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Abstract

In this thesis, we are mainly concerned with the numerical solution of the two di-

mensional Helmholtz equation by an adaptive Interior Penalty Discontinuous Galerkin

(IPDG) method based on adaptively refined simplicial triangulations of the computa-

tional domain. The a posteriori error analysis involves a residual type error estimator

consisting of element and edge residuals and a consistency error which, however, can

be controlled by the estimator. The refinement is taken care of by the standard

bulk criterion (Dörfler marking) known from the convergence analysis of adaptive

finite element methods for linear second-order elliptic PDEs. The main result is a

contraction property for a weighted sum of the energy norm of the error and the es-

timator which yields convergence of the adaptive IPDG approach. Numerical results

are given that illustrate the quasi-optimality of the method.
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CHAPTER 1

Introduction

An a posteriori error analysis for the acoustic wave propagation problems is of prac-

tical significance to physicists and engineers particularly for providing reliable upper

bounds on the error that arises due to the fact that the exact solution is approxi-

mated by a discrete solution which is computed on a mesh consisting of grid points.

The phenomena of acoustic wave propagation is characterized by the following Helmholtz

equation:

∂2u

c2∂t2
= ∆u

The solution of this equation, whether achieved directly in the time domain or

whether limited to periodic frequency domain, always results in wave phenomena.
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CHAPTER 1. INTRODUCTION

Our convergence analysis is concerned with solutions in the frequency domain and

mathematically assume the form:

−∆u − κ2u = f (*)

where κ denotes the wavenumber and the quality of the numerical solution depends

significantly on it. One of the main challenges is in the accurate resolution of highly

oscillatory solutions to the Helmholtz equation for large wavenumber and an intuitive

idea to improve the accuracy is to consider a meshsize h which is small enough to

include the same number of grid points per wavelength.

It is known that for grids satisfying the mesh constraint κh . 1, the errors of

the finite element solution deteriorate as κ increases [8]. This non-robust behavior in

relation to κ is known as the pollution effect [8, 36]. Pioneering work was initiated by

Babuška and his collaborators to carefully analyze the pollution effect [8] in particular

a finite element error analysis in [11] revealed that the relative error e1 of the finite

element solution with respect to the H1-semi norm is bounded above by the sum of

error in the best approximation C1 and a second term C2 which is associated with

the pollution effect as shown below:

e1 ≤ ψC1 + κψ2C2 where ψ =
( κh
2N

)N

.

This sum is scaled by a factor ψ and so evidently for high wavenumber κ, this pollu-

tion error C2 dominates the upper bound and thus leads to the non-robust behavior

with respect to the wavenumber.

Intuitively, one can circumvent this difficulty by either decreasing the mesh size h

or increasing the polynomial order N both these approaches are constrained to the

3



CHAPTER 1. INTRODUCTION

limited computational resources at our disposal.

Furthermore, the presence of singularities arising in the problems necessitates the

introduction of an optimal adaptive mesh refinement. In this thesis, we propose

an adaptive Interior Penalty Discontinuous Galerkin (IPDG) Method using higher

order elements for resolving the Helmholtz equation with high wavenumber in two

dimensions. Our adaptive cycle depends on a residual-type error estimator that we

will introduce in chapter 3. Therein, we establish its reliability and efficiency.

This thesis is organized as follows: the second chapter gives a brief outline of the

adaptive algorithm with an emphasis on the marking and refinement step of the

adaptive cycle.

The heart of the thesis lies in the third chapter which we begin with a brief descrip-

tion of the screen problem and introduce its IPDG approximation with respect to a

shape regular family of simplicial triangulations. The adaptive mesh refinement is

based on a residual-type a posteriori error estimator which is shown to control the

energy norm of the discretization error as well as the consistency error that arises

due to the non-conformity of the Galerkin method.

Our convergence analysis involves establishing the reliability of the estimator, a re-

duction property for this estimator as well as a quasi-orthogonality result. As in

the convergence analysis for standard second-order elliptic problems (cf. [15, 41, 34])

establishing these three properties is crucial for proving a contraction property. How-

ever, the presence of a lower order term in the Helmholtz equation (∗) demands a

special treatment and to this end, we follow the approach as suggested in [29]. This

idea involves resorting to the conforming approximation of the Helmholtz equation

4



CHAPTER 1. INTRODUCTION

and employing an Aubin-Nitsche’s type duality argument. Finally, we prove the

contraction property which guarantees the convergence of the method.

The fourth chapter provides numerical validation for the proposed method based on

a range of test problems. In particular, we focus on the screen problem for which

the analytic solution is unknown.

Finally, our last chapter concludes this thesis with some possible future directions

including extending the analysis to three-dimensional time harmonic Maxwell’s equa-

tions.
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CHAPTER 2

Adaptive Cycle

The subject of error estimation and adaptive refinement necessary to achieve a spec-

ified accuracy was first introduced to the finite element field by Babuška and his

collaborators [6],[7]. He was the first to show that reasonable error estimation could

be achieved at a cost less than that of the original solution and he also defined the

possible paths to refinement namely h-refinement, which required mesh subdivision,

or p-refinement, where addition of higher order polynomial terms to the element form

was used, and finally hp-refinement, where a little of each procedure was used.

Even though adaptive finite element method was a fundamental tool in improving

the approximation of under resolved solutions, it is only recently in 1996 that Dörfler

6



2.1. SOLVE CHAPTER 2. ADAPTIVE CYCLE

[23] initiated the convergence analysis for standard second-order elliptic problems.

The adaptive algorithm consists of:

SOLVE → ESTIMATE → MARK → REFINE

The aim of this algorithm is to iteratively improve the accuracy of the computed

solution balancing this with the judicious use of number of unknowns and iterations

involved.

The steps ’MARK’ and ’REFINE’ in the adaptive cycle are independent of the

underlying variational problem. In this chapter, we briefly describe each of the

steps.

2.1 SOLVE

We seek a discrete solution uh in an appropriate finite element space Vh with respect

to a triangulation Th(Ω) of the computational domain Ω such that

A(uh, v) = ℓ(v), v ∈ Vh, holds.

Although it is a natural idea is to employ an iterative scheme to solving the complex

symmetric, linear systems, this topic deserves a special investigation and in this

thesis we rely on the accuracy of Matlab direct solver.

7



2.2. ESTIMATE CHAPTER 2. ADAPTIVE CYCLE

2.2 ESTIMATE

Based on the residual r(v) := A(uh, v) − ℓ(v), we obtain the error estimator ηh which

consists of local element and edge residuals. These residuals are indicators which

provide information about the regions in the domain where the numerical solution

uh is a poor approximation to the analytic solution u. Such an under resolution of

the computed solution can be attributed to the presence of local singularities for

instance, singularities which arise due to the presence of re-entrant corners.

Two desirable qualities we want ηh to possess are reliability and efficiency.

While an estimator is called reliable if it provides an upper bound for the error

u−uh in the energy norm up to data oscillations oscrelh , that is we can find Crel > 0,

independent of mesh size h of Th(Ω) satisfying

∥u− uh∥A ≤ Crel ηh + oscrelh .

Efficiency of the estimator guarantees the existence of Ceff > 0 independent of

mesh size h such that

ηh ≤ Ceff∥u− uh∥A + osceffh .

Our analysis assumes exact integration for the data of the problem and hence justi-

fies the absence of the data oscillation terms.

The upper estimate on the error is mandatory for reliability, i.e. to ensure that the

error is below a given tolerance. On the other hand, lower bounds for the error ensure

that the required tolerance is achieved with a nearly minimal amount of work and

thus, are indispensable for efficiency.

8



2.3. MARK CHAPTER 2. ADAPTIVE CYCLE

An estimator which is both reliable and efficient provides us with cheap and com-

putable upper and lower estimates for the discretization error.

2.3 MARK

Based on a given parameter θ ∈ [0, 1], we set a threshold and select edges and

elements (for refinement) whose indicators exceed this threshold.

There are several choices for setting this threshold for instance the marking of the

elements/edges is controlled by the indicator of the largest magnitude (Maximum

Strategy) or by an averaged indicator (Equidistribution Strategy). For other marking

strategies, we refer to [12].

Our algorithm however, relies on the marking strategy introduced by Dörfler in [23]

which will be explained in the following chapter.

2.4 REFINE

The final step refinement is realized by bisection i.e., each marked simplex is divided

into atleast two subsimplices. There are different bisection methods which depend

either upon the geometric structure of the triangulation (longest edge bisection)

or are mainly concerned with the underlying topological structure(newest vertex

bisection). The newest vertex bisection can be explained as below.

Given a marked triangle T = span{a1, a2, a3}, we fix a vertex and label it as the

newest vertex. The two children (elements) emanating from T share the new vertex

9



2.4. REFINE CHAPTER 2. ADAPTIVE CYCLE

Figure 2.1: Newest vertex bisection: Assign one of the vertices as the new vertex
a2, refinement is done by connecting a2 to the midpoint a∗ of the edge connecting a1
and a3.

a2 and are formed by splitting the edge opposite to this vertex. These children are

ordered as T1 = span{a1, a∗, a2} and T2 = span{a3, a∗, a2}.

The numerical implementation relies on the longest edge bisection. This bisection is

a particular case of the newest vertex bisection wherein the newest vertex is fixed as

the vertex that faces the longest edge. For a detailed explanation, we refer to [19]

and references therein.

10



CHAPTER 3

Convergence Analysis

Finite element methods for acoustic wave propagation problems such as (3.1a)-(3.1c)

have been widely studied in the literature (cf., e.g., [5, 18, 22, 37, 39] as well as the

survey article [24], the monographs [36, 38] and the references therein). In case of

large wavenumbers k, the finite element discretization typically requires fine meshes

for a proper resolution of the waves and thus results in large linear algebraic systems

to be solved. Moreover, the use of standard adaptive mesh refinement techniques

based on a posteriori error estimators is marred by the pollution effect [8, 36]. Re-

cently, Discontinuous Galerkin (DG) methods [21, 32, 44] have been increasingly

applied to wave propagation problems in general [20] and the Helmholtz equation

11
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in particular [3, 4, 25, 26, 27, 28] including hybridized DG approximations [30]. An

a posteriori error analysis of DG methods for standard second-order elliptic bound-

ary value problems has been performed in [2, 14, 16, 35, 40, 45], and a convergence

analysis has been provided in [15, 34, 41]. However, to the best of our knowledge

a convergence analysis for adaptive DG discretizations of the Helmholtz equation is

not yet available in the literature.

It is the purpose of this chapter to provide such a convergence analysis for an In-

terior Penalty Discontinuous Galerkin (IPDG) discretization of (3.1a)-(3.1c) based

on a residual-type a posteriori error estimator featuring element and edge residuals.

This chapter is organized as follows:

In section 3.2, we introduce the adaptive IPDG method, discuss the consistency

error due to the nonconformity of the approach, and present the residual a poste-

riori error estimator as well as the marking strategy (Dörfler marking) for adaptive

mesh refinement. Section 3.3 shows that the consistency error can be controlled

by the estimator, provides an estimator reduction property in the spirit of [17] and

establishes the reliability of the estimator. Another important ingredient of the con-

vergence analysis is a quasi-orthogonality result that will be dealt with in section 3.4.

The particular difficulty we are facing here is the proper treatment of the lower order

term in (3.1a) containing the wavenumber k. Adopting an idea from the convergence

analysis of adaptive conforming edge element approximations of the time-harmonic

Maxwell equation [49], we use the conforming approximation of (3.1a)-(3.1c) and

take advantage of an Aubin-Nitsche type argument (cf. Lemma (3.4.4)). Hence, the

quasi-orthogonality of the IPDG approximation can be established by invoking the

12
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associated conforming approximations (cf. Theorem 3.4.1). Combining the reliabil-

ity of the estimator, the estimator reduction property, and the quasi-orthogonality

result, in section 3.5 we prove convergence of the adaptive IPDG in terms of a con-

traction property for a weighted sum of the discretization error in the mesh dependent

energy norm and the error estimator.

3.1 Screen Problem

Let ΩD and ΩR be bounded polygonal domains in R2 such that ΩD ⊂ ΩR. We set

Ω := ΩR \ΩD and note that ∂Ω = ΓD∪ΓR where ΓD := ∂ΩD and ΓR := ∂ΩR. Given

complex valued functions f in Ω and g on ΓR, we consider the Helmholtz problem

−∆u− k2u = f in Ω, (3.1a)

∂u

∂νR
+ iku = g on ΓR, (3.1b)

u = 0 on ΓD, (3.1c)

which describes an acoustic wave with wavenumber k > 0 scattered at the sound-soft

scatterer ΩD. In (3.1b), νR denotes the exterior unit normal at ΓR and i stands for

the imaginary unit.

13
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3.2 The IPDG Method

The functions considered in this paper are complex-valued. For a complex num-

ber z ∈ C we denote by Re(z), Im(z) its real and imaginary part such that z =

Re(z) + iIm(z), z̄ := Re(z) − iIm(z) is the complex conjugate of z and |z| :=√
Re(z)2 + Im(z)2 stands for the absolute value. We further adopt standard no-

tation from Lebesgue and Sobolev space theory (cf., e.g., [48]). In particular, for

D ⊆ Ω we refer to L2(D) and Hs(D) as the Hilbert space of Lebesgue integrable

complex-valued functions inD with inner product (·, ·)0,D and associated norm ∥·∥0,D

and the Sobolev space of complex-valued functions with inner product (·, ·)s,D and

norm ∥ · ∥s,D. For Σ ⊆ ∂D and a function v ∈ Hs(D), we denote by v|Σ the trace of

v on Σ.

Under the following assumption on the data of the problem

f ∈ L2(Ω), g ∈ L2(ΓR), (3.2)

the weak formulation of (3.1a)-(3.1c) amounts to the computation of u ∈ V, V :=

H1
0,ΓD

(Ω) := {v ∈ H1(Ω) | v|ΓD
= 0} such that for all v ∈ V it holds

a(u, v)− k2c(u, v) + ik r(u, v) = ℓ(v). (3.3)

Here, the sesquilinear forms a, c, r and the linear functional ℓ are given by

a(u, v) :=

ˆ

Ω

∇u · ∇v̄ dx, c(u, v) :=

ˆ

Ω

uv̄ dx,

r(u, v) :=

ˆ

ΓR

uv̄ ds, ℓ(v) :=

ˆ

Ω

fv̄dx+

ˆ

ΓR

gv̄ ds.

14
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Remark 3.2.1 It is well-known that (3.3) satisfies a Fredholm alternative (cf., e.g.,

[42]). In particular, if k2 is not an eigenvalue of −∆ subject to the boundary condi-

tions (3.1b),(3.1c), for any f, g satisfying (3.2) there exists a unique solution u ∈ V .

In this case, the sesquilinear form â(·, ·) := a(·, ·) − k2c(·, ·) + ikr(·, ·) satisfies the

inf-sup conditions

inf
v∈V

sup
w∈V

|â(v, w)|
∥v∥1,Ω ∥w∥1,Ω

= inf
w∈V

sup
v∈V

|â(v, w)|
∥v∥1,Ω ∥w∥1,Ω

> β (3.4)

hold true with a positive constant β depending only on Ω and on the wavenumber k.

For the formulation of the IPDG method, we assume H to be a null sequence of

positive real numbers and (Th(Ω))h∈H a shape-regular family of simplicial triangu-

lations of Ω. For an element T ∈ Th(Ω), we denote by hT the diameter of T and

set h := max{hT | T ∈ Th(Ω)}. For D ⊂ Ω̄, we refer to Eh(D) as the set of

edges of T ∈ Th(Ω) in D. For E ∈ Eh(D), we denote by hE the length of E and

to ωE :=
∪
{T ∈ TH(Ω) | E ⊂ ∂T} as the patch consisting of the union of ele-

ments sharing E as a common edge. Moreover, PN(D), N ∈ N, stands for the set

of complex-valued polynomials of degree ≤ N on D. In the sequel, for two mesh

dependent quantities A and B we use the notation A . B, if there exists a constant

C > 0 independent of h such that A ≤ CB.

We introduce the finite element spaces

Vh := {vh : Ω̄ → C | vh|T ∈ PN(T ), T ∈ TH(Ω)}, (3.5a)

Vh := {vh : Ω̄ → C2 | vh|T ∈ PN(T )
2, T ∈ TH(Ω)}. (3.5b)

Functions vh ∈ Vh are not continuous across interior edges E ∈ EH(Ω). For E :=

T+ ∩ T−, T± ∈ TH(Ω), we denote by {vh}E the average of vh on E and by [vh]E the

15
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jump of vh across E according to

{vh}E :=
1

2
(vh|E∩T+ + vh|E∩T−), [vh]E := vh|E∩T+ − vh|E∩T− , E ∈ Eh(Ω),

and we define {vh}E, [vh]E, E ∈ Eh(Γ), accordingly.

We introduce a mesh dependent sesquilinear form aIPh : Vh × Vh → C by means of

aIPh (uh, vh) :=
∑

T∈Th(Ω)

(∇uh,∇vh)0,T −
∑

E∈Eh(Ω∪ΓD)

({∂uh
∂νE

}E, [vh]E)0,E (3.6)

−
∑

E∈Eh(Ω∪ΓD)

([uh]E, {
∂vh
∂νE

}E)0,E +
∑

E∈Eh(Ω∪ΓD)

α

hE
([uh]E, [vh]E)0,E,

where α > 0 is a suitably chosen penalty parameter.

The IPDG method for the approximation of the solution of (3.1a)-(3.1c) requires the

computation of uh ∈ Vh such that for all vh ∈ Vh it holds

aIPh (uh, vh)− k2c(uh, vh) + ik r(uh, vh) = ℓ(vh). (3.7)

We further define uch ∈ V c
h := Vh∩H1

0,ΓD
(Ω) as the conforming finite element approx-

imation of (3.1a)-(3.1c) satisfying

a(uch, v
c
h)− k2 c(uch, v

c
h) + ik r(uch, v

c
h) = ℓ(vch), vch ∈ V c

h . (3.8)

Remark 3.2.2 If k2 is not an eigenvalue of −∆ subject to the boundary conditions

(3.1b),(3.1c), for sufficiently large penalty parameter α and sufficiently small mesh

size h, the equations (3.7) and (3.8) have unique solutions uh ∈ Vh and uch ∈ V c
h that

continuously depend on the data. In particular, there exists h∗ ∈ H, h∗ ≤ 1, such
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that for h ≤ h∗ the sesquilinear forms â|V c
h×V c

h
inherit (3.4), whereas the sesquilinear

forms âIPh (·, ·) := aIPh (·, ·)−k2c(·, ·)+ ik r(·, ·) satisfy analogues of (3.4) with positive

inf-sup constants βh being uniformly bounded away from zero. Moreover, (3.7) is

consistent with (3.3) in the sense that the solution u ∈ V of (3.3) satisfies (3.7) for

vh = vch ∈ V c
h . In the sequel, we will always assume that k2 is not an eigenvalue of

−∆ and h is sufficiently small such that (3.7) and (3.8) admit unique solutions.

We note that aIPh (·, ·) is not well defined on V . This can be remedied by means of a

lifting operator L : V + Vh → Vh according to

(L(v),vh)0,Ω :=
∑

E∈Eh(Ω∪ΓD)

([v]E, νE · {vh}E)0,E, v ∈ V + Vh, vh ∈ Vh. (3.9)

As has been shown, e.g., in [47], the lifting operator is stable in the sense that there

exists a constant CL > 0 depending only on the shape regularity of the triangulations

such that

∥L(v)∥20,Ω ≤ CL

∑
E∈Eh(Ω∪ΓD)

h−1
E ∥[v]E∥20,E, v ∈ V + Vh. (3.10)

For completeness we provide a proof below:

Proof: In view of (3.9) and a straightforward application of the Cauchy Schwarz

17
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inequality yields

∥L(v)∥0,Ω = sup
w∈V 2

h

( ∑
E∈Eh(Ω∪ΓD)

([v]E, νE · {w}E)0,E
)

∥w∥0,Ω

≤ sup
w∈V 2

h

( ∑
E∈Eh(Ω∪ΓD)

h−1
E ∥[v]E∥2

)1/2 ( ∑
E∈Eh(Ω∪ΓD)

hE∥w∥20,E
)1/2

∥w∥0,Ω

≤
( ∑

E∈Eh(Ω∪ΓD)

h−1
E ∥[v]E∥2

)1/2

sup
w∈V 2

h

( ∑
T∈Th(Ω)

C2
L∥w∥20,T

)1/2

∥w∥0,Ω

where CL > 0 depends upon the shape regularity of the triangulation.�

Mesh Dependent Norms and their Equivalence

On V + Vh, we define the mesh dependent DG norm

∥v∥1,h,Ω :=
( ∑

T∈Th(Ω)

∥∇v∥20,T +
∑

E∈Eh(Ω∪ΓD)

α h−1
E ∥[v]E∥20,E

)1/2

, (3.11)

It is well known (cf., e.g., [15] and the references therein) that for sufficiently

large penalty parameter α ,the DG-norm and the mesh dependent energy norm are

equivalent. We provide the proof below for completeness.

Lemma 3.2.1 There exist constants α1 > 0, 0 < γ < 1, and C1 > 0 such that for

all α ≥ α1 and v ∈ V + Vh it holds

aIPh (v, v) ≥ γ ∥v∥21,h,Ω, (3.12a)
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whereas for all α ≥ 1 and v, w ∈ V + Vh we have

aIPh (v, w) ≤ C1 ∥v∥1,h,Ω ∥w∥1,h,Ω. (3.12b)

Proof: For (3.12a), we can write aIPh (v, v) as

aIPh (v, v) =
∑

T∈Th(Ω)

∥∇v∥20,T − 2
∑

T∈Th(Ω)

Re (L(v),∇v)0,T +
∑

E∈Eh(Ω∪ΓD)

α h−1
E ∥[v]E∥20,E

≥
∑

T∈Th(Ω)

∥∇v∥20,T − 2
(
C2

L

∑
E∈Eh(Ω∪ΓD)

h−1
E ∥[v]E∥20,E +

1

4

∑
T∈Th(Ω)

∥∇v∥20,T
)

+
∑

E∈Eh(Ω∪ΓD)

α h−1
E ∥[v]E∥20,E using Young’s inequality and (3.10)

=
1

2

∑
T∈Th(Ω)

∥∇v∥20,T + (α− 2C2
L)

∑
E∈Eh(Ω∪ΓD)

h−1
E ∥[v]E∥20,E.

Setting α1 = 4C2
L and γ = 1

2
, and in view of (3.11) we conclude (3.12a).

Regarding the inequality (3.12b), a straightforward application of Cauchy-Schwarz

inequality to each term in aIPh (v, w) and using (3.10) gives us the required inequality.

�

The DG approach is a nonconforming finite element method, since Vh is not contained

in H1
0,ΓD

(Ω) due to the lack of continuity across interior edges E ∈ Eh(Ω) and due to

the enforcement of the homogeneous Dirichlet boundary condition (3.1c) by penalty

terms on the edges E ∈ Eh(ΓD). The nonconformity is measured by the consistency

error

ξ := inf
vch∈V

c
h

( ∑
T∈Th(Ω)

∥∇(uh − vch)∥20,T
)1/2

. (3.13)
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We refer to ΠC
h : Vh → V c

h as the Clément-type quasi-interpolation operator intro-

duced in [15] such that for some constant CA > 0 depending only on the shape

regularity of the triangulations it holds

∑
|β|

∑
T∈Th(Ω)

∥Dβ(uh − ΠC
h uh)∥20,T ≤ (3.14)

CA

∑
E∈Eh(Ω∪ΓD)

h
1−2|β|
E ∥[uh]E∥20,E, |β| ∈ {0, 1}.

It follows from (3.14) that

ξ . ηh,c, (3.15)

ηh,c ≡ ηh,c(uh) :=
( ∑

E∈Eh(Ω∪ΓD)

η2E,c

)1/2

, ηE,c := h
−1/2
E ∥[uh]E∥0,E.

Lemma 3.2.2 Let uh ∈ Vh and uch ∈ V c
h be the solution of (3.7) and (3.8), respec-

tively, and let unch := uh − uch. Then, for α ≥ 1 there exists a positive constant Cnc,

depending on β, C1, and CA, such that

∑
T∈Th(Ω)

∥unch ∥21,T ≤ Cnc α η2h,c. (3.16)

Proof: Obviously, we have

∑
T∈Th(Ω)

∥unch ∥21,T ≤ 2
∑

T∈Th(Ω)

(
∥uh − ΠC

h uh∥21,T + ∥uch − ΠC
h uh∥21,T

)
. (3.17)

It follows from (3.8) that uch − ΠC
h uh satisfies

â(uch − ΠC
h uh, v

c
h) = ℓ(vch)− â(ΠC

h uh, v
c
h), vch ∈ V c

h .
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Hence, in view of Remark 3.2.2 there exists a positive constant Cβ such that

∥uch − ΠC
h uh∥1,Ω ≤ Cβ sup

vch ̸=0

|ℓ(vch)− â(ΠC
h uh, v

c
h)|

∥vch∥1,Ω
. (3.18)

Since uh satisfies (3.7) for vh = vch and âh|V c
h×V c

h
= â|V c

h×V c
h
, it holds

ℓ(vch)− â(ΠC
h uh, v

c
h) = âh(uh − ΠC

h uh, v
c
h). (3.19)

Using (3.19) in (3.18) as well as (3.12b), we find

∥uch − ΠC
h uh∥1,Ω ≤ CβC1 ∥uh − ΠC

h uh∥1,h,Ω. (3.20)

The assertion then follows from (3.17), (3.20), and (3.14). �

3.3 A Posteriori Error Analysis

We consider the residual-type a posteriori error estimator

ηh :=
( ∑

T∈Th(Ω)

η2T +
∑

E∈Eh(Ω∪ΓD)

η2E,1 +
∑

E∈Eh(ΓR)

η2E,2

)1/2

, (3.21)

consisting of the element residuals

ηT := hT ∥f +∆uh + k2uh∥0,T , T ∈ Th(Ω), (3.22)

and the edge residuals

ηE,1 := hE ∥[∂uh
∂νE

]E∥0,E, E ∈ Eh(Ω ∪ ΓD), (3.23a)

ηE,2 := hE ∥g − ∂uh
∂νE

− ikuh∥0,E, E ∈ Eh(ΓR). (3.23b)
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As marking strategy for refinement we use Dörfler marking [23], i.e., given a constant

0 < θ < 1, we compute a set M1 of elements T ∈ Th(Ω) and a set M2 of edges

E ∈ Eh(Ω̄) such that

θ ηh ≤ η̃h :=
( ∑

T∈M1

η2T +
∑

E∈M2

(η2E,1 + η2E,2)
)1/2

. (3.24)

Once the sets Mi, 1 ≤ i ≤ 2, have been determined, a refined triangulation is

generated based on newest vertex bisection [46].

The following result shows that the upper bound for the consistency error can

be controlled by the error estimator (cf. [15]). The proof follows the arguments of

Lemma 3.6 in [15], but will be given for completeness.

Lemma 3.3.1 There exists a constant CJ > 0, depending only on the shape regu-

larity of Th(Ω), such that for α ≥ α2 := 2CJ/γ it holds

α η2h,c ≤ 2
CJ

γ
η2h. (3.25)

Proof: In view of (3.12a) and (3.7) with vh = uh − ΠC
h uh, we obtain

α η2h,C ≤ ∥uh − ΠC
h uh∥21,h,Ω ≤ γ−1 aIPh (uh − ΠC

h uh, uh − ΠC
h uh) (3.26)

= γ−1
( ∑

T∈Th(Ω)

(f + k2uh, uh − ΠC
h uh)0,T

+
∑

E∈Eh(ΓR)

(g − ikuh, uh − ΠC
h uh)0,E − aIPh (ΠC

h uh, uh − ΠC
h uh)

)
.

Observing L(ΠC
h uh) = 0, [ΠC

h uh]E = 0, for the last term on the right-hand side of
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(3.26) it follows that

aIPh (ΠC
h uh, uh − ΠC

h uh) =
∑

T∈Th(Ω)

(∇ΠC
h uh,∇(uh − ΠC

h uh))0,T (3.27)

−
∑

T∈Th(Ω)

(L(uh),∇ΠC
h uh)0,T =

∑
T∈Th(Ω)

(∇uh,∇(uh − ΠC
h uh))0,T

−
∑

T∈Th(Ω)

∥∇(uh − ΠC
h uh)∥20,T −

∑
T∈Th(Ω)

(L(uh),∇(ΠC
h uh))0,T .

An elementwise application of Green’s formula reveals

aIPh (ΠC
h uh, uh − ΠC

h uh) =
∑

T∈Th(Ω)

(−∆uh, uh − ΠC
h uh)0,T (3.28)

+
∑

E∈Eh(Ω∪ΓD)

(νE · [∇uh]E, {uh − ΠC
h uh}E)0,E +

∑
E∈Eh(ΓR)

(g − ikuh, uh − ΠC
h uh)0,E

−
∑

T∈Th(Ω)

∥∇(uh − ΠC
h uh)∥20,T +

∑
T∈Th(Ω)

(L(uh),∇(uh − ΠC
h uh))0,T .

Using (3.27) and (3.28) in (3.26), straightforward estimation yields

aIPh (uh − ΠC
h uh, uh − ΠC

h uh) . ηh

(( ∑
T∈Th(Ω)

h−1
T ∥uh − ΠC

h uh∥20,T
)1/2

(3.29)

+
( ∑

E∈Eh(Ω∪ΓD)

h−1
E ∥uh − ΠC

h uh∥20,E
)1/2)

+
∑

T∈Th(Ω)

∥∇(uh − ΠC
h uh)∥20,T

+
( ∑

T∈Th(Ω)

∥L(uh)∥20,T
)1/2( ∑

T∈Th(Ω)

∥∇(uh − ΠC
h uh)∥20,T

)1/2

.

The stability (3.10) of the extension operator L and the local approximation prop-

erties (3.14) of ΠC
h imply the existence of CJ > 0 such that

α η2h,c ≤
CJ

γ

(
η2h + η2h,c

)
, (3.30)

which readily leads to the assertion.�

As a by-product of the preceding lemma we obtain the following results:
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Corollary 3.3.1 Let uh ∈ Vh be the IPDG solution of (3.7), let uch ∈ V c
h be the

solution of (3.8), and let unch := uh − uch. Then, there exists a constant Cce > 0,

depending on γ, Cγ, and CJ , such that

∥unch ∥21,h,Ω ≤ Cce

α
η2h. (3.31)

Proof: With Cce := (2(1 + CncCJ)/γ the assertion is an immediate consequence of

Lemma 3.2.2 and Lemma 3.3.1.�

Corollary 3.3.2 Let Th(Ω) be a simplicial triangulation obtained by refinement from

TH(Ω), and let uh ∈ Vh, uH ∈ VH and ηh, ηH be the associated IPDG solutions

of (3.7) and error estimators, respectively. Moreover, let uch ∈ V c
h and ucH ∈ V c

H

be the conforming approximations of (3.1a)-(3.1c) according to (3.8). Then, for

unch := uh − uch and uncH := uH − ucH we have

∥unch − uncH ∥21,h,Ω ≤ 4
Cce

α

(
η2h + η2H

)
. (3.32)

Proof: The triangle inequality yields

∥unch − uncH ∥21,h,Ω ≤ 2
(
∥unch ∥21,h,Ω + ∥uncH ∥21,h,Ω

)
. (3.33)

Taking

∑
E∈Eh

1

hE
∥[uncH ]E∥20,E ≤ 2

∑
E∈EH

1

HE

∥[uncH ]E∥20,E
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into account and using Corollary 3.3.1 with h replaced by H, we find

∥uncH ∥21,h,Ω ≤ 2
Cce

α
η2H . (3.34)

We conclude by using (3.32) and (3.34) in (3.33).�

The residual estimator ηh has the following monotonicity property

ηh ≤ ηH (3.35)

for all refinements Th(Ω) of TH(Ω) . The latter can be used to prove the following

estimator reduction result which will be strongly used for the contraction property

in section 3.5.

Lemma 3.3.2 Let Th(Ω) be a simplicial triangulation obtained by refinement from

TH(Ω), and let uh ∈ Vh, uH ∈ VH , and ηh, ηH , η̃H be the associated IPDG solutions

and error estimators, respectively. Then, for any τ > 0 there exists a constant

Cτ > 0, depending only on the shape regularity of the triangulations, such that

η2h ≤ (1 + τ)
(
η2H − (1− 2−1/2) η̃2H

)
+ Cτ

∑
T∈Th(Ω)

∥∇(uh − uH)∥20,T . (3.36)

Proof: The proof can be done along the same lines as the proof of Corollary 3.4 in

[17].

For T ∈ Th(Ω), we set the following notation:

η2h(uh, T ) := η2T (uh) +
∑

E∈E(T )∪E(T∩ΓD)

η2E,1(uh) +
∑

E∈E(T )∪E(T∩ΓR)

η2E,2(uh)
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where the element and edge residuals are:

ηT (uh) := hT ∥f +∆uh + k2uh∥0,T ,

ηE,1(uh) := hE ∥[∂uh
∂νE

]E∥0,E, E ∈ E(T ) ∪ E(T ∩ ΓD),

ηE,2(uh) := hE ∥g − ∂uh
∂νE

− ikuh∥0,E, E ∈ E(T ) ∪ E(T ∩ ΓR).

By a straightforward application of the triangle’s inequality, we have:

ηT (uh, T ) ≤ ηT (uH , T ) + hT ∥∆w + κ2w∥0,T +
∑

E∈E(T )∪E(T∩ΓD)

hE ∥[ ∂w
∂νE

]E∥0,E

+
∑

E∈E(T )∪E(T∩ΓR)

hE ∥ ∂w
∂νE

+ ikw∥0,E where w = uh − uH .

By invoking local inverse estimates for the edge and element terms, we can find a

constant C ≡ C(k,Ω) > 0 such that the following estimate:

ηT (uh, T ) ≤ ηT (uH , T ) + C
∑

T ∗∈wE

∥∇(uh − uH)∥0,T ∗

holds.

Now,

η2T (uh, T ) ≤ η2T (uH , T ) + 2 C ηT (uH , T )
∑

T ∗∈wE

∥∇(uh − uH)∥0,T ∗

+ C2
( ∑

T ∗∈wE

∥∇(uh − uH)∥0,T ∗

)2

≤ (1 + τ)η2T (uH , T ) + (1 + τ−1)C2
( ∑

T ∗∈wE

∥∇(uh − uH)∥0,T ∗

)2

using Young’s inequality with constant τ > 0.

Futhermore, summing over all the elements, employing the finite overlap property of

patches wT , we obtain

η2h(uh, Th) . (1 + τ)η2h(uH , Th) + C (1 + τ−1)
∑

T∈Th(Ω)

∥∇(uh − uH)∥20,T . (3.37)
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For TH ∈ TH ,

set

Mh(TH) := {T ∈ Th|T ⊂ TH} and Mh :=
∪

TH∈TH

Mh(TH).

As a consequence of refinement by bisection,

∑
T∈Mh(TH)

η2h(uH , T ) ≤ 2−1/2 η2H(uH , TH). (*)

Obviously, Th \Mh = TH \M, where M is the collection of elements and edges

in TH which are marked for refinement.

Thus in view of (*),

η2h(uH , Th) =
∑

T∈Th\Mh

η2h(uH , T ) +
∑

T∈Mh

η2h(uH , T )

≤
∑

T∈TH\M

η2h(uH , T ) + 2−1
∑
T∈M

η2h(uH , T )

≤
∑
T∈TH

η2h(uH , T ) − (1− 2−1)
∑
T∈M

η2h(uH , T ).

Replacing η2h(uH , Th) in (3.37) by the upper bound obtained above, we can conclude

(3.36).�

Corollary 3.3.3 Under the same assumptions as in Lemma 3.3.2 let τ(θ) := (1 +

τ)(1− 2−1/2)θ with θ from (3.24). Then, it holds

η2h ≤ τ(θ) η2H + Cτ

∑
T∈Th(Ω)

∥∇(uh − uH)∥20,T . (3.38)
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The proof is a direct consequence of (3.24) and (3.36).

In the next couple of subsections, we establish the reliability and efficiency of the

estimator which essentially allows us to conclude the equivalence of the discretization

error in the DG norm and the estimator.

We have assumed the exact integration for the data of the problem and as a result

the data oscillation terms which arose in [15], [34], and [41] donot appear in our

estimates.

3.3.1 Reliability

Theorem: Let u ∈ V and uh ∈ Vh be the solution of (3.3) and (3.7), respectively,

and let ξ and ηh, ηh,C be the consistency error, the a posteriori error estimator, and

the jump term as given by (3.13),(3.21), and (3.15). Then, there exists a constant

Crel > 0, depending only on the shape regularity of the triangulations and the wave

number κ, such that there holds

aIPh (u− uh, u− uh) ≤ Crel η
2
h. (3.39)

Proof: The discrete analogue of (3.4) implies

∥u− uh∥1,h,Ω ≤β−1 sup
0 ̸=vh∈Vh

|âIPh (vh, u− uh)|
∥vh∥1,h,Ω

≤C âIPh (u− uh, u− uh)
1/2.
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And as a consequence of (3.12b) ,

aIPh (u− uh, u− uh) . âIPh (u− uh, u− uh). (3.40)

In the remainder of this proof, we show that Crel η
2
h is an upper estimates for

âIPh (u− uh, u− uh) .

To this end, we follow the same approach as in ([15], Lemma 3.1) which involves

decomposing uh ∈ Vh as

uh = uch + unch

where unch = uh − uch denotes the âIPh (., .)-orthogonal complement of uch ∈ V c
h in Vh,

and considering

âIPh (u− uh, u− uh) =â
IP
h (u− uh, u− uch − unch )

=âIPh (u− uh, v − πc
hv) + âIPh (u− uh, π

c
hv) − âIPh (u− uh, u

nc
h )

=âIPh (u− uh, v − πc
hv) − âIPh (u− uh, u

nc
h ) where v = u− uch ∈ V.

By applying the Green’s formula elementwise,

âIPh (u− uh, v − πc
hv) =

∑
T∈Th(Ω)

(f +∆uh + κ2uh, v − πc
hv)0,T

−
∑

E∈Eh(Ω∪ΓD)

(νE · [∇uh]E, , v − πc
hv)0,E

+
∑

E∈Eh(ΓR)

(g − ∂u/∂Eν − iκu, v − πc
hv)0,E

−
∑

T∈Th(Ω)

(L(uh),∇(v − πc
hv))0,T .
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Observing that

∥unch ∥2 ≤ 1

γ
aIPh (unch , u

nc
h )

=
1

γ
inf

wc
h∈V

c
h

aIPh (uh − wc
h, u

c
h − wc

h)

≤ 1

γ
aIPh ((uh − πc

huh, uh − πc
huh)

≤ C1

γ
∥uh − πc

huh∥2,

the second term becomes

âIPh (u− uh, u
nc
h ) ≤ âIPh (u− uh, u− uh)

1/2∥unch ∥

≤ 1

4
âIPh (u− uh, u− uh) + ∥unch ∥2

≤ 1

4
âIPh (u− uh, u− uh) + C ξ2,

following a simple application of Young’s inequality.

Collecting all the upper bounds obtained, allows us to conclude the reliability of

the estimator. �

3.3.2 Efficiency

We provide a lower bound for the discretization error in terms of the estimator ηh.

For this purpose, we make use of bubble functions associated with the edges and

triangles of Th(Ω).

For a given triangle T ∈ Th(Ω) with barycentric coordinates λi 1 ≤ i ≤ 3, we define
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a triangle-bubble function ψT as

ψT := 27 λ1 λ2 λ3.

It is obvious that the support of ψT resides in the interior of T and that within T, ψT

is positive with ∥ψT∥∞ = 1.

Also, for an edge E ∈ ∂T associated with the barycentric coordinates λ1, λ2, we

introduce an edge bubble function ψE acording as:

ψE := 4 λ1 λ2.

Extension of ψE to T : Clearly, for any other edge E ′ ∈ ∂T, ψE|E′ = 0. Further-

more, function pE defined on the edge E can be extended to pT whole triangle T by

associating to every x ∈ T , a unique xE ∈ E such that x − xE is parallel to a fixed

edge E ′ ̸= E and satisfies pT (x) = pE(xE).

Theorem: Let Th(Ω) be a triangulation of Ω and suppose that u ∈ V and uh ∈ Vh

are solutions to (3.3) and (3.7), respectively.

Then, there exists Ce > 0 depending on the shape regularity of the mesh and the

wave number κ such that:

Ce η
2
h . ∥u− uh∥21,h,Ω

Proof: The proof is in the same spirit as [Theorem 3.2, [40]] which involves

establishing the local efficiency for the element and edge residuals.

We invoke the bubble function ψT with support in T ∈ T (Ω), and observe that since
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ψT > 0 on the interior of T,
( ´

T

(.)2ψT

)1/2

can be thought of as a norm on L2(T )

which is equivalent to the L2−norm on T thereby guaranteeing the existence of a

constant C > 0 such that

C

ˆ
T

(f +∆uh + κ2uh)
2 dx ≤

ˆ
T

(f +∆uh + κ2uh)
2ψT dx

holds.

An application of Green’s formula reveals,

ˆ
T

(f +∆uh + κ2uh︸ ︷︷ ︸
ph

)2ψT dx

=

ˆ
T

fphψT dx+

ˆ
T

∆uh(phψT ) dx + κ2
ˆ
K

uh(phψT ) dx

=

ˆ
T

−(∆u+ κ2 u)(phψT ) dx −
ˆ
T

∇uh∇(phψT ) dx +

κ2
ˆ
K

uh(phψT ) dx

=

ˆ
T

∇(u− uh)∇(phψT ) dx− κ2
ˆ
T

(u− uh)(phψT ) dx.

We now obtain upper estimates for each of these terms. Using Young’s inequality

and an inverse inequality, we have

ˆ
T

∇(u− uh)∇(phψT ) dx ≤ ∥∇(u− uh)∥T ∥∇(phψT )∥T

≤ 1

2ε h2T
∥∇(u− uh)∥2T +

Cε

2
∥phψT∥2T

κ2(u− uh, phψT ) ≤
κ2 c

2εh2T
∥∇(u− uh)∥2 +

Cε

2
∥phψT∥2.

Thus taking ε = 1/2, we obtain

h2T

ˆ
T

(f +∆uh + κ2uh)
2 dx ≤ 4κ2∥∇(u− uh)∥2T .
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Regarding the edge residuals, we consider the bubble function ψE associated with

the interior edge E shared by the two elements T1 and T2 and naturally extend ψE

to ψT1∪T2 defined over T1 ∪ T2. We also extend [ ∂uh

∂νE
]E to T1 ∪ T2 via the function ϕ

which is defined as follows,

ϕ(x) = [
∂uh
∂νE

]EϕE(xE)

with ϕE denoting a linear function that associates to every x ∈ T , a unique xE on

E satisfying

inf
x′
E∈E

d(x, xE) = d(x, x′E)

with d denoting the Euclidean metric on T . In other words, ϕE extends along the

normals to E.

Associated with T1 ∪ T2, we use the following inequality which states that for any

w ∈ H1
0 (Ω), there holds

hE∥w∥20,T1∪T2
.

2∑
i=1

hTi
∥w∥20,Ti

. (*)

The following inequality (**) holds as a consequence of the definition of ϕ,

∥ϕ2∥T =

ˆ

E

[
∂uh
∂νE

]2EϕE(xE)
2 dxE ≤ hE ∥[∂uh

∂νE
]E∥20,E. (**)
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Set v = ψT1∪T2ϕ and in view of (*) we have,

hE

ˆ
E

|[∂uh
∂νE

]E|2 ds = hE

( ˆ
T1∪T2

(f +∆uh + κ2uh)vdx−
ˆ

T1∪T2

∇(u− uh)∇v dx

+ κ2
ˆ

T1∪T2

(u− uh)vdx
)

≤
2∑

i=1

ε−1

2

(
h2Ti

∥f +∆uh + κ2uh∥20,Ti
+ κ2∥u− uh∥20,Ti

+

∥∇(u− uh)∥20,Ti

)
+

ε

2

2∑
i=1

(
(1 + κ2)∥v∥2 + ∥∇v∥2

)
.

Once again we take advantage of the following equivalence of the L2-norm on E and

the weighted norm
( ´

E

(.)2ψE

)1/2

c∥∂uh
∂νE

∥20,E ≤
ˆ
E

[
∂uh
∂νE

]2ψE ds

and use the following upper bound which is established using (**)

∥v∥2 = ∥ψT1∪T2ϕ∥2 ≤ ∥ϕ∥2 . hE∥[
∂uh
∂νE

]E∥20,E

as well as an inverse inequality to obtain

hE∥[
∂uh
∂νE

]E∥20,E .
2∑

i=1

∥∇(u− uh)∥20,Ti
.

Similarly, if E is an edge living on the Dirichlet part of the boundary ΓD, we follow

the same argument as above with the convention that [ ∂uh

∂νE
]E = ∂uh

∂νE
to obtain

hE∥[
∂uh
∂νE

]E∥20,E . ∥∇(u− uh)∥20,T .
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Lastly, for edges on the boundary ΓR of the exterior domain, we use the edge

bubble function ψE associated with E and set

v = (g − iκuh −
∂uh
∂νE

)T̃ψT̃

where ψT̃ denotes the extension of ψE to the element T containing the edge E and

letting (g − iκuh − ∂uh

∂νE
)T̃ denote the extension of (g − iκuh − ∂uh

∂νE
) to T so that the

local residual can be represented as

hE ∥g − iκuh −
∂uh
∂νE

∥2E = hE

(ˆ
T

∇(u− uh)∇ v dx −
ˆ

T

(f +∆uh + κ2uh)v dx

− κ2
ˆ

T

(u− uh)v dx + iκ

ˆ

E

(u− uh)v ds
)
.

We use the same estimates as before to obtain an upper bound in terms of

∥∇(u− uh)∥20,T .�

3.4 Quasi-orthogonality

Besides the reliability of the estimator and the estimator reduction result, a quasi-

orthogonality property is a further important ingredient of the convergence analysis

(cf. [15, 41, 34]). Here, the derivation of such a property is complicated due to the

presence of the lower order term in the Helmholtz equation (3.1a). Adopting an idea

from [29] (cf. also [49]) for the time-harmonic Maxwell equations, we resort to an

Aubin-Nitsche type argument for the associated conforming approximation of the

screen problem. As will be seen below, this additionally involves the error between

the IPDG approximation and its conforming counterpart.
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3.4.1 Mesh Perturbation Result

In the convergence analysis of IPDGmethods for second-order elliptic boundary value

problems, mesh perturbation results estimating the coarse mesh error in the fine mesh

energy norm from above by its coarse mesh energy norm have played a central role in

the convergence analysis as a prerequisite for establishing a quasiorthogonality result

(cf., e.g., [15, 34, 41]). Here, we provide the following mesh perturbation result:

Lemma 3.4.1 Let Th(Ω) be a simplicial triangulation obtained by refinement from

TH(Ω). Then, for any 0 < ε1 < 1 and v ∈ V + VH it holds

aIPh (v, v) ≤ (1 + ε1) a
IP
H (v, v) +

(CL

γε1
+ 1

) (
η2h,C + η2H,C

)
. (3.41)

Proof: For v ∈ V + VH we have

aIPh (v, v) =
∑

T∈Th(Ω)

∥∇v∥20,T +
∑

E∈Eh(Ω∪ΓD)

α

hE
∥[v]E∥20,E (3.42)

− 2
∑

T∈Th(Ω

(
(Re(L(v)),Re(∇v))0,T + (Im(L(v)), Im(∇v)0,T

)
.

Obviously, the following relationships hold true

∑
T∈Th(Ω)

|v|21,T =
∑

T∈TH(Ω)

|v|21,T , (3.43a)

∑
E∈Eh(Ω∪ΓD)

α

hE
∥[v]E∥20,E,h ≤ 2

∑
E∈EH(Ω∪ΓD)

α

HE

∥[v]E∥20,E,H . (3.43b)
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Using (3.43a) in (3.42), we find

aIPh (v, v) = aIPH (v, v) +
∑

E∈Eh(Ω∪ΓD)

α

hE
∥[v]E∥20,E −

∑
E∈EH(Ω∪ΓD)

α

HE

∥[v]E∥20,E (3.44)

− 2
∑

T∈Th(Ω)

(
(Re(L(v)),Re(∇v))0,T + (Im(L(v)), Im(∇v))0,T

)
+ 2

∑
T∈TH(Ω)

(
(Re(L(v)),Re(∇v))0,T + (Im(L(v)), Im(∇v))0,T

)
.

The assertion follows by using Young’s inequality in (3.44) and taking (3.10),(3.12a),

and (3.43a),(3.43b) into account.�

3.4.2 Lower order Term

The following result, which will be strongly needed in the derivation of the quasi-

orthogonality result (cf. Theorem 3.4.1 below), is concerned with an estimate of the

lower order term

2 k2 Re(c(u− uch, u
c
h − ucH) + ikr(u− uch, u

c
h − ucH))

where uch ∈ V c
h , u

c
H ∈ V c

H are the conforming approximations of (3.3). The proof uses

the following regularity assumption:

(A) The solution u of (3.3) is (1 + r)-regular for some r ∈ (1/2, 1], i.e., it satisfies

u ∈ V ∩H1+r(Ω) and for some positive constant C it holds

∥u∥1+r,Ω ≤ C
(
∥f∥0,Ω + ∥g∥0,ΓR

)
. (3.45)
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Lemma 3.4.2 Let Th(Ω) be a simplicial triangulation obtained by refinement from

TH(Ω) and let uch ∈ V c
h , u

c
H ∈ V c

H be the conforming approximations of (3.3). Then,

under assumption (A), there exists a constant CLT > 0, depending on the local

geometry of the triangulations, such that

2Re( k2 c(u− uch, u
c
H − uch) + ikr(u− uch, u

c
H − uch)) ≤ (3.46)

CLT hr
(
|u− uch|21,Ω + |ucH − uch|21,Ω

)
.

Proof: Using a trace inequality, by straightforward estimation we deduce the exis-

tence of a constant CL1 > 0 such that

2 k2 Re(c(u− uch, u
c
H − uch) + ik r(u− uch, u

c
H − uch)) (3.47)

≤ CL1 |u− uch|1,Ω
(
∥ucH − uch∥0,Ω + ∥ucH − uch∥0,ΓR

)
.

We define zc ∈ V as the solution of

a(vc, zc)− k2 c(vc, zc) + ik r(vc, zc) (3.48)

= (ucH − uch, v
c)0,Ω + (ucH − uch, v

c)0,ΓR
, vc ∈ V. (3.49)

Due to the regularity result (3.45), we have zc ∈ V ∩ H1+r(Ω) and there exists a

constant CR > 0 depending on the domain Ω such that

∥zc∥1+r,Ω ≤ CR

(
∥ucH − uch∥0,Ω + ∥ucH − uch∥0,ΓR

)
. (3.50)

Choosing vc = ucH − uch in (3.48) and observing Galerkin orthogonality, the trace

inequality, the interpolation estimate

∥zc − Ihz
c∥1,Ω ≤ CI h

r ∥zc∥1+r,Ω
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and (3.50), we deduce the existence of a constant CL2 > 0, depending on CI , CR, and

CT such that

2−1
(
∥ucH − uch∥0,Ω + ∥ucH − uch∥0,ΓR

)2

≤ ∥ucH − uch∥20,Ω + ∥ucH − uch∥20,ΓR
=

a(ucH − uch, z
c)− k2 c(ucH − uch, z

c) + ik r(ucH − uch, z
c) =

a(ucH − uch, z
c − Ihz

c)− k2 c(ucH − uch, z
c − Ihz

c) + ik r(ucH − uch, z
c − Ihz

c)

≤ CL2 h
r |ucH − uch|1,Ω

(
∥ucH − uch∥0,Ω + ∥ucH − uch∥0,ΓR

)
,

whence

∥ucH − uch∥0,Ω + ∥ucH − uch∥0,ΓR
≤ 2 CL2 h

r |ucH − uch|1,Ω. (3.51)

Hence, choosing CLT := 4CL1CL2, the assertion follows from (3.47) and (3.51).�

3.4.3 Quasi-orthogonality

In this subsection, we prove the following quasi-orthogonality result:

Theorem 3.4.1 Let Th(Ω) be a simplicial triangulation obtained by refinement from

TH(Ω), and let uh ∈ Vh, uH ∈ VH and ηh, ηH be the associated solutions of (3.7)

and error estimators, respectively. Further, let eh := u − uh and eH := u − uH be

the fine and coarse mesh errors. Then, for any 0 < ε < 1 there exists a meshwidth

hmax > 0, depending on the wavenumber k, the domain Ω and ε, and a constant
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CQ > 0, depending on γ, C1, Cce, CLT , and k, such that for all h ≤ hmax it holds

aIPh (eh, eh) ≤ (3.52)

(1 + ε) aIPH (eH , eH)−
γ

8
∥uh − uH∥21,h,Ω +

CQ

α

(
η2h + η2H

)
.

Proof: With uch ∈ Sh and ucH ∈ SH as the conforming P1 approximations of (3.3)

with respect to the triangulations Th(Ω) and TH(Ω) we have

aIPh (eh, eh) = aIPh (eh + uch − ucH , eh + uch − ucH) (3.53)

+ 2 Re aIPh (eh, u
c
H − uch)− aIPh (uch − ucH , u

c
h − ucH).

The three terms on the right-hand side in (3.53) will be estimated separately. These

estimates will be provided by the following three lemmas.

Lemma 3.4.3 Under the same assumptions as in Theorem 3.4.1 there exists a con-

stant C2 > 0, depending on γ, C1, Cce, CJ , and CL, such that for any 0 < ε̂ < 1/2

there holds

aIPh (eh + uch − ucH , eh + uch − ucH) ≤ (1 + ε̂) aIPH (eH , eH) +
C2

α
(η2h + η2H). (3.54)

Proof: We split the first term on the right-hand side of (3.53) according to

aIPh (u− uh + uch − ucH , u− uh + uch − ucH) = (3.55)

aIPh (eH + uncH − unch , eH + uncH − unch ).
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Using (3.12b), Young’s inequality, and Corollary 3.3.2, we find

aIPh (eH + uncH − unch , eH + uncH − unch ) (3.56)

≤ aIPh (eH , eH) + C1 ∥unch − uncH ∥21,h,Ω + 2C
1/2
1 aIPh (eH , eH)

1/2 ∥unch − uncH ∥1,h,Ω

≤ (1 + ε2) a
IP
h (eH , eH) + C1 (1 +

1

ε2
) ∥unch − uncH ∥21,h,Ω

≤ (1 + ε2) a
IP
h (eH , eH) + 4C1

Cce

α
(1 +

1

ε2
)
(
η2h + η2H

)
.

For the first term on the right-hand side in (3.56), the mesh perturbation result

(3.41) and a subsequent application of (3.15) tell us

aIPh (eH , eH) ≤ (1 + ε1) a
IP
H (eH , eH) +

2CJCL

αε1γ2

(
η2h + η2H

)
. (3.57)

Choosing 0 < εi < 1, 1 ≤ i ≤ 2, such that ε̂ := ε1 + ε2 + ε1ε2 < 1/2, and

C2 := 2(1 + ε2)
CJCL

ε1γ2
+ 4C1Cce(1 +

1

ε2
),

the assertion follows from (3.56) and (3.57).�

Lemma 3.4.4 Under the same assumptions as in Theorem 3.4.1, there exists a

constant Ci > 0, 3 ≤ i ≤ 6, depending on γ, Cce, and CLT , such that

2 Re aIPh (eh, u
c
H − uch) ≤ (3.58)

C3 h
r aIPh (eh, eh) +

(γ
4
+ C4 h

r
)
∥uh − uH∥21,h,Ω +

C5 + C6 h
r

α

(
η2h + η2H

)
,

where C3 := 2 CLT/γ, C4 := 3CLT , and the positive constants C5, C6 depend on the

wavenumber k and on Cce, CLT .
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Proof: For the second term on the right-hand side of (3.53) we have

2 Re
(
aIPh (eh, u

c
H − uch)

)
= 2 Re(k2 c(eh, u

c
H − uch) + ik rh(eh, u

c
H − uch))

)
= 2 Re

(
(k2c(u− uch, u

c
H − uch) + ik r(u− uch, u

c
H − uch))

)
+

2 Re(k2c(uch − uh, u
c
H − uch) + ik r(uch − uh, u

c
H − uch))

)
.

(3.59)

In view of Lemma 3.4.2, the first term on the right-hand side in (3.59) can be

estimated as follows

2 Re
(
(k2c(u− uch, u

c
H − uch) + ik r(u− uch, u

c
H − uch)

)
(3.60)

≤ CLT hr
(
|ech|21,h,Ω + |ucH − uch|21,h,Ω

)
.

Taking advantage of (3.12a) and Corollary 3.3.2, for the two terms on the right-hand

side in (3.60) we find

|ech|21,h,Ω ≤ 2
(
∥u− uh∥21,h,Ω + ∥uh − uch∥21,h,Ω

)
≤ 2

γ
aIPh (eh, eh) + 2

Cce

α
η2h,

|ucH − uch|21,h,Ω ≤ 3
(
∥uH − uh∥21,h,Ω + ∥ucH − uH∥21,h,Ω + ∥uh − uch∥21,h,Ω

)
≤ 3 ∥uH − uh∥21,h,Ω + 6

Cce

α

(
η2h + η2H

)
and hence,

2 Re
(
k2c(u− uch, u

c
H − uch) + ik r(u− uch, u

c
H − uch)

)
(3.61)

≤ 2

γ
CLT hr aIPh (eh, eh) + 3 CLT hr ∥uH − uh∥21,h,Ω + 8

CceCLT

α
hr

(
η2h + η2H

)
.
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We split the second term on the right-hand side in (3.59) according to

2 Re
(
k2ch(u

c
h − uh, u

c
H − uch) + ik rh(u

c
h − uh, u

c
H − uch)

)
=

2Re
(
k2ch(u

c
h − uh, u

c
H − uH) + ik rh(u

c
h − uh, u

c
H − uH)

)
+

2 Re
(
k2ch(u

c
h − uh, uH − uh) + ik rh(u

c
h − uh, uH − uh)

)
+

2 Re
(
k2ch(u

c
h − uh, uh − uch) + ik rh(u

c
h − uh, uh − uch)

)
. (3.62)

By (3.31) and Young’s inequality, the three terms on the right-hand side in (3.62)

can be estimated as follows

2 Re
(
k2ch(u

c
h − uh, u

c
H − uH) + ik rh(u

c
h − uh, u

c
H − uH)

)
≤ 4 max(k, k2)

Cce

α
η2h,

2 Re
(
k2ch(u

c
h − uh, uH − uh) + ik rh(u

c
h − uh, uH − uh)

)
≤ γ

4
∥uH − uh∥21,h,Ω +

4Cce

αγ
(max(k, k2))2 η2h,

2 Re
(
k2ch(u

c
h − uh, uh − uch) + ik rh(u

c
h − uh, uh − uch)

)
≤ 2

Cce

α
max(k, k2)

(
η2h + η2H

)
.

Then, (3.58) follows from (3.59)-(3.62) and the preceding estimates. �

Lemma 3.4.5 Under the same assumptions as in Theorem 3.4.1, there exists a

constant C7 > 0 such that

aIPh (uch − ucH , u
c
h − ucH) ≥

γ

2
∥uh − uH∥21,h,Ω − C7

α

(
η2h + η2H

)
. (3.63)
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Proof: Taking into account (3.12a) and using Young’s inequality and (3.31) we find

aIPh (uch − ucH , u
c
h − ucH) ≥ γ ∥uch − ucH∥21,h,Ω ≥ γ

(
∥uh − uH∥21,h,Ω + (3.64)

∥uch − uh + uH − ucH∥21,h,Ω − 2|(uh − uH , u
c
h − uh + uH − ucH)1,h,Ω|

)
≥ (γ − ε

2
) ∥uh − uH∥21,h,Ω − 4γ ε−1

(
∥unch ∥21,h,Ω + ∥uncH ∥21,h,Ω

)
≥ (γ − ε

2
) ∥uh − uH∥21,h,Ω − 4 γ

Cce

αε

(
η2h + η2H

)
.

Then, (3.63) follows from (3.64) for ε = γ with C7 := 4Cce. �

Proof of Theorem 3.4.1. Using the estimates from Lemma 3.4.3, Lemma 3.4.4, and

3.4.5 in (3.53), we obtain

aIPh (eh, eh) ≤
1 + ε̂

1− C3hr
aIPH (eH , eH)−

γ/4− c4h
r

1− C3hr
∥uh − uH∥21,h,Ω (3.65)

+
C5 + C6h

r + C7

α(1− C3hr)

(
η2h + η2H

)
.

We choose hmax > 0 such that

1 + ε̂

1− C3hrmax

≤ 1 + 2ε̂,
γ/4− c4h

r
max

1− C3hrmax

≥ γ/8. (3.66)

Then, (3.52) follows from (3.65) with ε := 2ε̂ and CQ := (C5 + C6h
r
max + C7)/(1 −

C3h
r
max) .�

3.5 Contraction Property

We now use the monotonicity result (3.36) and the quasiorthogonality (3.52) to prove

the following contraction property:
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Theorem 3.5.1 Let u ∈ H1
0,ΓD

(Ω) be the unique solution of (3.3). Further, let

Th(Ω) be a simplicial triangulation obtained by refinement from TH(Ω), and let uh ∈

Vh, uH ∈ VH and ηh, ηH be the associated solutions of (3.7) and error estimators,

respectively. Then, there exist constants 0 < δ < 1 and ρ > 0, depending only

on the shape regularity of the triangulations and the parameter θ from the Dörfler

marking, such that for sufficiently large penalty parameter α and sufficiently small

mesh widths h,H the fine mesh and coarse mesh discretization errors eh := u − uh

and eH = u− uH satisfy

aIPh (eh, eh) + ρ η2h ≤ δ
(
aIPH (eH , eH) + ρ η2H

)
. (3.67)

Proof: Multiplying the estimator reduction property (3.38) by γ/(8Cτ ) and substi-

tuting the result into the quasi-orthogonality estimate (3.52), for ρ > 0 we get

aIPh (eh, eh) + ρ η2h ≤ (1 + ε) aIPH (eH , eH) (3.68)

+
(CQ

α
− γ

8Cτ

+ ρ
)
η2h +

(CQ

α
+
γτ(θ)

8Cτ

)
η2H .

For the choice

α >
8CQCτ

γ
, ρ :=

γ

8Cτ

− CQ

α
(3.69)

it follows from (3.68) that

aIPh (eh, eh) + ρ η2h ≤ (1 + ε) aIPH (eH , eH) +
(CQ

α
+
γτ(θ)

8Cτ

)
η2H .
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Invoking the reliability (3.39) of the estimator, we find

aIPh (eh, eh) + ρ η2h ≤ (3.70)

δ aIPH (eH , eH) +
(
(1 + ε)− δ

)
aIPH (eH , eH) +

γτ(θ)

8Cτ

)
η2H ≤ (3.71)

δ aIPH (eH , eH) +
(
Crel

(
(1 + ε)− δ

)
+
CQ

α
+
γτ(θ)

8Cτ

)
η2H .

We choose δ such that

ρ =
γ

8Cτ

− CQ

α
= δ−1

(
Crel

(
(1 + ε)− δ

)
+
CQ

α
+
γτ(θ)

8Cτ

)
. (3.72)

Solving for δ, we obtain

δ =
Crel

(
1 + ε

)
+

CQ

α
+ γτ(θ)

8Cτ

γ
8Cτ

− CQ

α
+ Crel

. (3.73)

Now, we choose

τ = τ ∗ :=
1

2

(1− 2−1/2) θ

1− (1− 2−1/2) θ
<

1

4
,

ε :=
1

2

γ (1− τ ∗)

8CrelCτ∗
< 1.

It follows that

δ =
Crel +

γ(1+τ∗)
16Cτ∗

+
CQ

α

Crel +
γ

8Cτ∗
− CQ

α

(3.74)

Looking for α such that

γ(1 + τ ∗)

16Cτ∗
+
CQ

α
<

γ

8Cτ∗
− CQ

α
,

we find that 0 < δ < 1 for

α >
32CQCτ∗

(1− τ ∗)γ
. (3.75)

This concludes the proof of the contraction property.�
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CHAPTER 4

Numerical Results

4.1 Introduction

This chapter is devoted to a documentation of numerical results that illustrate the

performance of the adaptive IPDG method over a wide range of wavenumbers.

We begin with results of some initial numerical tests which were conducted for dif-

ferent polynomial orders of approximations and for wavenumbers κ = 5, 10, 20. In-

tuitively, these results provided some guidance towards an underlying dependence of

the wavenumber and the polynomial order N . Next, we present four model problems

for the Helmholtz equation with wavenumbers ranging from κ = 5 to κ = 70 using
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polynomials of order upto order 6. In particular, the main application is the screen

problem in two dimensions which describes the propagation of an acoustic wave and

its scattering around a soft sound screen. For this problem we had no prior knowl-

edge of the analytic solution. As expected, the residual-type error estimator detects

the singularities and refines in precisely around the singularities.

These model problems demonstrate quasi-optimality which is in accordance with the

theoretical results for the second-order elliptic boundary value problems (cf. [34]).

Moreover, as can be expected, for a high wavenumber the asymptotic regime is

reached later, i.e., for finer meshes, compared to lower wavenumbers. For all our

numerical experiments we maintained consistent choice of the penalty parameter

α = 50(N + 1)2 where N is the polynomial order.

4.2 Preliminary Results for Smooth Problems

Our preliminary numerical experiments were for the symmetric IPDG method tested

on a smooth problem u(x, y) = − exp−iκ(x+y) on the computational domain Ω =

[−1, 1]× [−1, 1], respecting the mesh constraint κh . 1.

A clear dependence on the polynomial order for resolving higher wave numbers

motivated us to investigate the impact of higher polynomial order on the convergence.
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Figure 4.1: A comparison of the convergence for different polynomial order N for
wave numbers k = 5(left),k = 10(center) and k = 20(right) .

4.3 Test Problems on Non-convex Domain

In order to illustrate the convergence history of the adaptive IPDG approach in

terms of the exact discretization error eh := u − uh in the mesh dependent energy

norm aIPh (eh, eh)
1/2, as a first example we choose an interior Dirichlet problem for

the Helmholtz equation where the exact solution is known. In particular, we con-

sider (3.1a) in a bounded polygonal domain Ω ⊂ R2 with the boundary conditions

(3.1b),(3.1c) replaced by a Dirichlet boundary condition on Γ := ∂Ω .

−∆u− k2u = f in Ω,

u = g on Γ.

We note that the preceding convergence analysis applies to such interior Dirichlet

problems as well.Its implementation requires the appropriate changes made to the

right hand side of the IPDG formulation (3.7).
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Example 1: Consider the interior Dirichlet problem

−∆u− k2u = f in Ω, (4.1a)

u = g on Γ. (4.1b)

The source terms f, g are chosen such that u(r, φ) = J1/2(kr) (in polar coordinates) is

the exact solution, where J1/2(.) stands for the Bessel function of the first kind. The

solution is an oscillating function with decreasing amplitude for increasing r which

exhibits a singularity at the origin (cf. Fig. 4.2 (left)). We tested this problem on

two non-convex domains namely the notorious L-shaped domain (cf. 4.3.1) and the

circular domain with a cut-out wedge (Pacman Problem) (cf. 4.3.2).
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4.3.1 L-shaped Domain

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

K=10, N=6,Level=8,L−shaped Domain 

Figure 4.2: Exact solution for k = 20 (left) and adaptively refined grid after 8
refinement steps for k = 10, N = 6, and θ = 0.3 (right).

We have applied the adaptive IPDGmethod to (4.1a),(4.1b) with Ω := (−1,+1)2\

[0,+1) ∪ (−1, 0]. For k = 10, N = 6, and θ = 0.3, Figure 4.2 (right) shows the

adaptively refined mesh after 8 refinement steps with a pronounced refinement in a

vicinity of the singularity at the origin.

Figure 4.3 reflects the convergence history of the adaptive process. The mesh

dependent energy norm ∥u−uh∥a := aIPh (u−uh, u−uh)1/2 of the error is displayed as a

function of the total number of degrees of freedom on a logarithmic scale. The curves

represent the decrease in the error both for uniform refinement and for adaptive

refinement in case of different values of the constant θ in the Dörfler marking. In

particular, Figure 4.3 (left) refers to the wavenumber k = 5 and the polynomial

degree N = 6, whereas Figure 4.3 (right) shows the results for the wavenumber

k = 10 and the same polynomial degree N = 6.
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Figure 4.3: Convergence history of the adaptive IPDG method. Mesh dependent
energy error as a function of the DOF (degrees of freedom) on a logarithmic scale:
k = 5, N = 6 (left) and k = 10, N = 6 (left).

4.3.2 Pacman Problem

In this method curvilinear elements instead of straight sided elements are used to

resolve the geometry of the domain. The geometrical representation by curvilin-

ear elements complements the performance of the estimator as is evident from the

refinement of the domain.

Figure 4.4 depicts the meshes obtained after 6 levels and 3 levels of the adaptive

algorithm. Whereas, Figure 4.5, shows the plots of the convergence which is slower

as compared to our previous example and this can be attributed to the curved nature

of the domain.
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Figure 4.4: Adaptively refined grids for k = 1, N = 4, θ = 0.1 (left) and k = 5,
N = 6, θ = 0.3 (right) after 6 and 3 levels of the adaptive cycle .

4.3.3 Screen Problem

The next example deals with the screen problem (3.1a)-(3.1c).

Example 2: We choose Ω := (−1,+1)2 \ (S1 ∪ S2) where

S1 := conv((0, 0), (−0.25,+0.50), (−0.50,+0.50)),

S2 := conv((0, 0), (+0.25,−0.50), (+0.50,−0.50)),

such that ΓR = ∂(−1,+1)2 and ΓD := ∂S1 ∪ ∂S2. The right-hand sides f and g are

chosen according to f ≡ 0 and

g = cos(kx2) + isin(kx2).

The real part of the computed IPDG approximation is shown in Figure 4.4 for

wavenumber k = 15 (left) and for wavenumber k = 20 (right).

Figure 4.7 contains the adaptively refined mesh for wavenumber k = 10 and
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Figure 4.5: Convergence history of the adaptive IPDG method.Mesh dependent
energy error as a function of the DOF (degrees of freedom) on a logarithmic scale:
k = 5, N = 4 (left) and k = 5, N = 6 (left).

Figure 4.6: Real part of the computed IPDG approximation for k = 15 (left) and
k = 20 (right).
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Figure 4.7: Adaptively refined mesh for k = 10, N = 6 after 8 refinement steps
(left) and for k = 20, N = 6 after 12 refinement steps (right).

polynomial degree N = 6 after 12 refinement steps (left) and for wavenumber k = 20

and polynomial degree N = 6 after 8 refinement steps (right).
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Figure 4.8: Convergence history of the adaptive IPDG method. Error estimator as
a function of the DOF (degrees of freedom) on a logarithmic scale: k = 10, N = 4
(left) and k = 10, N = 6 (right).

Since we do not have access to the exact solution of the screen problem, we

document the convergence history of the adaptive IPDG method by representing

the decrease in the error estimator ηh as a function of the total number of degrees

55



4.3. TEST PROBLEMS ON NON-CONVEX DOMAIN
CHAPTER 4. NUMERICAL RESULTS

of freedom on a logarithmic scale. In particular, Figure 4.8 shows the results for

wavenumber k = 10 and polynomial degree N = 4 (left) respectively polynomial

degree N = 6 (right).

7 8 9 10 11 12
−6

−4

−2

0

2

4

6

ln(Degrees of Freedom) 

 l
n

(η
h
)

k=15,N=4,Screen Problem

 

 

θ=0.1
θ=0.3
θ=0.5
θ=0.7
uniform

8 9 10 11 12
−8

−6

−4

−2

0

2

4

ln(Degrees of Freedom) 

 l
n

(η
h
)

k=15,N=6,Screen Problem

 

 

θ=0.1
θ=0.3
θ=0.5
θ=0.7
uniform

Figure 4.9: Convergence history of the adaptive IPDG method. Error estimator as
a function of the DOF (degrees of freedom) on a logarithmic scale: k = 15, N = 4
(left) and k = 15, N = 6 (left).

Likewise, Figure 4.9 displays the convergence history for wavenumber k = 15 and

polynomial degrees N = 4 (left) and N = 6 (right). We observe a similar behavior

as in case of the interior Dirichlet problem in Section 4.3. For higher wavenumbers,

the asymptotic regimes require fines meshes. Moreover, as we expect, higher poly-

nomial degrees can handle higher wavenumbers better at the expense of increased

computational work.
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4.4 Convex Domain

Lastly, we consider the interior Dirichlet Problem on the convex computational do-

main Ω = (0, 1) × (0, 1).

The source terms f, g are chosen such that u(r, φ) = J 3
2
(kr) cos(3

2
θ) (in polar co-

ordinates) is the exact solution. This solution is known to live in H3/2+1−ε(Ω) for

any ε > 0, but not in H3/2+1(Ω) [Grisvard, [31] Theorem 1.4.5.3], with a corner

singularity at the origin.

Figure 4.10: Computed solution (left) and exact solution (right) for k = 70.

The numerical solution of this problem by DG methods has been studied in [33] and

[30]. In particular, the approach in [33] relies on a plane wave DG scheme, whereas

in [30] a hybridized LDG method is used.

For the same choice of wavenumber k = 4 and with the use of the linear and

quadratic elements, we observe the following h-convergence for our approach. In

contrast to the results obtained by Griesmaier and Monk [Figure 2, page 12 in [30]
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Figure 4.11: h-convergence using linear elements (left);quadratic elements (right).

], we notice a faster order of convergence for a coarser mesh size.

We report the convergence history of the error with respect to the mesh dependent

energy norm ( as shown in Figure 4.13 )and with respect to L2− norm ∥u − uh∥0,Ω

( as shown in Figure 4.11 ) in relation to the total degrees of freedom.

In Figure 4.13, the accelerated decay of the error can be attributed to the improved

regularity of our numerical solution.We also observe the impact of higher polynomial

order approximation especially (as we mentioned in our introductory remarks ) for

large wavenumber this is evident from the significant change in the optimal order

convergence.
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Figure 4.12: Convergence of the discretization error ∥u−uh∥0,Ω as a function of the
DOF (degrees of freedom) on a logarithmic scale: k = 70, N = 4 (left) and k = 70,
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Figure 4.13: Convergence history of the adaptive IPDG method.Mesh dependent
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Conclusions and Future Work

We have developed an adaptive symmetric Interior Penalty Discontinuous Galerkin

(IPDG) method for the Helmholtz equation and analyzed its convergence by proving

a contraction property for a weighted sum of the global discretization error in the

IPDG energy norm and the residual-type a posteriori error estimator. The novelty

in the convergence analysis compared to IPDG applied to standard second order el-

liptic boundary value problems is the appropriate treatment of the lower order term

in the equation by resorting to the associated conforming approximation of the prob-

lem and using an Aubin-Nitsche type argument. We have illustrated the benefits of

the adaptive IPDG approach by various numerical experiments which also revealed
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quasi-optimality, although this property was not part of the theoretical convergence

analysis.

An issue that remains to be addressed in future work is the development of an

efficient and robust iterative solver for the IPDG discretized problem taking into

account that the condition number significantly grows with increasing polynomial

degree. The same issue can be expected for the hybridized version of the IPDG

method which is computationally attractive due to the substantial reduction in the

total number of degrees of freedom.

Finally, a natural extension of the present work would be to consider a similar IPDG

method for interior domain problems associated with the time harmonic Maxwell

equations, in particular, in the three-dimensional space. We believe that the conver-

gence analysis essentially carries over with a somewhat more subtle Aubin-Nitsche

type argument, but the solver issue will be even more challenging than for the

Helmholtz equation due to the non-trivial kernel of the curl operator.
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[7] I.Babuška, W.C. Rheinboldt, Adaptive approaches and reliability estimates in

finite element analysis. Computer Methods in Applied Mechanics and
Engineering,17-18, Part 3, 519-540, 1979.

62



BIBLIOGRAPHY BIBLIOGRAPHY

[8] I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the
Helmholtz equation?. SIAM Review 42, 451-484, 2000.
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