularly interested in networks with

specific network architecture which satisfy additional constraints. Typically these

constraints will relate to either the phase space or the type of input or output or

the type of dynamics (for example, continuous or discrete).

10



2.1 GENERALITIES ON COUPLED CELL NETWORKS

2.1.1 Structure of coupled cell networks: cells and connec-

tions

For the moment we regard a cell as a ‘black box’ that admits various types of

input (from other cells) and which has an output which is uniquely determined by

the inputs and the initial state of the cell. The output may vary in discrete or

continuous time. Two cells are regarded as being of the same class or identical if

the same inputs and initial state always result in the same output. We will largely

restrict to networks of identical cells and leave the simple and straightforward

extensions to more general networks containing different types of cell to the remarks

(see also [20, 4]). For clarity, we always use the word class in the sense used above:

‘two cells are of the same (or different) class’. We restrict the use of the word type

to distinguish inputs of a cell.

A1

Input from cell A2

Input from cell A4

Input from cell A5

Input from cell A1

Input from cell A2

Input from cell A4

Output of cell A1

x1

1

3

2

4

5

6

Figure 2.1: A cell with six inputs and one output. Inputs of the same type (for
example the second and third input) can be permuted without affecting the output.

Figure 2.1 shows a cell, labelled A1, which accepts six inputs from cells A1,

11



2.1 GENERALITIES ON COUPLED CELL NETWORKS

A2, A4, and A5. We assume the cells A2, A4, and A5 are of the same class as

A1. We denote the output of A1 by x1 and regard x1 as specifying the state of

the cell A1 (later we shall vary this definition of output). Generally we do not

regard inputs as interchangeable and we may distinguish different types of input

by, for example, using different arrow heads. Referring to the figure, inputs 2 and

3 are of the same type whereas inputs 1, 4, 5, and 6 are of different types and of

different type from inputs 2 and 3: the cell has five distinct input types. We can

interchange inputs 2 and 3 without changing the behaviour of the cell. We refer to

these inputs as symmetric. If there are no pairs of symmetric inputs, we say that

the cell has asymmetric inputs.

We may think of cells as being coupled together using ‘patchcords’. Each

patchcord goes from the output of a cell to the input of the same or another cell.

We show two simple examples using identical cells in Figure 2.2.

When all the inputs of all the cells are filled, as they are in Figure 2.2(ii), we

refer to the set of cells and connections as a network of coupled cells.

We now give a formal definition of a coupled cell network based on the approach

in Aguiar et al. [4].

Definition 2.1.1. A coupled (identical) cell network N consists of a finite number

of identical cells such that

(a) The cells are patched together according to the input-output rules described

above.

(b) There are no unfilled inputs.

12
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1

2

1

2

3

1

2

3

1

2

3

1

2

A1 A2

B1 B2 B3

(i)

(ii)

Figure 2.2: Examples of coupled cells: (i) shows an incomplete network with an
unfilled input cell A2, (ii) shows a three cell asymmetric input network; all inputs
are filled.

Remarks 2.1.2. (1) We always assume cells have at least one input.

(2) There are no restrictions on the number of outputs from a cell.

(3) If a cell has multiple inputs of the same type (that is, symmetric inputs),

it is immaterial which input of the symmetric set the patchcord is plugged into.

More precisely, if a cell A in the network has k > 1 inputs of the same type, then

permutation of the k connections to these inputs is allowed and will not change

the network structure. When it comes to graphical representation of networks, we

always represent input types to cells in the same order. If there are symmetric

inputs, these are always grouped together (as in Figure 2.1 ).

(4) A coupled cell network determines an associated directed graph (the network

13



2.1 GENERALITIES ON COUPLED CELL NETWORKS

architecture) where the vertices of the graph are the cells and there is a directed

edge from cell X to cell Y if and only if cell Y receives an input from cell X.

Different input types will correspond to different edge types in the graph. If there

are p different input types, then there will be p different edge types in the associated

graph.

We let Z denote the integers, Z+ denote the non-negative integers, N denote

the strictly positive integers, and Q the rational numbers. If k ∈ N, we use the

abbreviated notation k = {1, · · · , k}, k = {0, 1, · · · , k}. If p ∈ N, then kp denotes

the set of all p-tuples (k1, · · · , kp), where kj ∈ k, for all j ∈ p.

Adjacency matrices of a network

As we shall see in the following chapters, the key invariant of a coupled cell network

is defined using the set of adjacency matrices. We recall the definition1 appropriate

to our context. Let A be a cell class. We suppose that A has r inputs and p input

types. Let A have rℓ inputs of type ℓ, for ℓ ∈ p. Necessarily r1 + · · · + rp = r.

Of course, we assume rℓ ≥ 1. The cell A has asymmetric inputs iff p = r and

then rℓ = 1, ℓ ∈ p. Suppose that N is a coupled cell network consisting of n cells

C1, · · · , Cn each of class A. We define n×n matrices N0, · · · , Np. We take N0 to be

the identity matrix2. For ℓ ∈ p, we let Nℓ = [nℓij ] be the matrix defined by nℓij = k

if there are exactly k inputs of type ℓ to Cj from the cell Ci. If there are no inputs

of type ℓ from Ci, then k = 0. We refer to Nℓ as the adjacency matrix of type ℓ for

1Conventions vary. We choose the definition commonly used in graph theory; others take the
transpose of the matrices we define.

2Strictly speaking, we only include N0 if we allow internal variables – that is, the evolution
of the state of the cell depends on its state, not just its initial state.

14
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N . Observe that the jth column of Nℓ identifies the source cells for all the inputs

of type ℓ to the cell Cj. If A has asymmetric inputs, then there are r+1 adjacency

matrices, N0, · · · , Nr and each adjacency matrix will be a 0−1 matrix with column

sum equal to 1. If there are symmetric inputs, then there will be p + 1 < r + 1

adjacency matrices. The column sum of Nℓ gives the number of inputs of type ℓ

to A and we refer to the column sum as the valency of Nℓ. We denote the valency

of Nℓ by ν(ℓ) and remark that ν(ℓ) =
∑n

i=1 n
ℓ
ij = rℓ (independent of j ∈ n). Let

A(N ) denote the (ordered) set {N0, · · · , Np} of adjacency matrices of N .

Remarks 2.1.3. (1) If we allow multiple cell classes, then we define an adjacency

matrix for each input type of every cell class.

(2) If we deny self-loops in the network structure, then the diagonal entries of the

adjacency matrices N1, · · · , Np will all be zero.

The adjacency matrices N1, N2, N3 for the network of Figure 2.2(ii) are shown

below.

N1 =




0 1 1

1 0 0

0 0 0



, N2 =




1 0 0

0 0 1

0 1 0



, N3 =




0 0 0

0 0 1

1 1 0



.

Connection Matrix

Networks with asymmetric inputs

Assume for the moment that M is a coupled cell network consisting of n identical

cells with r asymmetric inputs (the number r of inputs equals the number of

input types p). Label the cells as C1, · · · ,Cn. For each cell Cj, we let mj =

(mj
1, · · · ,mj

r) ∈ np denote the r-tuple defined by requiring that there is an output

15
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from C
m

j
i

to input i of Cj . That is, m
j
i identifies the source cell for the input of

type i to Cj. If we denote the adjacency matrices of M by M0, · · · ,Mr, then m
j
i

is the row index of the unique non-zero entry in column j of Mi. The r×n matrix

m = [m1, · · · ,mn] specifies the complete set of all connections to the cells in M.

We refer to m as the connection matrix of the network M. We emphasize that

in order to define uniquely the connection matrix (and adjacency matrices) of a

network, we need to order the cells and the input types. For future reference, note

that if V is any vector space, then

n∑

i=1

m0
ijxi = xj ,

n∑

i=1

mℓ
ijxi = x

m
j
ℓ
, ℓ ∈ r, j ∈ n, (2.1.1)

where x1, · · · , xn ∈ V and Mℓ = [mℓ
ij ], ℓ ∈ {0, · · · , r}, are the adjacency matrices.

The result is obvious if ℓ = 0, so suppose ℓ ∈ r. Then mℓ
αj 6= 0 iff Cj has an input

of type ℓ from Cα. If this is so, then mℓ
αj = 1 and mℓ

ij = 0, i 6= α (since we assume

asymmetric inputs). Hence
∑

i∈nm
ℓ
ijxi = mℓ

αjxα = xα = x
m

j
ℓ

, by definition of m
j
ℓ .

General networks

We may also define a connection matrix for networks with symmetric inputs. Let

M be a coupled cell network with n identical cells, r inputs and p input types.

Suppose that there are ri-inputs of type i, i ∈ p (if inputs are asymmetric then

ri = 1 for all i and r =
∑p

i=1 ri = p). For j ∈ n, we define m
j
i ∈ nri by requiring

that m
j
i = (a1, · · · , ari), where a1, · · · , ari ∈ n and as identifies the source cell

for the sth input of type i to Cj. The vector mj = (mj
1, · · · ,mj

p) ∈
∏p

i=1 nri ∼= nr

specifies all of the inputs to Cj. We say that the r×n matrix m = [m1, · · · ,mn] is a

16
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connection matrix for the network. If, in addition, we require that 1 ≤ a1 ≤ · · · ≤

ari ≤ n, then m
j
i is uniquely determined and we refer to the associated connection

matrix as the default connection matrix of the network (or just the connection

matrix of the network).

Example 2.1.4. 1. The default connection matrix for the network of Figure 2.2(ii)

is m =




2 1 1

1 3 2

3 3 2



.

2. The default connection matrix for a network with two types of inputs and

adjacency matrices N1 =




1 0 1

1 0 0

0 2 1



, N2 =




0 1 0

2 1 3

1 1 0




is m =




1 3 1

2 3 3

2 1 2

2 2 2

3 3 2




.

2.1.2 Discrete and continuous coupled cell systems

We now define two basic classes of coupled cell networks with specified network

architecture. First some notational conventions. If N denotes a network architec-

ture, then by F ∈ N we mean that F is a coupled cell system with connection

and input type structure given by N . If N is a coupled cell network (viewed as

the collection of all coupled cell systems with network architecture N ), then the

number of cells n = n(N ), the number of input types p = p(N ), and the total

number of inputs r = r(N ), are the same for all systems F ∈ N .

17
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Continuous dynamics modelled by ordinary differential equations

For continuous dynamics, we assume that cell outputs (and therefore inputs) de-

pend continuously on time. The standard model for this situation is where each

cell is modelled by an (autonomous) ordinary differential equation. In this work,

we always assume that the evolution in time of cells depends on their internal state

(not just their initial state). The underlying phase space for a cell will be a smooth

manifold M , often RN , N ≥ 1, or T (the unit circle). We assume the associated

vector field has sufficient regularity (say C1) to guarantee unique solutions.

If the phase space for a cell C is M , then the output x(t) of C at time t defines

a smooth curve in M and x(0) will be the initial state of the cell (at time t = 0).

We identify x(t) with the internal state of the cell. If the cell has no inputs, then

the ordinary differential equation model for the cell is x′ = f(x), where f is a

vector field on M .

Suppose that we are given a coupled cell system F ∈ M with identical cells

{C1,C2, · · · ,Cn}. Assume that cells are modelled by ordinary differential equa-

tions and that each cell has r (asymmetric) inputs. For j ∈ n, the dynamics of Cj

will be given by a differential equation

x′j = f(xj ; xm
j
1
, x

m
j
2
, · · · , x

m
j
r
),

where m = [m1, · · · ,mn] is the connection matrix of the network (see the previous

section). Observe that we always write the internal variable xj as the first variable

of the vector field f . Since cells are assumed identical, the vector field f is inde-

pendent of j ∈ n. We often say that the dynamics of the system F is modelled by

18
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f and refer to f as the model for F . If we need to emphasize the dependence of

the model f on the system F , we write fF rather than f . All of this terminology

applies equally well to discrete systems (see below).

Remarks 2.1.5. (1) If there is no dependence on the internal variable, we omit the

initial xj and write x′j = f(x
m

j
1
, x

m
j
2
, · · · , x

m
j
r
).

(2) We do not require that m
j
1, · · · ,mj

r are distinct integers; indeed they may all

be equal. If there are symmetric inputs we group these together and designate the

group by an overline. For example, if the vector field f is symmetric in the first

k-inputs and asymmetric in the remaining inputs we write

f(xj ; xm
j
1
, · · · , x

m
j
k
, x

m
j
k+1
, · · · , x

m
j
r
).

Example 2.1.6. A coupled cell system with the network architecture of Fig-

ure 2.2(ii) is realized by the differential equations

x′1 = f(x1; x2, x1, x3),

x′2 = f(x2; x1, x3, x3),

x′3 = f(x3; x1, x2, x2).

where f : M ×M3→TM is a (smooth) family of vector fields on M , depending on

parameters in M3. That is, for each (x, (y, z, u)) ∈M ×M3, f(x; y, z, u) ∈ TxM .
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Discrete dynamics

We continue with the notation of the previous section. We define a discrete time

coupled cell system by considering a system of coupled maps updated at regular

time intervals.

Exactly as in the continuous time case, we model a cell Cj at time N using a

phase space variable xj(N) and then update all cells simultaneously by

xj(N + 1) = f(xj(N); x
m

j
1
(N), x

m
j
2
(N), · · · , x

m
j
r
(N)), j ∈ n, (2.1.2)

where f is a continuous or smooth function depending on the internal state x(N)

together with the r inputs to the cell.

Remarks 2.1.7. (1) The assumption of regular updates implies the existence of a

synchronizing mechanism such as a clock. It is also possible (and very useful) to

define asynchronous systems.

(2) The diagrammatic conventions we follow are reminiscent of the transfer function

diagrams used in linear systems theory. However, we are working with nonlinear

systems and not taking Laplace transforms. For discrete dynamics, we start at

t = 0 with each cell initialized and then we update according to (2.1.2) at specific

time increments δ > 0. The case of continuous dynamics can be viewed as the

limiting case as δ→0 – indeed, ordinary differential equations are typically solved

on a digital computer by replacing the continuous model by a discrete model with

an appropriately small value of δ > 0.

(3) In many cases it can be useful to combine both discrete and continuous dynam-

ics in a coupled cell system. This is particularly so for models of fast-slow systems
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(prevalent for example in neural systems). We may also consider systems with

thresholds controlling switching in cells where the dynamics are, for the most part,

governed by (smooth) differential equations. We refer to this type of system as a

hybrid coupled cell system. Such systems are of theoretical interest and important

in many applications. Recently, they have attracted the attention of control the-

orists and engineers. We refer to Aguiar et al [4] for definitions and some simple

examples.

2.1.3 Passive cells

As we shall see in Chapters 4 and 5, it is sometimes useful to incorporate ‘passive’

cells into a network with continuous or discrete dynamics. We give two examples

that we shall use later.

Output sx Input x
s

Figure 2.3: Scaling cell

Example 2.1.8 (Scale). A scaling cell has one input. The input can either be a

vector field or vector in RN . If the input is x then the output is sx, where s ∈ R

is fixed. We use the notation shown in Figure 2.3 for a scaling cell.

Example 2.1.9 (Addition/Subtraction). An Add cell has at least two inputs which

must be either vector fields, points in RN or, more generally, points in an Abelian

Lie group. In Figure 2.4(a) we show an Add cell with four inputs. If the inputs

are e, f , g, and h then the output is e + f + g + h. We remark that an Add
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+

+

+

+

(a)

h

g

f

e

+

+

+

(b)

h

g

f

e

_

Figure 2.4: Add and Add-Subtract cells

cell always has symmetric inputs though the symmetry of the inputs will not have

implications for our intended applications. We can vary the picture a little by

combining one or more inputs to an Add cell with a scale cell with s = −1. In this

way we can do arbitrary addition and subtraction. We show in Figure 2.4(b) an

Add-Subtract cell with three additive inputs and one subtractive. The output of

this cell is e + f − g + h. In the sequel, we use the notation shown in Figure 2.4

for Add and Add-Subtract cells.

Example 2.1.10. We may use Add, Add-Subtract, and Scaling cells to build

new cells from old. In Figure 2.5 we show two characteristic examples. We start

with a cell C which we suppose has two inputs. Assume a differential equation

model with linear phase space RN . In Figure 2.5(a) we show a new two-input cell

constructed using C and an Add-Subtract cell. If dynamics on C is defined by

f : RN×(RN)2→RN , then dynamics on the cell defined in Figure 2.5(a) is given by

F : RN × (RN)2→RN , where F (x; y, z) = f(x; y, x− y+ z). This model would also

work if the phase space for C was the N -torus TN . The same model also works
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−
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Figure 2.5: Building new cells using Add, Add-Subtract cells

for discrete cells provided that the phase space is either RN or TN . However, the

model does not work if the phase space for C is a general manifold – for example,

the two-sphere S2.

In Figure 2.5(b) we combine outputs rather than inputs. The corresponding vector

field for the cell shown in Figure 2.5(b) is given by

F (x; y, z) = f(x; y, x) − f(x; y, y) + f(x; y, z).

This is valid for continuous dynamics on an arbitrary smooth manifold.

Remarks 2.1.11. (1) For discrete dynamics on a manifold, we can linearly combine

outputs provided that f(x0; x1, . . . , xr) is sufficiently close to x0, for all x0, . . . , xr ∈

M . For this it suffices to fix a Riemannian metric on M and then do addition and

scalar multiplication in the tangent space Tx0
M using the exponential map of the

metric (that is, expx0
: Tx0

M→M is a local diffeomorphism on a neighborhood of

the origin of Tx0
M). Note that this approach does not work for inputs as there

is no reason to assume that linear combinations of x0, . . . , xr need be close to x0.
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Once we have fixed a Riemannian metric on M , we can always linearly combine

outputs for the discretization of the differential equation (at least if the time step

is sufficiently small).

(2) For continuous dynamics, we interpret Figure 2.5(b) in the following way: we

assume the outputs of C are un-integrated – that is vector fields. We then linearly

combine, scale and integrate to get the output. If we go to the discretization, then

the previous remark holds (cf. Remarks 2.1.7(2)).

Example 2.1.12 (Choose and Pick cell). We introduce one further construction

that will be useful in simplifying the diagrams we use for some of the examples

(this gadget is not used in any of the proofs).

+

+

+

+

+

+
C

C

C

C

C

C

C(1:2)

P(2:2)

C(a:u)

P(b:v)

(a) (b)

Figure 2.6: Choose and pick cells C(a, b : u, v), C(1, 2 : 2, 2)

Let C be a cell which has r inputs all of the same type (we may allow other

input types, but they will not effect the construction which only affects inputs of

one type). Suppose that continuous dynamics are determined by the vector field

h : M×M r→TM , where h(x0; x1, · · · , xr) is symmetric in the variables x1, · · · , xr.
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Suppose that a, b, u, v ∈ N satisfy u + v = r and a ≤ u, b ≤ v. The choose and

pick cell C(a, b : u, v) is a new cell built by adding outputs from
(
v+b−1
b

)(
u
a

)
class

C cells. The cell C(a, b : u, v) will have two input types; u inputs of the first

type, v inputs of the second type. More precisely, the cell C(a, b : u, v) has two

components, denoted C(a : u) and P (b : v), corresponding to the two input types.

If x1, · · · , xu are the inputs to the C(a : u) component and y1, · · · , yv are the inputs

to the P (b : v) component, then the output of C(a, b : u, v) is defined to be

∑

1≤j1≤···≤jb≤v
1≤i1<···<ia≤u

h(x0; yj1, · · · , yjb, xi1 , · · · , xia).

The output of C(a, b : u, v) is symmetric in x1, · · · , xu and y1, · · · , yv. We use the

symbol for C(a, b : u, v) shown in Figure 2.6(a). In Figure 2.6(b), we show the

connections for the choose and pick cell C(1, 2 : 2, 2).

2.1.4 Some special classes of coupled cell networks

Throughout this section, M will denote a fixed network architecture. We have

already indicated that we also regard M as the set of all coupled cell systems

with network architecture M. Henceforth we assume that any coupled cell system

S ∈ M always has a phase space which is a smooth connected differential manifold.

It is appropriate to single out some special classes of coupled cell networks.

The restrictions we impose are on the phase space and connection structure rather

than on the type of the system (continuous, discrete, hybrid, etc).

1. M(L) denotes the set of systems S ∈ M which have linear phase space.
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2. M(T) denotes the set of systems for which the phase space is a compact

connected Abelian Lie group – that is, an N -torus for some N ≥ 1.

3. M(G) denotes the set of systems for which the phase space is a Lie group.

We extend this notation to consider networks with specific phase spaces. For

example, let M(R) denotes the set of systems S ∈ M(L) which have phase space

R and M(SO(3)) denote the class of systems S ∈ M(G) which have phase space

SO(3). We remark that M ⊃ M(G) ⊃ M(L),M(T) and M(L) ⊃ M(R).

Scalar signalling networks

As we have remarked previously, from the point of view of applications it is unre-

alistic to assume that in a large network each cell has to have access to complete

knowledge of the state of cells from which it receives outputs. (Of course, com-

plete information may be important in small networks of cells with low dimensional

phase spaces.) Suppose then that we have an identical cell system comprised of

cells of class C. Denote the phase space of C by M . Let ξ : M→F be a smooth

function, where F denotes either the real or complex numbers3. If x(t) is a tra-

jectory on M , then ξ(x(t)) will be a curve in F. While we could regard ξ as an

observable, in our context we prefer to think of ξ a signal. For example, in neuronal

dynamics, ξ(x(t)) might typically be zero or small except when the neuron spikes.

Definition 2.1.13. An identical coupled cell system S ∈ M is a scalar signalling

system if there exists a signal ξ : M→F defined on the phase space of each cell

3More generally, F could be a finite dimensional vector space
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such that the inputs to each cell depend only on the signals from the corresponding

output cells. Let M(S) denote the class of scalar signalling systems S ∈ M.

Example 2.1.14. Let S be a scalar signalling system with the network of Fig-

ure 2.2(ii). Let M be the phase space of a cell and ξ : M→F be a signal. Set

ξ ◦ x = x̂. With these notational conventions and a continuous differential equa-

tion model, the differential equations for the system will be

x′1 = f(x1; x̂2, x̂1, x̂3),

x′2 = f(x2; x̂1, x̂3, x̂3),

x′3 = f(x3; x̂1, x̂2, x̂2).

Note that the internal variables are not changed.

Remarks 2.1.15. (1) A key feature of scalar signalling systems is that we can lin-

early combine inputs even though the phase space may be nonlinear. In particular,

the configuration shown in Figure 2.5(a) is valid for both continuous and discrete

scalar signalling systems irrespective of the phase space.

(2) The generalization of the definition of scalar signalling systems to networks

with multiple cell classes is completely straightforward. This extension is signifi-

cant as the main application we have in mind for scalar signalling systems is the

coupling together of small networks (not scalar signalling) into large networks with

scalar signalling between the small networks. In this context, it may well be ap-

propriate to assume that there are no self loops around the small networks (see

Remark 2.1.3(2)) even though the cells within the small networks may have self

loops. As a simple illustration, an audio amplifier internally may have several
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negative feedback loops but feeding an output of the complete audio system back

into the audio source (say, a microphone) is generally not advisable. Similar ob-

servations apply in control theory.

(3) Finally, we will abuse notation and refer, for example, to a coupled cell network

M(L). By this we mean that the network architecture is M but we will always

restrict to systems with linear phase space. Similar remarks hold for the other

network classes we have defined. The reason we do this is that we shall be defining

various relations and orders on networks and some of these definitions only apply

if we assume extra structure on the connections or the phase space.

(4) Scalar signals can be used to stabilize a system (see Example 2.1.16). Exam-

ple 2.1.18 gives a system which cannot be stabilized by any scalar signal.

Example 2.1.16. Let M be the coupled cell network shown in Figure 4.1. Assume

that the phase space of each cell is two dimensional. Let the inputs be scalar so

that the coupled cell system is given by

x′ = F (x; ξ(x), ξ(y)), y′ = F (y; ξ(x), ξ(x)), (2.1.3)

where x,y, z ∈ R2, F = (f1, f2) : R4 → R2, ξ : R2 → R is a C∞ signal. Let

ξ(0, 0) = 0, F ((0, 0); 0, 0) = (0, 0). Then O = (0, 0, 0, 0, 0, 0) ∈ R6 is an equilibria

of (2.1.3).

For xi ∈ R, i = 0, · · · , 3, F ((x0, x1); x2, x3) ∈ R2. For i = 1, 2, let ∂fi

∂x0
(O) = ai,

∂fi

∂x1
(O) = bi,

∂fi

∂x2
(O) = ci,

∂fi

∂x3
(O) = di. Also for x0, x1 ∈ R2, ξ(x0, x1) ∈ R.

Let ∂ξ
∂x0

((0, 0)) = u, ∂ξ
∂x1

((0, 0)) = v. Then the linearization of (2.1.3) at O is
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2.1 GENERALITIES ON COUPLED CELL NETWORKS

J =



A +B C

B + C A


, where A =



a1 b1

a2 b2


, B =



c1u c1v

c2u c2v


, C =



d1u d1v

d2u d2v


.

The eigenvalues of J are the eigenvalues of A+B + C and A− C. The necessary

and sufficient conditions for O to be an asymptotically stable equilibria are

(T) trace(A+B + C) < 0, trace(A− C) < 0,

(D) det(A +B + C) > 0, det(A− C) > 0.

Let us simplify these conditions. Note that trace(A + B + C) = (a1 + b2) +

(c1 + d1)u + (c2 + d2)v < 0, and trace(A − C) = (a1 + b2) − (d1u + d2v) < 0.

Also, note that det(A + B + C) > 0 simplifies to a1b2 − a2b1 > u(b1c2 − b2c1 +

b1d2 − b2d1) − v(a1c2 − a2c1 + a1d2 − a2d1), and det(A − C) > 0 simplifies to

a1b2 − a2b1 > −u(b1d2 − b2d1) + v(a1d2 − a2d1). For notational convenience, let

α = b1c2 − b2c1, β = b1d2 − b2d1, γ = a1c2 − a2c1, δ = a1d2 − a2d1, p = det(A),

q = trace(A).

Theorem 2.1.17. The necessary and sufficient conditions for O to be an asymp-

totically stable equilibria for (2.1.3) are

(T ) : q < min{−(c1 + d1)u− (c2 + d2)v, d1u+ d2v},

(D) : p > max{(α+ β)u− (γ + δ)v,−βu+ δv}.

Let p < 0, c1d2− c2d1 > 0 (⇒ αδ−βγ = −p(c1d2 − c2d1) > 0), c2 +d2 > 0, d2 > 0,

c1 + d1 > 0, d1 > 0, c+ d > 0, d > 0.

Case (q > 0): Condition (T ) gives v < − c1+d1
c2+d2

u− q
c2+d2

, v > −d1
d2
u+ q

d2
, and these

conditions define a region in the plane contained in the second open quadrant.
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2.1 GENERALITIES ON COUPLED CELL NETWORKS

Condition (D) gives v > α+β
γ+δ

u− p
γ+δ

, v < β
δ
u+ p

δ
, and these conditions define a

region in the plane contained in the third open quadrant. Therefore, there are no

values of (u, v) for which (2.1.3) can be stabilized.

Case (q < 0): The point of intersection of the lines given by equalities in (T ) in

the (u, v)-plane is P =
(
− q(c2+2d2)
c1d2−c2d1

, q(c1+2d1)
c1d2−c2d1

)
. The point of intersection of the

lines given by equalities in (D) in the (u, v)-plane is Q =
(
p(γ+2δ)
αδ−βγ

, p(α+2β)
αδ−βγ

)
. The

point P lies in fourth quadrant, and Q lies in third quadrant. It can be easily

seen that (2.1.3) can be stabilized if and only if Q lies in the feasible region of (T ).

That is,

p (d2(α + 2β) + d1(γ + 2δ))

αδ − βγ
> q.

1
l

u

v

2
l

P

1
R

v

4

(q<0)(q>0)

P

u

1
l

1
R

2

v

l

u

Q

3
l

l

2
R

Figure 2.7: The lines l1 : v = − c1+d1
c2+d2

u − q
c2+d2

, l2 : v = −d1
d2
u + q

d2
, l3 : v =

α+β
γ+δ

u− p
γ+δ

, l4 : v = β
δ
u+ p

δ
, R1: feasibility region of (T ), R2: feasibility region of

(D)

Example 2.1.18. Let M be the bidirectional ring of two cells. Assume that the

phase space of each cell is two dimensional. Let the inputs be scalar so that the
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2.2 GENERALITIES ON GRAPHS

coupled cell system is given by

x′ = F (x; ξ(y)), y′ = F (y; ξ(x)), (2.1.4)

where x,y ∈ R2, F = (f1, f2) : R4 → R2, ξ : R2 → R is a C∞ signal. Let ξ(0, 0) =

0, F ((0, 0); 0) = (0, 0). Then O = (0, 0, 0, 0) ∈ R4 is an equilibria of (2.1.4).

For xi ∈ R, i = 0, · · · , 2, F ((x0, x1); x2) ∈ R2. For i = 1, 2, let ∂fi

∂x0
(O) = ai,

∂fi

∂x1
(O) = bi,

∂fi

∂x2
(O) = ci. Also for x0, x1 ∈ R2, ξ(x0, x1) ∈ R. Let ∂ξ

∂x0
((0, 0)) = u,

∂ξ
∂x1

((0, 0)) = v. Then the linearization of (2.1.4) at O is J =



A B

B A


, where

A =



a1 b1

a2 b2


, B =



c1u c1v

c2u c2v


. The eigenvalues of J are the eigenvalues

of A + B and A − B. The necessary and sufficient conditions for O to be an

asymptotically stable equilibria are

(T) trace(A+B) < 0, trace(A−B) < 0,

(D) det(A +B) > 0, det(A− B) > 0.

Let us simplify these conditions. Condition (T ) implies trace(A) < 0. Also note

that (D) implies det(A) > |au − cv| > 0. Therefore, O cannot be made an

asymptotically stable equilibria unless trace(A) < 0 and det(A) > 0.

2.2 Generalities on graphs

Every coupled cell network determines a directed graph. In this section, we briefly

review those aspects of graph theory that relate to coupled cell networks. A di-
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2.2 GENERALITIES ON GRAPHS

rected graph is a set of vertices or cells and directed edges or connections. Because

of our interest in networks of coupled dynamical systems, we often use term ‘cell’

rather than ‘vertex’ and ‘connection’ rather than ‘edge’. Viewed in this way, each

cell admits inputs (from other cells) and has outputs (to other cells). Figure 2.8(a)

shows an example of a directed graph represented in the way customary in graph

theory (or in the works on coupled cell systems by Stewart et al. [49, 25] ). Each

node consists of a cell with two identical inputs (there is only one edge type). Here,

we prefer to represent the graph as shown in Figure 2.8(b). The reason we adopt

C1

C2 C3

C4

C1 C2 C3 C4

(a) (b)

Figure 2.8: Two representations of the same directed graph

this ‘linear systems’ representation is because it fits better with our definition of

inflation (see Chapter 6 ). Indeed, the assumption of a linear (horizontal) structure

allows us to represent inflation as occurring in the vertical direction.

Associated to every directed graph, we may define the adjacency matrix of the

graph. We recall the definition. Suppose that G is a directed graph with vertex

set V = {v1, · · · , vk}. Define the k × k adjacency matrix A = [aij ] of G by aij = p

if there are exactly p edges from vi to vj . If there are no edges from vi to vj , then

p = 0. Note that this definition takes no account of edge type. For i ∈ k, the

indegree of the vertex vj is the jth column sum of A and is the total number of
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2.2 GENERALITIES ON GRAPHS

inputs to the vertex vj. Similarly, for i ∈ k, the outdegree of the vertex vi is the ith

row sum of A and is the total number of outputs from the vertex vi. A path in the

graph G is a sequence of vertices and directed edges such that from each vertex

there is an edge to the next vertex in the sequence. A chain is a closed path; that

is, the two terminal vertices of the sequence are the same. A self loop (loop) is an

edge that connects a vertex to itself. G is said to be strongly connected if there is a

path from each vertex to every other vertex. A necessary condition for a graph to

be strongly connected is that each vertex has an input and an output. In terms of

the adjacency matrix, this means that each row and each column of the adjacency

matrix of G must have a nonzero entry.

Suppose that G is a graph with k vertices and ℓ edge types. Associated to each

edge type r ∈ ℓ, we may also define an adjacency matrix Ar = [arij] of type r by

arij = p if there are exactly p edges of type r from vi to vj . If there are no edges of

type r from vi to vj, then p = 0. We refer to A1, · · · , Aℓ as the edge type adjacency

matrices of G. We remark that A = A1 + · · · + Aℓ. We refer to [14] for detailed

theory on graphs.

A square non-negative matrix A = [aij ] of order k is said to be irreducible

if for each 1 ≤ i, j ≤ k, there exists n ∈ N such that (An)ij > 0. If A is the

adjacency matrix of graph G, then A is irreducible if and only if the graph G is

strongly connected. The Perron Frobenius theorem [35] for irreducible matrices

states that if the adjacency matrix A with period4 p and spectral radius ρ(A) = r

is irreducible then r is a positive simple eigenvalue. Moreover, if p > 1 then there

4For each i ≤ i ≤ k, the greatest common divisor pi of the positive integers m such that
(Am)ii > 0. For an irreducible matrix pi = p, for all i.
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2.3 SYNCHRONY CLASS

is a permutation matrix P such that PAP−1 takes the following form




0 A1 0 0 · · · 0

0 0 A2 0 · · · 0

. . .

0 0 0 0 · · · Ap−1

Ap 0 0 0 · · · 0




,

where the zeros on the main diagonal correspond to square zero matrices.

2.3 Synchrony class

We recall the key aspects of the definition of a synchrony subspace of M (we refer

to [4] or [25] for a more extended description of synchrony subspaces and note

that what we refer to as a synchrony subspace is called a ‘polydiagonal’ subspace

in [25]). Let S = {S1, · · · , Sp} be a partition of {C1, · · · , Ck}. Let s(j) ≥ 1 be the

number of cells in Sj, 1 ≤ j ≤ p. To avoid trivialities, we always assume p < k and

so at least one s(j) > 1. Let x = (x1, · · · ,xk) denote the state of the cells in M –

since the cells are assumed identical, they all have the same phase space. Group

the components of x according to the partition S and write x = (x1, · · · ,xp),

where xj = (xj1, · · · ,xjs(j)) denotes the state of the s(j) cells in Sj, 1 ≤ j ≤ p.

Define

Xj = {xj | xj1 = · · · = xjs(j)}, 1 ≤ j ≤ p,

and

X (S) = {x = (x1, · · · ,xp) | xj ∈ Xj, 1 ≤ j ≤ p}.
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2.3 SYNCHRONY CLASS

The partition S is said to be a synchrony class if for every realization of the

network architecture M as a coupled cell system, X (S) is an invariant subspace

for the dynamics of that system. If S is a synchrony class then we say that X (S)

is a synchrony subspace for the system. In dynamical terms, suppose x0 is the

initial state of the system (at time t = 0) and x0 ∈ X (S). If X (S) is a synchrony

subspace, then x(t) ∈ X (S) for all t ≥ 0 (t may be continuous or discrete). As a

result, the cells in each of the sets Sj will be synchronized (have the same state)

for all t > 0.

Following the notation conventions of [4], we denote the synchrony subspace

(or class) by {S1‖ · · · ‖Sp} (we typically omit partition elements Si if Si consists

of a single cell). As a simple example, suppose S1 = {Ci1 , · · · , Cis}. Either of

the notations {S1}, {Ci1 , · · · , Cis} would indicate a single group of synchronized

cells. On occasions, it is sometimes convenient to identify synchrony classes by

means of state variables rather than cell labels. Thus, if cell Ci has state vari-

able xi, {xi1 , · · · ,xis} would be an alternative notation for the synchrony class

{Ci1, · · · , Cis}. The definition of synchrony subspace (or class) is easily general-

ized to networks with non-identical cells.

Remark 2.3.1. For networks with identical cells, it is proved in [26, Theorem

4.3], [23, Theorem 6.5] that the following are equivalent.

1. S is a synchrony space.

2. for each input type ℓ, the number of inputs of type ℓ from cells in Si to each

cell in Sj is the same, for i, j ∈ ℓ.

Example 2.3.2. Consider the following coupled cell system with network archi-
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2.3 SYNCHRONY CLASS

tecture M (the underlying graph has four cells and is fully connected).

θ′1 = f(θ1; θ2, θ4, θ3), θ′2 = f(θ2; θ1, θ3, θ4),

θ′3 = f(θ3; θ4, θ2, θ1), θ′4 = f(θ4; θ3, θ1, θ2),

where f : T × T3 → T (the system can be a discrete dynamical system as well

where instead of differential equations, we have regular updates of the state of each

cell or oscillator by the map f). If we assume that all the three inputs to each

cell are asymmetric then the synchrony subspaces of M are {θ1 = θ2 = θ3 = θ4},

{θ1 = θ2, θ3 = θ4}, {θ1 = θ4, θ2 = θ3}, and {θ1 = θ3, θ2 = θ4}.

A framework for coupled cell systems has been presented by Golubitsky and

coworkers [26, 24] that permits a classification of synchrony spaces in terms of the

concept of a ‘balanced equivalence relation’, which depends solely on the network

architecture. Stewart [44] and Kamei [33] proved that the set of all balanced

equivalence relations on a network forms a lattice (a partially ordered set in which

any two elements have a meet and a join, the partial order is defined by refinement).
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Chapter 3

Dynamical Equivalence

In Chapters 3, 4, and 5, we develop various notions of equivalence for coupled cell

networks. We follow the approach of Aguiar et al. [4] and concentrate on dynamics

rather than adopt the more abstract viewpoint of Dias and Stewart [18] which is

based on groupoid formalism and restricted to systems with linear phase space.

Suppose that F and G are coupled cell systems which both have n cells (which

need not be identical). Label the cells of F and G as {C1, . . . ,Cn} and {D1, . . . ,Dn}

respectively. Assume that both systems have the same type of dynamics: either

both discrete or both continuous. For ease of exposition we henceforth assume

continuous dynamics modelled by ordinary differential equations but emphasize

that most of what we say applies equally well to discrete dynamics. We indicate

in the remarks when it does not.

The coupled cell systems F , G have identical dynamics if

1. The cells Ci, Di have the same phase space, i ∈ n.

2. The time evolution of both systems is identical.
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CHAPTER 3. DYNAMICAL EQUIVALENCE

Remarks 3.0.3. (1) If F and G have identical dynamics it does not follow that F

and G have the same network architecture or that corresponding cells have the

same number of inputs.

(2) Note that the definition of identical dynamics requires no restrictions on the

type of phase space or connections.

We define a partial ordering on coupled cell networks, and an associated equiv-

alence relation.

Definition 3.0.4 ([4]). Let N ,M be coupled cell networks both with n cells.

(a) The network N is dominated by M, denoted N ≺ M, if given an ordering

of the cells in N , we can choose an ordering of the cells of M such that given

any system F ∈ N , there exists a system F⋆ ∈ M such that F and F⋆ have

identical dynamics.

(b) We say N and M are equivalent, denoted N ∼ M, if we can order the cells

in M and N so that N ≺ M and M ≺ N .

Remarks 3.0.5. (1) In Definition 3.0.4(b) it is not necessary to assume that the

orderings of cells for which N ≺ M and M ≺ N are the same. Indeed, if they

are not it is easy to see that we obtain a non-trivial permutation of the ordering of

the first ordering of M relative to which M ∼ M. Since we are assuming finitely

many cells in M, the order of the permutation is finite and from this we easily

deduce that we can choose an ordering of the cells of M and N for which we have

N ≺ M and M ≺ N .

(2) If we restrict attention to systems with linear phase space, we can also define

linear equivalence [18]. We write M(L) ≺L N (L) if given F ∈ M(L) modelled by a
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linear differential equation, there exists F⋆ ∈ N (L) modelled by a linear differential

equation, such that F and F⋆ have identical dynamics. We say the networks N

and M are linearly equivalent, denoted by M(L) ∼L N (L), if M(L) ≺L N (L)

and N (L) ≺L M(L). (We remind the reader of the abuse of notation indicated in

Remarks 2.1.15(3).)

For the remainder of the chapter we assume identical cell networks. For n,m ∈

N, let M(n,m; K) denote the space of n ×m-matrices with entries in K where K

will be either Q, Z or Z+. In case m = n, set M(n,m; K) = M(n; K).

Let M be an r-input n cell network with adjacency matricesM0 = I,M1, . . . ,Mp.

Let A(M) denote the vector subspace of M(n; Q) spanned by M0, . . . ,Mp and

A(M; Z+) denote the set of all non-negative integer combinations ofM0,M1, · · · ,Mp.

We emphasize that to define the adjacency matrices we fix an ordering of the cells.

In particular, the space A(M) will depend on the choice of ordering (but not on

the ordering of input types). We recall the main result of [18] adapted to our

context and notational conventions.

Theorem 3.0.6 ([18]). Let M,N be coupled cell networks both with n cells. The

following conditions are equivalent:

1. M(L) ≺ N (L). (Phase space linear.)

2. A(M) ⊂ A(N ).

3. M(L) ≺L N (L).

4. M(R) ≺L N (R). (Phase space R).

In particular, A(M) = A(N ) iff M(L) ∼ N (L).
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Remarks 3.0.7. (1) In all statements it is assumed that there is a given ordering

of cells in M and that we can choose an ordering of cells in N for which the

corresponding statement holds. (2) Theorem 3.0.6 does not apply to systems with

non-linear phase space. Indeed, (3,4) have no meaning when the phase space is

non-linear and the methods used in [18] do not apply to prove the equivalence of

(1) and (2) for the case of non-linear phase spaces. (3) Theorem 3.0.6 applies when

the network is governed by discrete dynamics and phase spaces are linear.

As a corollary of Theorem 3.0.6 we have

Theorem 3.0.8. Let M,N be coupled cell networks both with n cells. A necessary

condition for M ∼ N is A(M) = A(N ).

Proof. If M ∼ N then M(L) ∼ N (L) and so the result follows from Theo-

rem 3.0.6.

Remark 3.0.9. It is easy to verify Theorem 3.0.8 directly. Specifically, the difficult

part of the proof of Theorem 3.0.6 involves the verification that M(R) ≺L N (R)

implies M(L) ≺ N (L). This implication is not needed for the proof of Theo-

rem 3.0.8.

In the following two Chapters 4 and 5, we will define notions of input and output

equivalence for networks. We state and prove necessary and sufficient conditions

for dynamical equivalence of two coupled cell networks. We also give examples to

illustrate the results.
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Chapter 4

Dynamical Equivalence :

Networks with Asymmetric

Inputs

In this chapter, we will concentrate on networks of coupled dynamical systems

with asymmetric inputs. By asymmetric inputs, we mean that all the inputs to

each cell are of different type. We will develop the concept of input and output

dominance/equivalence for such networks.

4.1 Input equivalence

Input equivalence is applicable to coupled cell systems with linear phase space and

to scalar signalling networks (Definition 2.1.13). The basic idea is that a network

N ‘input dominates’ a network M if given a system F ∈ M(L), we can find a

41



4.1 INPUT EQUIVALENCE

system G ∈ N (L) which has identical dynamics to F and is such that each cell in

G is built from one cell in F together with a number of Add-Subtract and Scaling

cells (Section 2.1.3) acting on the inputs (see Figure 2.5(a)). We start with a

simple example to illustrate the ideas.

x1 x2

2A1A B1 B2

x1 x2

M N

Figure 4.1: M input dominated by N .

Example 4.1.1 ([4]). Referring to Figure 4.1, suppose that F ∈ M(L) is modelled

by

x′1 = f(x1; x1, x2),

x′2 = f(x2; x1, x2),

where f = fF : V × V 2→V is a C1 function on the vector space V . If we define

the C1 model g = gG for G ∈ N (L) by g(x0; x1, x2) = f(x0; x1, x0 − x1 + x2), then

x′1 = g(x1; x1, x2) = f(x1; x1, x2),

x′2 = g(x2; x1, x1) = f(x2; x1, x2).

Hence we can realize the dynamics of the first system F using the second system
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G which has a different architecture. Indeed, we can build the second network

using Add-Subtract cells together with the cell used in F . See Figure 4.2 (and also

Figure 2.5(a)). Observe that the system shown in Figure 4.2 can be transformed

+

−
+

A

+

−
+

A

B B1
2

Figure 4.2: The system G built using the cell from F and an Add-Subtract cell.

back into the system F by removing the outer triangles defining cells of class

B and then cancelling inputs using linearity. We say that the network M is

input dominated by N . Finally, the arguments above apply to scalar signaling

networks (Definition 2.1.13) – regard f : V × R2→V and define g(x0; x̂1, x̂2) =

f(x0; x̂1, x̂0 − x̂1 + x̂2).

We now extend the previous example and define the concepts of input domina-

tion and equivalence for general networks with asymmetric inputs. Conceptually,

the idea is quite simple: one network is input dominated by another if the dynam-

ics of any system in the first network can be realized by a system in the second

network whose cells are constructed from those in the first network by linearly

combining inputs.

Definition 4.1.2. Let V be a vector space, n ≥ 1, and r, s ∈ N. Suppose that
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f : V × V r→V , g : V × V s→V are smooth maps, m = [m1, . . . ,mn] ∈ M(r, n; Z),

n = [n1, . . . , nn] ∈ M(s, n; Z) are connection matrices 1 and L ∈ M(r, s + 1; Q).

We say f is (L,m, n)-input dominated by g, written f <ı
(L,m,n) g, if

1. For all (x0, x1, · · · , xs) ∈ V × V s, we have

g(x0; x1, · · · , xs) = f(x0;L(x0, · · · , xs)).

2. For j ∈ n, we have g(xj; xn
j
1
, · · · , x

n
j
s
) = f(xj ; xm

j
1
, · · · , x

m
j
r
).

Remarks 4.1.3. (1) If f is (L,m, n)-input dominated by g then

L(xj , xn
j
1
, · · · , x

n
j
s
) = (x

m
j
1
, · · · , x

m
j
r
), j ∈ n,

and so a necessary condition for input domination is mj ⊆ {j} ∪ nj , j ∈ n. That

is, {mj
1, . . . ,m

j
r} ⊂ {j, nj1, . . . , njs}, j ∈ n. (2) f is input dominated by g if we can

find L so that f <ı
(L,m,n) g.

(3) If we can choose L ∈M(r, s+ 1; Z) so that f <ı
(L,m,n) g, we write f <ı,Z

(L,m,n) g.

Definition 4.1.4. Let M and N be coupled identical cell networks with asym-

metric inputs such that

(a) n(M) = n(N ) = n.

(b) Cells in M have r inputs, cells in N have s inputs.

(c) If we fix an ordering C1, . . . ,Cn of the cells in N , then the associated con-

nection matrix is n = [n1, . . . , nn].

1see Section 2.1.1.
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We say M is input dominated by N , denoted M ≺I N , if there exist L ∈M(r, s+

1; Q) and an ordering of the cells of M, with associated connection matrix m,

such that for every F ∈ M(L) there exists G ∈ N (L) for which fF <ı
(L,m,n) gG. If

N ≺I M and M ≺I N , we say M and N are input equivalent and write M ∼I N .

Remarks 4.1.5. (1) We write M ≺I,Z N if M ≺I N and we can require the map

L of the definition to lie in M(r, s + 1; Z). We similarly define M ∼I,Z N . In

Example 4.1.1 we have M ≺I,Z N (indeed, M ∼I,Z N ).

(2) Input equivalence and domination may also be defined for networks with sym-

metric inputs, discussed in the next chapter.

Lemma 4.1.6. With the notation and assumptions of Definition 4.1.4, in partic-

ular asymmetric inputs, we have

A(M) ⊂ A(N ) iff M ≺I N .

Proof. If M ≺I N , we have M(L) ≺L N (L) and so A(M) ⊂ A(N ) by The-

orem 3.0.6 (or direct verification). Conversely, let M0 = I, . . . ,Mr and N0 =

I, . . . , Ns denote the adjacency matrices for M and N respectively. Since A(M) ⊂

A(N ), there exists L = [dqℓ ] ∈M(r, s + 1; Q) such that

Mℓ =
s∑

q=0

dqℓNq, ℓ ∈ r.

Suppose that F ∈ M(L) has model f : V × V r→V . Define g : V × V s→V by

g(x0; x1, · · · , xs) = f(x0;L(x0, · · · , xs)).
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4.1 INPUT EQUIVALENCE

In order to prove f <ı
(L,m,n) g, it suffices to verify that

L(xj ; xn
j
1
, · · · , x

n
j
s
) = (x

m
j
1
, · · · , x

m
j
r
), j ∈ n. (4.1.1)

Let j ∈ n, we have

mℓ
ij =

s∑

q=0

dqℓn
q
ij , i ∈ n.

Multiply this equation by xi and sum over i to obtain

n∑

i=1

mℓ
ijxi =

n∑

i=1

s∑

q=0

dqℓn
q
ijxi

= d0
ℓ

n∑

i=1

n0
ijxi +

s∑

q=1

dqℓ

n∑

i=1

nqijxi.

By the definition of connection matrix 2 and Equation 2.1.1, we have
∑n

i=1m
ℓ
ijxi =

x
m

j
ℓ
, ℓ ∈ r,

∑n
i=1 n

0
ijxi = xj , and

∑n
i=1 n

q
ijxi = x

n
j
q
, q ∈ s. Hence

x
m

j
ℓ
= d0

ℓxj +
s∑

q=1

dqℓxn
j
q
, ℓ ∈ r.

Since the ℓth component of L(xj ; xn
j
1
, · · · , x

n
j
s
) is d0

ℓxj+
∑s

q=1 d
q
ℓxn

j
q
, we have proved

(4.1.1), and so M ≺I N .

Remark 4.1.7. Using the same proof, Lemma 4.1.6 holds for scalar signalling net-

works M(S) (cf. Example 2.1.14).

Proposition 4.1.8. (Notation of Definitions 4.1.4, 2.1.13.) N ∼I M iff N (L) ∼

M(L) iff N (S) ∼ M(S).

2see Section 2.1.1
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4.2 OUTPUT EQUIVALENCE

Proof. If N ∼I M then obviously N (S) ∼ M(S) and N (L) ∼ M(L). Con-

versely, if either N (S) ∼ M(S) or N (L) ∼ M(L), then we have A(M) = A(N )

(Theorem 3.0.6) and so N ∼I M by Lemma 4.1.6.

Remark 4.1.9. Lemma 4.1.6 and Proposition 4.1.8 in general fail for networks

which have (some) symmetric inputs, discussed in the next chapter. However,

there is no difficulty in extending the results to networks which have more than

one class of cell as long as the inputs are asymmetric. In particular, the algebraic

condition A(M) = A(N ) is required to hold for each cell class.

4.2 Output equivalence

Output equivalence is applicable to coupled cell networks with general phase space

(manifold) and continuous models as well as some classes of discrete systems.

The basic idea is that a network N ‘output dominates’ a network M if given a

system F ∈ M, we can find a system G ∈ N which has identical dynamics to

F and is such that each cell in G is built from several cells in F together with a

single Add-Subtract cell and Scaling cells acting on (un-integrated) outputs (see

Figure 2.5(b)). We start with a simple example to illustrate the ideas.

Example 4.2.1. Let M,N be the network architectures of Example 4.1.1 (see

Figure 4.1). We show M ≺ N by combining outputs rather than inputs. Suppose

that the model for F ∈ M is

x′1 = f(x1; x1, x2),

x′2 = f(x2; x1, x2).
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4.2 OUTPUT EQUIVALENCE

We look for a model g for G ∈ N , F ≺ G, such that

g(x0; x1, x2) =
∑

γ

cγfγ(x0; x1, x2),

where the sum is over all maps γ : {1, 2}→{0, 1, 2}, fγ(x0; x1, x2) = f(x0; xγ(1), xγ(2)),

and cγ ∈ Q. In order that the dynamics of G is identical to that of F , it suffices that

g(x; x, y) = f(x; x, y) and g(x; y, y) = f(x; y, x). A straightforward computation

shows that there is a two parameter family of solutions for g given by

g(x0; x1, x2) = αf(x0; x1, x2) + (α− 1)f(x0; x0, x1) +

(1 − α)f(x0; x0, x2) + (1 − β)f(x0; x1, x0) +

(β − α)f(x0; x1, x1) + βf(x0; x2, x0) − βf(x0; x2, x1),

where α, β ∈ Q. If we take α = 1, β = 0, we get

g(x0; x1, x2) = f(x0; x1, x2) + f(x0; x1, x0) − f(x0; x1, x1),

which should be compared with the solution found in Example 4.1.1. We can build

the system G so as to realize the dynamics of F using Add-Subtract cells together

with the cell used in F . See Figure 4.3 (and also Figure 2.5(b)). Observe that

the system shown in Figure 4.3 can be transformed back into the system F by

removing the outer triangles defining cells of class B and then cancelling outputs

using linearity (of vector fields). Note that unlike the input based analysis of

Example 4.1.1, this configuration works whatever the phase space.
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A

A A

A A

A

BB 21

−
+

+
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+
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Figure 4.3: The system G built using 3 cells from F and an Add-Subtract cell.

We now formalize the concepts of output domination and equivalence. For

simplicity, we work with the case of asymmetric inputs. However, the definitions

extend easily and transparently to allow for symmetric inputs, discussed in the

next chapter.

Suppose that M is a smooth manifold and f : M×M r→TM , g : M×Ms→TM

are smooth families of vector fields on M , r, s ∈ Z+. Let A(r, s) denote the set of

all maps γ : {1, . . . , r}→{0, . . . , s}. If γ ∈ A(r, s), define fγ : M ×Ms→TM by

fγ(x0; x1, . . . , xs) = f(x0; xγ(1), . . . , xγ(r)), (x0, (x1, . . . , xs)) ∈M ×Ms).

(Addition is in Tx0
M .)

Definition 4.2.2. Let M be a vector space, n ≥ 1, and r, s be non-negative

integers. Suppose that f : M ×M r→TM , g : M ×Ms→TM are families of vector

fields, m = [m1, . . . ,mn] ∈ M(r, n; Z), n = [n1, . . . , nn] ∈ M(s, n; Z) are connection

matrices and C : A(r, s)→Q. We say f is (C,m, n)-output dominated by g, written

f <O
(C,m,n) g, if
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4.2 OUTPUT EQUIVALENCE

1. g =
∑

γ∈A(r,s)C(γ)fγ (as a sum of vector fields on M).

2. For j ∈ n we have g(xj, xn
j
1
, · · · , x

n
j
s
) = f(xj ; xm

j
1
, · · · , x

m
j
r
).

Remarks 4.2.3. (1) Just as for input domination, a necessary condition for output

domination is {mj
1, . . . ,m

j
r} ⊂ {j, nj1, . . . , njs}, j ∈ n. (2) We say f is output

dominated by g if f <O
(C,m,n) g for some choice of C.

(3) It is possible to extend Definition 4.2.2 to apply to discrete systems defined on

compact M provided that f : M×M r→M is sufficiently C0-close to the projection

π(x0; x1, . . . , xr) = x0. For this, we may use the exponential map of a Riemannian

metric on M so as to define uniform local linear coordinate systems at every point

of M .

Definition 4.2.4. Let M and N be coupled identical cell networks such that

(a) n(M) = n(N ) = n.

(b) Cells in M have r inputs, cells in N have s inputs.

(c) If we fix an ordering C1, . . . ,Cn of the cells in N , then the associated con-

nection matrix is n = [n1, . . . , nn].

We write M ≺O N if there exist C : A(r, s)→Q and an ordering of the cells of

M, with associated connection matrix m, such that for every F ∈ M, there exists

G ∈ N for which f <O
(C,m,n) g. If N ≺O M and M ≺O N , we say N and M are

output equivalent and write N ∼O M.

Remark 4.2.5. We write M ≺O,Z N if M ≺O N and we can choose the map C of

the definition to be Z-valued. We similarly define M ∼O,Z N . We have M ≺O,Z N

in Example 4.2.1 (indeed, M ∼O,Z N ).
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4.2 OUTPUT EQUIVALENCE

Theorem 4.2.6. (Notation and assumptions as above.) N ∼O M iff A(N ) =

A(M) iff N ∼ M.

Here, we prove Theorem 4.2.6 when the cells have asymmetric inputs. The

proof for the case of symmetric inputs is given in Chapter 5. We break the proof

of Theorem 4.2.6 into a number of lemmas of independent interest. These lemmas

also give a simple algorithm for computing an explicit output equivalence. As

remarked in Chapter 2, the non-trivial part of this result is the construction of

the output equivalence, granted that the algebraic condition A(N ) = A(M) is

satisfied.

Let M be a coupled n identical cell network and suppose that cells in M

have r ≥ 1 asymmetric inputs. Let A(M) = {M0,M1, . . . ,Mr} be the set of

adjacency matrices. Given u ∈ r, let M−u be the n identical cell network with

r−1 asymmetric inputs and A(M−u) = A(M)r{Mu}. That is, M−u is obtained

from M by removing the uth input from each cell.

Lemma 4.2.7. (Notation and assumptions as above.) If u ∈ r then A(M) =

A(M−u) iff M ∼O M−u.

Proof. We start by showing that A(M) = A(M−u) implies M ∼O M−u. Per-

muting inputs we may and shall assume u = r. If A(M) = A(M−r), then

Mr =

r−1∑

i=0

diMi, (4.2.2)

where d0, . . . , dr−1 ∈ Q. It suffices to show M ≺O M−r (the reverse order is

trivial). Suppose F ∈ M has model f : M×M r→TM . Define g : M×M r−1→TM
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4.2 OUTPUT EQUIVALENCE

by

g(x0; x1, · · · , xr−1) =
r−1∑

i=0

dif(x0; x1, · · · , xr−1, xi).

Using (4.2.2), we show easily that if j ∈ n, then

g(xj, xm
j
1
, · · · , x

m
j
r−1

) = f(xj ; xm
j
1
, · · · , x

m
j
r
), (4.2.3)

where [m1, . . . ,mn] is the connection matrix for M. If G ∈ M−r has model g, then

f is output dominated by g. Hence M ≺O M−r. It remains to show that if M ∼O

M−u then A(M) = A(M−u). This can either be seen by reversing the previous

argument or by observing that if M ∼O M−u then certainly M(L) ∼L M−u(L)

and so A(M) = A(M−u) by Theorem 3.0.6.

Lemma 4.2.8. (Notation and assumptions as above.) If the network M⋆ is derived

from M by removing inputs so that

(a) A(M⋆) = A(M),

(b) A(M⋆) is a linearly independent set (and so a basis for A(M)),

then M⋆ ∼O M.

Proof. The result follows by repeated application of Lemma 4.2.7.

Remark 4.2.9. For networks with asymmetric inputs, M⋆ is automatically minimal

in the sense of Aguiar & Dias [6]. That is, the number of inputs of M⋆ is minimal.

However, if we allow symmetric inputs then M⋆ may not be minimal even if M⋆

satisfies (a) and (b) of the lemma.
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4.2 OUTPUT EQUIVALENCE

Example 4.2.10. Let M be the network with non-identity adjacency matrix




0 2

2 0


.

Here, A(M⋆) = A(M) but M⋆ is not minimal in the sense of Aguiar & Dias [6].

The minimal network associated to M has non-identity adjacency matrix




0 1

1 0


.

Lemma 4.2.11. If A(M) = A(N ) then M ∼O N .

Proof. It follows from Lemma 4.2.8 that we can assume that A(M), A(N ) both

define bases of A(M). In particular, cells in both networks have the same number

of inputs. Let A(M) = {M0, . . . ,Mr}, A(N ) = {N0, . . . , Nr}. Suppose that there

is exactly one j ∈ r such that Nj 6= Mj (of course, M0 = N0 = I). Permuting

inputs, it is no loss of generality to assume j = r. We prove M ≺O N . Since

Mr ∈ A(M) = A(N ), we may write

Mr =

r∑

i=0

diNi, (4.2.4)

where the coefficients di ∈ Q and are unique. Suppose F ∈ M has model f :

M ×M r→TM . If we define g : M ×M r→TM by

g(x0; x1, · · · , xr) =

r∑

i=0

dif(x0; x1, · · · , xr−1, xi),

then g will be the model for a system G ∈ N and g will output dominate f . The

proof of the reverse order N ≺O M is exactly the same. The general case now

follows by observing that we can transform M into N by modifying one input at

a time.
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Remarks 4.2.12. (1) Lemmas 4.2.7, 4.2.11 give an iterative algorithm for construct-

ing an explicit output equivalence. Even if A(M), A(N ) are both bases, the output

equivalence need not be unique — see Example 4.2.1.

(2) Using similar methods to those given above, we can show that if A(M) ⊂ A(N )

then M ≺O N . Indeed, we may give an explicit formula that realizes the output

domination. Suppose that cells in M have r inputs, cells in N have s inputs. For

each u ∈ r, let Mu =
∑s

i=0 d
i
uNi where [diu] ∈M(r+ 1, s; Q). If F ∈ M has model

f , and we define

g(x0; x1, · · · , xs) =

s∑

i1=0

· · ·
s∑

ir=0

(

r∏

u=1

diuu )f(x0; xi1 , · · · , xir),

then g models the required system G ∈ N .

Lemma 4.2.13. M ∼O N =⇒ M ∼ N =⇒ A(M) = A(N ).

Proof. If M ∼O N then obviously M ∼ N . Hence, M(L) ∼ N (L) and so

A(M) = A(N ) by Theorem 3.0.6.

Proof of Theorem 4.2.6 The proof is immediate from Lemma 4.2.11 and 4.2.13.

Remarks 4.2.14. (1) Theorem 4.2.6 extends easily to networks containing more

than one class of cell. Output equivalence holds iff we can index cells so that the

condition A(M) = A(N ) holds for each cell class. (2) Theorem 4.2.6 applies to

scalar signalling networks (Definition 2.1.13) – the proof is formally identical.
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4.3 Examples

4.3.1 Systems with toral phase space

In this section we consider coupled systems with phase space a torus Tq, q ≥ 1

(more generally, everything we say works for a phase space of the form Rp ×

Tq, q ≥ 1). Suppose that M, N are coupled cell networks. It follows from

Theorem 4.2.6 that A(M) = A(N ) iff M ∼O N . So if A(M) = A(N ), we always

have M(T) ∼O N (T). As we shortly see, this is not necessarily so if we work

in terms of input equivalence. That is, A(M) = A(N ) does not generally imply

M(T) ∼I N (T). However, if M ∼I,Z N , then we do have M(T) ∼I N (T). This

is so since adding integer multiples of angles gives a well-defined angle. Thus, the

networks of Example 4.1.1 are input equivalent.

B1 B2 B3

2

x y z1

Figure 4.4: Networks M and N differ in the first input to B2.

Example 4.3.1. In Figure 4.4 we show two networks M, N that differ only in the

first input to B2. For the network M, this input comes from B3, for N it comes
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from B2. The non-identity adjacency matrices for M are M0 = I,

M1 =




1 0 1

0 0 0

0 1 0



, M2 =




0 0 1

1 1 0

0 0 0



, M3 =




0 0 0

1 0 0

0 1 1



.

The adjacency matrices for N are given by N0 = I, N1 =




1 0 1

0 1 0

0 0 0




, N2 =

M2, N3 = M3. It is straightforward to verify that A(M), A(N ) both define a basis

for A. Moreover,

N1 =
1

2
(M0 +M1 +M2 −M3),

M1 = −N0 + 2N1 −N2 +N3,

and so A(M) = A(N ) = A. Suppose that F ∈ M(T) has model f and G ∈ N (T)

has model g. We assume both systems have phase space T and denote the variables

for F by θi and for G by φ, i ∈ 3. With these conventions the differential equations

for F and G are given by

θ′1 = f(θ1; θ1, θ2, θ2), φ′
1 = g(φ1;φ1, φ2, φ2),

θ′2 = f(θ2; θ3, θ2, θ3), φ′
2 = g(φ2;φ2, φ2, φ3),

θ′3 = f(θ3; θ1, θ1, θ3), φ′
3 = g(φ3;φ1, φ1, φ3).

Since A(M) = A(N ), we have M ∼ N and so M ∼O N . In particular, if F and
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G are output equivalent then an output equivalence is given by

f(θ0; θ1, θ2, θ3) =
1

2
(g(θ0; θ0, θ2, θ3) + g(θ0; θ1, θ2, θ3)

+g(θ0; θ2, θ2, θ3) − g(θ0; θ3, θ2, θ3)),

g(φ0;φ1, φ2, φ3) = −f(φ0;φ0, φ2, φ3) + 2f(φ0;φ1, φ2, φ3)

−f(φ0;φ2, φ2, φ3) + f(φ0;φ3, φ2, φ3).

We emphasize these relations are not unique. There is a system of 24 linear

equations in 64 unknowns which determine the possible output equivalences, we

present one solution from a 40-dimensional family. Our solution is given by the

proof of Theorem 4.2.6. The question of input equivalence is more subtle. We have

F ≺I G if and only if

g(φ0;φ1, φ2, φ3) = f(φ0; 2φ1 − φ0 − φ2 + φ3, φ2, φ3). (4.3.5)

The input equivalence is uniquely determined and well defined since coefficients

are all integers. On the other hand, G 6≺I F since the relation for input equivalence

has to be

f(θ0; θ1, θ2, θ3) = g(θ0;
1

2
(θ0 + θ1 + θ2 − θ3), θ2, θ3),

and this is not well-defined on the torus.

If instead we consider discrete dynamical systems on T, we see that if (4.3.5)

holds then M ≺I,Z N and M ≺O,Z N . Hence M(T) ≺ N (T) for discrete dynam-

ics. The converse relation is less clear. Certainly, N 6≺I,Z M. It is conceivable

that N ≺O,Z M if there exist output equivalences in the 40-dimensional family of
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solutions which have integer coefficients — however, it is easy to see that there are

no such solutions. Nevertheless, there remains the possibility that N (T) ≺ M(T)

for discrete dynamics. Indeed, if we assume that there exist p ∈ Z and c ∈ T

such that |g(θ0; θ1, θ2, θ3) − (c+ pθ0)| < π/2, for all θ0, . . . , θ3 ∈ T, then, using the

exponential map for T3, we can define f as above so that g is output dominated

by f . More generally, we can always continuously deform f, g to their lineariza-

tions and reduce the question to a problem of output equivalence of discrete linear

systems. For example, if we take g(φ0;φ1, φ2, φ3) = φ0 + φ1, then it is not possible

to find f realizing the same discrete dynamics as g. On the other hand if we take

g(φ0;φ1, φ2, φ3) = 2(φ0 + φ1), then we can find f realizing the same discrete dy-

namics. All of this shows that there are topological obstructions to the equivalence

of M(T) and N (T) for discrete dynamics. None of these issues arise if we assume

scalar signalling networks.

Theorem 4.3.2. Let M(T) and N (T) be coupled cell networks with asymmetric

inputs and discrete dynamics. Then the following are equivalent.

1. M ≺I N .

2. M ≺O N .

3. A(M) ⊂ Z-span of A(N ).

Proof. Let A(M) = {M0 = I,M1} and each cell in N has ℓ asymmetric inputs.
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(3 ⇒ 1): Let M1 =
∑ℓ

i=0 λiNi, where λi ∈ Z, i ∈ ℓ. Define

g(x0; x1, · · · , xℓ) = f(x0,

ℓ∑

i=0

λixi).

Defining g : T × Tℓ → T as above, g is T -periodic in each variable and is well

defined. Now, it is easy to check that M ≺I N .

(2 ⇒ 1): Suppose a coupled cell system with network architecture M is modelled

by f : T×T → T, which is linear, that is, f(x; y) = y. Since M ≺O N , there exist

constants λi ∈ R, i ∈ ℓ such that

g(x0; x1, · · · , xℓ) =
ℓ∑

i=0

λi f(x0; xi) =
ℓ∑

i=0

λi xi = f(x0;
ℓ∑

i=0

λi xi).

Since g is 2π-periodic in each variable, for g to be well defined, λi ∈ Z, for all i ∈ ℓ.

By writing down in matrix form, it is easy to see that M1 =
∑ℓ

i=0 λi Ni.

(3 ⇒ 2): As above, let M1 =
∑ℓ

i=0 λiNi, where λi ∈ Z, i ∈ ℓ. Define

g(x0; x1, · · · , xℓ) =
ℓ∑

i=0

λif(x0, xi).

Defining g : T × Tℓ → T as above, g is T -periodic in each variable and is well

defined. Now, it is easy to check that M ≺O N .

(1 ⇒ 3): Let M ≺I N . Then g(x0; x1, · · · , xℓ) = f(x0,
∑ℓ

i=0 λixi), for λi ∈ R,
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i ∈ ℓ. Since g is 2π-periodic in each variable, for all ki ∈ Z,

g(x0; x1, · · · , xℓ) = g(x0; x1 + 2k1π, · · · , xℓ + 2kℓπ)

= f(x0,

ℓ∑

i=0

λixi +

ℓ∑

i=0

2λikiπ).

Choose k0 = 1, ki = 0, i ∈ ℓ, we must have λ0 ∈ Z, hence λ0 ∈ Z. Similarly, we

can show that λi ∈ Z, i ∈ ℓ. Thus A(M) ⊂ Z-span of A(N ).

Theorem 4.3.3. Let M(T) and N (T) be coupled cell networks with asymmetric

inputs and continuous dynamics. Then the following are equivalent:

1. M ≺O N if and only if A(M) ⊂ A(N ).

2. M ≺I N if and only if A(M) ⊂ Z-span of A(N ).

Proof. Let A(M) = {M0 = I,M1} and each cell in N has ℓ asymmetric inputs.

(1) The statement follows from Lemma 4.2.11.

(2) (⇐): Let M1 =
∑ℓ

i=0 λiNi, where λi ∈ Z, i ∈ ℓ. Define

g(x0; x1, · · · , xℓ) = f(x0,

ℓ∑

i=0

λixi).

Defining g : T × Tℓ → R as above, g is 2π-periodic in each variable and is well

defined. Now, it is easy to check that M ≺I N .

(2) (⇒): Let M ≺I N . Then g(x0; x1, · · · , xℓ) = f(x0,
∑ℓ

i=0 λixi), for λi ∈ R,
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i ∈ ℓ. Since g is 2π-periodic in each variable, for all ki ∈ Z,

g(x0; x1, · · · , xℓ) = g(x0; x1 + 2k1π, · · · , xℓ + 2kℓπ)

= f(x0,

ℓ∑

i=0

λixi +

ℓ∑

i=0

2λikiπ).

Choose k0 = 1, ki = 0, i ∈ ℓ, we must have λ0 ∈ Z, hence λ0 ∈ Z. Similarly, we

can show that λi ∈ Z, i ∈ ℓ. Thus A(M) ⊂ Z-span of A(N ).

4.3.2 Systems with non-Abelian group as a phase space

We look at two examples where the phase space is the non-Abelian Lie group SO(3)

(what we say holds for any connected non-Abelian Lie group).

Example 4.3.4. We consider the networks M and N of Example 4.1.1. We choose

systems F ∈ M(SO(3)) and G ∈ N (SO(3)). Denote the corresponding models by

f and g respectively where f, g : SO(3) × SO(3)2→TSO(3). In this case we may

define input equivalence using the group structure on SO(3). Specifically, if we

have g(γ0; γ1, γ2) = f(γ0; γ1, γ0γ
−1
1 γ2), γ0, γ1, γ2 ∈ SO(3), then

g(γ1; γ1, γ2) = f(γ1; γ1, γ1γ
−1
1 γ2) = f(γ1; γ1, γ2),

g(γ2; γ1, γ1) = f(γ2; γ1, γ2γ
−1
1 γ1) = f(γ2; γ1, γ2),

and so f is input dominated by g (note that the order of the composition γ1γ
−1
1 γ2

61



4.3 EXAMPLES

matters). We obtain the reverse relation by taking

g(γ0; γ1, γ2) = f(γ0; γ1, γ1γ
−1
0 γ2), γ0, γ1, γ2 ∈ SO(3).

Hence M(SO(3)) ∼I N (SO(3)). Exactly the same arguments show that for dis-

crete dynamics on SO(3) we have both input and output equivalence with these

network structures.

Theorem 4.3.5. Let N be a coupled cell network with asymmetric inputs and

adjacency matrices N0 = I,N1, · · · , Nℓ. Let M be a coupled cell network with

asymmetric inputs and adjacency matrices M0 = I,M1. Let n(M) = N = n.

Suppose there exists Ni 6= Nj such that M1 ∈ Z-span of N0, Ni, Nj. Then M(G) ≺I

N (G), where G is a non-Abelian Lie group.

Proof. WLOG, assume that i = 1, j = 2 and

M1 = aN0 + bN1 + cN2, (4.3.6)

where a, b, c ∈ Z\{0}, a+b+c = 1. Also, at least one of a, b, c has to be negative and

at least one of a, b, c has to be positive. It can be shown that a > 0, b < 0, c < 0 is

only possible when N0 = N1 = N2, which is not the case. Thus the only possibility

is a > 0, b > 0, c < 0. It is easy to check that for each cell k ∈ n, either k = n2
k or,

n2
k = n1

k or, k = n1
k = n2

k. Let F ∈ M(G), G ∈ N (G). Denote the corresponding

continuous models by f : G × G → TG, g : G × Gℓ → TG. Let c = −d, where

d > 0. Define

g(x; y, z,Z) = f(x; xaz−dyb). (4.3.7)
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We can check that for each k ∈ n, xm1
k

= xakx
−d
n2

k

xb
n1

k

. Thus, M(G) ≺I N (G). The

same result holds for discrete dynamical systems with these network architectures.

Example 4.3.6. We start by considering input equivalence for the networks M, N

of Example 4.3.1 when the phase space is SO(3) and we consider continuous dynam-

ics. Suppose that F ∈ M(SO(3)) has model f , where f : SO(3)×SO(3)3→TSO(3).

We attempt to construct a model g for G ∈ N which input dominates f . For ex-

ample, we can try g(γ0; γ1, γ2, γ3) = f(γ0; γ
−1
2 γ3γ

−1
0 γ2

1 , γ2, γ3). We find that inputs

do not match for the second cell:

g(φ2;φ2, φ2, φ3) = f(φ2;φ
−1
2 φ3φ2, φ2, φ3) 6= f(φ2;φ3, φ2, φ3).

It is easy to verify that whatever the order of composition of γ−1
0 , γ2

1 , γ
−1
2 , γ3,

inputs do not match for at least one cell. Consequently, M(SO(3)) ⊀I N (SO(3)).

Similar arguments show that N (SO(3)) ⊀I M(SO(3)) and that input domi-

nation either way fails for discrete dynamics. It is not clear whether or not we

have N (SO(3)) ≺O M(SO(3)) for discrete dynamics though the output equiva-

lence that works for vector fields will not work for discrete dynamics. There is

nothing we can say concerning the reverse relation. In particular, for discrete dy-

namics, we do not know whether either of the relations N (SO(3)) ≺ M(SO(3)),

M(SO(3)) ≺ N (SO(3)) holds let alone whether or not we have equivalence.
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Chapter 5

Dynamical Equivalence : General

Networks

In this chapter, we will define the notion of input and output equivalence for

general networks; networks with asymmetric inputs are a particular case. We did

the analysis of asymmetric inputs separately because in such networks the results

are more transparent and have independent proofs. In this chapter we extend the

results of Chapter 4 for general networks. The results are more surprising and

interesting in this case on account of the symmetry in the input structure. As a

corollary of our proofs, we obtain algorithms for transforming from one network

architecture to an input or output equivalent architecture so that each cell in the

second architecture is expressed in terms of cells from the first architecture and

conversely. We illustrate these algorithms, as well as instances of the input and

output equivalence theorems and the lemmas needed for their proof, by a number of

examples. Unlike in Chapter 4, we give most examples in a form that emphasizes
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5.1 OUTPUT EQUIVALENCE

the relations of output or input domination and we do not usually write down

explicit dynamical equations.

5.1 Output equivalence

Let M and N be coupled n identical cell networks. Denote the cells of N by

D1, · · · , Dn (this fixes an ordering of the cells). Suppose cells in N have s inputs

and q input types with si inputs of type i, for i ∈ q (s =
∑q

i=1 si). Let A(N ) =

{N0 = I, Ni ∈ Msi
(n; Z+), i ∈ q} be the set of adjacency matrices and A(N )

denote the subspace of M(n; Q) spanned by A(N ). Let n = [n1, · · · , nn] be a

connection matrix for N . In this section we always assume that n is the default

connection matrix 1 and so the vectors n
j
i are uniquely determined by the condition

n
j
iℓ ≤ n

j
iℓ′ if ℓ ≤ ℓ′. We adopt similar conventions for the network M but now

suppose there are r inputs and p input types. Given an ordering of the cells of M,

we let A(M) = {M0 = I, Mi ∈ Mri(n; Z+), i ∈ p} denote the set of adjacency

matrices and A(M) denote the subspace of M(n; Q) spanned by A(M). Denote

the associated default connection matrix of M by m = [m1, · · · ,mn].

Next we formalize the concepts of output dominance and output equivalence

for networks with symmetric inputs.

Let GN =
∏q

i=0 Ssi
, where Ssi

denotes the symmetric group on si symbols and

we have taken s0 = 1 (so that Ss0 = S1 is the trivial group consisting of the

identity). We define GM =
∏p

i=0 Sri , where r0 = 1.

We take the natural action ofGN on s̄ (we regard s as identified with {s1, · · · , sq}
1see Section 2.1.1
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5.1 OUTPUT EQUIVALENCE

and s̄ = {0}∪ s). Let A(r, s) denote the set of all maps γ : r→s̄. We have natural

left and right actions of GN and GM on A(r, s) defined by

γ 7→ σγ, γ ∈ A(r, s), σ ∈ GN ,

γ 7→ γβ, γ ∈ A(r, s), β ∈ GM.

A map C : A(r, s)→Q will be GN -invariant if C(γ) = C(σγ) for all σ ∈ GN .

Let M be a smooth manifold. We write points X ∈M ×∏p
i=1M

ri in the form

X = (X0;X1, · · · ,Xp), where Xi = (xi1, · · · , xiri), i ∈ p. We often write x0 rather

than X0 as the variable belongs to a single factor rather than a product of factors.

We use similar notation for points in M ×∏q
i=1M

si . Given j ∈ n, i ∈ p, we let

X
m

j
i
∈ M ri be the variables defined by the connection vector mj . We similarly

define X
n

j
i
∈Msi for i ∈ q. GM acts on X ∈M ×∏p

i=1M
ri by

βX = (X0; β1X1, · · · , βpXp),

= (X0; x
1
β1(1)

, · · · , x1
β1(r1), · · · , xpβp(1), · · · , x

p
βp(rp)),

for β = (β1, · · · , βp) ∈ GM =
∏p

i=0 Sri. GN similarly acts on X ∈M ×∏q
i=1M

si .

Let f : M ×∏p
i=1M

ri→TM be a family of GM-invariant vector fields on the

smooth manifold M . For γ ∈ A(r, s), define fγ : M ×∏q
i=1M

si→TM by

fγ(x0; x1, · · · , xs) = f(x0; xγ(1), · · · , xγ(r)),

where (x0; x1, · · · , xs) ∈M ×∏q
i=1M

si.
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5.1 OUTPUT EQUIVALENCE

Definition 5.1.1. (Notation and assumptions as above.) Suppose that f : M ×
∏p

i=1M
ri→TM is GM-invariant, g : M ×∏q

i=1M
si→TM , and C : A(r, s)→Q is

GN -invariant. We say that f is (C,m, n)-output dominated by g, written f <O
(C,m,n)

g, if

1. g =
∑

γ∈A(r,s)C(γ)fγ.

2. For j ∈ n we have g(xj;Xn
j
1
, · · · ,X

n
j
q
) = f(xj;Xm

j
1
, · · · ,X

m
j
p
).

Remark 5.1.2. Since C is GN -invariant, g =
∑

γ∈A(r,s) C(γ)fγ is automatically

GN -invariant, even if f is not GM-invariant. We use this remark below to obtain

a useful simplification of the formula g =
∑

γ∈A(r,s) C(γ)fγ.

The next three lemmas (Lemmas 5.1.4, 5.1.5, 5.1.6) show that the number of

terms in the relation between g and f can be reduced using the GM-invariant

property of f . The reduced relation obtained will define a new GN -invariant map

Ĉ. Before we state and prove these lemmas, it may be helpful to illustrate the

ideas by means of a simple example.

Example 5.1.3. Let the single input type networks M and N have non-identity

adjacency matrices M1 =




2 1

1 2


 and N1 =




1 1

1 1


 respectively. As usual,

M0 = N0 = I. We have M1 = I +N1. If F ∈ M has model f and we define

g(x0; x1, x2) = f(x0; x0, x1, x2), (5.1.1)

then g models a system G ∈ N with identical dynamics to F . In this case, GM =

S3, GN = 〈σ〉 = S2, where σ(x1, x2) = (x2, x1). Obviously, g(x0; σ(x1, x2)) =
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5.1 OUTPUT EQUIVALENCE

g(x0; x2, x1) = f(x0; x0, x2, x1) = f(x0; x0, x1, x2) and so g is GN -invariant. Fol-

lowing Definition 5.1.1, we may also define g by

g(x0; x1, x2) = af(x0; x0, x1, x2) + bf(x0; x0, x2, x1),

where a+ b = 1, a, b ∈ R. Since f is GM-invariant, the expression for g is equal to

that given by (5.1.1).

Lemma 5.1.4. (Notation and assumptions as above.) If f is GM-invariant, then

fγ = fγβ for all β ∈ GM.

Proof. The model f is GM-invariant and so we have

f(x0; x1, · · · , xr) = f(x0; xβ(1), · · · , xβ(r)),

for all β ∈ GM. Hence, if β ∈ GM, γ ∈ A(r, s), we have

fγ(x0; x1, · · · , xs) = f(x0; xγ(1), · · · , xγ(r)),

= f(x0; xγβ(1), · · · , xγβ(r)),

= fγβ(x0; x1, · · · , xs).

Therefore fγ = fγβ .

Let Ã(r, s) = A(r, s)/GM denote the orbit space of A(r, s) under the right

action by GM. Since the actions of GN and GM on A(r, s) commute, the GN -

action on A(r, s) induces a (left) GN -action on Ã(r, s). Although a GN -invariant

map C : A(r, s)→Q will not generally induce a map on Ã(r, s), we do have a
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5.1 OUTPUT EQUIVALENCE

trivial converse.

Lemma 5.1.5. (Notation and assumptions as above.) If C̃ : Ã(r, s)→Q is GN -

invariant, then C̃ lifts to a GN ×GM-invariant map

Ĉ : A(r, s)→Q.

We regard the orbit space A(r, s)/GM as the set of group orbits for the GM-

action on A(r, s). It is convenient to fix a subset R = {γ ∈ A(r, s)} such that

the {GMγ | γ ∈ R} partitions A(r, s). That is, ∪γ∈RGMγ = A(r, s) and GMγ ∩

GMν 6= ∅ iff γ = ν.

Lemma 5.1.6. (Notation as above.) Suppose that f is GM-invariant and C :

A(r, s)→Q is GN -invariant. Then there exists a GN × GM-invariant map Ĉ :

A(r, s)→Q such that
∑

γ∈A(r,s)

C(γ)fγ =
∑

γ∈R

Ĉ(γ)fγ .

Proof. We have
∑

γ∈A(r,s)

C(γ)fγ =
∑

γ∈R

(
∑

τ∈GMγ

C(τ)fτ

)
.

By Lemma 5.1.4, fτ = fν for all τ, ν ∈ GMγ. Letting [γ] ∈ Ã(r, s) denote the

coset defined by γ, we define C̃([γ]) =
∑

τ∈GMγ C(τ), γ ∈ R. This defines a GN -

invariant map C̃ : Ã(r, s)→Q. Let Ĉ : A(r, s)→Q be the GN ×GM-invariant lift

given by Lemma 5.1.5.

Remark 5.1.7. In the lemmas and examples in this chapter, the lifted map Ĉ will

be used to define the output relation between f and g.
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Definition 5.1.8. Let M and N be coupled identical cell networks such that

(a) Both networks have n cells.

(b) Cells in M have p input types, cells in N have q input types.

(c) If we fix an ordering of the cells in N , then the associated connection matrix

is n = [n1, · · · , nn].

We write M ≺O N and say M is output dominated by N , if there exist an ordering

of the cells of M, with associated connection matrix m, and aGN -invariant map C :

A(r, s)→Q, such that for every F ∈ M, there exists G ∈ N for which fF <O
(C,m,n)

gG. (Recall F is modelled by fF , and G is modelled by gG.) If M ≺O N and

N ≺O M, we say N and M are output equivalent and write M ∼O N .

Remark 5.1.9. If all the inputs are asymmetric then any map C : A(r, s)→Q is a

GN -invariant map. Therefore, the above definition just reduces to the definition

of output equivalence for networks with asymmetric inputs (Definition 4.2.2).

Lemma 5.1.10. The relation ≺O is transitive.

Proof. Let M,N ,H be coupled n identical cell networks with r, s, t inputs and

p, q, u input types, respectively. Suppose M ≺O H and H ≺O N . We show that

M ≺O N . Fix an ordering of cells in N with associated connection matrix n =

[n1, · · · , nn]. Since H ≺O N , it follows by the definition of output domination that

we have an associated ordering of the cells of H, connection matrix h = [h1, · · · , hn]

and GN -invariant map C1 : A(t, s)→Q. If K ∈ H is modelled by k, there exists

G ∈ N modelled by g such that
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(1) g =
∑

σ∈A(t,s) C1(σ)kσ.

(2) For j ∈ n we have g(xj;Xn
j
1
, · · · ,X

n
j
q
) = k(xj ;Xh

j
1
, · · · ,X

h
j
u
).

Also, since M ≺O H, we have an associated ordering of the cells of M, connection

matrix m = [m1, · · · ,mn] and GH-invariant map C2 : A(r, t)→Q. If F ∈ M is

modelled by f , there exists K ∈ H modelled by k such that

(3) k =
∑

γ∈A(r,t) C2(γ)fγ.

(4) For j ∈ n we have k(xj ;Xh
j
1
, · · · ,X

h
j
u
) = f(xj ;Xm

j
1
, · · · ,X

m
j
p
).

For σ ∈ A(t, s), set xσi = xσ(i) for i ∈ t. We have,

g(x0; x1, · · · , xs) =
∑

σ∈A(t,s)

C1(σ)kσ(x0; x1, · · · , xs)

=
∑

σ∈A(t,s)

C1(σ)k(x0; xσ(1), · · · , xσ(t))

=
∑

σ∈A(t,s)

C1(σ)k(x0; x
σ
1 , · · · , xσt )

=
∑

σ∈A(t,s)

C1(σ)
∑

γ∈A(r,t)

C2(γ)fγ(x0; x
σ
1 , · · · , xσt )

=
∑

σ∈A(t,s)

C1(σ)
∑

γ∈A(r,t)

C2(γ)f(x0; x
σ
γ(1), · · · , xσγ(r))

=
∑

σ∈A(t,s)

γ∈A(r,t)

C1(σ)C2(γ)f(x0; xσ◦γ(1), · · · , xσ◦γ(r)).

Let Ã(r, s) = {σ ◦ γ ∈ A(r, s) | γ ∈ A(r, t), σ ∈ A(t, s)} ⊂ A(r, s). Define
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C : A(r, s)→Q by

C(φ) =





C1(σ)C2(γ) if φ = σ ◦ γ ∈ Ã(r, s)

0 if φ ∈ A(r, s) \ Ã(r, s)

.

Let β ∈ GN . We have C(β(σ ◦ γ)) = C((βσ) ◦ γ) = C1(βσ)C2(γ) = C1(σ)C2(γ) =

C(σ ◦ γ). Therefore, C is GN -invariant and the relation between f and g given by

g(x0; x1, · · · , xs) =
∑

φ∈Ã(r,s)

C(φ)fφ(x0; x1, · · · , xs).

Hence M ≺O N (input matching conditions follow from (2,4)).

Example 5.1.11. Let M,K,N be single input type networks with non-identity

adjacency matrices M1 =




1 1

1 1


 , K1 =




0 2

2 0


 , N1 =




0 1

1 0


 respectively.

Note that M1 = I + K1/2 and K1 = 2N1. We claim that M ≺O K and K ≺O

N . Indeed, if f : M × M2→TM is the model for the system F ∈ M, then

h : M ×M2→TM defined by

h(x; y, z) =
1

2
(f(x; y, x) + f(x; z, x)),

models H ∈ K with the same dynamics as F ∈ M. Similarly, if we define g :

M ×M→TM by

g(x; y) = h(x; y, y),
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then g models a system G ∈ N with the same dynamics as H. Observe that

g(x; y) = h(x; y, y) =
1

2
(f(x; y, x) + f(x; y, x)) = f(x; y, x).

It is easy to check that g models a system G ∈ N with the same dynamics as

F ∈ M and so M ≺O N .

Before we give the main result of this section, we state and prove a useful result

about output domination (an analogous result holds for input domination – see

Lemma 5.2.3). We continue with our assumptions on M and N and assume that

we have fixed an ordering of the cells in N . Given an ordering of the cells in M,

denote the associated set of adjacency matrices by M0,M1, · · · ,Mp. For j ∈ p,

let Mj denote the n-cell network with one input type and adjacency matrices

{M0,Mj}. Denote the connection matrix associated to {M0,Mj} by mj .

Lemma 5.1.12. (Notation and assumptions as above). The following conditions

are equivalent.

1. M ≺O N .

2. There exists an ordering of the cells in M such that Mj ≺O N , for all j ∈ p.

Proof. Suppose first that M ≺O N . By definition of output domination, we have

an associated ordering of the cells of M, connection matrix m and GN -invariant

map C : A(r, s)→Q. If F ∈ M has model f , there exists G ∈ N with model g

such that

(1) g =
∑

γ∈A(r,s)C(γ)fγ.
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(2) For j ∈ n we have g(xj;Xn
j
1
, · · · ,X

n
j
q
) = f(xj;Xm

j
1
, · · · ,X

m
j
p
).

Now suppose that f depends only on the variables (x0,Xj) ∈ M ×Msj . Then

the associated system can be identified with a system in Mj. The input matching

condition (2) implies trivially that we have the correct input matching for the

connection matrix mj of Mj. Hence Mj ≺O N . Conversely, suppose that there

exists an ordering of the cells in M such that Mj ≺O N , for all j ∈ p. For each

j ∈ p, there exists a GN -invariant map Cj : A(rj, s)→Q such that if f j is the

model for Fj ∈ Mj, there exists Gj ∈ N with model gj such that

gj =
∑

γ∈A(rj ,s)

Cj(γ)f
j
γ ,

and the input matching conditions hold (with m replaced by mj). Now suppose

F ∈ M has model f . We define g by

g =
∑

γ1∈A(r1,s)

· · ·
∑

γp∈A(rp,s)

C1(γ1) · · ·Cp(γp)fγ1···γp
, (5.1.2)

where we define fγ1···γp
by making the natural identification between

∏p
j=1 A(rj, s)

and A(r, s) (that is, using the identification of r and {r1, · · · , rp}). It is straight-

forward to verify that g does define a system G ∈ N which satisfies the input

matching conditions (2).

Theorem 5.1.13. (Notation as above.) M ∼O N iff A(M) = A(N ) iff M ∼ N .

In order to prove Theorem 5.1.13 it suffices to show that

(A) A(M) ⊆ A(N ) =⇒ M ≺O N .
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(B) M ≺O N =⇒ M ≺ N .

(C) M ≺O N =⇒ A(M) ⊆ A(N ).

(D) M ≺ N =⇒ A(M) ⊆ A(N ).

Statement (B) is trivial. We prove (C,D) by reducing to the case of linear

vector fields. Most of the work involves the proof of (A) and we start with the

proof of (A) and conclude with the proofs of (C,D).

We break the proof of (A) into a number of lemmas. These lemmas also

give an algorithm for computing an explicit output equivalence or domination.

Throughout we assume that M, N are identical cell networks and follow our es-

tablished notational conventions. In particular, we assume given orderings of the

cells of M, N and associated adjacency and connection matrices and the inclusion

A(M) ⊆ A(N ). The result extends to non-identical cell networks by applying the

proof cell class by cell class (see Chapter 4 and note that the linear equivalence

results in [18] apply to networks with multiple cell classes).

Lemma 5.1.14. If p = q, and Mi = Ni, i /∈ {a, b}, Na = Mb, Nb = Ma then

M ≺O N .

Proof. If a = b, there is nothing to prove. Suppose without loss of generality that

a < b. We have ri = si, i ∈ p r {a, b}, ra = sb, rb = sa. Suppose that F ∈ M has

model f : M ×∏p
i=1M

ri→TM . Define g : M ×∏p
i=1M

si → TM by

g(x0;X1, · · · ,Xa, · · · ,Xb, · · · ,Xp) = f(x0;X1, · · · ,Xb, · · · ,Xa, · · · ,Xp).

It is easy to check that g defines the required system G ∈ N .
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Remark 5.1.15. As a consequence of Lemma 5.1.14, we see that if the adjacency

matrices of M are a permutation of those of N , then M ∼O N .

Lemma 5.1.16. Let p = 2, and M1 =
∑

i∈A αiNi, M2 =
∑

j∈B ǫjNj, where

A,B ⊂ q, and αi, ǫj ∈ N, i ∈ A, j ∈ B. Then M ≺O N .

Proof. Suppose that A = {a1, · · · , au}, B = {b1, · · · , bw} ⊂ q. Suppose that

F ∈ M has model f : M ×∏2
i=1M

ri→TM . Define g : M ×∏q
i=1M

si → TM by

g(X0;X1, ..,Xk) = f(X0;X
α1
a1 , · · · ,Xαu

au
,Xǫ1

b1
, · · · ,Xǫw

bw
),

where Xi ∈ Msi (variables corresponding to inputs of type i, i ∈ q) and Xα
i

denotes Xi repeated α times. It is straightforward to check that g defines the

required system G ∈ N .

Example 5.1.17. (Illustration of Lemma 5.1.16) Let N be the network with non-

identity adjacency matrices N1 =




3 0 2

1 2 2

0 2 0




, N2 =




1 0 0

1 2 0

0 0 2




, and Q be the

network with non-identity adjacency matrices P =




4 0 2

2 4 2

0 2 2




, Q =




2 0 0

0 2 0

0 0 2




.

It is straightforward to check P = N1 + N2, Q = 2N0 and so A(Q) ⊆ A(N ).

Suppose that F ∈ Q has model h : M×M6×M2 → TM . Following Lemma 5.1.16,

we define g : M ×M4 ×M2 → TM by

g(x0; x1, · · · , x4, x5, x6) = h(x0; x1, · · · , x4, x5, x6, x0, x0).
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It can be easily checked that g models the required system G ∈ N .

The next two lemmas handle the most difficult cases of output domination.

Lemma 5.1.18. Let p = 1 and suppose M1 = N1 −N2 then M ≺O N .

Proof. Set r1 = r, s2 = s̃ so that s1 = r + s̃. Suppose that F ∈ M has model

f : M ×M r → TM . Set Z = (X3, · · · ,Xq) ∈
∏q

i=3M
si (the variables represented

by Z play no role in what follows).

Define g : M ×∏q
i=1M

si → TM by

g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z)

=

r∑

i=0

(−1)i
∑

Ci

f(x0; y
a1
1 , · · · , yas̃

s̃ , xj1 , · · · , xjr−i
), (5.1.3)

where Ci is the set of all (s̃+ r − i)-tuples (a1, · · · , as̃, j1, · · · , jr−i) satisfying a1 +

· · ·+ as̃ = i, 1 ≤ j1 < · · · < jr−i ≤ r + s̃.

Let xr+i = yi, i = 1, · · · , s̃. It suffices to show that

g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z) = f(x0; x1, · · · , xr).

Suppose t ∈ r and b1, · · · , bs̃ ∈ Z+ satisfy
∑s̃

i=1 bi = t. We find the coefficient of

f(x0; y
b1
1 , · · · , ybs̃s , xj1, · · · , xjr−t

), where jv ∈ r, v ∈ r − t.

Let (b1, · · · , bs̃, j1, · · · , jr−t) ∈ Ct and m denote the number of bi that are greater

than equal to 1. We find that f(x0; y
b1
1 , · · · , ybs̃s̃ , xj1 , · · · , xjr−t

) appears in the sum

for g when t −m ≤ i ≤ t and has coefficient (−1)i
(
m
t−i

)
. Hence, the coefficient of

this term is
∑t

i=t−m(−1)i
(
m
t−i

)
. This is zero unless m = 0 (t = 0), in which case the
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coefficient is 1 and we get f(x0; x1, · · · , xr). Hence g defines the required system

G ∈ N .

Remark 5.1.19. 1. Another way to write Equation 5.1.3 is

g(x0; x1, · · · , xr+s̃, y1, · · · , ys̃,Z)

=

r∑

i=0

(−1)i
∑

1≤j1<···<jr−i≤r+s̃
1≤k1≤···≤ki≤s̃

f(x0; yk1, · · · , yki
, xj1 , · · · , xjr−i

). (5.1.4)

2. The following combinatorial identity follows from Equation 5.1.4.

r∑

i=0

(−1)i
(
s̃+ i− 1

i

)(
r + s̃

r − i

)
= 1, ∀ r, s̃ ∈ N.

Example 5.1.20. (Illustration of Lemma 5.1.18) Let Q be the network of Ex-

ample 5.1.17 and R be the network with non-identity adjacency matrix R1 =


2 0 2

2 2 2

0 2 0




. It is straightforward to check R1 = P − Q and so A(R) ⊆ A(Q).

Hence, by Lemma 5.1.18, we have R ≺O Q. Suppose that F ∈ R has model

e : M ×M4 → TM . We construct G ∈ Q with model h such that e is output

dominated by h. Noting Remark 5.1.19, we define h : M ×M6 ×M2 → TM by

h(x0; x1, · · · , x6, x7, x8)

=

4∑

i=0

(−1)i
∑

1≤j1<···<j4−i≤6
7≤k1≤···≤ki≤8

e(x0; xk1 , · · · , xki
, xj1 , · · · , xj4−i

). (5.1.5)
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It can be easily checked that h models the required system G ∈ Q. We can define a

new cell class D, built from the cells of the system F , which realizes the dynamics

of F when these cells are coupled according to the network architecture Q. See

Figure 5.1.

+

+

+

C(4:6)

C(3,1:6,2)

C(2,2:6,2)

C(1,3:6,2)

P(4,2)

D

Figure 5.1: The cell D. The choose and pick cells are linear combinations of the
vector field f modelling F .

Lemma 5.1.21. If p = 1 and M1 = 1
m
N1, then M ≺O N .

Proof. Just as in the proof of Lemma 5.1.18, the variables Xj ∈ Msj play no role

if j > 1 and so it is no loss of generality to take p = q = 1. The computations

do not use the internal variable which we also omit. Since p = q = 1 and there

is no internal variable, all functions will be symmetric and we omit the overline

signifying symmetry. Since the case when m = 1 is trivial we assume m ≥ 2.

Set r1 = r, s1 = s and note that s = mr. Let J denote the set of all tuples
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j = (j1, · · · , ju) of positive integers such that j1 ≥ j2 ≥ · · · ≥ ju ≥ 1 and

∑u
i=1 ji = r. We define lexicographical ordering on J :

j = (j1, · · · , ju) > j ′ = (j′1, · · · , j′u′),

if ∃k ∈ u such that

ji = j′i, i < k, and jk > j′k.

Note that j > j ′ does not imply u ≶ u′. The unique maximal and minimal

elements of J are (r) and (1, 1, · · · , 1) respectively.

Suppose f : M ×M r → TM models F ∈ M. Define g : M ×M rm → TM by

g(x1, · · · , xrm) =
∑

j∈J

cj
∑

i1,··· ,iu∈rm

f(xj1i1 · · · , x
ju
iu

), (5.1.6)

where cj ∈ Q are constants to be determined. For fixed j ∈ J , define

gj(x1, · · · , xrm) =
∑

i1,··· ,iu∈rm

f(xj1i1 · · · , x
ju
iu ).

Thus

g(x1, · · · , xrm) =
∑

j∈J

cjgj(x1, · · · , xrm).

We remark that each gj is symmetric in (x1, · · · , xrm). Hence g is symmetric in

(x1, · · · , xrm).

Given j = (j1, · · · , ju) ∈ J , define J (j) ⊂ J to consist of all ℓ = (ℓ1, · · · , ℓu′) ≥

j such that each ℓt can be written as a sum
∑

i∈It
ji, It ⊂ u.

Suppose we are given y1, · · · , yr and j ∈ J . Suppose x1, · · · , xp = y1; · · · ;
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x(r−1)m+1, · · · , xrm = yr. Then there exist strictly positive integers Aj
ℓ such that

gj(y
m
1 , · · · , ymr ) =

∑

ℓ∈J (j)

Aj
ℓfℓ(y1, · · · , yr),

where

fℓ(y1, · · · , yr) =
∑

f(yℓ1i1 , · · · , y
ℓu′

iu′
),

and the sum is taken all distinct u′-tuples (i1, · · · , iu′) of integers in r. Each fℓ is

symmetric in y1, · · · , yr. We have

g(ym1 , · · · , ymr ) =
∑

j∈J

cj



∑

ℓ∈J (j)

Aj
ℓfℓ(y1, · · · , yr)


 .

We choose the coefficients cj so that g(ym1 , · · · , ymr ) = f(y1, · · · , yr). The term

f(y1, · · · , yr) only occurs once in the sum we have for g (when j is the minimal

element (1, 1, 1, · · · , 1) of J ). Hence c(1,··· ,1) is uniquely determined. Our choice

of order on J orders the the rows of the matrix of the linear system and our

construction implies that the matrix is in upper triangular form. Hence we can

solve for the coefficients cj.

Example 5.1.22. (Illustration of Lemma 5.1.21) Let R be the network of Ex-

ample 5.1.20 and M be the network with non-identity adjacency matrix M1 =


1 0 1

1 1 1

0 1 0




. We have M1 = R
2
. Suppose that F ∈ M has model f : M ×M2 →
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TM . Following Lemma 5.1.21, define e : M ×M4→TM by

e(x0; x1, · · · , x4) =
∑

j∈J

cj
∑

i1,··· ,iu∈4

f(x0; x
j1
i1
, · · · , xjuiu ),

where J = {(1, 1), (2)} (Lemma 5.1.21) and we have omitted the overlines denoting

symmetric inputs. Setting a = c(1,1), b = c(2), we have

e(x0; x1, · · · , x4) = a
∑

i1,i2∈4

f(x0; xi1 , xi2) + b
∑

i1∈4

f(x0; xi1, xi1). (5.1.7)

After substituting x1 = x2 = u, x3 = x4 = v, we get the following terms:

f(x0; u, u), f(x0; u, v), f(x0; v, v). The coefficient of f(x0; u, u) and f(x0; v, v) is

4a + 2b and the coefficient of f(x0; u, v) is 8a. Since we require e(x0; u, u, v, v) =

f(x0; u, v), we obtain a = 1
8
, b = −1

4
. It is straightforward to check that e models

the required system G ∈ R. We can define a new cell class D, built from the class

C cells of the system F , which realizes the dynamics of F when these cells are

coupled according to the network architecture R. See Figure 5.2.

Lemma 5.1.23. If p = 1, then A(M) ⊆ A(N ) implies M ≺O N .

Proof. Since M1 ∈ A(N ), we may write M1 =
∑

i∈A λiNi −
∑

i∈B λiNi, where

A,B are disjoint subsets of q and for i ∈ A ∪ B, λi = ai

bi
, where ai, bi ∈ N, and

(ai, bi) = 1.

Let λ = lcm{bi | i ∈ A ∪ B} and define αi = λλi ∈ Z+, i ∈ A ∪ B. If we define

P =
∑

i∈A αiNi, Q =
∑

i∈B αiNi, then

M1 =
1

λ
(P −Q).
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+

+

+

+

+_

C

C

C

C

C(2,4)

1/4

1/8

Figure 5.2: The cell D, built from class C cells

Let N1 be the network with adjacency matrices {I, P,Q}, and M1 be the network

with adjacency matrices {I, R = P −Q}. Note that

1. If Q = 0, M1 = N1.

2. If λ = 1, M1 = M.

3. If Q = 0 and λ = 1, N1 = M1 = M.

We claim that

M ≺O M1 ≺O N1 ≺O N .

Assuming the claim, the transitivity of ≺O (Lemma 5.1.10) gives M ≺O N . The

claim follows since Lemma 5.1.16 implies N1 ≺O N , Lemma 5.1.18 implies M1 ≺O

N1 and Lemma 5.1.21 implies M ≺O M1.
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Example 5.1.24. (Illustration of Lemma 5.1.23.) Let N be the network defined

in Example 5.1.17 and M be the network of Example 5.1.22. We have M1 =

N1

2
+ N2

2
−N0. Following the notation of the proof of Lemma 5.1.23, we have λ = 2,

P = N1 + N2, Q = 2N0. Note that P,Q are the non-identity adjacency matrices

of the second network Q of Example 5.1.17. We have Q ≺O N (Example 5.1.17);

R ≺O Q (Example 5.1.20), and M ≺O R (Example 5.1.22). Since ≺O is transitive,

M ≺O N . By using the output relations between g and h from Example 5.1.17,

h and e from Example 5.1.20, and e and f from Example 5.1.22, it can be shown

(see Appendix – Chapter 8.1) that the output relation between g and f is given

by

g(x0; x1, · · · , x4, x5, x6) =
1

4

∑

1≤j1<j2≤6

f(x0; xj1 , xj2) + f(x0; x0, x0)

−1

8

∑

1≤j1≤6

f(x0; xj1, xj1) −
1

2

∑

1≤j1≤6

f(x0; x0, xj1).

Lemma 5.1.25. If A(M) ⊆ A(N ), then M ≺O N (statement (A) is true).

Proof. By Lemma 5.1.12, it suffices to show that Mj ≺O N for all j ∈ p. By

Lemma 5.1.14, we may assume j = 1. The result follows from Lemma 5.1.23.

Lemma 5.1.26. If M ≺O N then A(M) ⊆ A(N ) (statement (C) is true).

Proof. Suppose M ≺O N . The method we use is based on the linear equivalence

ideas described in [18]. Specifically, we prove that A(M) ⊆ A(N ) by restricting

to the case where phase spaces equal R and vector fields are linear. (Notice that

output domination preserves linearity of vector fields.)
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Let F ∈ M have (linear) model f : R ×∏p
i=1 Rri → R. Then there exists a

system G ∈ N with linear model g : R ×∏q
i=1 Rsi → R such that for each j ∈ n

we have

g(xj ;Xn
j
1
, · · · ,X

n
j
q
) = f(xj ;Xm

j
1
, · · · ,X

m
j
p
), (5.1.8)

where X
n

j
i

= (x
n

j
i1
, · · · , x

n
j
isi

), i ∈ q, and X
n

j
i

= (x
m

j
i1
, · · · , x

m
j
iri

), i ∈ p. Let k ∈ p

and take

f(x0;X1, · · · ,Xp) =

rk∑

i=1

xki,

where Xv = (xv1, · · · , xvrv), v ∈ p. The corresponding g given by output domina-

tion is linear and so, noting the symmetry of inputs, we may write

g(x0;X1, · · · ,Xq) = ck0x0 +

q∑

i=1

cki

si∑

ℓ=1

xiℓ,

where Xi = (xi1, · · · , xisi
), i ∈ q, and the cαβ are constants. From (5.1.8) we get

ck0xj +

q∑

i=1

cki

si∑

ℓ=1

x
n

j
iℓ

=

rk∑

i=1

x
m

j
ki
, j ∈ n.

Putting these equations in matrix form, we obtain

q∑

i=0

ckiNi = Mk.

Hence for each k ∈ q, we have shown that Mk ∈ A(N ) and so A(M) ⊆ A(N ).

Lemma 5.1.27. If M ≺ N then A(M) ⊆ A(N ) (statement (D) is true).

Proof. (Sketch) Working within the class of C1-vector fields with phase space R,
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it follows that if F has linear model f , then there exists G ∈ N with C1-model

g such that G has identical dynamics to F . The statement remains true if we

replace g by the derivative of g at 0 ∈ R × Rq and then the method of proof of

Lemma 5.1.26 applies (essentially we reduce to linear equivalence, cf [18]). With a

little more work, we can remove the assumption that g is C1 — identical dynamics

to a linear system implies the flow is linear and from this one can show that we

can always choose g to be linear.

Proof of Theorem 5.1.13. Lemmas 5.1.25, 5.1.26, 5.1.27 give statements A,C,D

and, as noted previously, statement B is trivial. Interchange M and N to obtain

the reverse relations.

5.2 Input equivalence

We start by giving the definition of input equivalence applicable to networks with

symmetric inputs. This a straightforward extension of the definition given in the

previous chapter for networks with asymmetric inputs. Aside from assuming that

models are defined on vector spaces V rather than manifolds M , we closely follow

the notational conventions established in the previous chapter. In particular, M

and N will be coupled n identical cell networks. We fix an ordering of the cells

of N . Suppose cells in N have s inputs and q input types. Let A(N ) = {N0 =

I, Ni ∈ Msi
(n; Z+), i ∈ q} be the set of adjacency matrices and A(N ) denote

the subspace of M(n; Q) spanned by A(N ). Let n = [n1, · · · , nn] be the default

connection matrix for N .

We suppose cells in M have r inputs and p input types. Given an ordering of
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the cells of M, we let A(M) = {M0 = I, Mi ∈ Mri(n; Z+), i ∈ p} denote the

set of adjacency matrices and A(M) denote the subspace of M(n; Q) spanned by

A(M). Let m = [m1, · · · ,mn] be the default connection matrix for M.

Let L = (L1, · · · , Lp) ∈ ∏p
i=1M(ri, 1 +

∑q
j=1 sj; Q) and define the linear map

L : V ×∏q
i=1 V

si→∏p
i=1 V

ri in the obvious (V -independent) way. Recall that L is

GM,N -equivariant if there exists a homomorphism h : GN→GM such that

L(γ(X)) = h(γ)L(X), for all γ ∈ GN , X ∈ V ×
q∏

i=1

V si.

If f : V ×∏p
i=1 V

ri→V is GM-invariant, define g : V ×∏q
i=1 V

si→V by

g(X0;X1, · · · ,Xq) = f(X0;L(X0;X1, · · · ,Xq)). (5.2.9)

Since L is GM,N -equivariant, g is GN -invariant. We write f <ı
(L,m,n) g, if

1. (5.2.9) is satisfied.

2. For j ∈ n, we have g(xj;Xn
j
1
, · · · ,X

n
j
q
) = f(xj;Xm

j
1
, · · · ,X

m
j
p
).

Definition 5.2.1. (Notation and assumptions as above.) The coupled cell network

M is input dominated by N , denoted M ≺I N , if there exist a linear map L, an

ordering of the cells of M, with associated connection matrix m, such that for

every F ∈ M(L), there exists G ∈ N (L) for which fF <ı
(L,m,n) gG. If N ≺I M and

M ≺I N , we say M and N are input equivalent and write M ∼I N .

Remarks 5.2.2. (1) As we shall see later (Remark 5.2.13), the map L may not pre-

serve default connection matrices. However, since inputs are symmetric, it is no
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loss of generality to require the default connection matrix of M in Definition 5.2.1.

When we come to prove our main theorem, we allow for general connection matri-

ces.

(2) We write M ≺I,Z N if M ≺I N and we can require the entries of L to lie in

Z). We similarly define M ∼I,Z N .

Lemma 5.2.3. (Notation and assumptions as above). The following conditions

are equivalent.

1. M ≺I N .

2. There exists an ordering of the cells in M such that Mj ≺I N , for all j ∈ p.

Proof. The proof follows by observing that

fF <ı
(L,m,n) gG ⇐⇒ fFj

<ı
(Lj,mj ,n) gG,

for all j ∈ p, where L = [L1, · · · ,Lp], Lj : V ×∏q
i=1 V

si→V rj , Fj ∈ Mj, and mj

is the connection matrix induced on Mj by m.

As a consequence of Lemma 5.2.3, it will be no loss of generality in what follows

to assume that M has just one input type; that is, p = 1. We simplify notation

by setting r1 = r. With these conventions, we have GM = Sr ≈ S1 × Sr.

Suppose that the linear map L : V × ∏q
i=1 V

si → V r is defined by the ma-

trix L ∈ M (r, 1 +
∑q

i=1 si,Q). The map L is GM,N -equivariant if there exists a

homomorphism h : GN → GM = Sr such that

L(γ(X)) = h(γ)L(X),
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for all γ ∈ GN , X ∈ V ×∏q
i=1 V

si.

Given a GM-invariant map f : V × V r → V and GM,N -equivariant linear map

L as above, define the GN -invariant map g : V ×∏q
i=1 V

si → V by

g(X0;X1, · · · ,Xq) = f(X0;L(X0;X1, · · · ,Xq)).

Let L = [L1, · · · , Lr], where Li ∈ Q × ∏q
i=1 Qsi denotes the ith row of L,

i ∈ r. Since L(γ(X)) = h(γ)L(X) for all γ ∈ GN , X ∈ V ×∏q
i=1 V

si, we have

[L1, · · · , Lr] (γX) = h(γ) [L1, · · · , Lr] (X). That is,

[γL1, · · · , γLr] (X) = h(γ) [L1, · · · , Lr] (X),

where γLi is defined using the natural permutation action of GN on Q×∏q
j=1 Qsj ,

i ∈ r. This is true for all X, hence

[γL1, · · · , γLr] = h(γ) [L1, · · · , Lr] ,

for all γ ∈ GN .

Definition 5.2.4. Suppose a finite group G acts on a non-empty set X. For

x ∈ X, let Gx = {gx | g ∈ G} denote the G-orbit of x.

Remark 5.2.5. We have |Gx| = |G|/|Gx| where Gx = {g ∈ G | gx = x} denotes

the isotropy subgroup of G at x.

Theorem 5.2.6. There exists u(≤ r) ∈ N, t1, · · · , tu ∈ N, with
∑u

i=1 ti = r such

that {L1, · · · , Lr} =
⋃u
i=1GNL

i where |GNL
i| = ti. (We allow Li = Lj for i 6= j,
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i, j ∈ u.)

Proof. [γL1, · · · , γLr] = h(γ) [L1, · · · , Lr] for all γ ∈ GN . Therefore, for each

i ∈ r, γLi ∈ {L1, · · · , Lr} for all γ ∈ GN . Hence, the GN -orbit of Li is contained

in {L1, · · · , Lr}. Suppose Lk = Lj for some k 6= j, then γLk = γLj for all

γ ∈ GN . So if an element is repeated m times then its full orbit is repeated m

times. Therefore, there exist u(≤ r) ∈ N, Lji , for j1, · · · , ju ∈ r with |GNLji | = ti

and
∑u

i=1 ti = r such that {L1, · · · , Lr} =
⋃u
j=1GNLji . Define Li = Lji, i ∈ u.

Remark 5.2.7. For each i ∈ u, there are ti choices for Lji.

From now on, we write the matrix of L in the form

[
GNL

1, · · · , GNL
u
]
.

That is, we group rows according to the group orbits ofGN . Note that this ordering

is imposing a condition on the order of inputs of M.

Example 5.2.8. Suppose p, q = 1, s = s1 = 2, r = 3, L =




0 1 2

0 1 1

0 2 1




. Then we

can take L1 = (0, 1, 2), L2 = (0, 1, 1). We have t1 = 2 and t2 = 1. If we write L in

the form [GNL
1, GNL

2], then L =




0 1 2

0 2 1

0 1 1




.
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5.2.1 Splittings and connection matrices

We recall from Chapter 4 that dynamically equivalent networks with asymmetric

inputs are always input equivalent. This is not always the case for networks with

symmetric inputs as we show in the next example.

Example 5.2.9. Let M be the network with non-identity adjacency matrix M1 =


2 4

2 0


 and N be the network with non-identity adjacency matrix N1 =




3 6

3 0


.

We have M1 = 2
3
N1 and so A(M) = A(N ). Suppose

g(x0; x1, · · · , x6) = f(x0;L(x0; x1, · · · , x6)),

where L : V × V 6 → V 4 is a GM,N -equivariant linear map. The only possible

form of L is




a1 b1 b1 b1 b1 b1 b1

a2 b2 b2 b2 b2 b2 b2

a3 b3 b3 b3 b3 b3 b3

a4 b4 b4 b4 b4 b4 b4




. It is easy to check that there does not

exist any ai, bi ∈ Q for which f is input dominated by g. This shows M ⊀I N .

Similarly we can show that N ⊀I M (in this case, L has two possible forms).

This provides an example of network architectures M and N such that M ∼O N

(A(M) = A(N )) but M ⊀I N and N ⊀I M.

The previous example shows that A(M) = A(N ) is not sufficient for M ∼I N .

Note that M ∼I N ⇒ M ∼ N ⇒ A(M) = A(N ). Thus A(M) = A(N ) is a

necessary condition for M ∼I N . In Theorem 5.2.11, we give sufficient conditions

for input equivalence to hold. The sufficiency conditions come from the structure
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of the GM,N -equivariant linear map L. If M ≺I N and we fix a connection matrix

for N , then L determines a connection matrix for M which may not be the default

connection matrix (whatever the choice of L). In order to analyze the relationship

between connection matrices of M and N , we introduce the idea of splitting a

valency k adjacency matrix into a sum of k valency one matrices. We find that

there is a one-one correspondence between splittings and connection matrices.

Definition 5.2.10. Let P ∈Mk(n; Z+). A splitting (P1, · · · , Pk) of P is an ordered

decomposition of P into a sum P = P1 + · · · + Pk, where each Pj ∈M1(n; Z+).

Suppose that the network M has one input type and connection matrix m,

where m is not necessarily the default connection matrix. Denote the adjacency

matrices of M by M0 = I and M1. The connection matrix m naturally determines

a unique splitting M1 + · · · + M r of M1. Indeed, if we let Mk = [mk
ij ], k ∈ r,

then we define mk
ij = 1 if input k of cell j comes from cell i, else mk

ij = 0. That

is, mk
ij = 1 iff m

j
1k = i. Conversely, every splitting of M1 uniquely determines a

connection matrix m for M. All of this applies equally well if M has multiple

input types.

Let n be a connection matrix for N (not necessarily the default). For k ∈ q,

let Nk = (Nk1, · · · , Nksk
) denote the splitting of Nk naturally determined by n.

Set N = {N1, · · · ,Nq}. We refer to N as the splitting determined by n.

Let a = (a0; a1, · · · , aq) ∈ Q × ∏q
j=1 Qsj . We write a = (aji)j∈q,i∈sj, where

aj = (aj1, · · · , ajsj
) ∈ Qsj , j ∈ q. If N = {N1, · · · ,Nq} is the set of splittings of
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5.2 INPUT EQUIVALENCE

the adjacency matrices {N1, · · · , Nq} determined by n, then we define

a ⋆N = a0N0 +

q∑

j=1

sj∑

i=1

ajiNji ∈M(n, n; Q).

Theorem 5.2.11. (Notation and assumptions as above; in particular p = 1.) The

following statements are equivalent

1. M ≺I N .

2. Suppose that n is a connection matrix for N with associated splitting N.

There exist u ∈ N, Li ∈ Q × ∏q
v=1 Qsv , i ∈ u, such that {b ⋆ N | b ∈

GNL
i, i ∈ u} is a splitting of M1.

3. There exist u ∈ N, Li ∈ Q ×∏q
v=1 Qsv , i ∈ u such that for every connection

matrix n of N with associated splitting N, {b ⋆ N | b ∈ GNL
i, i ∈ u} is a

splitting of M1.

Before giving the proof of Theorem 5.2.11, we make two remarks, the first of

which shows how Theorem 5.2.11 simplifies in the case of asymmetric inputs.

Remarks 5.2.12. (1) If all the inputs of the networks M and N are asymmetric

then q = s, si = 1, N = {N1 = N11, · · · ,Nq = Nq1} and M1 is a splitting of itself.

Thus (3) of Theorem 5.2.11 implies that there exist u ∈ N, Li = (ai0; ai1, · · · , aiq) ∈

Q × Qq, i ∈ u such that for every connection matrix n of N , {∑q
j=0 aijNj , i ∈ u}

is a splitting of M1. Since M1 ∈ M1(n,Z), we must have u = 1. Therefore,

the condition simplifies to M1 =
∑q

j=0 aijNj . Hence M1 ∈ A(N ); the condition

obtained for networks with asymmetric inputs in Chapter 4.
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(2) Condition (3) of the theorem shows that for computations, we can always take

n to be the default connection matrix.

Proof of Theorem 5.2.11 (1) ⇒ (2). Suppose M ≺I N . Then there is a linear

transformation L with matrix L = [GNL
1, · · · , GNL

u]. Let n be a connection

matrix for N and denote the corresponding splittings of N1, · · · , Nq by N. For

each j ∈ n, we have

L(Xj;Xn
j
1
, · · · ,X

n
j
q
) = X

m
j
1
,

where m is a connection matrix for the network M. Thus {b⋆N | b ∈ GNL
i, i ∈ u}

is a splitting of M1.

(2) ⇒ (3). Suppose statement (2) holds for the connection matrix n and let n̂

be any other connection matrix for N . Then for each j ∈ n, n̂j = γjnj for some

γj ∈ GN (γjnj is the natural action of GN on {j} ×∏q
i=1 nsi). For j ∈ n, let Nj

denote the set of jth columns of all matrices in N. Since {b ⋆N | b ∈ GNL
i, i ∈ u}

is a splitting of M1, {[γ1(b) ⋆ N1, · · · , γn(b) ⋆ Nn] | b ∈ GNL
i, i ∈ u} = {[b ⋆

γ1(N1), · · · , b ⋆ γn(Nn)] | b ∈ GNL
i, i ∈ u} is a splitting of M1. Hence (2) holds

for n̂.

(3) ⇒ (1). Take L = [GNL
1, · · · , GNL

u]. Fix a connection matrix n = [n1, · · · , nn]

for N and denote the associated family of splittings of N1, · · · , Nq by N as above.

Since {b ⋆N | b ∈ GNL
i, i ∈ u} is a splitting of M1, we have a connection matrix

m = [m1, · · · ,mn] for M, where mj = (mj
1) ∈ nr satisfies

L(Xj;Xn
j
1
, · · · ,X

n
j
q
) = X

m
j
1
, j ∈ n.
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Hence for all j ∈ n,

g(Xj;Xn
j
1
, · · · ,X

n
j
q
) = f(Xj;L(X

n
j
1
, · · · ,X

n
j
q
))

= f(Xj;Xm
j
1
).

This implies M ≺I N .

Remark 5.2.13. If we have M ≺I N and we take the default connection matrix for

N , then the connection matrix on M given by Theorem 5.2.11(2) will generally

not equal the default connection matrix of M. For example, suppose that N is the

network with non-identity adjacency matrix N1 =




0 1

1 0


 and M is the network

with non-identity adjacency matrix M1 =




1 1

1 1


. We have M1 = N0 + N1 and

may easily check directly that M ≺I N . If F ∈ M has model f : V×V 2 → V , then

we define g modelling G ∈ N either by g(x; y) = f(x; x, y) or by g(x; y) = f(x; y, x).

Here the only choices of L are




1 0

0 1


 and




0 1

1 0


. Neither of these choices gives

the default connection matrix for M.

Corollary 5.2.14. (Notation and assumptions as above.) Suppose that M1 ∈

M1(n; Z+), then M ≺I N iff M1 ∈ A(N ).

Proof. (⇒): Since M ≺I N , there is a linear transformation L with matrix L =

[a] ∈ M(1,
∑q

j=0 sj ,Q), where a = [a0; a1, · · · , aq] ∈ Q × ∏q
j=1 Qsj , such that

f ≺ı
(L,m,n) g. Since L has only one row, GNa = {a}. Therefore, for j ∈ q, we

may write aj = λj1 ∈ Qsj where λj ∈ Q. If we take u = 1, and L1 = a, then
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M1 =
∑q

j=0 λjNj .

(⇐): Let M1 =
∑q

j=0 λjNj . Take L to be the linear transformation with matrix

L = [a] ∈M(1,
∑q

j=0 sj,Q), a = [a0; a1, · · · , aq] ∈ Q×∏q
j=1 Qsj , where aj = λj1 ∈

Qsj , j ∈ q. Hence we have

g(x0;X1, · · · ,Xq) = f(x0;

q∑

j=0

λj

sj∑

i=1

xji),

where s0 = 1, x01 = x0 and Xi = (xi1, · · · , xisi
) denotes variables corresponding to

the inputs of type i, i ∈ q. It is straightforward to check that f ≺ı
(L,m,n) g.

Corollary 5.2.15. (Notation and assumptions as above.) If M1 has a splitting

(Q1, · · · , Qr) such that {Q1, · · · , Qr} ⊆ A(N ), then M ≺I N .

Proof. For each i ∈ r, let Qi =
∑q

j=0 λijNj. Define

g(x0;X1, · · · ,Xq) = f(x0;

q∑

j=0

λ1j

sj∑

i=1

xji, · · · ,
q∑

j=0

λrj

sj∑

i=1

xji),

where s0 = 1, x01 = x0 and Xi = (xi1, · · · , xisi
) denotes variables corresponding to

the inputs of type i, i ∈ q. It is straightforward to check that f ≺ı
(L,m,n) g.

Corollary 5.2.16. (Notation and assumptions as above.) Suppose that M1 ∈

A(N ,Z+), that is, M1 =
∑q

j=0 αjNj, αj ∈ Z+, j ∈ q. Then M ≺I N .

Proof. Define

g(x0;X1, · · · ,Xq) = f(x0; x
α0

0 ;Xα1

1 , · · · ,Xαq

q ),

where Xi = (xi1, · · · , xisi
) denotes variables corresponding to the inputs of type i,

i ∈ q. It is straightforward to check that f ≺ı
(L,m,n) g.
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Corollary 5.2.17. (Notation and assumptions as above.) If we can write M1 =

A+S where A ∈ A(N ,Z+), and there exists a splitting (S1, · · · , St) of S such that

Si ∈ A(N ), i ∈ t, then M ≺I N .

Proof. Define the S component of M1 using Corollary 5.2.15 and the A component

using Corollary 5.2.16.

Theorem 5.2.18. (Notation and assumptions as above except that we allow p ≥

1.) The following statements are equivalent

1. M ≺I N .

2. Suppose that n is a connection matrix for N . For j ∈ p, there exist uj ∈ N,

Lij ∈ Q×∏q
v=1 Qsv , i ∈ uj, such that {b⋆N | b ∈ GNL

i
j , i ∈ uj} is a splitting

of Mj.

Proof. The result is immediate from Theorem 5.2.11 and Lemma 5.2.3.

Corollary 5.2.19. Let M and N be coupled n identical cell networks. Assume

cells in M have r inputs, cells in N have s inputs. Suppose that M has adjacency

matrices M0 = I,M1, · · · ,Mp and N has adjacency matrices N0 = I,N1, · · · , Nq.

We assume that for each i ∈ p either ri = 1 or sj > ri > 1, for all j ∈ q. Under

these conditions the following statements are equivalent

1. M ≺I N .

2. For all i ∈ p, there exists a splitting (Pi,1, · · · , Pi,ri) of Mi such that Pi,j ∈

A(N ), for all j ∈ ri.
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Proof. (Sketch.) (2) ⇒ (1) is trivial. In order to prove (1) ⇒ (2), we may assume

p = 1. Set r = r1. For every a ∈ Q ×∏q
j=1 Qsj , GNa has one element or at least

minj∈q sj elements. Since r < sj for all j ∈ q, we have r < minj∈q sj . Therefore L

must be of the form [L1, · · · , Lr] where Li ∈ Q ×∏q
j=1 Q1sj .

Remark 5.2.20. If the network M has asymmetric inputs and A(M) ⊆ A(N ),

hypothesis (2) of Corollary 5.2.19 is automatically satisfied (and so we recover the

result for networks with asymmetric inputs — see Lemma 4.2.13 of Chapter 4.

However, if M has symmetric inputs and A(M) ⊆ A(N ), then it need not be the

case that (2) is satisfied (see Example 5.2.9, note that the only splitting of M1 is


1 1

0 0


+




1 1

0 0


+




0 1

1 0


+




0 1

1 0


) and so M may not be input dominated

by N , even if we assume linear phase spaces or scaling signalling. We give some

examples in the next section.

5.3 Examples

We conclude with two examples of network architectures that are both input and

output equivalent as well as an example of self-output equivalence.

Example 5.3.1. If p = q = 1, N1 = bS, and M1 = aS for S ∈M1(n; Z+), a, b ∈ N,

then M ∼O N and M ∼I N . Here r = a, s = b.

(a) Suppose F ∈ M has model f : M ×Ma → TM . Define g : M ×M b → TM

by

gO(x0; x1, · · · , xb) =
1

b
[f(x0; x

a
1) + · · · + f(x0; x

a
b )] ,
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gI(x0; x1, · · · , xb) = f(x0; (
1

b

b∑

i=1

xi)
a),

where xa signifies that x repeated a-times. It is easy to verify that gO and gI give

the required output and input dominations of f . Hence, M ≺O N and M ≺I N .

The reverse order is obtained by interchanging a and b. Note that the input

relations are same as were defined in Corollary 5.2.15.

Example 5.3.2. Let M be the network with non-identity adjacency matrix M1 =


1 1

1 1


 and N be the network with non-identity adjacency matrix N1 =




2 2

2 2


.

Note that N1 = 2M1 and so A(M) = A(M). We show that M ∼O N and

M ∼I N . (a) Suppose that G ∈ N has model g. Let the system F ∈ M have

model

f(x0; x1, x2) = g(x0; x1, x2, x1, x2).

Then f output and input dominates g and so N ≺I M and N ≺O M.

(b) Suppose that F ∈ M has model f . Define g by

gO(x0; x1, · · · , x4) =
1

4

∑

1≤i<j≤4

f(x0; xi, xj) −
1

8

∑

1≤i≤4

f(x0; xi, xi),

gI(x0; x1, x2, x3, x4) = f(x0; x0,
x1 + x2 + x3 + x4

2
− x0).

Then gO and gI give the required output and input dominations of f and so

M ≺O N and M ≺I N .
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5.4 Universal network

Definition 5.4.1. ( [4]) Suppose that we consider the set Net(k) of networks with

k identical cells. We can construct a maximal or universal network U ∈ Net(k) for

the order ≺. That is, for every F ∈ N ∈ Net(k), there exists F⋆ ∈ U such that F

and F⋆ have identical dynamics.

Remarks 5.4.2. (1) We assume that the state of the cells in the network depend

on their internal state. Consequently, the identity matrix is one of the adjacency

matrices.

(2) We denote the minimum number of inputs required to construct a universal

network in Net(k) by n(k).

(3) In general, even if U is universal and has the minimal number of inputs, U

will not be unique (even up to isomorphism of associated graph structure). For

example, in Figure 4.1, networks M and N are both universal in Net(2).

(4) By definition, all universal networks in Net(k) are equivalent.

Now we will find the precise value of n(k) for each k. We divide the class Net(k)

into five groups Ni(k) ⊂ Net(k) and find the minimum number ni(k) of inputs

required to construct a universal network in Ni(k), 1 ≤ i ≤ 6.

1. N1(k): Networks with all inputs of different types and no self loops.

2. N2(k): Networks with all inputs of different types with self loops allowed.

3. N3(k): Networks with different input types and no self loops.

4. N4(k): Networks with different input types with self loops allowed.
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5. N5(k): Networks with all inputs of same type and no self loops.

6. N6(k): Networks with all inputs of same type with self loops allowed.

Note that N1(k),N5(k) ⊂ N3(k); N2(k),N6(k) ⊂ N4(k).

Networks with all inputs of different types and no self loops

Let Ai1,··· ,ik denote the k × k 0 − 1 matrix with unique non-zero entry 1 in row ij

of the jth column. Let ∆ = {(i1, · · · , ik) | 1 ≤ ip ≤ k, ip 6= p, 1 ≤ p ≤ k}. The set

A = {Ai | i = (i1, · · · , ik) ∈ ∆} is the set of all possible adjacency matrices, with

|A| = (k − 1)k. We want to find the number of linearly independent matrices in

the set A. Consider

B =
∑

i∈∆

aiAi = 0, ai ∈ R.

Thus we have k(k − 1) equations in (k − 1)k unknowns. Hence, the set A has at

most k(k − 1) linearly independent elements (matrices). Note that

Bkj =

k∑

i=1

Bi1 −
k−1∑

i=1

Bij, 2 ≤ j ≤ k,

Bk(k−1) =
∑

i

Bi1 −
k−2∑

i=1

Bik.

Therefore, A has at most (k − 1)2 linearly independent elements (matrices).

We show that A has exactly (k − 1)2 linearly independent elements (matrices).

The equations are: Bi1 = 0, 2 ≤ i ≤ k, Bpq = 0, 1 ≤ p ≤ k − 1, 2 ≤ q ≤ k, p 6= q.

Define a mapping φ : ∆ → {1, 2, · · · , (k−1)k}. Let a = (aφ−1(1), · · · , aφ−1((k−1)k))
t,
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Bij = Pija, where Pij ∈ R(k−1)k

. Let

∑

ij

tijPij = 0, tij ∈ R.

The entry at φ((i1, k, · · · , k)) place is ti11, and must be equal to 0, for all i1 =

2, · · · , k. The entry at φ((i1, i2, k, · · · , k)) place is ti22, and must be equal to 0, for

all i2 = 1, 3, · · · , k. Similarly, observing the entries at φ((i1, i2, i3, k, · · · , k)),· · · ,

φ(i1, · · · , ik−1, k) place, we get tij = 0, for all i, j. Therefore, there are (k − 1)2

linearly independent matrices in the set A. Thus, n1(k) = (k − 1)2.

Networks with all inputs of different types and self loops

allowed

Let Bi1,··· ,ik denote the k × k 0 − 1 matrix with unique non-zero entry 1 in row

ij of the jth column. Let ∆′ = {(i1, · · · , ik) | 1 ≤ ip ≤ k, 1 ≤ p ≤ k}. The

set B = {Bi | i = (i1, · · · , ik) ∈ ∆′} is the set of all possible adjacency matrices.

A similar proof, to that given above, shows that there are k2 − k + 1 linearly

independent matrices in B. Since the identity matrix is included in the set B, so

if the state of the cells in the network depends on the internal state, then k2 − k

inputs are required to form a universal network. Thus, n2(k) = k2 − k.

Networks with different input types and no self loops

For a general network with identical cells where we allow symmetric inputs, an

adjacency matrix is of the form M = [mij ]. Since the cells are identical, the
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x y

x y

(a)

(b)

Figure 5.3: Universal network of 2 cells - (a) without self loops, (b) with self loops
allowed.

column sum of M is constant. Therefore, M can be written as a sum of matrices

in the set A. Therefore, A spans the set of all possible adjacency matrices for

networks in N3(k). Hence, n3(k) = (k − 1)2.

Networks with different input types and self loops allowed

A similar argument shows that n4(k) = k2 − k.
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1

3

2

6

5

4

x y z

Figure 5.4: Universal network of 3 cells. The network with edges labelled 1, · · · , 4
is a universal network without self loops; together with edges labelled 5, 6 is a
universal network with self loops allowed.

Networks with all inputs of same type (or, homogeneous

networks)

(1) No self loops: Let U ∈ N5 be a universal network with adjacency matrix

M = [mij ]. Note that U is unique in N5(k). Let

d = gcd{mij | j 6= i}.

104



5.4 UNIVERSAL NETWORK

Since U has minimum number of inputs and has no self loops, d = 1 and mii = 0,

for all i = 1, · · · , k. Since, U is universal, for every F ∈ N ∈ N5(k) with adjacency

matrix N , N is a non-zero multiple of M . This is not true; there exist networks

in N5(k) whose adjacency matrices are not multiples of M . Hence, there is no

universal network in N5(k).

(2) Self loops allowed: Let U ∈ N6(k) be a universal network with adjacency

matrix M = [mij ]. Note that U is unique in N6(k). Let

d = gcd{mij | j 6= i}, a = min{mii | i = 1, · · · , k}.

Since U has minimum number of inputs, d = 1 and a = 0 (See [6, Theorem 10.3]).

Let mi0i0 = 0. Since, U is universal, for every F ∈ N ∈ N6(k) with adjacency

matrix N , N = pI + qM for some p, q ∈ R. Consider a network N ∈ N6(k) in

which just the ith0 cell has a self loop then the adjaceny matrix N of N , N can

not be written as N = pI + qM for some p, q ∈ R. Hence, there is no universal

network in N6(k).

Remark 5.4.3. Networks in N5(k) and N6(k) have universal networks in N3(k) and

N6(k), respectively.

105



Chapter 6

Inflation of Strongly Connected

Networks

Inflation is the process of naturally embedding a smaller network into larger net-

work so that the dynamics of the smaller network can be realized in the dynamics

of the larger network restriced to an invariant subspace or synchrony subspace.

Inflation can be viewed as inverse to the process of forming the quotient network

as defined by Stewart et al. [23],[25, Chapter 9]. Inflation can also be used to

construct and identify networks that support, for example, heteroclinic cycles or

heteroclinic switching networks (we refer to [4] for more details, examples and

background). The main goal of this chapter is to provide a simple necessary and

sufficient condition for the existence of a strongly connected inflation.

Associated to every coupled cell network, there is an underlying directed graph

or digraph whose vertices are cells and the directed edges are the connections in the

network. A network is strongly connected or transitive if the associated graph is
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strongly connected in the sense of graph theory; that is, between any ordered pair

of nodes, there is a path of connections joining the first to the second node. In this

chapter we restrict to strongly connected networks. It is well known that strong

connectivity plays an important role in understanding the dynamics of coupled cell

systems. For example, it is proved in [49] that synchronization of all the cells is

possible in a strongly connected coupled cell network if the coupling strength is

sufficiently large. Timme [47] has observed that the partition of a network into

strongly connected components is important in understanding network dynamics

and synchronization. In particular, cells tend to synchronize faster within strongly

connected components.

The inflation of an undirected graph is also defined in graph theory (for exam-

ple [22, 41]) but the definition of inflation we use here is different, is specific to

directed graphs and was introduced in [4] in the context of coupled cell networks.

A coupled cell network can be viewed as a graph where vertices correspond

to the cells, edges to connections. We regard two cells as being of same class if

the same inputs result in same output. In diagrams, we will typically follow the

linear systems representation of Figure 2.8(b) and use triangles for representing

cells. We refer to Chapter 2 for general background on this approach to coupled

cell networks.

Definition 6.0.4 ( [4]). Let M be a coupled cell network with cell set C =

{C1, · · · , Ck}. A coupled cell network N is an inflation of M if there exists a

surjective morphism (of graphs) Π : N → M sending cells to cells (preserving

class) and connections to connections (preserving type) such that

(1) {Π−1(C1)‖ · · · ‖Π−1(Ck)} is a synchrony subspace of N .
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(2) Π maps the set of connections in N onto the set of connections in M. More

precisely, there is a connection of type ℓ from Ci to Cj , if and only if there exist

cells Ciα ∈ Π−1(Ci) and Cjβ ∈ Π−1(Cj) such that there is a connection of type ℓ

from Ciα to Cjβ.

Definition 6.0.5. (unidirectional ring) Let M be a coupled cell network with cell

set {C1, · · · , Cn} and p inputs (symmetric or asymmetric). We say that M is a

p-input unidirectional ring if there is an ordering of cells Ci1 , · · · , Cin such that Cik

has all the inputs from Cik−1
, 2 ≤ k ≤ n and Ci1 has all the inputs from Cin. In

other words, there is a relabelling of cells such that the adjacency matrix A takes

the form 


0n−1,1 pIn−1

p 01,n−1


 .

Lemma 6.0.6. Suppose that Π : N → M defines an inflation N of the network

M. If {S1‖ · · · ‖Sp} is a synchrony subspace of M, then {Π−1(S1)‖ · · · ‖Π−1(Sp)}

is a synchrony subspace of N .

Proof. The proof amounts to showing that if i ∈ p and Dα, Dβ are cells in Π−1(Si),

then for all j ∈ p, Dα, Dβ see the same set of inputs from cells in Π−1(Sj). This

is an immediate consequence of part (2) of Definition 6.0.4 together with our

assumption that {S1‖ · · · ‖Sp} is a synchrony subspace.

Definition 6.0.7 ( [4]). A coupled cell network N is a p-fold simple inflation of

M at Ci if

(1) the cell set of N is given by (C \ Ci) ∪ {Ci1, · · · , Cip}, where {Ci1, · · · , Cip}

are of same cell class as Ci.
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(2) {Ci1, · · · , Cip} = {C1‖ · · · ‖Ci1, · · · , Cip‖ · · · ‖Ck} is a synchrony class of N

and the induced network structure on the synchrony subspace {Ci1, · · · , Cip}

is equal to that of M.

Remark 6.0.8. If Π : N → M is an inflation of the network M, then N is a

simple inflation of M iff there exists i ∈ k such that Π−1(Ci) = {Ci1, · · · , Cip} and

Π−1(Cj) = {Cj}, j 6= i.

A strongly connected network which has no self inputs and with every cell

having exactly one output is (after relabelling of cells) a one-input unidirectional

ring C1 → C2 → · · · → Ck → C1 and has no simple inflations. A network M

will have a p-fold simple inflation at Ci iff either Ci has a self loop or Ci has at

least p > 1 outputs. If N is a simple inflation of M, we write M ⇐=S N . In

Figure 6.1, we give diagrammatic illustration of the process of simple inflation. In

the figure, N is a 2-fold simple inflation of M at C2 (C2 has two outputs). Other

properties and examples of inflation are given in [4].

Definition 6.0.9. Let −→n = (n1, · · · , nk) ∈ Nk. If Π : N → M is an inflation of

M such that #Π−1(Ci) = ni, i ∈ k, then N is said to be an −→n -inflation of M.

Remark 6.0.10. −→n -inflation of a network need not be unique. In Example 6.0.11,

Mi, i ∈ 9̄ are distinct (2, 2)-inflations of the network M.

We will now look at the form of the adjacency matrix of the inflated network.

Let N be an inflation of a given network M with adjacency matrix A = [aij ]. The
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C3C2C1

C3C1

22C

C21

M

N

Figure 6.1: N is a 2-fold simple inflation of M.

adjacency matrix of N is

A =




A11 · · · A1k

. . .

Ak1 · · · Akk



,

where Aij is a ni × nj matrix, the columns are enumerated as nj inflated cells of

Cj and the rows are enumerated as ni inflated cells of Ci. By the definition of

inflation and Remark 2.3.1, the column sum of each Aij is constant, and is equal

to aij . This leads to the result of Aguiar et al. [7, §2]. Thus, N is an inflation of

M if and only if M is a quotient of N .
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Table 6.1: Inequivalent (2, 2)-inflations of M (symmetric inputs).

System Non-trivial synchrony classes Comments

M x′1 = f(x1;x2, x2) two-input unidirectional ring

x′2 = f(x2;x1, x1) C1 → C2 → C1

M0 x′11 = f(x11;x21, x21) {x11, x12‖x21, x22} not connected

x′12 = f(x12;x22, x22) {x11, x21‖x12, x22}

x′21 = f(x21;x11, x11) {x12, x22}

x′22 = f(x22;x12, x12) {x11, x21}

M1 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x22) {x11, x12}

x′21 = f(x21;x11, x11) {x21, x22}

x′22 = f(x22;x12, x12)

M2 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x21) {x21, x22}

x′21 = f(x21;x11, x12)

x′22 = f(x22;x11, x12)

M3 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x21)

x′21 = f(x21;x11, x11)

x′22 = f(x22;x12, x12)

M4 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22} the synchrony class {x11, x22‖x12, x21}

x′12 = f(x12;x21, x22) {x11, x22‖x12, x21} depends on symmetry of inputs

x′21 = f(x21;x11, x12) {x11, x21‖x12, x22}

x′22 = f(x22;x11, x12) {x11, x12}

{x21, x22}

M5 x′11 = f(x11;x22, x22) {x11, x12‖x21, x22} two-input unidirectional ring

x′12 = f(x12;x21, x21) C11 → C21 → C12 → C22 → C11

x′21 = f(x21;x11, x11)

x′22 = f(x22;x12, x12)

M6 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x21) {x12, x21}

x′21 = f(x21;x12, x12)

x′22 = f(x22;x11, x11)

Continued on next page
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Table 6.1 – continued from previous page

System Non-trivial synchrony classes Comments

M7 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x21)

x′21 = f(x21;x11, x11)

x′22 = f(x22;x11, x12)

M8 x′11 = f(x11;x21, x22) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x21) {x11, x21‖x12, x22}

x′21 = f(x21;x11, x12)

x′22 = f(x22;x11, x11)

M9 x′11 = f(x11;x21, x21) {x11, x12‖x21, x22}

x′12 = f(x12;x21, x22) {x11, x21‖x12, x22}

x′21 = f(x21;x11, x11)

x′22 = f(x22;x11, x12)

Example 6.0.11. Let M be a two-input unidirectional ring (symmetric inputs)

with adjacency matrix

A =




0 2

2 0


 .

In this case, M is a two-input unidirectional ring. Let N be a (2, 2)-inflation of

M with adjacency matrix A of the form described above. Then A11 and A22 are

square zero matrices of size 2, A12 and A21 take either of the following forms




0 2

2 0


 ,




2 0

0 2


 ,




2 2

0 0


 ,




1 2

1 0


 ,




1 0

1 2


 ,




2 1

0 1


 ,




0 1

2 1







0 0

2 2


 ,




1 1

1 1


 .
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Using [18] and Chapter 5, it can be shown that M has exactly 10 dynamically

inequivalent (2, 2)-inflations, Mi, i ∈ 9̄ (we refer to Chapter 4 and [4, 18] for dy-

namical equivalence which is an invariant of network architecture. Our example

is used for illustrative purposes and we do not make any use of dynamical equiva-

lence in the statement and formulation of our main results). We show the network

architectures of these inflations in Figure 6.2.

We can clearly see that Mi, i ∈ 4̄ are all dynamically inequivalent since the

number of synchrony classes is different for all of them (dynamically equivalent

networks have same number of synchrony classes). The only inflation that is

not strongly connected is M0 which consists of two copies of the original net-

work M. There are no non-trivial synchrony classes of the network M and so

{x11, x12‖x21, x22} is the only non-trivial synchrony class of the strongly connected

networks Mi, i ∈ 9̄, that lifts from M. We remark that the constructions that we

describe later (in Theorem 6.1.7) only generate the inflations M1, M2, and M4.

Table 6.2: Inequivalent (2, 2)-inflations of M (asymmetric inputs).

System Non-trivial synchrony classes

M x′1 = f(x1;x2, x2)

x′2 = f(x2;x1, x1)

M01 x′11 = f(x11;x21, x21) {x11, x21‖x12, x22}

x′12 = f(x12;x22, x22) {x11, x21}

x′21 = f(x21;x11, x11) {x12, x22}

x′22 = f(x22;x12, x12)

M11 x′11 = f(x11;x21, x22) M12 x′11 = f(x11;x21, x22) M11 : {x11, x12}

x′12 = f(x12;x21, x22) x′12 = f(x12;x22, x21) {x21, x22}

x′21 = f(x21;x11, x11) x′21 = f(x21;x11, x11)

Continued on next page
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Table 6.2 – continued from previous page

System Non-trivial synchrony classes

x′22 = f(x22;x12, x12) x′22 = f(x22;x12, x12)

M21 x′11 = f(x11;x21, x22) M22 x′11 = f(x11;x21, x22) M21 : {x11, x21‖x12, x22}

x′12 = f(x12;x21, x21) x′12 = f(x12;x21, x21) {x21, x22}

x′21 = f(x21;x11, x12) x′21 = f(x21;x11, x12) M22 : {x11, x21‖x12, x22}

x′22 = f(x22;x11, x12) x′22 = f(x22;x12, x11)

M31 x′11 = f(x11;x21, x22)

x′12 = f(x12;x21, x21)

x′21 = f(x21;x11, x11)

x′22 = f(x22;x12, x12)

M41 x′11 = f(x11;x21, x22) M42 x′11 = f(x11;x21, x22) M41 : {x11, x21‖x12, x22}

x′12 = f(x12;x22, x21) x′12 = f(x12;x21, x22) {x11, x22‖x12, x21}

x′21 = f(x21;x11, x12) x′21 = f(x21;x11, x12) M42 : {x11, x21‖x12, x22}

x′22 = f(x22;x12, x11) x′22 = f(x22;x11, x12) {x11, x12}

M43 x′11 = f(x11;x22, x21) M44 x′11 = f(x11;x21, x22) M44 : {x11, x21‖x12, x22}

x′12 = f(x12;x21, x22) x′12 = f(x12;x21, x22) {x11, x12}

x′21 = f(x21;x11, x12) x′21 = f(x21;x11, x12)

x′22 = f(x22;x12, x11) x′22 = f(x22;x12, x11)

M51 x′11 = f(x11;x21, x21)

x′12 = f(x12;x22, x22)

x′21 = f(x21;x11, x11)

x′22 = f(x22;x12, x12)

M61 x′11 = f(x11;x21, x21) {x12, x21}

x′12 = f(x12;x21, x21)

x′21 = f(x21;x12, x12)

x′22 = f(x22;x11, x11)

M71 x′11 = f(x11;x21, x22) M72 x′11 = f(x11;x22, x21)

x′12 = f(x12;x21, x21) x′12 = f(x12;x21, x21)

x′21 = f(x21;x11, x11) x′21 = f(x21;x11, x11)

x′22 = f(x22;x11, x12) x′22 = f(x22;x11, x12)

M81 x′11 = f(x11;x21, x22) M82 x′11 = f(x11;x22, x21) M81 : {x11, x21‖x12, x22}

x′12 = f(x12;x21, x21) x′12 = f(x12;x21, x21)

x′21 = f(x21;x11, x12) x′21 = f(x21;x11, x12)

x′22 = f(x22;x11, x11) x′22 = f(x22;x11, x11)

Continued on next page
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Table 6.2 – continued from previous page

System Non-trivial synchrony classes

M91 x′11 = f(x11;x21, x21) M92 x′11 = f(x11;x21, x21) M91 : {x11, x21‖x12, x22}

x′12 = f(x12;x21, x22) x′12 = f(x12;x22, x21)

x′21 = f(x21;x11, x11) x′21 = f(x21;x11, x11)

x′22 = f(x22;x11, x12) x′22 = f(x22;x11, x12)

Example 6.0.12. Let M be a two-input unidirectional ring (asymmetric inputs)

with both edge type adjacency matrices equal to




0 1

1 0


. The network M has

exactly 18 inequivalent (2, 2)-inflations. We list these in Table 6.2. Note that Mij

is obtained from Mi in Table 6.1 by labelling the inputs (so that they are asym-

metric). The non-trivial synchrony classes of Mij , other than {x11, x12‖x21, x22},

are listed in the last column of Table 6.2.

The composition of simple inflations need not be a simple inflation (for example,

if different cells are inflated). However, composition of inflations is an inflation.

Lemma 6.0.13. If N is an inflation of M and K is an inflation of N then K is

an inflation of M.

Proof. Let Π1 : N → M, Π2 : K → N define inflations N and K of M and N ,

respectively. It suffices to show that the composition Π = Π1 ◦ Π2 : K → M is an

inflation. We start by verifying that Π satisfies Definition 6.0.4(2). Let C1, · · · , Ck
denote the cells of M. There is a connection of type ℓ from Ci to Cj, if and only if

there exist cells Ciα ∈ Π−1
1 (Ci) and Cjβ ∈ Π−1

1 (Cj) such that there is a connection

of type ℓ from Ciα to Cjβ. Also, there is a connection of type ℓ from Ciα to Cjβ, if
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Figure 6.2: Network architectures of M0, · · · ,M9.

and only if there exist cells Ciαr ∈ Π−1
2 (Ciα) and Cjβs ∈ Π−1

2 (Cjβ) such that there

is a connection of type ℓ from Ciαr to Cjβs. Thus, there is a connection of type ℓ

from Ci to Cj, if and only if there exist cells Ciαr ∈ Π−1(Ci) and Cjβs ∈ Π−1(Cj)

such that there is a connection of type ℓ from Ciαr to Cjβs. Finally, we must

show that {Π−1(C1)‖ · · · ‖Π−1(Ck)} is a synchrony subspace of K. This follows by

Lemma 6.0.6 applied to Π2 since {Π−1
1 (C1)‖ · · · ‖Π−1

1 (Ck)} is a synchrony subspace

of N .
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Remark 6.0.14. Let −→n = (n1, · · · , np) ∈ Np. Set q =
∑p

i=1 ni and let

−→m = (m11, · · · , m1n1
, · · · , mpn1

, · · · , mpnp
) ∈ Nq.

Label the cells of M by C1, · · · , Cp. For i ∈ p, let ri =
∑ni

j=1mij . Set −→r =

(r1, · · · , rp) ∈ Np. Suppose N is an −→n -inflation of M. Label the cells of N by

C11, · · · , C1n1
, · · · , Cpn1

, · · · , Cpnp
,

where Ci1, · · · , Cini
are obtained by inflating Ci, for i ∈ p. Suppose K is an −→m-

inflation of N , where mij is the number of cells by which Cij is inflated, for j ∈ np,

i ∈ p. Then K is an −→r -inflation of M.

Let M be a coupled cell network and S be a synchrony subspace of M. The

network obtained by restricting M to S is called the quotient network of M. If

N is a quotient of M then M is an inflation of N defined by Π : M → N . In

Example 6.0.11, M0, · · · ,M9 are inflations of M and S = {C11, C12‖C21, C22} is

a synchrony subspace of Mi, i ∈ 9̄. Each network Mi restricted to S yields M

(identify C11, C12, and C21, C22). Hence M is the quotient network of Mi, i ∈ 9̄

(see also [49, 7, 4, 20]).

6.1 Networks with a single input type

For the remainder of the paper, we assume all networks are strongly connected

and we only consider strongly connected inflations of strongly connected networks.

Typically we use the term ‘inflation’ to mean ‘strongly connected inflation’. In
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this section we consider networks with only one type of connection (inputs are

necessarily symmetric).

6.1.1 Networks with no self loops

We first consider networks with no self loops.

Definition 6.1.1. Let M be a coupled cell network with cell set C and C,D ∈ C.

The cell C is said to be path connected to D, written C  M
p D, if there is a path

from C to D.

Definition 6.1.2. Let M be a coupled cell network with cell set C and suppose

A ⊆ C. If C,D ∈ A, then C is said to be path connected in A to D, written

C  M
p,A D, if there is a path from C to D containing only cells from the set A.

Remark 6.1.3. Both relations  M
p and  M

p,A are obviously transitive.

Lemma 6.1.4. Let M be a coupled cell network with k cells, labelled C1, · · · , Ck.

Let A be the adjacency matrix of M. If N is a strongly connected −→n -inflation of

M then A−→n ≥ −→n .

Proof. Let −→n = (n1, · · · , nk). Suppose that Π : N → M defines the given inflation

of M. Since N is an −→n -inflation of M, Π−1(Ci) has ni cells, for all i ∈ k. For

each i, j ∈ k, there are aij outputs from Ci to Cj . By the definition of inflation,

there are aij outputs from Π−1(Ci) to each cell of Π−1(Cj). Hence Ci has a total

of
∑k

j=1,j 6=i aijnj outputs (aii = 0, no self loops). Since N is strongly connected,

each cell of Π−1(Ci) must have at least one output. Thus, ni ≤
∑k

j=1 aijnj . This

is true for all i ∈ k. Therefore, A−→n ≥ −→n .
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Figure 6.3: N1 is a strongly connected 3-fold simple inflation of M; N2 is a strongly
connected 2-fold simple inflation of M.

Lemma 6.1.5. Suppose that M is a strongly connected network containing a cell

C with p > 1 outputs. Then for 1 < q ≤ p, there is a q-fold strongly connected

simple inflation of M at C.

Proof. Let the cell set of M be C = {C1, · · · , Ck}. By relabelling of cells, assume

that C = C1. Let I be the set of cells that have at least one output going to C1 and

O = {Ci1 , · · · , Ci#O
} be the set of cells that receive inputs from C1. If a cell receives

multiple (say d) inputs from C1 then we repeat that cell d times in the set O. Thus,

p = #O =
∑k

j=2 a1j . Let 1 < q ≤ p. We construct a q-fold simple inflation N of
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6.1 NETWORKS WITH A SINGLE INPUT TYPE

M at C1 which is strongly connected. Inflate C1 by q cells, C11, · · · , C1q. Draw

connections from C11, · · · , C1n to cells in O so that all the inputs of cells in O are

filled and each C1j, j ∈ q has at least one output. For example, C1j → Cij , j ∈ q,

C1q → Ciq+1
, · · · , Ci#O

. We show that N is strongly connected. For i ∈ I, j ∈ q,

draw ai1 connections from Ci to C1j , and for i, j 6= 1, draw aij connections from Ci

to Cj (there is a unique choice to draw these connections). It suffices to consider

three cases.

(1) if i, j ∈ {2, · · · , k} and Ci  
M
p,C\C1

Cj then Ci  
N
p Cj.

(2) suppose i, j ∈ {2, · · · , q} and there is a path

Ci → · · · → C1 → Cr1 → · · · → C1 → Crt → · · · → Cj

from Ci to Cj such that ru 6= rv, u 6= v. In N , all the inputs of cells in O are

filled and Cru ∈ O. By the construction of N , for each u ∈ t, there exists

su ∈ q such that there is a connection from C1su
to Cru . Thus, N has a path

Ci → · · · → C1s1 → Cr1 → · · · → C1st
→ Crt → · · · → Cj . This shows that

Ci  
N
p Cj.

(3) for each i, j ∈ q, there are ui, uj ∈ {2, · · · , k} such that C1i → Cui
and

Cuj
→ C1j . From previous parts, Cui

 N
p Cuj

. Therefore, C1i  
N
p C1j.

Thus, N is strongly connected.

In Figure 6.3, we give two examples illustrating the construction of a strongly

connected, simple inflation as described in Lemma 6.1.5.
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Given −→n = (n1, · · · , nk), −→m = (m1, · · · , mk) ∈ Nk, we write −→m < −→n if mi ≤ ni,

for all i ∈ k and mj < nj , for some j ∈ k.

Let M be a strongly connected coupled cell network which is not a one-input

unidirectional ring, with adjacency matrix A. Let −→n = (n1, · · · , nk) ∈ Nk sat-

isfy A−→n ≥ −→n . Let N be a strongly connected −→
m -inflation of M defined by

Π : N → M where −→m = (m1, · · · , mk) ∈ Nk satisfies −→m < −→n . By Lemma 6.1.4,

A−→m ≥ −→m. Let D = {Π−1(Ci) | i ∈ k} be the cell set of the network N . Let

I = {i ∈ k | mi < ni} and D = D1 ∪ (D \ D1), where D1 = {Π−1(Ci) | i ∈ I}.

Lemma 6.1.6. (Notation and assumptions as above) There exists a cell C ∈ D1

such that C has more than one output.

Proof. We will prove the result by contradiction. Assume that all the cells in

D1 have exactly one output. Note that D \ D1 6= ∅ otherwise M is a one-input

unidirectional ring.

Claim 1: For each i ∈ I, there exists j ∈ I such that aij > 0.

Proof of Claim 1 : Suppose that there exists i ∈ I such that aij = 0, for all j ∈ I.

Then mi =
∑

j∈D\D1
aijnj (for if, mi <

∑
j∈D\D1

aijnj , then there exists some

C ∈ Π−1(Ci) with more than one output). Also, we have ni ≤ ∑
j∈D\D1

aijnj .

Therefore, mi = ni, which is a contradiction.

Claim 2: There is no chain contained in D1.

Proof of Claim 2 : Let Ĉ be a chain in D1. Since each cell in the chain Ĉ has

exactly one output, there is no path from E to F , for all cells E ∈ Ĉ, F ∈ D \ D1

which contradicts the fact that N is a strongly connected network.

Claim 3: If D1, D2 ∈ Π−1(Ci) for some i ∈ I, then there is no path from D2 to D1
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6.1 NETWORKS WITH A SINGLE INPUT TYPE

which is contained in D1.

Proof of Claim 3 : Suppose D2 → C1
1 → · · · → C1

s → D1 is a path from D2 to D1

and that C1
i ∈ D1 for i ∈ s. Since D1, D2 ∈ Π−1(Ci), i ∈ I, there is, by Claim 1, a

path

C2
1 → · · · → C2

s → D2 → C1
1 → · · · → C1

s → D1,

where C1
i , C

2
i ∈ Π−1(Cji) for some ji ∈ I. Since C1

1 receives an input from D2 and

C1
1 , C

2
1 ∈ Π−1(Cj1), C

2
1 receives an input from D3 where D3 ∈ Π−1(Ci). Since there

is no chain contained in D1, by Claim 2, D3 is distinct from D1, D2. Iterating this

construction, we see that Π−1(Ci) is an infinite set, which is a contradiction.

Let

A = {D ∈ D1 | The output of D is to a cell in D \ D1}.

Since M is strongly connected, A 6= ∅. Let A = {D1, · · · , Ds}. By Claim 1, for

each i ∈ s, there exists D̃i ∈ Π−1(Π(Di)) such that there is a connection from D̃i

to some cell in D1. Let Ã = {D̃1, · · · , D̃s}. Then A ∩ Ã = ∅. Since we assumed

that the cells in D1 have exactly one output, D̃i /∈ D \D1, for each i ∈ s and there

is a path from D̃i to some cell in D \D1, the path must pass through Dj, for some

j ∈ s. Thus, there is a map σ : s → s such that D̃i  
N
p,D1

Dσ(i), for i ∈ s. Also note

that σ(i) 6= i, for all i ∈ s else, D̃i  
N
p,D1

Di, which contradicts Claim 3. Thus,

for any i ∈ s, the set {Dσr(i) | r = 0, 1, · · · , s} ⊆ A consist of distinct elements,

otherwise, there is a chain in D1. Thus, #A > s, which is a contradiction. Hence,

there exists a cell C ∈ D1 having more than one output.

Lemma 6.1.7. Let M be a strongly connected coupled cell network with at least

one cell having more than one output. Let A be the adjacency matrix of M.
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6.1 NETWORKS WITH A SINGLE INPUT TYPE

Let −→n = (n1, · · · , nk) be such that A−→n ≥ −→n . Then there is a sequence of k-

tuples, −→n 0 = (1, · · · , 1) < −→n 1 < −→n 2 < · · · < −→n p = −→n and simple inflations

M = M0 ⇐=S M1 ⇐=S · · · ⇐=S Mp where Mr is a strongly connected −→n r-

inflation of M, for r ∈ p.

Proof. Let C = {C1, · · · , Ck} be the cell set of M. Suppose that for some r ∈ N,

we have obtained the sequence −→n 0 < −→n 1 < · · · < −→n r−1 ≤ −→n and M0 = M ⇐=S

M1 ⇐=S · · · ⇐=S Mr−1. If −→n r−1 = −→n , set p = r − 1 and we are done. Else,

assume that −→n r−1 < −→n . We will find −→n r ∈ Nk such that −→n r−1 < −→n r ≤ −→n and a

strongly connected simple inflation Mr of Mr−1 such that Mr is an −→n r-inflation

of M.

Let −→n r−1 = (nr−1
1 , · · · , nr−1

k ). Let Πr−1 : Mr−1 → M define the inflation with

Π−1
r−1(Ci) = {Cr−1

i1 , · · · , Cr−1

inr−1
i

},

for all i ∈ k. For i ∈ k, j ∈ nr−1
i , let dji denote the number of outputs from the

cell Cr−1
ij . Since −→n r−1 < −→n , by Lemma 6.1.6 there exists i, j such that nr−1

i < ni

and dji > 1. Let n = min{dji , ni − nr−1
i + 1}. Using Lemma 6.1.5, we may con-

struct a strongly connected n-fold simple inflation Mr of Mr−1 at Cr−1
ij . Set

nri = n + nr−1
i − 1, nru = nr−1

u , for u ∈ k \ {i}, −→n r = (nr1, · · · , nrk). Thus, noting

Remark 6.0.14, Mr is a strongly connected −→n r-inflation of M.

Lemma 6.1.8. Let M be a one-input unidirectional ring with k cells C1, · · · , Ck
and adjacency matrix A. Let N be a strongly connected −→n = (n1, · · · , nk)-inflation

of M. Then

(1) n1 = n2 = · · · = nk.
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6.1 NETWORKS WITH A SINGLE INPUT TYPE

(2) N is a one-input unidirectional ring with nk cells, where n = n1.

Proof. By relabelling of cells, we can assume that M = C1 → C2 → · · · →

Ck → C1. Let −→n = (n1, · · · , nk) ∈ Nk. By Lemma 6.1.4, A−→n ≥ −→n that is,

n1 ≥ nk ≥ · · · ≥ n2 ≥ n1. Therefore, n1 = n2 = · · · = nk. Since each cell of M has

exactly one input, each cell of N has exactly one input (by definition of inflation).

For N to be strongly connected, it must be a one-input unidirectional ring with

nk cells. Let Π : N → M defines the inflation. For each i ∈ k, let Π−1(Ci) =

{Ci1, · · · , Cin}. Then, by relabelling of cells, N is of the form C11 → · · · → Ck1 →

· · · → C1n → · · · → Ckn → C11.

Theorem 6.1.9. (no self loops) Let M be a strongly connected k cell network with

adjacency matrix A. Let −→n = (n1, · · · , nk) ∈ Nk. There is a strongly connected −→n -

inflation N of M if and only if

A−→n ≥ −→n . (6.1.1)

Proof. (⇒): By Lemma 6.1.4, if N is a strongly connected −→n -inflation of M then

(6.1.1) holds.

(⇐): Either M is a one-input unidirectional ring or M has at least one cell

having more than one output. In the latter case, if −→n satisfies the (6.1.1), then the

construction of N follows from Lemma 6.1.7. If M is a one-input unidirectional

ring, Lemma 6.1.8 gives the construction of N .

Example 6.1.10. Let M be a network with adjacency matrix A = [aij ]i,j∈k where

aij = 1 − δij (δ denotes the Kronecker delta function). In this case, every cell has

exactly one output to every other cell and there are no self inputs. We call M a
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C
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C
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C21

22

1C C2 M

N
Step 2:

Step 1:

Figure 6.4: The composite of two simple inflations

complete network (in graph theory, the underlying graph is known as a complete

graph). For a complete network M, (6.1.1) reduces to

max{ni | i ∈ k} ≤
k∑

j=1,j 6=i

nj .

Remark 6.1.11. Suppose M is a strongly connected network with adjacency matrix

A. Let −→n ∈ Nk satisfy (6.1.1). Theorem 6.1.9 guarantees the existence of a

strongly connected −→n -inflation of M. However, an −→n -inflation of M satisfying

(6.1.1) need not be strongly connected. For example, let M, Mi, i ∈ 9̄ be as
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in Example 6.0.11. The adjacency matrix A of the network M is




0 2

2 0


 and

−→n = (2, 2) ∈ N2 satisfies condition (6.1.1). The networks Mi, i ∈ 9 are strongly

connected (2, 2)-inflations of M but M0 is a (2, 2)-inflation of M which is not

strongly connected.

6.1.2 Networks with self loops

We stated Theorem 6.1.9 for networks with no self loops. The theorem also holds

for networks with some or all of the cells having self loops. Condition (6.1.1)

requires that
∑k

j=1 aijnj ≥ ni, for all i ∈ k. If there is an i such that aii > 0 (that

is, the ith cell has a self loop) then the condition

k∑

j=1

aijnj ≥ ni

is trivially satisfied. Note that if nj , j 6= i, are fixed, then there is no upper bound

for ni. For the case of networks with self loops, we modify the construction in

Lemma 6.1.7 in the following manner. Let

S = {i ∈ k | aii > 0}.

The set S consists of indices of the cells that have self loops.
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Construction of N

(1) for each i ∈ S, inflate the cell Ci by ni cells, Ci1, · · · , Cini
. Then (a) for

i, j ∈ S, draw aii connections from Cij to Ci(j+1), for j ∈ k − 1 and, Cini

to Ci1, (b) for i ∈ S, j /∈ S, draw aij connections from Ci1 to Cj, (c) for

i /∈ S, j ∈ S, draw aij connections from Ci to Cjp for all p ∈ nj, and (d)

for i, j /∈ S, draw aij connections from Ci to Cj. Thus we have obtained a

strongly connected inflation of M with no self loops. It is easy to see that

connections drawn in (c)− (d) are unique but there are many choices for the

connections drawn in (a) − (b).

(2) now proceed using the construction in Lemma 6.1.7 to obtain the required

−→n -inflation N of M.

Example 6.1.12. Let M be as in Figure 6.4, having adjacency matrix A =


1 2

1 0


. The cell C1 has a self loop. Figure 6.4 shows the construction of a

strongly connected (3, 2)-inflation N of M along the lines described above. Note

that −→n = (3, 2) satisfies (6.1.1).

6.2 Networks with multiple input types

Let M be a coupled cell network with k cells labelled C1, · · · , Ck. Suppose there

are ℓ ≥ 1 input types. Then M has ℓ edge type adjacency matrices A1, · · · , Aℓ
and the adjacency matrix A of M is equal to the sum A1 + · · · + Aℓ.
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Figure 6.5: A strongly connected (4, 3, 2)-inflation M4, of M (with symmetric
inputs)

Theorem 6.2.1. Let M be a strongly connected k cell network with edge type

adjacency matrices A1, · · · , Aℓ. Let −→n = (n1, · · · , nk) ∈ Nk. There is a strongly

128



6.2 NETWORKS WITH MULTIPLE INPUT TYPES

connected −→n -inflation N of M if and only if

A−→n = (A1 + · · ·+ Aℓ)
−→n ≥ −→n . (6.2.2)

Proof. The proof is identical to the proof of Theorem 6.1.9. First assume that

all the connection types in M are identical and construct a strongly connected

−→n -inflation N of M defined by Π : N → M. For each cell in Π−1(Cj), there

are
∑ℓ

r=1 a
r
ij inputs from cells in Π−1(Ci). For each r ∈ ℓ, regard arij of these

connections as connections of type r.

Remark 6.2.2. The necessary and sufficient condition obtained in Theorem 6.2.1 is

independent of the types of edges, it only depends on the total number of inputs

and outputs to each cell. Thus, there is no distinction between networks with

asymmetric inputs and general networks in the construction of (strongly connected)

inflation.

C

C 111

C113

C112

21

22

23

C12

C
32C

31C

C

C C31 2C

NM

Figure 6.6: A strongly connected (4, 3, 2)-inflation N , of M (asymmetric inputs)
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6.3 Examples

Example 6.3.1. (Illustration of Lemma 6.1.7) Let M,Mi, i = 1, 2, 3, 4, be as

in Figure 6.5. The network M is a three-cell bi-directional ring with adjacency

matrix A =




0 1 1

1 0 1

1 1 0




. The vector −→n = (4, 3, 2) satisfies (6.1.1). In Figure 6.5

we show the construction of a strongly connected −→n -inflation N of M, using the

method of Lemma 6.1.7.

(1) in M, C1 has two outputs, let −→n 1 = (2, 1, 1) and construct a strongly con-

nected 2-fold simple inflation M1 of M, at C1 by inflating C1 into two cells

C11 and C12.

(2) in M1, C2 has three outputs, let −→n 2 = (2, 3, 1) and construct a strongly

connected 3-fold simple inflation M2 of M1, at C2 by inflating C2 into three

cells C21, C22 and C23. At this step, n2 is achieved.

(3) in M2, C3 has five outputs, let −→n 3 = (2, 3, 2) and construct a strongly

connected 2-fold simple inflation M3 of M2, at C3 by inflating C3 into two

cells C31 and C32. At this step, n3 is achieved.

(4) in M3, C11 has three outputs, let −→n 4 = (4, 3, 2) and construct a strongly

connected 3-fold simple inflation M4 of M3, at C11 by inflating C11 into

three cells C111, C112, and C113.

Thus, −→n 4 = −→n and N = M4 is a strongly connected −→n -inflation of M. This

serves as a good example to illustrate how the number of synchrony classes may
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rapidly increase with inflation. The network M has 2, M1 has 4, M2 has 11, M3

has 22, and M4 has over 60 non-trivial synchrony classes.

Example 6.3.2. Figure 6.6 shows a strongly connected (4, 3, 2)-inflation N of M

with asymmetric inputs. The only difference between M,M4 in Figure 6.5 and

M, N in Figure 6.6 is that we have changed the type of the second input to each

cell. If we permute the inputs of any cell in N , we still have an inflation of M

though the new network may no longer be dynamically equivalent to N .

Remark 6.3.3. Theorem 6.2.1 extends immediately to general networks of non-

identical cells where the number of input types can depend on the cell class. The

statement is identical (with A defined as the adjacency matrix of the network).

For the proof, it suffices to note that the construction of the strongly connected

inflation N of the network M given in Lemma 6.1.7, only requires information

about the number of connections and connection type. The class of the cells plays

no role in the construction.
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Chapter 7

Switching in Heteroclinic Cycles

7.1 Introduction

Let e1, · · · , en be hyperbolic equilibria of saddle type of a vector field x′ = f(x),

where f : Rm → Rm. If there exist trajectories Γ1(t), · · · ,Γn(t) such that for

i = 1, · · · , n,

lim
t→∞

Γi(t) = ei+1,

lim
t→∞

Γi(−t) = ei,

with the convention that en+1 = e1 then the union of trajectories (Γi, ei) is known

as a heteroclinic network.

Krupa and Melbourne [36, 37] have found necessary and sufficient conditions

for the asymptotic stability of the heteroclinic network in the presence of symme-

try. But their proof depends mainly on the assumption that for each i = 1, · · · , n,

there is a flow-invariant subspace Pi such that W u(ei) ⊂ Pi and ei+1 is a sink in Pi.
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This condition guarantees robustness of the heteroclinic network for vector fields

for which Pi are flow-invariant. Another remark is that the necessary and sufficient

condition does not depend on the radial directions. Heteroclinic networks occur

commonly in dynamical systems with symmetry and trivially are robust under

perturbations that preserve the symmetry. They have been found to be relevant in

a number of physical phenomena that include population dynamics [29], ecological

models [28], in differential equations that are symmetric (or equivariant) [19, 21]

and networks of coupled oscillators [10]. Heteroclinic cycles or networks occur in

coupled cell systems and population dynamics. Ashwin et al. [13] and Broer et

al. [16, 15] analyze the unstable attractors and heteroclinic cycles between them

that can occur in global networks of pulse-coupled oscillators. Kirk and Silber [34]

gave an interesting example where there are two heteroclinic networks with a hete-

roclinic connection in common and discuss about the competition between the two

cycles. There are many examples relating to switching dynamics when the vector

field is symmetric, given in [5, 30].

Recently Homburg and Knobloch [30] proved an interesting result about switch-

ing in a heteroclinic network in R5 using equivariant dynamics. We are interested

in constructing dynamics on a coupled cell network without using equivariance;

instead extracting information from the network architecture. We have an exam-

ple of a 3-cell network with 2-dimensional dynamics on each cell – see [4]. The

example illustrates some interesting dynamics that can occur on an asymptotically

stable robust heteroclinic network. In addition, there is forward switching behav-

ior between the cycles. There is also numerical evidence of interesting bifurcation

behavior in this network.
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Consider a vector field on Rm given by

x′ = f(x). (7.1.1)

Suppose there is a heteroclinic network Γ consisting of heteroclinic connections

γ1, · · · , γn joining a set of equillibria. We now give the definition of switching

([30]) in a heteroclinic network. Define the connectivity matrix C = [cij ] where

cij = 1 if the end point (the ω-limit set) of γi is equal to the starting point (the

α-limit set) of γj , else cij = 0, for i = 1, · · · , n. Define the following set of symbolic

sequences

ΣC = {κ = (κi) ∈ {1, · · · , n}Z | cκiκi+1
= 1},

Σ+
C = {κ = (κi) ∈ {1, · · · , n}N | cκiκi+1

= 1}.

Let N be a tubular region around Γ. Take cross-sections Si transverse to each

γi, i = 1, · · · , n and let R be the first return map on S := ∪ni=1Si. Let κ ∈ ΣC .

We call a trajectory T of ( 7.1.1) a realization of κ in N if there exists a point

xκ ∈ T such that Ri(xκ) ∈ Sκi
, i ∈ Z. In other words, we say that a realization of

a sequence κ is a trajectory that follows the heteroclinic connections in the order

prescribed by κ. For κ ∈ Σ+
C , we can similarly define a forward trajectory.

Definition 7.1.1. A heteroclinic network Γ is a switching (forward) if for each

κ ∈ ΣC (κ ∈ Σ+
C) and each tubular neighbourhood N of Γ, there exists a realization

of κ in N .
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7.2 Example

x zy

Figure 7.1: The network M

Consider the network architecture M with 3 cells and 2 asymmetric inputs to

each cell (Figure 7.1). Assume that the cells are identical and the phase space of

each cell is S. Let F ∈ M be modelled by f : S × S × S→TS so that the coupled

cell system is

x′ = f(x;y, z), y′ = f(y;x, z), z′ = f(z;y,x).

Case 1: S = R.

Let Xf denote the associated vector field on R3. Let p be an equillibrium of Xf .

If A = ∂f
∂x

(p), B = ∂f
∂y

(p) and C = ∂f
∂z

(p). Then the linearized system has the

Jacobian given by 


A B C

B A C

C B A



,

which is a 3 × 3 matrix with eigenvalues given by A − B,A − C,A + B + C. By

choosing the appropriate A,B,C, we can construct a vector field f such that the
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system support heteroclinic cycles but there is no possibility of switching in this

case since the invariant subspaces are of codimension one. For more details about

the construction, we refer to [4, Section 5.3]. If the inputs are symmetric, then the

eigenvalues are given by A− B,A−B,A+ 2B. In this case, there is no choice of

A,B,C (and therefore f) that can support heteroclinic cycles.

Case 2: S = R2.

The total phase space is six-dimensional. When the phase space is two-dimensional,

A,B,C are 2×2 matrices, and so the eigenvalues of the Jacobian are given by the

eigenvalues of A − B,A − C,A + B + C. Thus there is a possibility of choosing

the vector field so that there are complex eigenvalues. The synchrony subspaces

of M are {x = y = z}, {x = y}, {x = z}. With two-dimensional cell dynam-

ics, the constructions are simpler since one-dimensional connections generically do

not intersect in the four-dimensional synchrony subspaces {x = y} and {x = z}.

Complex eigenvalues may occur for linearizations at equilibria in the maximal

synchrony subspace and with associated eigenspaces transverse to the maximal

synchrony subspace {x = y = z}. Since the synchrony subspaces {x = y} and

{x = z} are of codimension two, there is also the possibility of heteroclinic switch-

ing. The example points out interesting dynamics that can occur in a coupled cell

network with a simple architecture. Let f = (f1, f2) be given by

f1(x;y, z) = x1(1 − x2
1 − y2

1 − z2
1) +

1

5
(y3

1 + z3
1) +

1

6
y1(y1 − z1)

+
3

2
x1(y2 − z2) −

1

4
(2x2 − y2 − z2)(y

2
1 + z2

1) + y2
1 − z2

1
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+(y3
2 + z3

2),

f2(x;y, z) = −x2 +
1

10
(y2 + z2) − 3x1(y1 − z1) +

5

6
x1(y2 − z2)

+y2
1 − z2

1 .

There are three hyperbolic equillibria ±p, O on the two-dimensional synchrony

subspace {x = y = z} given by

p =

(√
1

2.6
, 0,

√
1

2.6
, 0,

√
1

2.6
, 0

)
, O = (0, 0, 0, 0, 0, 0).

The equillibria ±p have one-dimensional unstable manifolds and complex con-

tracting eigenvalues contained in the four-dimensional synchrony subspaces {x =

y} and {x = z} and transverse to {x = y = z}. There are heteroclinic connec-

tions γ1, γ2 from p to −p, and connections γ3, γ4 from −p to p. The eigenvalues

at each equillibria ±p satisfy the necessary and sufficient condition of Krupa and

Melbourne [36, 37], and thus the heteroclinic network constituting the cycles γi,

i = 1, · · · , 4 is asymptotically stable and robust under perturbations that preserve

the network architecture M. The heteroclinc network and the dynamical behavior

– switching mechanism and asymptotic stability is shown in Figures 7.2, 7.3.

7.3 Switching in a heteroclinic network

Consider a coupled cell network with architecture M shown in Figure 7.1 (assume

identical cells). Let (x′,y′, z′) = F (x,y, z) be the associated dynamical system.

Assume that the system has two hyperbolic equillibria P,Q ∈ {x = y = z}. We
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Figure 7.2: Plot shows the time evolution of x and the trajectories close to the
cycles γi, i = 1, · · · , 4 projected on the (x1, x2)-plane.

make the following assumptions on the spectrum of DF (P ):

1. two real eigenvalues −r11 < 0, −r12 < 0 with eigenspaces contained in {x =

y = z}.

2. two real eigenvalues µ1 > 0, −d1 < 0 with eigenspaces contained in {x = y}.

3. a pair of complex conjugate eigenvalues −λ1 ± i, λ1 > 0 with eigenspace

contained in {x = z}. Let p1 = µ1/λ1.

Similarly, we make the following assumptions on the spectrum of DF (Q):

1. two real eigenvalues −r21 < 0, −r22 < 0 with eigenspaces contained in {x =

y = z}.

2. two real eigenvalues µ2 > 0, −d2 < 0 with eigenspaces contained in {x = z}.
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Figure 7.3: The time series of x coordinates. Switching can be observed between
connections and increase in the time to intersect t axes shows the asymptotic
stability of the network.

3. a pair of complex conjugate eigenvalues −λ2 ± i, λ2 > 0 with eigenspace

contained in {x = y}. Let p2 = µ2/λ2.

We make the following conditions on the eigenvalues of P and Q.

(A1) For i = 1, 2; 0 < µi, λi < ri1, ri2, di. That is, µi,−λi ± i are the leading

eigenvalues.

We assume that there are heteroclinic trajectories Γ±
1 from P to Q contained

in the invariant subspace {x = z} and heteroclinic trajectories Γ±
2 from Q to P

contained in the invariant subspace {x = y}. Since the connections are contained

the invariant subspaces, the intersection of the unstable manifold of P and the sta-
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ble manifold Q is transverse. Similarly, the intersection of the unstable manifold

of Q and the stable manifold P is transverse. Also, the trichotomy condition [43,

Chapter 6] holds by (A1). Thus, using the center manifold reduction for hetero-

clinic cycles [43, Theorem 6.6], we can reduce the above system to a 3 dimensional

system having two hyperbolic equillibria P,Q. The linearized system at P,Q is as

follows:

r′ = −λ1r

θ′ = 1

z′ = µ1z

r′ = −λ2r,

θ′ = 1,

z′ = µ2z,

where (x, y) ∼ (r, θ) using a polar change of coordinates. We construct local 3

dimensional neighbourhoods of P,Q as follows:

NP = {(r, θ, z) | r < rP , |z| < δ, θ ∈ [0, 2π)},

NQ = {(r, θ, z) | r < rQ, |z| < δ, θ ∈ [0, 2π)}.

We define N+
P := NP ∩ {z > 0}, N−

P := NP ∩ {z < 0}. Similarly, N±
Q . We have

NP ∩ {z = 0} ⊂W s(P ), NQ ∩ {z = 0} ⊂W s(Q). Suppose that the connection Γ+
1

from P to Q passes through (0, 0, δ) ∈ ∂NP and (rQ, 0, 0) ∈ NQ and the connection

Γ−
2 from Q to P passes through (0, 0, δ) ∈ ∂NQ and (rP , 0, 0) ∈ NP . Define the

cross-sections H in
P , H in

Q , Hout
P , Hout

Q as follows:

H in
P = {(rP , θ, z) | |θ| < δ, |z| < δ} , Hout

P = {(r, θ,±δ) | r < rP , θ ∈ [0, 2π)},

H in
Q = {(rQ, θ, z) | |θ| < δ, |z| < δ} , Hout

Q = {(r, θ,±δ) | r < rQ, θ ∈ [0, 2π)}.
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7.3 SWITCHING IN A HETEROCLINIC NETWORK

Define the local maps φP : H in
P \W s(P )→Hout

P , φQ : H in
Q \W s(Q)→Hout

Q and the

global connecting diffeomorphisms ψPQ : Hout
P →H in

Q , ψQP : Hout
Q →H in

P . Using the

linearizations at P,Q, we can compute that

φP (rP , θ, z) =

(
rP

(z
δ

)λ1
µ1 , θ − 1

µ1
log
(z
δ

)
, δ

)
,

φQ(rQ, θ, z) =

(
rQ

(z
δ

)λ2
µ2 , θ − 1

µ2
log
(z
δ

)
, δ

)
.

We assume the the connecting maps are affine invertible maps given by

ψPQ(r, θ, δ) = (rQ, ar cos(θ) + br sin(θ) + θ0, cr cos(θ) + d sin(θ)),

ψQP (r, θ, δ) = (rP , a
′r cos(θ) + b′r sin(θ) + θ′0, c

′r cos(θ) + d′ sin(θ)),

where (rQ, θ0, 0) is the point of intersection of Γ1 with W s(Q), and (rP , θ
′
0, 0) is the

point of intersection of Γ2 with W s(P ). For simplicity, we assume a, d, a′, d′ = 1,

b, c, b′, c′ = 0, θ0, θ
′
0 = 0. See Remark 7.5.2 for comments about the general case.

Let g1 = ψPQ ◦ φP : H in
P \W s(P )→H in

Q and g2 = ψQP ◦ φQ : H in
Q \W s(Q)→H in

P .

The map g1(rP , θ, z) intersects W s(Q) if θ − 1
µ1

log
(
z
δ

)
= nπ, n ∈ Z. For n ∈ N,

define the strips

Hn = {(rP , θ, z) | |θ| < δ, nπ < θ − 1

µ1
log
(z
δ

)
< (n + 1)π}.

If n is even, g1(Hn) ⊂ {z > 0}, and if n is odd, g1(Hn) ⊂ {z < 0}. Also,

g1(∂Hn) ⊂ {z = 0}.
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Figure 7.4: Local neighbourhoods and cross-sections at P and Q.

The curves (rP , θ, δe
µ1(θ−nπ)) ∩H in

P accumulate onto the stable manifold of P ,

{z = 0}. Therefore, there exists N ∈ N such that Hn ∩ H in
P 6= ∅, for all n ≥ N .

Hence,

H in
P =

∞⋃

n=N

(Hn ∩H in
P ).

Similarly, for n ∈ N, define the strips

Un = {(rQ, θ, z) | |θ| < δ, nπ < θ − 1

µ2
log
(z
δ

)
< (n + 1)π}.

If n is even, g2(Un) ⊂ {z > 0}, and if n is odd, g2(Un) ⊂ {z < 0}. Also,

g2(∂Un) ⊂ {z = 0}.

The curves (rQ, θ, δe
µ2(θ−nπ)) ∩H in

Q accumulate onto the stable manifold of Q,

{z = 0}. Therefore, there exists M ∈ N such that Un ∩ H in
Q 6= ∅, for all n ≥ M .
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Hence,

H in
Q =

∞⋃

n=M

(Un ∩H in
Q ).

7.4 Forward switching

Un2

z

θ θ

z

Hn1

Hn3

Hn1
Hn1+1

Hn1

Hn1

1

2

S
S

S

S

S

S
21

22
11

12

13
14

HP
in HQ

in

Figure 7.5: Geometrical explanation of forward switching.

Choose the smallest n1 ≥ N such that eµ1(δ−n1π) < 1, consider the strip Hn1
.

Without loss of generality, assume that n1 is even, then g1(Hn1
) ⊂ {z > 0} and

g1(Hn1+1) ⊂ {z > 0} and g1(∂Hn1
∩ ∂Hn1+1) ⊂ {z = 0}. Note that however small

δ > 0 we choose, such n1 always exist since Hn1
accumulate on W s(P ), {z = 0}.

The g1 image of Hn1
is the region delimited by two half spirals. Since the

strips Un accumulate on W s(Q), {z = 0}, there exists n2 ≥ M , n2 even such that

143



7.4 FORWARD SWITCHING

g1(Hn1
) intersects Un2

in two disconnected squares S21, S22. Thus we have two

disjoint strips H1
n1

and H2
n1

contained in Hn1
such that g1(H

i
n1

) = S2i, i = 1, 2.

Since two sides of the squares S21, S22 are contained in ∂Un2
, we have g2(S21)

and g2(S22) are two disjoint regions delimited by half spirals. Again, since the

strips Hn accumulate on W s(P ), {z = 0}, there exists n3 ≥ N , n3 even such that

g1(Hn1
) ∩ Un2

intersects Hn3
in four disconnected squares S1i, i = 1, · · · , 4. Thus

for i = 1, 2, we have two disjoint strips H i1
n1

and H i2
n1

contained in H i
n1

such that

g2 ◦ g1(H
11
n1

) = S11, g2 ◦ g1(H
12
n1

) = S12, g2 ◦ g1(H
21
n1

) = S13, g2 ◦ g1(H
22
n1

) = S14. It is

easy to see that Hn1+1 is also partitioned into thinner strips.

There is a bijection between the symbols {E,O} and {P,N}, where E is

mapped to P and O is mapped to N , that is, even number is identified with

positive connection and odd number is identified with negative connection. Thus

we have a natural bijection between the one-sided shift on two symbols E, and O,

and the path of connections.

Given a path (pn), we choose the sequence of Hn1
, Un2

, Hn3
, Un4,··· such that ni

is even if pi = P , and odd if pi = N . Hence we have proved forward switching in

the network.

Theorem 7.4.1. If (A1) holds and p1p2 > 1, then Γ = Γ±
1 ∪ Γ±

2 is a robust

asymptotically stable heteroclinic network which is forward switching.

Proof. The asymptotic stability is clear by analyzing the return maps g1 ◦ g2 and

g2 ◦ g1 to the cross-sections H in
P and H in

Q .

Remark 7.4.2. The condition p1p2 > 1 is the necessary and sufficient condition of

Krupa and Melbourne [36, Theorem 2.7] for asymptotic stability of heteroclinic
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network.

7.5 Horseshoes

Lets make the following assumption on the eigenvalues : (A2) p1p2 < 1.

Let

U c
m = {(rQ, θ, z) | |θ| < δ, θ − 1

µ2
log(z) = mπ +

π

2
}.

Lemma 7.5.1. Consider Hn for fixed n ‘even’ sufficiently large. Let m be the

minimum ‘even’ such that U c
m intersects g1(Hn) at at least two points. Let S =

Um ∩ g1(Hn). The innermost boundary of g2(S) intersects the upper horizontal

boundary of Hi in at least two points, for i ≥ n/α, where 1 ≤ α < 1/p1p2.

Moreover, the preimage of the vertical boundaries of g(Hn) ∩Hi are contained in

the vertical boundary of Hn.

Proof. The z coordinate of the upper horizontal boundary of Hi is z = δeµ1(δ−iπ).

The point R = (rP , θ, z) on the innermost boundary of g2(S) closest to (rP , 0, δ) is

when φ− 1
µ2

log(Z) = mπ+π/2. That is, r̂ =
√
θ2 + z2 = zp1p2, where ψ = nπ+u,

z = δeµ1(−δ−ψ), for some π/2 ≤ u ≤ π. We want z < r̂,

z < r̂

eµ1(δ−iπ) < eµ1p1p2(−δ−nπ−u)

K eπµ1(i−p1p2n) > 1.

The term K is a constant, therefore K eπµ1(i−p1p2n) > 1 means we want i−p1p2n to
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be sufficiently large (positive). Choose 1 ≤ α < 1/p1p2 and i ≥ k/α then i−p1p2n

is positive, and for k sufficiently large, K eπµ1(i−p1p2n) > 1.

The map g = g2 ◦ g1 maps vertical boundaries of Hk to the spirals. The

vertical boundaries of g(Hn)∩Hi are contained in the spirals, hence the preimage

is contained in the vertical boundary of Hn.

Remark 7.5.2. If we take the connecting maps to be general affine invertible maps

then the point R̃ = (rP , θ̃, z̃) closest to (rP , θ0, δ) has r̃ = Cr̂, for some constant

C > 0, r̃ =
√
θ̃2 + z̃2. Thus solving for z < r̃ gives us the same result as in

Lemma 7.5.

Theorem 7.5.3. For n sufficiently large, Hn contains an invariant Cantor set,

Λn, on which the map g is topologically conjugate to a full shift on two symbols.

Proof. The proof is similar to the proof of [48, Theorem 4.8.4].
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Conclusions

We conclude the dissertation by pointing out some interesting observations from

our work and possible future directions. The notion of dynamical equivalence –

input and output developed in the dissertation provides a tool for understanding

the dynamics of the coupled cell dynamical systems using the network architec-

ture. The results presented here lead to the construction of universal networks,

described in Section 5.4. The important observation here is that the number of

inputs can be significantly reduced using dynamical equivalence results. This has

a straightforward application to electrical engineering where the cost and labour

to construct a device having some dynamical behavior can be reduced using these

results.

The proofs of Theorem 4.2.6, 5.1.13 are algorithmic in nature and give a sys-

tematic way to convert a network into another dynamically equivalent network by

a sequence of simple moves – changing one input at a time. Similarly, the proof

of Theorem 6.2.1 provide a clear algorithmic procedure to construct a strongly
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connected inflation using a sequence of simple inflations – inflating one cell at a

time.

Another interesting observation from Theorem 4.2.6 is that for every network

M we have M ∼O M. We call this self equivalence and illustrate it with the

following example.

Example 8.0.4. There may be many ways of achieving self output equivalence.

For example, consider the two-cell network M with asymmetric inputs shown in

Figure 8.1.

A A
yx

Figure 8.1: A two-cell network M with asymmetric inputs

Suppose F ∈ M has model f . It can be shown that the two-parameter family

defined for c, d ∈ R by

fc,d(x0; x1, x2) = cf(x0; x0, x0) + df(x0; x0, x1)

− (c+ d)f(x0; x0, x2) − (c+ d)f(x0; x1, x0)

+ (1 + c+ d)f(x0; x1, x2) + df(x0; x2, x0)

− df(x0; x2, x1),

gives all output equivalences M ∼O M. For example, if we take c = 0, d = −1/2,
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then

g(x0; x1, x2) = f0,−1/2(x0; x1, x2)

=
1

2
(−f(x0; x0, x1) + f(x0; x0, x2) + f(x0; x1, x0)

+f(x0; x1, x2) − f(x0; x2, x0) + f(x0; x2, x1)).

In terms of ordinary differential equations, if the model for a cell is f(x0; x1, x2) =

x0x1x
2
2 + x0, and we define

g(x0; x1, x2) = f0,−1/2(x0; x1, x2)

=
1

2
(−x2

0x
2
1 + x2

0x
2
2 + x3

0x1 + x0x1x
2
2 − x3

0x2 + x0x2x
2
1 + 2x0),

then x′ = f(x; x, y), y′ = f(y; x, y) and x′ = g(x; x, y), y′ = g(x; x, y) have identical

dynamics, even though the models f and g are quite different. Note, however, that

if f is a linear vector field, or is of the form f(x; y, z) = au(x; y) + bv(x; z), then

f = g. In particular, it seems we cannot usefully develop this idea using the

concept of linear self-equivalence [18].

Continuing with our choice of c = 0, d = −1/2, define the new cell class A⋆ as

in Figure 8.2. Although the new cell is different from the original cell A, when it

is incorporated in the network M, it will give the same dynamics.

This construction leads naturally to a number of observations and questions

and we conclude by briefly discussing some of these issues.

• To what extent can this process be reversed? That is, given a network of

‘complex’ cells, when is it equivalent to the same network but built of simpler
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+

+
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Figure 8.2: The cell A⋆

cells?

• Is there a way of choosing the specific output equivalence so as to protect

against failure of individual units comprising the new cells? For example, if

we build the network M from the cells A⋆, what is the effect on network

dynamics of the failure of a single A-cell in A⋆?

• Is there an optimal way of choosing the output equivalence so as to minimize

the effect of failure of individual units?

• Are there potential applications to numerical analysis (for example, in the

solution of partial differential equations)?

• There are also questions related to the effects of inflation (see Chapter 6, [4])

on A-cells in A⋆.
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• Another potentially interesting question is to extend the notion of input

equivalence to allow for nonlinear combinations of inputs. This would seem

to be of particular interest for scalar signalling networks and self-loops.

• Determining an estimate for the number of synchrony classes which increases

with inflation is also useful. Example 6.0.11 shows that even for a network

with a simple architecture, the number of synchrony classes can rapidly in-

crease.

• Another interesting problem is related to inflation of dynamically equivalent

networks. More precisely, whether there is a correspondence between the set

of inflations of two dynamically equivalent networks? The answer is NO and

we illustrate it with Example 8.0.5.

Example 8.0.5. Let M and N be as in Figure 4.1. The adjacency matrices of M

are M0 = I, M1 =




1 1

0 0


, and M2 =




0 0

1 1


 and N are N0 = I, N1 =




1 1

0 0


,

and N2 =




0 1

1 0


. Here, N2 = M1 + M2 −M0. Since both the cells in M have

self loops, M has an −→n = (n1, n2)-inflation for each −→n ∈ N2. But the condition

for existence of a strongly connected −→n -inflation of N is that n1 ≥ n2.
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Appendix

8.1 Relation between g and f in Example 5.1.24

Using Examples 5.1.17, 5.1.20, we get

g(x0; x1, · · · , x4, x5, x6) = h(x0; x1, · · · , x4, x5, x6, x0, x0)

=
∑

1≤j1<···<j4≤6

e(x0; xj1, · · · , xj4)

−2
∑

1≤j1<···<j3≤6

e(x0; x0, xj1 , xj2, xj3)

+3
∑

1≤j1<j2≤6

e(x0; x0, x0, xj1 , xj2)

−4
∑

1≤i1≤6

e(x0; x0, x0, x0, xj1)

+5 e(x0; x0, · · · , x0).

Using Equation 5.1.7 obtained in Example 5.1.22 (writing e in terms of f), we get

the following terms f(x0; xj1, xj2), f(x0; x0, xj2), f(x0; xj1, xj1), and f(x0; x0, x0),

for 1 ≤ j1 < j2 ≤ 6. Table 8.1 gives the coefficients of these terms.
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Term Coefficient

f(x0; xj1 , xj2)
1
4
(
(
4
2

)
− 2
(
4
1

)
+ 3) = 1

4

f(x0; xj1 , xj1) −1
8
(
(
5
3

)
− 2
(
5
2

)
+ 3
(
5
1

)
− 4) = −1

8

f(x0; x0, xj1)
1
4
(−2

(
5
2

)
+ 3.2.

(
5
1

)
− 4.3) = −1

2

f(x0; x0, x0)
1
4
(3
(
6
2

)
− 4.3.

(
6
1

)
+ 5.6) − 1

8
(−2

(
6
2

)
+ 3.2.

(
6
2

)
− 4.3.

(
6
1

)
+ 5.4) = 1

Table 8.1: Coefficients

Thus we obtain the relation (mentioned in Example 5.1.24)

g(x0; x1, · · · , x4, x5, x6) =
1

4

∑

1≤j1<j2≤6

f(x0; xj1 , xj2) + f(x0; x0, x0)

−1

8

∑

1≤j1≤6

f(x0; xj1, xj1) −
1

2

∑

1≤j1≤6

f(x0; x0, xj1).

With some more calculations, it can be checked that

x′1 = g(x1; x1, x1, x1, x2, x1, x2) = f(x1; x1, x2),

x′2 = g(x2; x2, x2, x3, x3, x2, x2) = f(x2; x2, x3),

x′3 = g(x3; x1, x1, x2, x2, x3, x3) = f(x3; x1, x2).
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