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ABSTRACT

In this dissertation, we consider new approaches to the construction of meshes,

discretization, and preconditioning of the resulting algebraic systems for the diffusion

equation with discontinuous coefficients.

In the first part, we discuss mixed finite element approximations of the diffusion

equation on general polyhedral meshes. We introduce a non-conforming approx-

imation method for the flux vector functions, and propose a benchmark problem

which allows us to analyze its accuracy in the case of 3D diffusion equation with

non-homogeneous boundary conditions on domains with oblique parallel layers.

In the second part, we propose a two-stage preconditioning method for the alge-

braic system resulting from the application of the introduced method to the diffusion

equation on the prismatic meshes. We provide the description of the recommended

implementation and show the results of numerical experiments used to compare its

performance with some well-known preconditioners.

In the third part, we consider application of non-conforming meshes on rectangu-

lar domains with oblique parallel or curved concentric layers. We describe possible

choices of such meshes for each case, and introduce benchmark problems used to

compare the accuracy of finite element methods on conforming and non-conforming

meshes. The results of numerical experiments are provided.
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Chapter 1

Introduction

1.1 Review of approximation methods for the dif-

fusion equation

There are many discretization methods which were developed for the second order

diffusion equation. Among widely used methods are Finite Differences (FD), Finite

Element (FE), Finite Volume (FV), Mimetic Finite Differences, and Mixed Finite

Element (MFE) methods.

In the FD method all derivatives are replaced with finite differences. FD are widely

used for uniform rectangular grids. The main advantage of this method is in its

simplicity, but it also has many disadvantages, for example, its practical applica-

tions are restricted to rectangular grids. Also, the implementation of the boundary

conditions, especially for domains with curved boundaries, may worsen the existing

approximation inside the computational domain. For the complete presentation of

the FD method we refer to [41] and references found within.

FE methods are perhaps the most popular and powerful methods in modern numer-

ical applications. One of the first papers on FE is the paper by Courant [13]. The
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term “finite element method” was proposed by R.W. Clough in [12].

The main idea of the FE method is based on the approximation of the weak solution of

the diffusion equation, i.e. the solution of the variational problem. The weak solution

of the diffusion problem belongs to a certain explicitly constructed Hilbert space Q.

The existence and uniqueness of the solution is proved by using the properties of

Hilbert spaces. We construct some finite dimensional subspace Qh of Q based on a

partitioning of the computational domain Ω. Partitioning means that we split our

domain Ω into a set of subdomains, called elements. A solution ph ∈ Qh of the

corresponding finite element problem is called a finite element approximation of the

solution p of the corresponding differential problem.

The main advantage of the FE method over the FD method is that its applications

are not restricted by the geometry, therefore the method can be applied to problems

in domains with complex shapes. The application of FE method to domains with

curved boundaries is investigated for instance in [4, 5, 30, 48, 49]. Discretization of

the second order diffusion equation with the FE method leads to stable and robust

algorithms.

The Finite Volume (FV) approximation method allows to obtain locally conservative

schemes. The FV method is a Petrov-Galerkin type method for solving boundary

value problems, where the solution space is different from the test space. The solution

space Qh is the same as in the mixed finite element method, but the test space Q∗
h

is defined on a dual mesh, which is called Voronoi mesh. For further information we

refer to [14].

Another extensively used discretization technique for the diffusion equation is the

Mimetic Finite Differences method. This discretization methodology is based on

the support operator approach, see [17, 32, 34, 35]. This approach requires the

constructed discrete operators to preserve main physical properties of the original

differential operator, including conservation law, solution symmetries, and so on. In

2



the case of the linear diffusion problem, the mimetic discretization mimics the Gauss

divergence theorem to enforce the local conservation law and preserves the symmetry

between the discrete gradient and divergence operators. It also preserves the null

spaces of the those operators and guaranties the stability of the discretization.

The term “Mixed Method” is used for problems with two or more physical variables.

For the second-order diffusion equation the corresponding formulation can be written

as follows:

K−1u + ∇p = 0 in Ω,

∇ · u + cp = f in Ω.

(1.1)

The unknown vector function u introduced here is called the flux. If mixed formu-

lation is used, both flux u and pressure p solution functions are computed simulta-

neously.

Applying an MFE method to the diffusion equation of the form (1.1), we replace the

first order system of differential equations by a variational problem on two Hilbert

spaces, the space V for fluxes and the space Q for pressures. A finite element solution

(uh, ph) belongs to the space Vh × Qh, where Vh and Qh are finite dimensional

subspaces of V and Q, respectively.

It is required for the chosen subspaces Vh andQh to satisfy so called LBB (Ladyzhenskaya-

Babushka-Brezzi) condition,

β||q||Q ≤ sup
(∇ · v, q)
||v||H(div,Ω)

, (1.2)

for all q ∈ Qh and a certain constant β > 0. This condition is required for the

stability of the numerical solution.

In classical literature, finite element spaces Vh for fluxes are constructed on “sim-

ple” cells, such as triangles and rectangles in 2D, and tetrahedra, triangular prisms,

rectangular parallelepipeds in 3D. The examples of such spaces include the Raviart-

Thomas spaces RTm, Brezzi-Douglas-Fortin-Marini spaces BDFMm, and Brezzi-
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Douglas-Marini spaces BDMm, which are introduced and investigated in [7, 8, 11,

36, 38, 46].

Using the change of variables we can generalize the classical FE spaces into ones suit-

able for general convex quadrilaterals in 2D, and hexahedral or distorted prismatic

cells in 3D. Mixed finite element spaces based on the Piola transformation of the

vector fields are investigated in [6, 42, 46]. Error estimates are strongly dependent

on the properties of the Jacobian of transformation.

In [25, 26] Yu. Kuznetsov and S. Repin introduced a new approach to define a space of

fluxes Vh on general polygonal (2D) and polyhedral (3D) meshes. The discretization

is based on the partitioning of a particular polygonal or polyhedral macrocell into

“simple” cells, the space of fluxes on this macrocell is then defined as a subset of the

corresponding RT0 space on this macrocell. The condition ∇·uh = const imposed on

a macrocell allows to eliminate the degrees of freedom on auxiliary interfaces between

cells of its local partitioning. Since Qh is the space of piece-wise constant functions,

this condition ensures that the LBB condition is satisfied and the method is stable.

In [22], this approach was extended to the mimetic finite difference method.

Yu. Kuznetsov proposed a new discretization method for 2D diffusion equation on

polyhedral meshes with mixed cells in [20]. The method was further extended to 3D

diffusion problems in [21].

1.2 Review of solution methods

Every discretization scheme (finite elements, finite differences, finite volumes) of the

diffusion equation results in an algebraic system with a sparse matrix. In many cases,

this matrix is symmetric and positive definite, or positive semi-definite. Often, it is

an M-matrix. In each case, producing a solution efficiently on a fine mesh is a

challenging task.
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The demands of the users in the engineering applications results in systems with

tens or hundreds of millions of unknowns. Standard direct methods are usually

considered as inappropriately slow for these systems. On the other hand, due to

coefficient heterogeneity, coefficient anisotropy, or mesh anisotropy, system matrices

have large condition numbers, which results in slow convergence of unpreconditioned

iterative solvers.

The use of preconditioners leads to significant improvement in convergence rates.

Classical preconditioners, such as Jacobi, Gauss-Seidel, SOR, and SSOR (see e.g.,

[47]) are effective for a number of simple problems. A combination of these methods

with nested iterations was disscussed in [29]. However, these preconditioners are not

numerically scalable, i.e. the increase in computational work is not linear with respect

to the number of unknowns, therefore they can not meet the efficiency requirement

of current applications.

The development of multigrid methods [15, 16, 3, 1, 9, 10] in the 1960s provided a

solution to this problem, as such methods, under some restrictions, are numerically

scalable. Originally, these methods were tightly connected with the model geometry,

specifically, the mesh grid. Geometric multigrids operated on a hierarchy of meshes

obtained a priori by a coarsening procedure. The increase in complexity of the mesh

grids slowed down the development of such methods, which, in turn, resulted in

development of algebraic multigrids.

In algebraic multigrid (AMG) methods the coarsening procedure is based on a coef-

ficient matrix instead of the mesh grid. The introductory articles of 1980s [44, 18, 2]

have created a new direction in the research of multigrid methods. An important

feature of many such methods is that they can be used as a black-box algorithm,

i.e. the only input for the coarsening procedures is the coefficient matrix. One such

preconditioner was proposed by K.Stüben and his collaborators [44, 33, 40, 45]. One

of its versions, amg1r5 [33], is available to public, and can be used for any symmet-
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ric positive semi-definite system. However, the code may stagnate on geometrically

anisotropic problems [40], and has a number of other drawbacks. Later versions of

the algorithm, RAMG05 and SAMG, solve most of these issues [45].

A different algebraic multigrid method was proposed by Yu. Kuznetsov [18, 19].

The developed preconditioner is spectrally equivalent to the system matrix, and

provides the linear increase in the computational work with respect to the number

of unknowns. However, this preconditioner requires a priori knowledge of the mesh

grid.

This multilevel framework was extended in [24] to general systems with symmetric

M-matrices with strict diagonal domination. In particular, it can be used with

matrices arising from the discretizations of the diffusion equation with heterogeneous

coefficients.

A similar approach (referred as algebraic multilevel iteration, AMLI) with an inner

Chebyshev iterative procedure was developed by Axelsson and Vassilevski [2] and

then extended to anisotropic problems [31]. However, non-uniform meshes are not

considered in this approach.

There are very few preconditioners for diffusion equation on meshes with faults. An

example of such preconditioner is discussed in [28].

1.3 Dissertation outline

The dissertation is organized as follows. The focus of Chapter 2 is on MFE approx-

imations of the diffusion equation on prismatic meshes. In Section 2.1 we start from

the description of the differential diffusion problem and describe the transition to the

corresponding macro-hybrid mixed formulation. In Section 2.2 we give a description

of the computational domain and the prismatic mesh used. Section 2.3 provides the

description of the FE spaces used in Kuznetsov-Repin method. In Section 2.4 the
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application of FE method to the macro-hybrid mixed formulation diffusion prob-

lem is described. Section 2.5 gives the description of so called piece-wise constant

approximation method for the flux vector functions.

In Chapter 3 we describe a benchmark problem for the the 3D diffusion problem

on domains with oblique parallel layers. We start with the problem formulation and

derive the reference solution. Then, we illustrate its application by comparing the

accuracy of the KR and PWC finite element methods on prismatic meshes.

In Chapter 4 we propose a two-stage preconditioning method for the diffusion equa-

tion on prismatic meshes. We start from the general framework, propose a particular

implementation and compare the performance results in numerical experiments.

Chapter 5 focuses on the application of non-conforming meshes to rectangular do-

mains with parallel oblique layers. We start with the variation of the benchmark

problem from Chapter 3, then describe the non-conforming mesh used, and show

numerical results illustrating the impact on accuracy its application might have.

In Chapter 6 we extend the application of non-conforming meshes to the rectangular

domains with concentric curved layers. We describe a benchmark problem suitable

for studying this case, propose a particular implementation of non-conforming mesh,

and give the results of numerical experiments used to estimate the resulting accuracy.
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Chapter 2

Mixed finite element method on

prismatic meshes

2.1 Problem formulation

2.1.1 Differential formulation

We consider the diffusion equation

−∇ ·
(
K∇p

)
+ cp = f in Ω , (2.1)

where p is an unknown solution function (pressure), K = K(x) ∈ R3×3 is a diffusion

tensor, c = c(x) is a positive function, f = f(x) is a source function, and Ω is a

simply connected bounded polyhedral domain in R3 with boundary ∂Ω. We assume

that the functions c and f , as well as the entries of the diffusion tensor K, are piece-

wise smooth and bounded. We also assume that the matrix (tensor) K is symmetric

and positive definite at any point x ∈ Ω.

Let ∂Ω be partitioned into two non-overlapping pieces ΓD and ΓN , i.e. ΓD∪ΓN = ∂Ω.
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Then, equation (2.1) is complemented with the boundary conditions

p = gD on ΓD,

−
(
K∇p

)
· n = gN on ΓN ,

(2.2)

where gD and gN are given functions defined on ΓD (Dirichlet part of ∂Ω) and ΓN

(Neumann part of ∂Ω), respectively, and n is the outward unit normal vector to ∂Ω.

Let us introduce the flux vector-function by

u = −K ∇p . (2.3)

Then, formulation (2.1), (2.2) is equivalent to the boundary value problem for the

system of first-order differential equations

K−1u + ∇p = 0 in Ω,

∇ · u + cp = f in Ω,

p = gD on ΓD,

u · n = gN on ΓN .

(2.4)

In this paper, we shall use only the latter, so called mixed, formulation.
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2.1.2 Mixed variational formulation

Let

V = H(div, Ω), Q = L2(Ω), and ΛN = L2(ΓN) (2.5)

be the spaces for flux vector-function u and scalar functions p and λ, respectively.

Then, the classical mixed formulation of (2.4) is as follows: find (u, p, λ) ∈ V ×Q×ΛN

such that

∫

Ω

(
K−1u

)
· v dx −

∫

Ω

p
(
∇ · v

)
dx +

∫

ΓN

λ
(
v · n

)
ds = −

∫

ΓD

gD

(
v · n

)
ds

∫

Ω

(
∇ · u

)
q dx +

∫

Ω

cpq dx =

∫

Ω

fq dx

∫

ΓN

(
u · n

)
µ ds =

∫

ΓN

gNµ ds

(2.6)

for all
(
v, q, µ

)
∈ V ×Q× ΛN .

2.1.3 Macro-hybrid mixed formulation

Let Ω be partitioned into m non-overlapping polyhedral subdomains Es with bound-

aries ∂Es and interfaces between boundaries Γst = ∂Es

⋂
∂Et, s, t = 1, m. We

assume that all nonzero interfaces Γst are simply connected pieces of piece-wise pla-

nar surfaces, s, t = 1, m. We denote the union of all nonzero interfaces Γst by Γ, i.e.

Γ =
⋃
s,t

Γst, and denote the intersections of ΓN with Es by ΓN,s, s = 1, m.

Let

Vs = H
(
div, Es

)
, Qs = L2

(
Es

)
,

ΛN,s = L2

(
ΓN,s

)
, Λst = L2

(
Γst

)
,

(2.7)
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be the spaces of vector-functions u and functions p defined in Es, functions λ defined

on ΓN,s, and functions λ defined on Γst, s, t = 1, m, respectively.

We define new spaces

V = V1 × V2 × · · · × Vm,

Q = Q1 × Q2 × · · · × Qm,

ΛN = ΛN,1 × ΛN,2 × · · · × ΛN,m,

ΛΓ =
∏

1≤s<t≤m

Λst,

Λ = ΛΓ × ΛN .

(2.8)

Then, the macro-hybrid mixed formulation of differential problem (2.4) reads as

follows: find (u, p, λ) ∈ V ×Q× Λ such that the equations in Es:

∫

Es

(
K−1us

)
· vs dx −

∫

Es

ps

(
∇ · vs

)
dx +

∫

Γs

λ
(
vs · ns

)
ds =

= −
∫

ΓD,s

gD

(
vs · ns

)
ds,

∫

Es

(
∇ · us

)
qs dx +

∫

Es

cpsqs dx =

∫

Es

fqs dx,

(2.9)

s = 1, m, with the variational equations of the continuity of normal fluxes on Γst:

∫

Γst

[
us · ns + ut · nt

]
µst ds = 0, (2.10)

s, t = 1, m, and with the variational equations for the Neumann boundary condition:

∫

ΓN,s

(
us · ns

)
µN,s ds =

∫

ΓN,s

gNµN,s ds, (2.11)
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s = 1, m, are satisfied for any (v, q, µ) ∈ V × Q× Λ. Here, ns is the unit outward

normal to ∂Es, Γs = ∂Es \ ΓD and ΓD,s = ∂Es

⋂
ΓD are the non-Dirichlet and the

Dirichlet parts of the boundary ∂Es, respectively, s = 1, m.

It is clear that us ∈ Vs and ps ∈ Qs are functional components of u ∈ V and p ∈ Q

in Es, respectively, s = 1, m.
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2.2 Computational domain and mesh

2.2.1 Layered computational domain

Let G be a simply connected polygon in the (x1, x2)-plane, and Ĝ = G×(−∞; +∞)

be an unbounded domain in R3 with vertical planar faces. We introduce a set of

continuous piece-wise linear surfaces in Ĝ by

x3 = Sl(x1, x2), (x1, x2) ∈ G, (2.12)

where Sl = Sl(x1, x2) are single-valued functions, l = 0, L.

We assume that

Sl−1(x1, x2) ≤ Sl(x1, x2), (x1, x2) ∈ G, l = 1, L . (2.13)

We define the computational domain Ω as

Ω =
{
x : S0(x1, x2) < x3 < SL(x1, x2), (x1, x2) ∈ G

}
. (2.14)

The surfaces x3 = Sl−1(x1, x2) and x3 = Sl(x1, x2), (x1, x2) ∈ G, 1 ≤ l ≤ L, naturally

split Ω into subdomains (e.g. geological layers) Ωl, defined by

Ωl =
{
x : Sl−1(x1, x2) < x3 < Sl(x1, x2), (x1, x2) ∈ G

}
. (2.15)

We denote the interface between subdomains Ωl−1 and Ωl by Il−1,l, and call the sets

Pl−1,l =
{
x : x3 = Sl−1(x1, x2) = Sl(x1, x2), (x1, x2) ∈ G

}
(2.16)

“pinchouts”, l = 1, L. By the definition, a pinchout Pl−1,l may have nonzero inter-

section with Pl−2,l−1, or Pl,l+1, or both. We also define the sequence of sets Gl−1,l in

G by

Gl−1,l =
{

(x1, x2) : Sl−1(x1, x2) = Sl(x1, x2), (x1, x2) ∈ G
}
, l = 1, L . (2.17)
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Figure 2.1: An example of partitioning of Ω into ten layered subdomains

A two-dimensional example of Ω partitioned into subdomains Ωl, l = 1, 10, is shown

on Figure 2.1.

For the sake of simplicity, we assume that pinchouts Pl−1,l are simply connected sets,

l = 1, L. We denote the boundaries of Pl−1,l by ∂Pl−1,l, l = 1, L. In Figure 2.1,

they are marked by dots.
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2.2.2 Definition of a prismatic mesh

Let GH be a conforming triangular mesh in G, i.e. any two different triangles in GH

have a common edge, or a common vertex, or do not intersect. We define in Ω a set

of continuous piece-wise linear surfaces

x3 = SH,t(x1, x2), (2.18)

where SH,t ≡ SH,t(x1, x2) are single-valued functions, t = 0, T , and T is a positive

integer. We always assume that

SH,0(x1, x2) = S0(x1, x2), SH,T (x1, x2) = SL(x1, x2) in G, (2.19)

and

SH,t−1(x1, x2) ≤ SH,t(x1, x2) in G, t = 1, T . (2.20)

We impose two major restrictions on the set of the surfaces
{
SH,t

}
:

1. For any integer t, 1 ≤ t ≤ T , there exists an integer l, 1 ≤ l ≤ L, such that

Sl−1(x1, x2) ≤ SH,t(x1, x2) ≤ Sl(x1, x2) (2.21)

for all (x1, x2) ∈ G, i.e. the surfaces
{
SH,t

}
do not cross the surfaces

{
Sl

}
.

2. If the surface SH,t, 1 ≤ t ≤ T , satisfies inequalities (2.21), then

SH,t−1(x1, x2) < SH,t(x1, x2) (2.22)

for all (x1, x2) ∈ G \ Gl−1,l, i.e. any two neighboring surfaces SH,t−1 and SH,t,

1 ≤ t ≤ T , do not create pinchouts in addition to the pinchouts Pl−1,l, 1 ≤ l ≤
L.
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We shall call SH,t, t = 0, T , the “horizontal” mesh surfaces.

The mesh ΩH in Ω is defined as an intersection of mesh surfaces x3 = SH,t(x1, x2),

t = 0, T , with a set of infinite prisms
{
EG×(−∞; +∞)

}
, where EG is some triangle

in GH . ΩH is conforming and consists of mesh cells denoted by E. We assume that

the surfaces x3 = Sl(x1, x2) and x3 = SH,t(x1, x2) are planar for each cell EG in GH .

Then, each mesh cell E ∈ ΩH is either a “vertical” prism with two “horizontal” and

three vertical nonzero faces, or a degenerated “vertical” prism when there is one or

two zero vertical faces. A degenerated mesh cell is either a pyramid (one vertical

face is zero), or a tetrahedron (two vertical faces are zero).

Remark. A weaker practical requirement concerning local behavior of surfaces Sl,

0 ≤ l ≤ L, and SH,t, 0 ≤ t ≤ T , would be the assumption that they are “almost

planar” for each mesh cell EG ∈ GH , i.e. they can be approximated with reasonable

accuracy by surfaces which are planar for each EG ∈ GH .
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2.3 Definition of “div-const” FE spaces

To define the FE space for the flux vector-functions we assume that each prismatic

mesh cell e ∈ Ωh is partitioned into three tetrahedrons △1, △2, and △3, and each

pyramidal mesh cell e ∈ Ωh is partitioned into two tetrahedrons △1 and △2. We

denote by RT0(e) the classical lowest order Raviart-Thomas FE space of vector-

functions based on the above partitioning of e into tetrahedrons [6], [39].

Let e be a mesh cell in Ωh with s planar faces fi, i = 1, s. It is clear that s = 5 for

“vertical” prisms and pyramids, and s = 4 for tetrahedrons. The FE space for the

flux vector-functions on e, Vh(e), is defined as follows:

Vh(e) =
{

vh : vh ∈ RT0(e), vh · ne ≡ consti on fi, i = 1, s,

∇ · vh ≡ const in e
}
.

(2.23)

Here, ne is the outward unit normal to the boundary ∂e of e. The detailed analysis

of the space Vh(e) can be found in [25], [27].

We define the FE space Qh(e) for the solution function p by

Qh(e) =
{

qh : qh ≡ const in e
}
. (2.24)

The global FE spaces for the flux vector-function and the solution function on Ωh

which is partitioned into cells es, s = 1, m, are defined similar to (2.8) as

Vh = Vh,1 × Vh,2 × . . . × Vh,m (2.25)

and

Qh = Qh,1 × Qh,2 × . . . × Qh,m , (2.26)

respectively. Here,

Vh,s = Vh(es) and Qh,s = Qh(es), s = 1, m . (2.27)
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Finally, the FE space Λh ≡ Λh(Γ
⋃

ΓN) for the Lagrange multipliers is defined as

Λh =
{
λh : λh|f ≡ constf on any face f in Ωh s.t. f ⊂ Γ

⋃
ΓN

}
. (2.28)
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2.4 Macro-hybrid mixed FE method on prismatic

mesh

The macro-hybrid mixed FE discretization of (2.9)-(2.11) reads as follows: find

(uh, ph, λh) ∈ Vh ×Qh × Λh such that the equations in Es:

∫

Es

(
K−1uh,s

)
· vs dx −

∫

Es

ph,s

(
∇ · vs

)
dx +

∫

Γs

λh

(
vs · ns

)
ds =

= −
∫

ΓD,s

gD

(
vs · ns

)
ds,

∫

Es

(
∇ · uh,s

)
qs dx +

∫

Es

cph,sqs dx =

∫

Es

fqs dx,

(2.29)

s = 1, m, with the variational equations of the continuity of normal fluxes on Γst:

∫

Γst

[
uh,s · ns + uh,t · nt

]
µ ds = 0, (2.30)

s, t = 1, m, and with the variational equations for the Neumann boundary condition:

∫

ΓN,s

(
uh,s · ns

)
µ ds =

∫

ΓN,s

gNµ ds, (2.31)

s = 1, m, are satisfied for any (v, q, µ) ∈ Vh ×Qh × Λh.

The FE problem (2.29)-(2.31) results in the algebraic equations:

Msūs + BT
s p̄s + CT

s λ̄ = ḡD,s,

Bsūs − Σsp̄s = f̄s,

(2.32)

s = 1, m, complemented by the algebraic equations

C




ū1

...

ūm


 = ḡN . (2.33)
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The latter equations represent the continuity conditions for the normal fluxes on the

interfaces between neighboring cells in ΩH , and the Neumann boundary conditions

on ΓN .

Here, Ms is a square nu,s×nu,s symmetric positive definite matrix (the mass matrix in

the space of fluxes), Bs is a rectangular np,s×nu,s matrix, CT
s is a rectangular nu,s×nλ

matrix, Σs is a diagonal np,s × np,s matrix, where nu,s = dim Vh,s, np,s = dim Qh,s,

s = 1, m, and nλ = dim Λh.

In a compact form the system (2.32), (2.33) can be written as




M BT CT

B −Σ 0

C 0 0







ū

p̄

λ̄


 =




ḡD

f̄

ḡN


 , (2.34)

where

M = M1 ⊕ . . . ⊕ Mm and B = B1 ⊕ . . . ⊕ Bm (2.35)

are m×m block diagonal matrices,

C =
(

C1 . . . Cm

)
, (2.36)

ū =




ū1

...

ūm



, p̄ =




p̄1

...

p̄m



, and λ̄ ∈ Rnλ . (2.37)
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2.5 Piece-wise constant (PWC) flux approxima-

tion

In this section, we describe another approach for the approximation of the flux vector

function. We construct mass matrices in the space of fluxes using piece-wise constant

vector fields.

Let E be a polyhedral cell. Let us assume that there exists a decomposition

E =

NE⋃

l=1

el (2.38)

into polyhedrons (possibly overlapping) such that:

• Each face Γ of el is either an inner face with respect to E, or is a face of E;

• For each cell el there exists its vertex A such that there are exactly three faces

(Γ1, Γ2 and Γ3) of el adjacent to it, which are also the faces of E.

Examples of possible partitionings of the cells common for applications in basin

modeling can be found in [37].

Let e be one of the the cells el from partition (2.38). Let v̄ ∈ R3 be a vector

representing three degrees of freedom. We say that vh ∈ V
(PWC)

e if and only if the

following two conditions hold:

• vh ≡ const ∈ R3 in e;

• 1
|Γi|

∫

Γi

vh · n ds = vi, i = 1, 3.
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Remark: The DOF vi represents the average normal component vh · n of vh on a

face Γi, i = 1, 3.

Explicit formulas. Let

Γi =

mi⋃

j=1

γij (2.39)

be a triangular representation of Γi. We denote by nij the unit outward normal

vector to ∂e on a triangle γij (as Γi is also a face of E, this would also be an outward

normal vector to ∂E). We define by

ni =

mi∑

j=1

|γij|
|Γi|

nij (2.40)

the “effective outward normal vector” to e on Γi.

Remark. If Γi is planar, then ni is the outward unit normal vector to e on Γi.

Otherwise, ‖ni‖ < 1.

Direct calculations show that these “effective normal vectors” uniquely determine a

constant vector field vh in e. Namely, the constant value of vh in e is the vector

v = N−T




v1

v2

v3


 . (2.41)

where

N =
(

n1 n2 n3

)
(2.42)

is a three-by-three matrix, and its columns are the corresponding “effective” normals

to the sides of e.
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In order to construct the mass matrix M , we first introduce a non-overlapping par-

titioning of E into polyhedral cells

E =

Np⋃

k=1

Pk (2.43)

such that each subcell el from the partitioning (2.38) is a union of several cells Pk.

Let us denote by nk, k = 1, ..., Np, the number of cells el containing Pk. We introduce

the functions αl(x), l = 1, ..., NE in the following form

αl(x) =





1

nk

, if x ∈ Pk

⋂
el,

0, otherwise.

(2.44)

Remark. Functions αl form a unity partition on E, i.e.

NE∑

l=1

αl(x) ≡ 1. (2.45)

Let ū and v̄ be vectors of the degrees of freedom corresponding to the cell E. We

construct NE piece-wise constant vector fields uh and vh for each el according to the

above procedure. Then we define the mass matrix M as

(Mu, v) =

Nl∑

l=1

∫

E

αl(x)(K
−1
E ul

h) · vl
hdx. (2.46)

Direct calculations show that

M =

NE∑

l=1

Nl

(
∑

k:Pk∈el

|Pk|
nk

)
N−1

l K−1
E N−T

l N T
l , (2.47)

where Nl are assembling matrices.
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Chapter 3

Benchmark Problem

3.1 Benchmark problem formulation

In this section, we consider the Neumann boundary value problem for the diffusion

equation

−∇ ·
(
K ∇p

)
+ cp = F in G,

− (K ∇p) · n = GN on ∂G,

(3.1)

in a parallelepipedal domain G. Here, K = K(x, y, z) is a three-by-three symmetric

positive definite matrix (diffusion tensor), c = c(x, y, z) is a non-negative function,

∂G is the boundary of G, n is the unit outward normal to ∂G, F = F (x, y, z) and

GN = GN (x, y, z) are given functions.

We assume that the domain G can be represented as a union of oblique layers Gl,

l = 1, L, which are parallel and form an angle α with the x-axis, and an angle β with

the y-axis. Our goal is to set the parameters K, c, F , and GN so that the solution

function p = p(x, y, z) of (3.1) can be expressed analytically. For that purpose, we

impose a number of restrictions so that the resulting benchmark problem is relevant

to basin modeling applications.
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First, we assume the diffusion tensor K to be piece-wise constant in G, i.e.

K|Gs
≡ Ks ≡ consts ∈ R3×3,

We also assume that

Ks = W




ks,x 0 0

0 ks,y 0

0 0 ks,z


W T in Gs, s = 1, L , (3.2)

is obtained by an orthogonal transformation of a constant diagonal tensor. The

transformation is given by the matrix

W =
1

lvp




lvp cos(α) − sin(α) cos(α) sin(β) sin(α) cos(β)

0 cos(β) cos(α) sin(β)

−lvp sin(α) − cos2(α) sin(β) cos(α) cos(β)


 (3.3)

associated with geological layers, where lvp =
√

1 − sin2(α) sin2(β).

Second, we impose similar restrictions on c, that is

c|Gs
≡ cs ≡ consts > 0.

The assumptions with regard to the right-hand side F and boundary function GN

are stated in the end of this section and are summarized in (3.12) and (3.13).

Third, we assume that the region G is a part of a larger parallelepipedal domain Ĝ

such that the subregions Gs, s = 1, L, can be extended to horizontal layers Ĝs in

Ĝ. With Ĝ, we associate the Cartesian system (x̂, ŷ, ẑ), which is obtained by the

transformation of system (x, y, z) given by the matrix W from (3.3).

25



An example of such transformation is shown on Figures 3.1 and 3.2. Figure 3.1 shows

the original domain G in the (x, y, z) coordinate system, and Figure 3.2 shows the

same domain as a part of Ĝ in the (x̂, ŷ, ẑ) coordinate system.

Figure 3.1: Domain G in the original coordinate system

Figure 3.2: Domain G in the reference coordinate system

Now, we consider the diffusion problem with homogeneous Neumann boundary con-
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ditions for the region Ĝ:

−∇̂ ·
(
K̂ ∇̂p̂

)
+ ĉp̂ = F̂ in Ĝ,

−
(
K̂ ∇̂p̂

)
· n̂ = 0 on ∂Ĝ,

(3.4)

and assume that the values of K̂, ĉ, and F̂ in subregions Gs, s = 1, L, coincide

with the corresponding values of K, c, and F in the original problem (3.1) under the

respective change of coordinates, i.e.

K̂|Gs
=




kx,s 0 0

0 ky,s 0

0 0 kz,s


 ,

ĉ|Gs
(x̂, ŷ, ẑ) = cs,

and F̂ |Gs
(x̂, ŷ, ẑ) = F |Gs

(x, y, z).

(3.5)

The transformation between (x, y, z)-coordinate system associated with the domain

G, and the (x̂, ŷ, ẑ)-coordinates associated with Ĝ, is given by




x̂

ŷ

ẑ


 = r0 + W




x

y

z


 . (3.6)

Here, r0 is the vector connecting the origins of the corresponding coordinate systems,

and W is defined in (3.3).

Then, we extend all the assumptions made for parameters K, c, and F in layers Gs

of G onto the parameters K̂, ĉ, and F̂ in layers Ĝs of Ĝ.

With the restrictions stated above, we can explicitly find the reference solution p̂∗ for

problem (3.4) in the domain Ĝ. Then, we set the boundary conditions for problem
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(3.1) as

GN = û∗(x̂, ŷ, ẑ) · n̂ on ∂G, (3.7)

where

û∗ = −K̂ ∇̂p̂∗

is the reference flux for the domain Ĝ. Consequently, the reference solution of prob-

lem (3.1) on the domain G should coincide with the restriction of the reference

solution of problem (3.4) to the subdomain G, i.e.

u∗(x, y, z) = û∗(x̂, ŷ, ẑ)|G and p∗(x, y, z) = p̂∗(x̂, ŷ, ẑ)|G , (3.8)

where p∗ is the solution of the problem (5.1), and u∗ = −K∇p∗.

In order to obtain the reference solution, we reduce the dimension of the problem by

applying the separation of variables. For simplicity in notations, we assume that

Ĝ ≡ (0, 1) × (0, 1) × (ẑ0, ẑL). (3.9)

First, we consider an eigenproblem for the operator − d2

dξ2 , where ξ can stand for

either x̂ or ŷ:

− d2

dξ2w = λξw, 0 < ξ < 1,

dw
dξ

(0) = 0, dw
dξ

(1) = 0.

. (3.10)

The eigenpairs (λξ,n, wξ,n) are

λξ,0 = 0, wξ,0 ≡ 1,

λξ,n = (nπ)2, wξ,n =
√

2 cosnπξ, n ≥ 1 .

(3.11)

The set of eigenfunctions is an orthonormal basis in L2(0; 1). The right-hand side

28



function F̂ = F̂ (x̂, ŷ, ẑ) in (5.1) can be expanded in this basis as

F̂ (x̂, ŷ, ẑ) =
∞∑
i=0

f̂i(ŷ, ẑ)wx,i(x̂) =

=
∞∑
i=0

∞∑
j=0

f̂i,j(ẑ)wx,i(x̂)wy,j(ŷ) ,

with f̂i(ŷ, ẑ) =
1∫
0

F̂ (x̂, ŷ, ẑ)wx,i(x̂)dx̂

and f̂i,j(ẑ) =
1∫
0

1∫
0

F̂ (x̂, ŷ, ẑ)wx,i(x̂)wy,j(ŷ)dx̂dŷ ,

F (x, y, z) = F̂ (x̂, ŷ, ẑ) .

(3.12)

With that, we can formulate the assumptions imposed on the right-hand side in the

benchmark problem formulation. We consider F̂ = F̂ (x̂, ŷ, ẑ) to be admissible if it

belongs to the class of functions whose expansion (3.12) satisfies:

f̂i,j(ẑ)|Gs
≡ f̂s,i,j ≡ consts,i,j, (i, j) = (0, 0), (1, 0), (0, 1) ,

f̂i,j(ẑ)|Gs
≡ 0, otherwise ,

(3.13)

i.e. the functions F̂i,j = f̂i,j(ẑ) are piece-wise constant with respect to layers Ĝs, and

F̂ = F̂ (x̂, ŷ, ẑ) has only three nonzero harmonics.

As stated before, we have F̂ |Gs
(x̂, ŷ, ẑ) = F |Gs

(x, y, z), so the right-hand side

function F (x, y, z) in the original problem is assumed to be chosen so that the

corresponding function F̂ (x̂, ŷ, ẑ) satisfies the conditions in (3.13). With that, we

complete the list of assumptions necessary to define the benchmark problem.

From now on, we proceed with solving problem (3.4). The reference solution for

original problem (3.1) can be obtained as described in (3.8).
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3.2 Solution derivation for the benchmark prob-

lem

We expand the solution function p̂ = p̂(x̂, ŷ, ẑ) of the problem (3.4) with respect to

the eigenfunctions in (3.11):

p̂(x̂, ŷ, ẑ) =
∞∑
i=0

p̂i(ŷ, ẑ)wbx,i(x̂) =

=
∞∑
i=0

∞∑
j=0

p̂i,j(ẑ)wbx,i(x̂)wby,j(ŷ) .

(3.14)

Then,

− ∂
∂x̂

(
K̂bx

∂p̂
∂x̂

)
= K̂bx

∞∑
i=1

∞∑
j=0

λbx,iwbx,i(x̂)wby,j(ŷ)p̂i,j(ẑ) ,

− ∂
∂ŷ

(
K̂by

∂p̂
∂ŷ

)
= K̂by

∞∑
i=0

∞∑
j=1

λby,jwbx,i(x̂)wby,j(ŷ)p̂i,j(ẑ) ,

− ∂
∂ẑ

(
K̂bz

∂p
∂ẑ

)
= − d

dẑ

(
K̂bz

∞∑
i=0

∞∑
j=0

wbx,i(x̂)wby,j(ŷ)
dp̂i,j

dẑ
(ẑ)

)
.

Therefore, we can write our problem as

− d
dẑ

(
K̂bz

∞∑
i=0

∞∑
j=0

wbx,i(x̂)wby,j(ŷ)
dp̂i,j

dẑ
(ẑ)

)
+

+K̂bx

∞∑
i=1

∞∑
j=0

λbx,iwbx,i(x̂)wby,j(ŷ)p̂i,j(ẑ) +

+K̂by

∞∑
i=0

∞∑
j=1

λby,jwbx,i(x̂)wby,j(ŷ)p̂i,j(ẑ) +

+ c
∞∑
i=0

∞∑
j=0

p̂i,j(ẑ)wbx,i(x̂)wby,j(ŷ) = f̂0,0(ẑ)wbx,0(x̂)wby,0(ŷ) +

+ f̂1,0(ẑ)wbx,1(x̂)wby,0(ŷ) + f̂0,1(ẑ)wbx,0(x̂)wby,1(ŷ) in Ĝ ,

dp̂i,j

dẑ
(ẑ) = 0 on ∂Ĝ for (i, j) ≥ (0, 0) .

(3.15)

30



Since the basis {wξ,i}∞i=0, ξ = x, y, is orthonormal, it can be easily seen seen that

p̂i,j(ẑ) ≡ 0, (i, j) 6= (0, 0), (1, 0), (0, 1) . (3.16)

Hence, the resulting system is as follows:

− d
dẑ

(
K̂bz

dp̂0,0

dẑ
(ẑ)

)
+ cp̂0,0(ẑ) = f̂0,0(ẑ)

− d
dẑ

(
K̂bz

dp̂1,0

dẑ
(ẑ)

)
+
(
c + π2K̂bx

)
p̂1,0(ẑ) = f̂1,0(ẑ)

− d
dẑ

(
K̂bz

dp̂0,1

dẑ
(ẑ)

)
+
(
c + π2K̂by

)
p̂0,1(ẑ) = f̂0,1(ẑ)

dp̂i,j

dẑ
(0) = 0,

dp̂i,j

dẑ
(1) = 0, (i, j) = (0, 0), (1, 0), (0, 1) .

(3.17)

Under the previously stated restrictions on K̂, ĉ, and F̂ , system (3.17) stands for the

reduced formulation of the benchmark problem.

According to the formulation of the problem, the regions Ĝs are horizontal layers,

and therefore we can formally describe them using the notations

Ĝs = (0, 1) × (0, 1) × (ẑs−1, ẑs) (3.18)

with

0 ≡ ẑ0 < · · · < ẑs < · · · < ẑL ≡ 1 . (3.19)

Then, using the assumptions that K̂, ĉ, and F̂i are piece-wise constant functions, we

can write system (3.17) as
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−K̂bz,s
d2p̂s,i,j

dẑ2 (ẑ) + νs,i,j
2p̂s,i,j(ẑ) = f̂s,i,j, s = 1, L

dp̂1,i,j

dẑ
(ẑ0) = 0

dp̂L,i,j

dẑ
(ẑL) = 0

p̂s,i,j(ẑs − 0) = p̂s+1,i,j(ẑs + 0), s = 1, L− 1

K̂bz,s
dp̂s,i,j

dẑ
(ẑs − 0) = K̂bz,s+1

dp̂s+1,i,j

dẑ
(ẑs + 0), s = 1, L− 1

(3.20)

for (i, j) = (0, 0), (1, 0), (0, 1). Here,

νs,0,0 =
√
cs, νs,1,0 =

√
cs + π2K̂bx,s, νs,0,1 =

√
cs + π2K̂by,s . (3.21)

The general solution of the second order ODE in (3.20) can be written as

p̂s,i,j(ẑ) = Bs,i,j,1 · eβs,i,j bz + Bs,i,j,2 · e−βs,i,j bz +
f̂s,i,j

νs,i,j
2 , (3.22)

where

βs,i,j =
νs,i,j√
K̂bz,s

, (3.23)

and Bs,i,j,1, Bs,i,j,2 are constants dependent on initial conditions. In order to find these

constants explicitly, let us first introduce a decomposition of the solution function

p̂s,i,j(ẑ):

p̂s,i,j(ẑ) = vs−1,i,j · ϕs,i,j(ẑ) + vs,i,j · ψs,i,j(ẑ) +
f̂s,i,j

νs,i,j
2 ,

vs−1,i,j = ûbz,s,i,j(ẑs−1) ,

vs,i,j = ûbz,s,i,j(ẑs) ,

(3.24)

where

ûbz,s,i,j(ẑ) = −K̂bz,s
dp̂s,i,j

dẑ
=

= −νs,i,j

√
K̂bz,s

(
Bs,i,j,1 · eβs,i,j bz − Bs,i,j,2 · e−βs,i,j bz

)
, s = 1, L.

(3.25)
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We have vs,i,j well-defined for s = 1, L− 1 due to the condition

K̂bz,s
dp̂s,i,j

dẑ
(ẑs − 0) = K̂bz,s+1

dp̂s+1,i,j

dẑ
(ẑs + 0), s = 1, L− 1

in (3.20). Now, we use expression (3.22) to obtain the system of equations for Bs,i,j,1

and Bs,i,j,2:

−νs,i,j

√
K̂bz,s

(
eβs,i,j bzs−1 · Bs,i,j,1 − e−βs,i,j bzs−1 · Bs,i,j,2

)
= vs−1,i,j

−νs,i,j

√
K̂bz,s

(
eβs,i,j bzs ·Bs,i,j,1 − e−βs,i,j bzs · Bs,i,j,2

)
= vs,i,j

. (3.26)

The solution of this system in terms of vs−1,i,j and vs,i,j is as follows:

Bs,i,j,1 = 1

νs,i,j

√
K̂bz,s

· e
−βs,i,j bzs−1 · vs − e−βs,i,j bzs · vs−1

−eβs,i,j(bzs−bzs−1) + e−βs,i,j(bzs−bzs−1)

Bs,i,j,2 = 1

νs,i,j

√
K̂bz,s

· eβs,i,j bzs−1 · vs − eβs,i,j bzs · vs−1

−eβs,i,j(bzs−bzs−1) + e−βs,i,j(bzs−bzs−1)

.

From this and the definition of ϕs,i,j(ẑ) and ψs,i,j(ẑ) in (3.24), we can obtain explicit

expressions for these functions:

ϕs,i,j(ẑ) = 1

νs,i,j

√
K̂bz,s

· 1 + e−2βs,i,j(bzs−bz)

1 − e−2βs,i,j(bzs−bzs−1) · e−βs,i,j(bz−bzs−1) ,

ψs,i,j(ẑ) = − 1

νs,i,j

√
K̂bz,s

· 1 + e−2βs,i,j(bz−bzs−1)

1 − e−2βs,i,j(bzs−bzs−1)
· e−βs,i,j(bzs−bz) ,

(3.27)

and therefore

dϕs,i,j

dẑ
(ẑ) = − 1

K̂bz,s

· 1 − e−2βs,i,j(bzs−bz)

1 − e−2βs,i,j(bzs−bzs−1)
· e−βs,i,j(bz−bzs−1) ,

dψs,i,j

dẑ
(ẑ) = − 1

K̂bz,s

· 1 − e−2βs,i,j(bz−bzs−1)

1 − e−2βs,i,j(bzs−bzs−1)
· e−βs,i,j(bzs−bz) .

(3.28)
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Now, from the condition on continuity of the solution functions p̂i,j(ẑ) given in (3.20),

it follows that

vs,i,j · ϕs+1,i,j(ẑs) + vs+1,i,j · ψs+1,i,j(ẑs) +
f̂s+1,i,j

νs+1,i,j
2 =

= vs−1,i,j · ϕs,i,j(ẑs) + vs,i,j · ψs,i,j(ẑs) +
f̂s,i,j

νs,i,j
2 , s = 1, L− 1.

In addition, the Neumann boundary conditions in (3.20) imply that

v0,i,j = û1,i,j(ẑ0) =
dp̂1,i,j

dẑ
(ẑ0) = 0 ,

vL,i,j = ûL,i,j(ẑM) =
dp̂L,i,j

dẑ
(ẑL) = 0 .

Therefore, the system for the coefficients vs is as follows:

(ϕ2,i,j(ẑ1) − ψ1,i,j(ẑ1)) · v1 + ψ2,i,j(ẑ1) · v2 = b1

. . .

−ϕs,i,j(ẑs) · vs−1 + (ϕs+1,i,j(ẑs) − ψs,i,j(ẑs)) · vs + ψs+1,i,j(ẑs) · vs+1 = bs

. . .

−ϕL−1,i,j(ẑL−1) · vL−2 + (ϕL,i,j(ẑL−1) − ψL−1,i,j(ẑL−1)) · vL−1 = bL−1

,

(3.29)

where

bs =
f̂s,i,j

νs,i,j
2 − f̂s+1,i,j

νs+1,i,j
2 , s = 1, L− 1.

Resolving this system yields the solution for the initial value problem (3.20), i.e.

provides the explicit formulas for p̂s,i,j(ẑ). With that, we can write down the reference

solution of our benchmark problem:

p̂s(x̂, ŷ, ẑ) = p̂s,0,0(ẑ) +
√

2 cos(πx̂) · p̂s,1,0(ẑ) +

+
√

2 cos(πŷ) · p̂s,0,1(ẑ), s = 1, L.

(3.30)

34



The fluxes Us with their components Ûbx,s, Ûby,s and Ûbz,s are as follows:

Ûs(x̂, ŷ, ẑ) = −K̂s∇p̂s(x̂, ŷ, ẑ) ,

Ûbx,s(x̂, ŷ, ẑ) = −K̂bx,s · π
√

2 sin(πx̂) · p̂s,1,0(ẑ) ,

Ûby,s(x̂, ŷ, ẑ) = −K̂by,s · π
√

2 sin(πŷ) · p̂s,0,1(ẑ) ,

Ûbz,s(x̂, ŷ, ẑ) = −K̂bz,s

(dp̂s,0,0

dẑ
(ẑ) +

+
√

2 cos(πx̂) · dp̂s,1,0

dẑ
(ẑ) +

√
2 cos(πŷ) · dp̂s,0,1

dẑ
(ẑ)
)
.

(3.31)

Here,

dp̂s,i,j

dẑ
(ẑ) = vs−1,i,j ·

dϕs,i,j

dẑ
(ẑ) + vs,i,j ·

dψs,i,j

dẑ
(ẑ) (3.32)

with the expressions for derivatives of ϕs,i,j(ẑ) and ψs,i,j(ẑ) given in (3.28).
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3.3 Error analysis of MFE methods on prismatic

anisotropic meshes

In this section, we compare the reference solution of the benchmark problem with

its discrete approximations.

We consider problem (3.4) in the parallelepipedal domain G with oblique layers hav-

ing inclination α with respect to x-axis and β with respect to y-axis. We assume

that the restrictions stated in the previous sections hold true, and denote the corre-

sponding reference domain by Ĝ. The reference solution pair is then (p∗, u∗). We

use a prismatic mesh Gh in the domain G, and denote mesh cells by ek, k = 1, n,

where n is the total number of cells. Each cell ek is a prism divided either into three

tetrahedrons when we apply the KR discretization, or into three pyramids and two

tetrahedrons if we use the PWC approximation.

For the benchmark problem, the reference solution u∗ is known in the entire domain

Ĝ and, therefore, its entire subdomain G, so for every mesh cell ek we explicitly know

uk
∗ ≡ u∗|ek

, the reference solution for the cell, as well as

u∗k,i =
1

|γk,i|

∫

γk,i

uk
∗(x) · nk,i ds, (3.33)

which is the integral average normal component of the reference flux on an interface

γk,i.

In order to obtain KR or PWC interpolant for every cell ek, k = 1, n, we discretize

the equation (3.4) by applying the KR MFE method or the PWC approximation,

and obtain the discrete solution pair (ph,k, wh,k). The flux interpolant wh,k can be

used to estimate the accuracy of the method.
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The absolute error ∆k over a cell ek can be computed as

∆k =



∫

ek

|wh,k(x) − u∗(x)|2 dx




1/2

, (3.34)

and the L2 norm of the reference flux u∗ over the same cell ek is

‖u∗
k‖2 =



∫

ek

|u∗(x)|2 dx




1/2

. (3.35)

We define ωh,s to be a set of cells ek belonging to the same geological layer Gs, .i.e.

ωh,s = {ek : ek ∈ Gs} .

The relative error in L2 norm between the interpolant wh,k and the reference solution

u∗
k over certain geological layer ωh,s can be computed as

ǫωh,s
= 100 ·

∑

ek∈ωh,s

∆k

∑

ek∈ωh,s

‖u∗
k‖2

. (3.36)

We are particularly interested in the values of errors in thin geological layers. We

choose our domain G to be a parallelepiped (0, 0.5)× (0, 0.5)× (0, 0.25) with three

geological layers. The bottom and top boundary of the thin layer in the middle are

two parallel planes passing through the points (0, 0, z1) and (0, 0, z2), respectively,

where z1 = 0.05 and z2 = 0.05001. The inclination of those planes with respect to x

and y-axis is given by angles α and β.

The values of the parameters used in the experiment are given in Table 3.1.

The mesh we use is conforming and uniform in x and y coordinates, and is uniform

along the z-direction inside each layer. There are 12×12×4 cells in ωh,1, 12×12×2

cells in ωh,2, and 12 × 12 × 6 cells in ωh,3.
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Table 3.1: Parameters for the chosen test problem

Ĝ1 Ĝ2 Ĝ3

kx,s 5 100 10

ky,s 5 100 10

kz,s 3 10 5

cs 1 1 1

f̂0,0 5 1000 1

f̂1,0 0.1 10 0.05

f̂0,1 0.1 10 0.05

The domain and mesh are shown on Figure 3.3 for the case of horizontal layers, and

on Figure 3.4 for the case of oblique middle layer.

Relative error values for the case of the horizontal layers are given in Table 3.2, and

for the case of the oblique layers in the Table 3.3.
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Figure 3.3: Domain and mesh with horizontal layers

Figure 3.4: Domain and mesh with oblique middle layer
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Table 3.2: Relative error in the discrete solutions, %, for angles α = 0, β = 0

ωs
h,1 ωs

h,2 ωs
h,3

KR 2.60 757.60 1.93

PWC 1.78 1.51 2.82

Table 3.3: Relative error in the discrete solutions, %, for angles α = 7◦, β = −4◦

ωs
h,1 ωs

h,2 ωs
h,3

KR 2.91 775.07 1.83

PWC 3.09 28.31 2.63

It is clear that in the case when using the KR-approximation results in unacceptable

error values, we can instead use PWC approximation to obtain much better accuracy.
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Chapter 4

New preconditioning method for

diffusion equations on prismatic

meshes

4.1 General description

The Preconditioned Conjugate Gradient (PCG) Method is one of the most efficient

algorithms for solving systems with symmetric positive definite matrices. The major

problem in application of the PCG method is the design of a symmetric positive

definite matrix S̃, S̃ = S̃T > 0, which is to be used as a reliable and sufficiently

cheap preconditioner for the system matrix S as the one given in (4.1).

Consider an algebraic system

Sȳ = ḡ , (4.1)
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where

S =




S11 S12

S21 S22


 (4.2)

is a 2 × 2 block-diagonal matrix with square diagonal submatrices S11 and S22. We

assume that the matrix S is symmetric and positive definite.

It can come from a system for the macro-hybrid mixed FE method as shown in

Section 2.4, with n× n submatrix

S11 = Σ + BM−1BT , (4.3)

n×m submatrix

S12 = ST
21 = BM−1CT , (4.4)

and m×m submatrix

S22 = CM−1CT , (4.5)

where n is the number of mesh cells, and m is the total number of both the interfaces

Γkl between cells of Ωh, and the faces of the cells Ek belonging to ΓN . The size of

the matrix S is equal to N = n+m. An equivalent definition of S as the assembling

of matrices Sk constructed cell-by-cell, is given by

S =
n∑

k=1

Ñk Sk Ñ T
k , (4.6)

where

Sk =




Σk 0

0 0


 −




Bk

Ck


M−1

k

(
BT

k CT
k

)
, k = 1, n , (4.7)

and Ñk are corresponding assembling matrices.
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The convergence rate of the PCG method is estimated using the condition number

ν of the matrix S̃−1S, which is defined by

ν(S̃−1S) =
λmax(S̃

−1S)

λmin(S̃−1S)
, (4.8)

where λmax and λmin are the maximal and minimal eigenvalues of the matrix S̃−1S.

Then, the energy norm (the S-norm) of the error vector z̄k = ȳk − ȳ∗, where ȳ∗ =

S−1ḡ, is the solution vector of the system (4.1), and ȳk is the iterative solution vector

on k’th iteration, can be estimated by

‖z̄k‖S ≤ 2

(√
ν − 1√
ν + 1

)k

‖z̄0‖S . (4.9)

Here, ‖z̄‖S = (Sz̄, z̄)1/2 is the S-norm of a vector z̄.

It follows that the convergence is faster for smaller values of ν(S̃−1S). Thus, we need

to design a preconditioner S̃ which provides a smaller value of ν(S̃−1S).

On each step of the PCG method we have to compute the residual ξ̄k = Sȳk − ḡk,

and to solve the system

S̃η̄k = ξ̄k (4.10)

exactly, or to compute exactly the matrix-vector product S̃−1ξ̄k. The implementa-

tion of this computation procedure should be sufficiently cheap arithmetically (and

logically). This is the second major problem in designing the efficient preconditioner

for the matrix S. Another important requirement for an efficient implementation

of the preconditioner is that the computation of the product S̃−1ξ̄k should be well-

parallelizable.
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First, we give a general description of the approach proposed to design an efficient

preconditioner for the matrix S resulting from a macro-hybrid mixed FE discretiza-

tion of the diffusion equation. We design the preconditioner S̃ for the matrix S in

two stages.

Stage 1.

For each matrix Mk in (4.7), we define a diagonal matrix M̃k with positive diagonal

entries which is scaled so that

λk,max(M̃
−1
k Mk) = 1 . (4.11)

The exact procedure used to obtain the matrix M̃k for the case of PWC discretization

is described in the following sections. Then, we introduce matrices

S̃k = γk


 Σk 0

0 0


 −


 Bk

Ck


 M̃−1

k

(
BT

k CT
k

)
, (4.12)

where

γk =
1

λk,min(M̃
−1
k Mk)

, (4.13)

k = 1, n, and the assembled matrix

S̃ =

n∑

k=1

Ñk S̃k Ñ T
k . (4.14)

Consider S̃ as a 2 × 2 block matrix:

S̃ =


 S̃11 S̃12

S̃21 S̃22


 , (4.15)

where

S̃22 =

n∑

k=1

Nk,22

(
CkM̃

−1
k CT

k

)
N T

k,22 . (4.16)
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with the appropriate m× m̂k assembling matrices Nk,22, k = 1, n. The matrix M̃−1
k

is diagonal, so it follows that the matrices CkM̃
−1
k CT

k , k = 1, n, and the matrix S̃22

are also diagonal with positive diagonal entries.

We can also derive the estimates for the minimal and maximal eigenvalues of the

matrix S̃−1S to estimate the rate of convergence from (4.9). First, we state that

1 = 1
λk,max(M̃

−1
k Mk)

≤ λk,min(S̃
−1
k Sk) ≤

λk,max(S̃
−1
k Sk) ≤ 1

λk,min(M̃−1
k Mk)

.

(4.17)

Also,

min
k
λk,min(S̃

−1
k Sk) ≤ λmin(S̃−1S) ≤

λmax(S̃
−1S) ≤ max

k
λk,max(S̃

−1
k Sk) .

(4.18)

Therefore,

min
k

1
λk,max(M̃

−1
k Mk)

≤ λmin(S̃−1S) ≤

λmax(S̃
−1S) ≤ max

k

1
λk,min(M̃

−1
k Mk)

.

(4.19)

From the definition of M̃k and γk, it follows that

λmin(S̃−1S) ≥ 1 , λmax(S̃
−1S) ≤ max

1≤k≤n
γk . (4.20)

Consider a system

S̃


 η̄1

η̄2


 =


 ξ̄1

ξ̄2


 , (4.21)

where η̄1, ξ̄1 ∈ Rn, and η̄2, ξ̄2 ∈ Rm are corresponding subvectors of η̄ and ξ̄ as seen

in (4.10). The block Gauss elimination method for this system can be implemented
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in the following way. First, we eliminate by substitution the subvector η̄2 from the

first block equation:

η̄2 = S̃−1
22

(
ξ̄2 − S̃21ξ̄1

)
, (4.22)

where the diagonal matrix S̃22 is easy to invert. Then, we get the system

A11η̄1 = z̄1 , (4.23)

where z̄1 = ξ̄1 − S̃12 S̃
−1
22 ξ̄2, and

A11 = S̃11 − S̃12 S̃
−1
22 S̃21 . (4.24)

It can be shown that A11 is a Stieltjes matrix, i.e. all off-diagonal entries of A11 are

nonpositive, and A11 is symmetric positive definite. The Stieltjes matrices are very

common in discretization of elliptic equations, for instance, by finite volume method.

The major property of irreducible Stieltjes matrices is that all the entries of their

inverses are positive. Symmetric and positive definite preconditioners for Stieltjes

matrices are much easier to design compared to general positive definite matrices.

Solving (4.23) by a direct method is still a very difficult problem, especially in the

case of meshes Ωh relevant to basin modeling.

After solving system (4.23), we can find the remaining solution vector η̄2 from (4.22).

Stage 2.

Let B11 ∈ Rn×n be a symmetric and positive definite matrix which we consider to be a

suitable preconditioner for the matrix A11 in (4.23). Then, we define a preconditioner

Ŝ for the matrix S by

Ŝ =


 B11 + S̃11 S̃

−1
11 S̃21 S̃12

S̃21 S̃22


 . (4.25)
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It can be proven that

λmin(Ŝ−1S) ≥ λmin

(
B−1

11 A11

)
· λmin

(
S̃−1S

)
(4.26)

and

λmax(Ŝ
−1S) ≤ max

{
1, λmax

(
B−1

11 A11

)}
. (4.27)

If we recall that the convergence rate of the PCG method is estimated using the

condition number ν of the matrix S̃−1S defined by (4.8), it follows that a good

choice of matrices M̃k for matrices Mk, k = 1, n, and the matrix B11 for the matrix

A11, provides a good preconditioner Ŝ for the matrix S. In other words, if the value

of λmin

(
S̃−1S

)
is not too small, and the ratio

max
{
1, λmax

(
B−1

11 A11

)}

λmin

(
B−1

11 A11

)

is not too big, then the matrix Ŝ is a good preconditioner for the matrix S.
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4.2 The choice of the preconditioner B11

The preconditioner B11 should be a suitable preconditioner for the matrix A11 de-

fined by (4.24). We consider two possible choices of B11 which result in two differ-

ent implementations of the proposed preconditioner. One is the well-known AMG

preconditioner, and another is KPMDP, which is based on the preconditioner first

introduced in [23].

AMG preconditioner

The description of the AMG preconditioner we use can be found in [45]. It is a

well-known preconditioner suitable for matrices in question.

KPMDP preconditioner

The description of the KPMDP preconditioner is given in [24].
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4.3 The choice of the diagonal matrix M̃k for the

PWC discretization on a prismatic cell.

We introduced the matrix M̃k when we described the first stage of designing the

preconditioner in Section 4.1. In this section, we present the procedure used to

obtain said matrix in the case of PWC discretization on meshes described in Section

2.2.

For the sake of notation, we assume that the diffusion tensor K is the identity matrix.

4.3.1 Local mass matrix for the PWC discretization on a

prismatic cell

Consider a prismatic mesh cell E. We choose a bottom vertex A and the “opposite”

top vertex B of the prism. We denote by τ1, τ2, τ3 three unit vectors directed along

the edges of the prism and originating from the point A. In a similar way, we denote

by τ4, τ5, and τ6 three unit vectors originated from the point B, see Figure 4.1.

The mass matrix M ∈ R5×5 associated with prism E can be written as

M = assembling
{

constAMA, constBMB

}
, (4.28)

where matrices MA ∈ R3×3 and MB ∈ R3×3 are described below, and the constants

satisfy the relation

constA + constB = |E| . (4.29)
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A

τ1

τ3

τ2

τ4
τ5

τ6

B

Figure 4.1: Prismatic mesh cell E and two triples of unit vectors directed along the

edges of the prism

Exact formulas for matrices MA and MB

Let (i, j, k) be a cyclic permutation of the index triple (1, 2, 3), i.e.

(i, j, k) ∈
{

(1, 2, 3), (2, 3, 1), (3, 1, 2)
}
. (4.30)

We denote by Γk the face of the prism containing vectors τi and τj , by αk the angle

formed by τi and τj , and by nk the unit outward normal to Γk. Then, vectors nk

are given by formulas

nk = ∓ 1

‖τi × τj‖
τi × τj . (4.31)

We should use the sign “−” if (τ1, τ2, τ3) form a right triple of vectors (as shown in

Figure 4.1). Otherwise, we should use the sign “+”.
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According to the construction of the PWC vector fields, the inverse of the matrix

MA is given by

M−1
A = NT

A NA (4.32)

where NA ∈ R3×3 is the matrix whose columns are the normal vectors n1, n2, and

n3:

NA =
[

n1 n2 n3

]
∈ R3×3 . (4.33)

It is clear that the diagonal entries of M−1
A are equal to one:

(
M−1

A

)
11

=
(
M−1

A

)
22

=
(
M−1

A

)
33

= 1 . (4.34)

Also, it can be easily shown that off-diagonal entries of M−1
A are given by

(
M−1

A

)
ij

=
cos(αi) cos(αj) − cos(αk)

sin(αi) sin(αj)
. (4.35)

Thus,

M−1
A =




1 c1c2 − c3
s1s2

c1c3 − c2
s1s3

c2c1 − c3
s2s1

1 c2c3 − c1
s2s3

c3c1 − c2
s3s1

c3c2 − c1
s3s2

1




, (4.36)

where

ck = cos(αk), sk = sin(αk) . (4.37)

Using the triple of vectors τ4, τ5, and τ6, we find a similar formula for the matrix

M−1
B :

M−1
B =




1 c4c5 − c6
s4s5

c4c6 − c5
s4s6

c5c4 − c6
s5s4

1 c5c6 − c4
s5s6

c6c4 − c5
s6s4

c6c5 − c4
s6s5

1




. (4.38)
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4.3.2 Possible choices of the matrix M̃k and related eigen-

value problem

For the matrix Mk described in Section 4.3.1,

Mk = assembling
{

constAk
MAk

, constBk
MBk

}
, (4.39)

we have to choose a diagonal matrix M̃k represented by

M̃k = assembling
{

c̃onstAk
M̃Ak

, c̃onstBk
M̃Bk

}
, (4.40)

where the matrix M̃Ak
∈ R3×3 is “close” to MAk

, and the matrix M̃Bk
is “close” to

MBk
.

The matrix M̃k is used in the construction of the preconditioner Ŝ described in

Section 4.1, and has to satisfy the condition λk,max(M̃
−1
k Mk) = 1. Also, we want

λmin(S̃−1S), λmin(S̃−1S) ≥ λk,min(M̃
−1
k Mk), to be not too small.

We can either replace the matrices by their diagonals:

M̃Ak
=




MAk,11 0 0

0 MAk,22 0

0 0 MAk,33


 , M̃Bk

=




MBk,11 0 0

0 MBk,22 0

0 0 MBk,33


 , (4.41)

or replace the matrices by diagonal matrices

M̃Ak
=




dAk,1 0 0

0 dAk,2 0

0 0 dAk,3


 , M̃Bk

=




dBk,1 0 0

0 dBk,2 0

0 0 dBk,3


 , (4.42)

where

dAk,j is “close” to MAk ,jj and dBk,j is “close” to MBk,jj, j = 1, 2, 3. (4.43)

In order to determine the better choice, we consider the eigenvalue problem

M̃−1/2MM̃−1/2 w̄ = λw̄ , (4.44)
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where M ∈ R3×3 is a symmetric positive definite matrix, and M̃ is defined as its

diagonal part, i.e.

M̃ =




m11 0 0

0 m22 0

0 0 m33


 . (4.45)

The matrix A = M̃−1/2MM̃−1/2 is then an SPD matrix.

4.3.3 The suggested choice of M̃k

After performing numerical experiments, we could conclude that the choice of M̃Ak

different from the diagonal of MAk
doesn’t significally improve the condition num-

ber of the matrix M̃−1
Ak
MAk

, but requires us to solve an additional minimization

problem. Therefore, we choose M̃Ak
and M̃Bk

to be the diagonal of MAk
and MBk

correspondingly.

We can easily find find the minimal and maximal eigenvalues of the matrices M̃−1
Ak
MAk

and M̃−1
Bk
MBk

, so we can write the following spectral inequalities:

λmin(M̃−1
Ak
MAk

) · M̃Ak
≤MAk

≤ λmax(M̃
−1
Ak
MAk

) · M̃Ak
(4.46)

and

λmin(M̃−1
Bk
MBk

) · M̃Bk
≤MBk

≤ λmax(M̃
−1
Bk
MBk

) · M̃Bk
(4.47)

As we recall, the matrix Mk is obtained by assembling the matrices MAk
and MBk

,

Mk = assembling
{

constAk
MAk

, constBk
MBk

}
,

Therefore, we obtain the spectral inequality for the matrix Mk:

min
{
constAk

λmin(M̃−1
Ak
MAk

), constBk
λmin(M̃−1

Bk
MBk

)
}
· M̂k ≤ Mk

≤ max
{
constAk

λmax(M̃
−1
Ak
MAk

), constBk
λmax(M̃

−1
Bk
MBk

)
}
· M̂k ,

(4.48)
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where

M̂k = assembling
{

constAk
M̃Ak

, constBk
M̃Bk

}
.

In order to obtain the matrix M̃k, we just have to scale the matrix M̂k:

M̃k = max
{
constAk

λmax(M̃
−1
Ak
MAk

), constBk
λmax(M̃

−1
Bk
MBk

)
}
· M̂k . (4.49)

Denoting the minimal eigenvalue bound by αk,

αk =
min

{
constAk

λmin(M̃−1
Ak
MAk

), constBk
λmin(M̃−1

Bk
MBk

)
}

max
{
constAk

λmax(M̃
−1
Ak
MAk

), constBk
λmax(M̃

−1
Bk
MBk

)
} , (4.50)

we can write

αkM̃k ≤ Mk ≤ 1 · M̃k . (4.51)

Hence, the matrix M̃k satisfies the requirement posed in Section 4.1, i.e. λk,max(M̃
−1
k Mk) =

1, and is a good choice among the diagonal matrices with respect to the minimization

of cond(M̃−1
k Mk).
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4.4 Justification of the proposed choice of the pa-

rameter γk

In Section 4.1 we introduced the matrix S̃k,

S̃k = γk


 Σk 0

0 0


 −


 Bk

Ck


 M̃−1

k

(
BT

k CT
k

)
,

the parameter γk

γk =
1

λk,min(M̃
−1
k Mk)

,

and the assembled matrix

S̃ =

n∑

k=1

Ñk S̃k Ñ T
k ,

which were first defined by (4.12), (4.13), and (4.14). Our reasoning for choosing

γk in that particular way is as follows. First, from (4.17) and (4.51) we write the

spectrum inequalities for the matrix Sk:

min
{
γk, 1

}
· S̃k ≤ Sk ≤ max

{
γk,

1

αk

}
· S̃k . (4.52)

Then, from (4.18) it follows that

min
k

(
min

{
γk, 1

})
· S̃ ≤ S ≤ max

k

(
max

{
γk,

1

αk

})
· S̃ . (4.53)

Therefore, to keep cond(S̃−1S) from increasing, we have to limit our choice of the

parameter γk to the following interval:

1 ≤ γk ≤ 1

αk

. (4.54)

Let us recall that on every iteration of the PCG method we have to solve the system

(4.23) with the matrix A11 defined by (4.24) to be

A11 = S̃11 − S̃12 S̃
−1
22 S̃21 ,
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where

S̃11 = Σ̃ + BM̃−1BT (4.55)

with

Σ̃ =




γ1σ1

. . .

γnσn


 , (4.56)

and BM̃−1BT is also a diagonal matrix.

Hence, by increasing the values of γk, k = 1, n, we increase the diagonal dominance

in the matrix A11, thus reducing the number of iterations required to solve system

(4.23). Therefore, the best choice for γk is the maximum value in the allowed interval

(4.54), i.e.

γk =
1

αk
=

1

λk,min(M̃−1
k Mk)

as it was defined by (4.13) in Section 4.1.
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4.5 Numerical experiments

In this section, we provide the description of the domains and corresponding meshes

used for the comparison of the preconditioners, and give the performance results

obtained for each of the examples.

We assume that the diffusion equation (2.1) comes from the discretization in time

variable of the unsteady diffusion equation by the implicit finite difference method

with the time step ∆timp. Then, we assume that the coefficient c is a positive constant

defined by the formula

c =
1

∆timp
. (4.57)

For numerical experiments we choose

∆timp = κ
√

∆texp , (4.58)

where κ is a positive factor, and ∆texp is chosen to be of the order of the inverse of

the minimal mesh step in order to provide the stability of the scheme.

4.5.1 The decription of test domains and meshes

To compare the performance of the proposed preconditioner with existing competi-

tors, we consider three test examples which are relevant to basin modeling. Every

geological domain considered contains at least one “thin” layer.

For all of the examples given, the diffusion tensor is diagonal and piece-wise constant,

i.e. Ks, the diffusion tensor in the s-th layer, is as follows:

Ks =




Ks,xy 0 0

0 Ks,xy 0

0 0 Ks,z


 , (4.59)
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where Ks,xy and Ks,z are given constants.

Domain with three oblique geological layers

This example features a domain with three geological layers, where the layer in the

middle is “thin” and oblique. The mesh is conforming, uniform in the xy-plane, and

is uniform along z-direction inside each geological layer.

The domain is a parallelepiped with the dimensions 1.0 × 1.0 × 0.25 in x, y, and z

coordinates respectively. The mesh is uniform in x and y coordinates with the step

hxy = 0.3125, i.e. we have a grid of 32 × 32 square cells, each of which is then split

into two triangles, resulting in 2048 bases for triangular prisms on each horizontal

mesh layer.

The geometry of the geological layers is as follows:

Geological layer #1:

At the bottom, it is bordered by the (x, y, 0) plane. At the top it is bordered by

the plane passing through the point (0, 0, 0.12). This plane formes an angle θx = 5◦

with the x-axis, and an angle θy = −5◦ with the y-axis. The mesh is uniform along

z-direction with the step hz,1 ∈ [0.004644, 0.029641].

The mesh for this layer consists of 2 · (32 × 32 × 7) triangular prisms.

Geological layer #2:

At the bottom, it is bordered by the top boundary of the layer #1, at the top by

the plane passing through the point (x, y, 0.12001) and parallel to the one at the

bottom. It is a “thin” layer with a thickness of 10−5.

The mesh in z-coordinate is uniform with the step hz,2 = 0.000005.

The mesh for this layer consists of 2 · (32 × 32 × 2) triangular prisms.
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Geological layer #3:

At the bottom, it is bordered by the top boundary of the layer #2, at the top by the

(x, y, 0.25) plane.

The mesh is uniform along z-direction with the step hz,3 ∈ [0.006072, 0.031068].

The mesh for this layer consists of 2 · (32 × 32 × 7) triangular prisms.

Key parameters of the mesh cells in each geological layer are given in Table 4.1.

Table 4.1: Geometrical parameters of the mesh cells

Layer #1 Layer #2 Layer #3

hxy 0.3125 0.3125 0.3125

hz [0.004644, 0.029641] 0.000005 [0.006072, 0.031068]

hxy/hz [1.0543, 6.7284] 6250 [1.0058, 5.1469]

The diffusion tensor in each layer is chosen as shown in Table 4.2.

Table 4.2: Diffusion tensor parameters

Layer #1 Layer #2 Layer #3

Ks,xy 5 10000 10

Ks,z 1 1000 1

The domain is pictured on Figure 4.2 with the close-up of the mesh in the “thin”

layer given on Figure 4.3.

The total number of mesh cells is 2 · (32 × 32 × 16) = 32768.
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Figure 4.2: Domain with three oblique geological layers

Figure 4.3: Close-up of the oblique “thin” layer

Domain with five oblique geological layers

This example features a domain with five geological layers, where the two of them are

“thin”, oblique, and parallel to each other. The mesh used is conforming, uniform

in the xy-plane, and is uniform along z-direction inside each geological layer.

The domain is a parallelepiped with the dimensions 1.0 × 1.0 × 0.25 in x, y, and z

coordinates respectively. The mesh is uniform in x and y coordinates with the step

hxy = 0.3125, i.e. we have a grid of 32 × 32 square cells each of which is then split

into two triangles, resulting in 2048 bases for triangular prisms on each horizontal
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mesh layer.

The geometry of the geological layers is as follows:

Geological layer #1:

At the bottom, it is bordered by the (x, y, 0) plane. At the top it is bordered by

the plane passing through the point (0, 0, 0.081426). This plane formes an angle

θx = 3◦ with the x-axis, and an angle θy = −3◦ with the y-axis. The mesh is uniform

along z-direction with the step hz,1 ∈ [0.003627, 0.016729].

The mesh for this layer consists of 2 · (32 × 32 × 8) triangular prisms.

Geological layer #2:

At the bottom, it is bordered by the top boundary of the layer #1, at the top by

the plane passing through the point (x, y, 0.081436) and parallel to the one at the

bottom. It is a “thin” layer with a thickness of 10−5.

The mesh in z-coordinate is uniform with the step hz,2 = 0.000005.

The mesh for this layer consists of 2 · (32 × 32 × 2) triangular prisms.

Geological layer #3:

At the bottom, it is bordered by the top boundary of the layer #2, at the top by

the plane passing through the point (x, y, 0.1601883) and parallel to the one at the

bottom.

The mesh is uniform along z-direction with the step hz,3 = 0.013125.

The mesh for this layer consists of 2 · (32 × 32 × 6) triangular prisms.

Geological layer #4:

At the bottom, it is bordered by the top boundary of the layer #3, at the top by

the plane passing through the point (x, y, 0.1602883) and parallel to the one at the
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bottom. It is a “thin” layer with a thickness of 10−4.

The mesh in z-coordinate is uniform with the step hz,4 = 0.00005.

The mesh for this layer consists of 2 · (32 × 32 × 2) triangular prisms.

Geological layer #5:

At the bottom, it is bordered by the top boundary of the layer #4, at the top by the

(x, y, 0.25) plane.

The mesh is uniform along z-direction with the step hz,5 ∈ [0.004663, 0.017765].

The mesh for this layer consists of 2 · (32 × 32 × 8) triangular prisms.

Key parameters of the mesh cells in each geological layer are given in Table 4.3.

Table 4.3: Geometrical parameters of the mesh cells

hxy hz hxy/hz

Layer #1 0.3125 [0.003627, 0.016729] [1.868, 8.6154]

Layer #2 0.3125 0.000005 6250

Layer #3 0.3125 0.013125 2.3809

Layer #4 0.3125 0.00005 625

Layer #5 0.3125 [0.004663, 0.017765] [1.7591, 6.7017]

The diffusion tensor in each layer is chosen as shown in Table 4.4.

The domain is pictured on Figure 4.4.

The total number of mesh cells is 2 · (32 × 32 × 26) = 53248.
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Table 4.4: Diffusion tensor parameters

Layer #1 Layer #2 Layer #3 Layer #4 Layer #5

Ks,xy 5 10000 10 1000 10

Ks,z 1 1000 5 500 1

Figure 4.4: Domain with five oblique geological layers

Domain with five oblique and “bended” geological layers

This example features a domain with five geological layers, where the two of them

are “thin”, oblique, non-parallel, and “bended”, i.e. their inclination angle changes

at some point. The mesh used is conforming, uniform in the xy-plane, and is uniform

along z-direction inside each geological layer.

The domain is a parallelepiped with the dimensions 1.0 × 1.0 × 0.25 in x, y, and z

coordinates respectively. The mesh is uniform for x and y coordinates with the step

hxy = 0.3125, i.e. we have a grid of 32 × 32 square cells each of which is then split

into two triangles, resulting in 2048 bases for the triangular prisms on each horizontal
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mesh layer.

The geometry of the geological layers is as follows:

Geological layer #1:

At the bottom, it is bordered by the (x, y, 0) plane. At the top it is bordered by

the “bended” plane passing through the point (0, 0, 0.05).

This plane formes an angle θx,1,1 = 10◦ with the x-axis for x ∈ (0, 0.25), and an

angle θx,1,2 = −5◦ for x ∈ (0.25, 1).

The angle between the plane and the y-axis is θy,1 = 2◦ for y ∈ (0, 1).

The mesh is uniform along z-direction with the step hz,1 ∈ [0.003558, 0.016125].

The mesh for this layer consists of 2 · (32 × 32 × 8) triangular prisms.

Geological layer #2:

At the bottom, it is bordered by the top boundary of the layer #1, at the top by the

“bended” plane passing through the point (x, y, 0.05001) and parallel to the one at

the bottom. It is a “thin” layer with a thickness of 10−5.

The mesh in z-coordinate is uniform with the step hz,2 = 0.000005.

The mesh for this layer consists of 2 · (32 × 32 × 2) triangular prisms.

Geological layer #3:

At the bottom, it is bordered by the top boundary of the layer #2. At the top it is

bordered by the “bended” plane passing through the point (0, 0, 0.16).

This plane formes an angle θx,2,1 = 4◦ with the x-axis for x ∈ (0, 0.625), and an

angle θx,2,2 = −10◦ for x ∈ (0.625, 1).

The angle between the plane and the y-axis is θy,2 = −2◦ for y ∈ (0, 1).

The mesh is uniform along z-direction with the step hz,3 ∈ [0.002258, 0.023737].

The mesh for this layer consists of 2 · (32 × 32 × 6) triangular prisms.
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Geological layer #4:

At the bottom, it is bordered by the top boundary of the layer #3, at the top by the

“bended” plane passing through the point (x, y, 0.1601) and parallel to the one at

the bottom. It is a “thin” layer with a thickness of 10−4.

The mesh in z-coordinate is uniform with the step hz,4 = 0.00005.

The mesh for this layer consists of 2 · (32 × 32 × 2) triangular prisms.

Geological layer #5:

At the bottom, it is bordered by the top boundary of the layer #4, at the top by the

(x, y, 0.25) plane.

The mesh is uniform along z-direction with the step hz,5 ∈ [0.005775, 0.018405].

The mesh for this layer consists of 2 · (32 × 32 × 8) triangular prisms.

Key parameters of the mesh cells in each geological layer are given in Table 4.5.

Table 4.5: Geometrical parameters of the mesh cells

hxy hz hxy/hz

Layer #1 0.3125 [0.003558, 0.016125] [1.9379, 8.7826]

Layer #2 0.3125 0.000005 6250

Layer #3 0.3125 [0.002258, 0.023737] [1.3165, 13.839]

Layer #4 0.3125 0.00005 625

Layer #5 0.3125 [0.005775, 0.018405] [1.6979, 5.4118]

The diffusion tensor in each layer is chosen as shown in Table 4.6.

The domain is pictured on Figure 4.5.
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Table 4.6: Diffusion tensor parameters

Layer #1 Layer #2 Layer #3 Layer #4 Layer #5

Ks,xy 5 10000 10 1000 10

Ks,z 1 1000 5 500 1

Figure 4.5: Domain with five oblique “bended” geological layers

The total number of mesh cells is 2 · (32 × 32 × 26) = 53248.
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4.5.2 Numerical comparison of preconditioners

For each of the examples described in Section 4.5.1, we perform the comparison of the

preconditioners used in the PCG method to solve system (4.1) with the right-hand

side vector equal to zero, i.e. we solve the system

S


 p̄

p̄Γ


 = 0̄ , (4.60)

or

Sz̄ = 0̄ . (4.61)

We compare the performance of the diagonal preconditioner (DIAG), the well-known

AMG preconditioner (AMG), and the preconditioner proposed in this report.

In the case of our new preconditioner H = Ŝ−1, we consider two possible choices

for the internal substitution of the matrix A11 by its preconditioner B11 as shown in

(4.25). Using AMG preconditioner for that purpose gives us the first variant (ŜAMG).

The alternative is to use KPMDP preconditioner, which gives us the second variant

(ŜKP ).

We set z̄0 to be a random initial guess such that

‖z̄0‖S = 1, (4.62)

and use the stopping condition ‖z̄k‖S < 10−6.

We perform all the experiments for two choices of the coefficient κ from (4.58),

κ = 1 and κ = 0.1. This allows us to capture the dynamics of the preconditioners’

performance with respect to the choice of the time step.
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Table 4.7: Domain with one “thin” layer, dim(S) = 115712

κ = 1, c = 3421.66 κ = 0.1, c = 34216.6

PCG iter. PCG time, s PCG iter. PCG time, s

DIAG 324 2.912 180 1.681

AMG 112 11.29 104 9.687

ŜAMG 16 0.924 14 0.797

ŜKP 29 0.756 27 0.525

Table 4.8: Domain with two parallel “thin” layers, dim(S) = 188032

κ = 1, c = 2216.91 κ = 0.1, c = 22169.1

PCG iter. PCG time, s PCG iter. PCG time, s

DIAG 891 14.72 290 4.939

AMG 93 17.57 87 15.83

ŜAMG 15 1.626 15 1.369

ŜKP 31 1.879 26 0.983
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Table 4.9: Domain with two “bended, thin” layers dim(S) = 188032

κ = 1, c = 2237.66 κ = 0.1, c = 22376.6

PCG iter. PCG time, s PCG iter. PCG time, s

AMG 221 37.26 169 27.74

ŜAMG 17 1.719 17 1.509

ŜKP 36 2.196 31 1.125

The obtained results demonstrate the advantage of the new preconditioner. Between

two variants of its implementation, the one using KPMDP preconditioner is the

better option in the majority of the tests, but the other variant starts to perform

better as the time step increases.

69



Chapter 5

Non-conforming meshes on

domains with parallel oblique

geological layers

5.1 Benchmark problem formulation

In this section, we consider the Neumann boundary value problem for the diffusion

equation

−∇ ·
(
K ∇p

)
+ cp = F in G ,

− (K ∇p) · n = GN on ∂G ,

(5.1)

in a rectangular domain G. Here, K = K(x, z) is a two-by-two symmetric positive

definite matrix, c = c(x, z) is a nonnegative function, ∂G is the boundary of G, n is

the unit outward normal to ∂G, F = F (x, z) and GN = GN(x, z) are given functions.

We assume that the domain G is a partition of oblique layers Gs, s = 1, L, as shown

on Figure 5.1. The layers are parallel and form an angle α with the x-axis. In order
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to express the solution function p = p(x, z) of (5.1) analytically, we impose a number

of restrictions specified below.

α G
1

G3

G5

G6

G4

G2

Figure 5.1: Domain with oblique geological layers

First, we assume the diffusion tensor K to be piece-wise constant in G, i.e.

K|Gs
≡ Ks ≡ consts ∈ R2×2.

We also assume that

Ks = W


 ks,x 0

0 ks,z


W T in Gs, s = 1, L , (5.2)

is obtained by the rotation of a constant diagonal tensor. Here,

W =


 cos(α) sin(α)

− sin(α) cos(α)


 (5.3)

is the rotation matrix dependent on the inclination angle of the geological layers.

Second, we impose similar restrictions on c, that is

c|Gs
≡ cs ≡ consts > 0.
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Third, we assume that the region G is a part of a larger rectangular domain Ĝ as

shown on Figure 5.2. Notice that subregions Gs, s = 1, L, can be extended to

horizontal layers Ĝs in Ĝ. With Ĝ, we associate the Cartesian system (x̂, ẑ), which

is obtained by a shift and a clockwise rotation of the system (x, z), i.e.


 x̂

ẑ


 = r0 + W


 x

z


 , (5.4)

where r0 is the vector connecting the origins of the corresponding coordinate systems.

α

G6

G1

G3

G5

4G

x

z

r0

G2

4G

G

G
^

^

^

G
^

G
^

6

3

5

2

G1
^

ẑ

x̂

Figure 5.2: Embedding of the domain G into a larger domain Ĝ
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Now, we introduce functions K̂, ĉ, and F̂ defined on the domain Ĝ so that

K̂|Gs
(x̂, ẑ) =


 kx,s 0

0 kz,s


 , ĉ|Gs

(x̂, ẑ) = cs,

and F̂ |Gs
(x̂, ẑ) = F |Gs

(x, z),

(5.5)

i.e. these functions are extensions of the functions K, c, and F from the domain G

to the domain Ĝ, with the values of K̂, ĉ, and F̂ coinciding with the corresponding

values of K, c, and F in subregions Gs, s = 1, L, under the respective change of

coordinates.

For simplicity in notations, let us assume that

Ĝ ≡ (0, 1) × (ẑ0, ẑL) , (5.6)

and consider the eigenproblem for the operator − d2

dx̂2 :

− d2

dx̂2w = λbxw, 0 < x̂ < 1,

dw
dx̂

(0) = 0, dw
dx̂

(1) = 0.

. (5.7)

The eigenpairs (λbx,n, wn) for this problem are

λbx,0 = 0, w0 ≡ 1,

λbx,n = (nπ)2, wn =
√

2 cosnπx̂, n ≥ 1 .

(5.8)

The set of these eigenfunctions is an orthonormal basis in L2(0; 1). The right-hand

side function F̂ = F̂ (x̂, ẑ) can then be expanded in this basis as follows:

F̂ (x̂, ẑ) =
∞∑
i=0

f̂i(ẑ)wi(x̂) ,

with f̂i(ẑ) =
1∫
0

F̂ (x̂, ẑ)wi(x̂)dx̂ ,

F (x, z) = F̂ (x̂, ẑ) .

(5.9)
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The assumptions imposed on the right-hand side in the benchmark problem formu-

lation are as follows. We consider F̂ = F (x̂, ẑ) to be admissible if it belongs to the

class of functions whose expansion (5.9) satisfies

f̂i(ẑ)|Gs
≡ f̂s,i ≡ consts,i, i = 0, 1,

f̂i(ẑ) ≡ 0, i ≥ 2,

(5.10)

i.e. the functions f̂i = f̂i(ẑ) are piece-wise constant with respect to the layers Ĝs,

and F̂ = F̂ (x̂, ẑ) has only two nonzero harmonics.

Recall that the function F is the restriction of the function F̂ to the subregions Gs,

s = 1, L, under the respective change of coordinates, i.e.

F̂ |Gs
(x̂, ẑ) = F |Gs

(x, z)

as stated in (5.5); therefore the assumptions imposed on the function F̂ extend to

the function F in the original problem (5.11).

With the assumptions above, we consider the diffusion problem with homogeneous

Neumann boundary conditions for the region Ĝ:

−∇̂ ·
(
K̂ ∇̂p̂

)
+ ĉp̂ = F̂ in Ĝ ,

−
(
K̂ ∇̂p̂

)
· n̂ = 0 on ∂Ĝ .

(5.11)

With the imposed restrictions, we can explicitly find the reference solution p̂∗ for

the problem (5.11) in the domain Ĝ. Then, we set the boundary conditions for the

problem (5.1) to be

GN = û∗(x̂, ẑ) · n̂ on ∂G, (5.12)

where

û∗ = −K̂ ∇̂p̂∗
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is the reference flux for the domain Ĝ. Consequently, the reference solution of the

problem (5.1) on the domain G should coincide with the restriction of the reference

solution of the problem (5.11) to the subdomain G, i.e.

u∗(x, z) = û∗(x̂, ẑ)|G and p∗(x, z) = p̂∗(x̂, ẑ)|G , (5.13)

where p∗ is the solution of the problem (5.1), and u∗ = −K∇p∗.

With the boundary conditions explicitly defined, the list of assumptions required to

describe the benchmark problem is complete.
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5.2 Non-conforming mesh description

In this section we describe the construction of non-conforming meshes for domains

with thin parallel oblique geological layers.

Let the considered domain G be a rectangle partitioned into a union of oblique

subdomains Gs, s = 1, L, which correspond to different geological layers. We assume

that all the layers are parallel and have an inclination angle α with respect to the

x-axis, i.e. the lines separating geological layers inside of G, zs(x), s = 1, L− 1,

have the slope equal to tan(α), and we denote the elevation of the geological layer

Gs on the left side of the domain G by zs(0) = zs,0.

We start with a conforming mesh Gh which is uniform in variable x, and is such that

Gh,s ≡ Gh|Gs
is uniform in variable z along any vertical line, s = 1, L. Mesh cells are

quadrilaterals, in particular, mesh cells inside the oblique layers are parallelograms.

We say that the interface γk,i is an interior vertical interface of the cell ek in the

oblique layer Gs, s = 2, L− 1, provided it doesn’t belong to the boundary of the

domain, i.e. γk,i /∈ ∂G, and it’s not parallel to the lines separating geological layers

inside of G, i.e. γk,i ∦ zs(x). We say that the interface γk,i is an interior horizontal

interface of the cell ek provided it doesn’t belong to the boundary of the domain,

and it’s not an interior vertical interface. It follows that γk,i ‖ zs(x) in this case.

Then, for every mesh cell ek inside every “thin” geological layer Gs, we replace all

the interior vertical interfaces γk,i by interfaces γ̂k,i such that γ̂k,i⊥zs(x). We do this

by shifting the end point of γk,i with a greater z-coordinate along the line parallel

to zs(x) and passing through that point. Then we adjust the length of the interior
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horizontal interface at the top of ek, γ̂k,i, so that the cell becomes a rectangle, and

denote such interface by γ̃k,i.

Note that if the interior vertical interface γk,i was an interface between mesh cells ek

and el, i.e. γk,i ≡ γl,j ≡ γk,l, then we have that γ̂k,i ≡ γ̂l,j ≡ γk,l. For the interior

horizontal interfaces we still write that γ̃k,i ≡ γl,j ≡ γk,l, but implying the equivalence

in a logical sense, as geometrically interfaces γ̃k,i and γl,j no longer coincide.

Taking an example on Figure 5.3, it’s the same as saying that even though γk,l = γl,k

for conforming cells, and γk,l 6= γl,k for non-conforming cells, we impose the same

interface condition

uk,i|γk,l| + ul,j|γl,k| = 0 (5.14)

in both cases.

k

Γkl

E
l

Γ lk

E
k

E
l

Γkl

Γ lk

E

Figure 5.3: An example of conforming and non-conforming cells

Another illustration of the transition to a non-conforming mesh is shown on Fig-

ures 5.4 and 5.5.
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Figure 5.4: An example of the initial conforming mesh
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Figure 5.5: An example of the resulting non-conforming mesh
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5.3 Error analysis of mixed FE method

In this section, we describe how the benchmark problem for domains with thin par-

allel oblique layers can be used to compare the accuracy of the mixed finite element

methods on conforming and non-conforming meshes.

We consider the benchmark problem (5.11) in the rectangular domain G with oblique

layers having inclination angle α. We denote the corresponding reference domain by

Ĝ and impose all the restrictions listed in the Section 5.1. The reference solution

pair is then (p∗, u∗). We use a quadrilateral mesh Gh in domain G, and denote

mesh cells by ek, k = 1, n, where n is the total number of cells. Each cell ek is a

quadrilateral divided into two triangles: upper triangle T
(1)
k and lower triangle T

(2)
k .

Then, the KR-interpolant of u∗ in a cell ek can be written as

wKR
k (x) =





uk,1φ
(1)
k,1(x) + uk,2φ

(1)
k,2(x) − uk,3φ

(1)
k,3(x) in T

(1)
k

uk,3φ
(2)
k,3(x) + uk,4φ

(2)
k,4(x) + uk,5φ

(2)
k,5(x) in T

(2)
k

, (5.15)

where φ
(j)
k,i(x) is the RT0 basis function for the side γk,i in the triangle T

(j)
k , and uk,i

is the average value of normal component of flux on the side γk,i.

Similarly, the PWC-interpolant for a cell ek is as follows:

wPWC
k (x) =





(
nk,1 nk,2

)−T


 uk,1

uk,2


 in T

(1)
k

(
nk,4 nk,5

)−T


 uk,4

uk,5


 in T

(2)
k

, (5.16)

where nk,i is the unit normal vector to the side γk,i.
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The reference solution u∗ is known in the entire domain Ĝ and, therefore, its entire

subdomain G, so for every mesh cell ek we explicitly know uk
∗ ≡ u∗|ek

, the reference

solution for the cell.

Now, we can discretize the equation (5.11) by applying either KR mixed FE method

or PWC approximation, and obtain the solution pair (ph,k, wh,k) using the corre-

sponding interpolant.

An absolute error ∆ek
over a cell ek can be computed as

∆ek
=



∫

ek

|wh,k(x) − u∗(x)|2 dx




1/2

, (5.17)

and the L2 norm of the reference solution u∗ over the same cell ek is

‖u∗
k‖2 =



∫

ek

|u∗(x)|2 dx




1/2

. (5.18)

We can denote the mesh inside the geological layer Gs by Gh,s. Then the relative

error in L2 norm between the flux interpolant wh,k and the reference solution u∗
k over

the geological layer Gs, s = 1, L, can be computed as

ǫGs
= 100 ·

∑

ek∈Gh,s

∆ek

∑

ek∈Gh,s

‖u∗
k‖2

. (5.19)
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5.4 Numerical results

In this section, we consider the benchmark problem for a number of domains with

different inclination angles of the oblique geological layer, and estimate the accuracy

of PWC and KR approximations as described in Section 5.3. We use both conforming

and non-conforming meshes introduced in Section 5.2.

We choose our domain G so that it contains three geological layers with the one in

the middle being “thin”. The lines separating geological layers inside of G, z1(x) and

z2(x), have slope equal to tan(α), where α is the inclination angle of the geological

layers with respect to the x-axis, and z1(0) = 0.05, z2(0) = 0.05001. We construct

the reference domain Ĝ and use the values of the parameters listed in Table 5.1.

Table 5.1: Parameters for the chosen test problem

Ĝ1 Ĝ2 Ĝ3

kx,s 2 100 5

kz,s 1 10 4

cs 1 1 1

f̂0 5 1000 1

f̂1 0.1 10 0.05

The mesh Gh is chosen to be uniform in variable x, and is such that Gh,s ≡ Gh|Gs

is uniform in variable z along any vertical line, s = 1, 3. For different values of the

inclination angle α and mesh step size, we compute ǫGs
, s = 1, 3, i.e. relative errors

in interpolants wh,k over every geological layer Gs.
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Domains Ĝ and G, as well as the mesh Gh for the intermediate mesh step size, are

shown on figures below. The computed values of relative errors are given in Tables

5.2 - 5.9.

Domain 1: G is a (0, 0.4) × (0, 0.5) rectangle with an oblique layer having the

inclination angle of 45◦. The coarsest mesh has 10 × 12 cells in Gh,1, 10 × 1 cells in

Gh,2, and 10 × 13 cells in Gh,3.

Geological layers in the reference domain are Ĝ1 = (0, 1) × (0, 0.320156), Ĝ2 =

(0, 1) × (0.320156, 0.320163), and Ĝ3 = (0, 1) × (0.320163, 0.640312).

The finest mesh steps hs = (hs,x, hs,z) for the layers Gs, s = 1, 3, are as follows:

h1 = (0.01, 0.00104167), h2 = (0.01, 2.5e− 006), and h3 = (0.01, 0.00865365)
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Figure 5.6: Domain G and mesh Gh for angle α = 45◦ and mesh step size 2h
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Figure 5.7: Mesh Gh inside the domain Ĝ for angle α = 45◦ and mesh step size 2h
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Figure 5.8: Mesh cell inside Gh,2 for angle α = 45◦ and mesh step size 2h, conforming

mesh
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Figure 5.9: Mesh cell inside Gh,2 for angle α = 45◦ and mesh step size 2h, non-

conforming mesh
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Table 5.2: Relative error in KR interpolant wKR
h , %, for angle α = 45◦, conforming

mesh

G1 G2 G3

4h 3.1838 1148.49 3.13859

2h 1.5906 574.246 1.56836

h 0.795139 287.123 0.784062

Table 5.3: Relative error in KR interpolant wKR
h , %, for angle α = 45◦, non-

conforming mesh

G1 G2 G3

4h 3.18381 1148.78 3.13857

2h 1.59061 574.398 1.56836

h 0.795148 287.201 0.784083
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Table 5.4: Relative error in PWC interpolant wPWC
h , %, for angle α = 45◦, conform-

ing mesh

G1 G2 G3

4h 6.47516 5.9941 5.98602

2h 3.23569 2.02823 2.98601

h 1.61761 0.842736 1.49213

Table 5.5: Relative error in PWC interpolant wPWC
h , %, for angle α = 45◦, non-

conforming mesh

G1 G2 G3

4h 6.47512 5.9229 5.98567

2h 3.23567 1.96789 2.98584

h 1.6176 0.812716 1.49205
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Domain 2: G is a (0, 0.025) × (0, 0.5) rectangle with an oblique layer having the

inclination angle of 85◦. The coarsest mesh has 5 × 12 cells in Gh,1, 5 × 1 cells in

Gh,2, and 5 × 13 cells in Gh,3.

Geological layers in the reference domain are Ĝ1 = (0, 1) × (0, 0.232881), Ĝ2 =

(0, 1) × (0.232881, 0.232882), and Ĝ3 = (0, 1) × (0.232882, 0.500625).

The finest mesh steps hs = (hs,x, hs,z) for the layers Gs, s = 1, 3, are as follows: h1 =

(0.00125, 0.00104167), h2 = (0.00125, 2.5e− 006), and h3 = (0.00125, 0.00865365)
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Figure 5.10: Domain G and mesh Gh for angle α = 85◦ and mesh step size 2h
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Figure 5.11: Mesh Gh inside the domain Ĝ for angle α = 85◦ and mesh step size 2h
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Figure 5.12: Mesh cell inside Gh,2 for angle α = 85◦ and mesh step size 2h, conform-

ing mesh case
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Figure 5.13: Mesh cell inside Gh,2 for angle α = 85◦ and mesh step size 2h, non-

conforming mesh case
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Table 5.6: Relative error in KR interpolant wKR
h , %, for angle α = 85◦, conforming

mesh case

G1 G2 G3

4h 2.29005 1206.12 2.00625

2h 1.14379 603.059 1.0056

h 0.571822 301.531 0.503148

Table 5.7: Relative error in KR interpolant wKR
h , %, for angle α = 85◦, non-

conforming mesh case

G1 G2 G3

4h 2.28981 1207.36 2.00559

2h 1.14378 603.747 1.00588

h 0.572307 301.889 0.504837
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Table 5.8: Relative error in PWC interpolant wPWC
h , %, for angle α = 85◦, conform-

ing mesh case

G1 G2 G3

4h 5.34833 9.79232 4.50218

2h 2.66169 3.04768 2.23093

h 1.32938 1.07851 1.11288

Table 5.9: Relative error in PWC interpolant wPWC
h , %, for angle α = 85◦, non-

conforming mesh case

G1 G2 G3

4h 5.34711 8.81404 4.49751

2h 2.661 2.07108 2.22867

h 1.32921 0.907528 1.11241
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Chapter 6

Non-conforming meshes on

domains with concentric curved

geological layers

6.1 Benchmark problem formulation

In this section, we consider the Neumann boundary value problem for the diffusion

equation

−∇ ·
(
K ∇p

)
+ cp = F in G

(−K ∇p) · n = GN on ∂G

(6.1)

in a rectangular domain G. Here, K = K(x, z) is a two-by-two symmetric positive

definite matrix, c = c(x, z) is a nonnegative function, ∂G is the boundary of G, n is

the unit outward normal to ∂G, F = F (x, z) and GN = GN(x, z) are given functions.

We assume that the domain G is a partition of layers Gs, s = 1, L, with the middle

layers being curved. The boundaries of all the middle layers are concentric circular
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arcs, i.e. parts of the coaxial circles sharing the same center C(xC , yC). In order to

express the solution function p = p(x, z) of (6.1) analytically, we impose a number

of restrictions specified below.

First, we associate a polar coordinate system (r, θ) with the center of the circles,

i.e. we choose the point C to be its origin. We assume the diffusion tensor K to be

piece-wise constant in G with respect to the polar coordinates, i.e.

K(r, θ)|Gs
≡ K(r, θ),s ≡ consts ∈ R2×2.

We also assume that

K(r, θ),s =


 kr,s 0

0 kθ,s


 in Gs, s = 1, L. (6.2)

is a constant diagonal tensor.

Second, we impose similar restrictions on c, that is

c(r, θ)|Gs
≡ c(r, θ),s ≡ consts > 0.

Third, we assume that the regionG is a part of a larger domain Ω which is bounded by

two coaxial circles centered at the point C. With Ω, we associate the polar system

(r, θ) defined above, and therefore can describe Ω by writing Ω = (rmin, rmax) ×
(0, 2π) in (r, θ) coordinate system. We assume that subregions Gs, s = 1, L, can

be extended to concentric layers Ωs in Ω.

Now, we introduce functions K̂, ĉ, and F̂ defined on the domain Ω so that

K̂|Gs
= K(r, θ),s =


 kr,s 0

0 kθ,s


 , ĉ|Gs

= c(r, θ),s,

and F̂ |Gs
= F(r, θ),s|Gs

,

(6.3)
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i.e. these functions are extensions of the functions K, c, and F from the domain G

to the domain Ω with the values of K̂, ĉ, and F̂ coinciding with the corresponding

values of K, c, and F in subregions Gs, s = 1, L, under the respective change of

coordinates.

We can formally describe the partitioning of Ω in the following way:

Ω ≡
L−1⋃

s=0

(rs, rs+1) × (0, 2π) , (6.4)

where r0 = rmin, rL = rmax, and rs is a radius of a circle separating layers Ωs and

Ωs+1, s = 1, L− 1.

Now we consider the eigenproblem for the operator − d2

dθ2 :

− d2

dθ2w = λθw, 0 < θ < 2π,

w(0) = w(2π), dw
dθ

(0) = dw
dθ

(2π).

(6.5)

The eigenpairs (λθ,n, wn) for this problem are

λθ,0 = 0, w0 ≡ 1,

λθ,n = n2, wn = 1√
π

cosnθ, n ≥ 1 .

(6.6)

The set of these eigenfunctions is an orthonormal basis in L2(0; 2π). The right-hand

side function F̂ = F̂ (r, θ) can then be expanded in this basis as follows:

F̂ (r, θ) =
∞∑
i=0

f̂i(r)wi(θ) ,

with f̂i(r) =
2π∫
0

F̂ (r, θ)wi(θ)dθ ,

F(r, θ) = F̂ (r, θ) .

(6.7)
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The assumptions imposed on the right-hand side in the benchmark problem formu-

lation are as follows. We consider F̂ = F̂ (r, θ) to be admissible if it belongs to the

class of functions whose expansion (6.7) satisfies:

f̂i(r)|Ωs
≡ f̂i,s ≡ consti,s, i = 0, 1,

f̂i(r) ≡ 0, i ≥ 2,

(6.8)

i.e. the functions F̂i = f̂i(r) are piece-wise constant with respect to the layers Ωs,

and F̂ = F̂ (r, θ) has only two nonzero harmonics.

Recall that the function F is the restriction of the function F̂ to the subregions Gs,

s = 1, L, under the respective change of coordinates, i.e.

F̂ |Gs
= F(r, θ)

as stated in (6.3), therefore the assumptions imposed on the function F̂ extend to

the function F in the original problem (6.1).

With all the assumptions above, we consider the diffusion problem with homogeneous

Neumann boundary conditions for the region Ω:

−∇̂ ·
(
K̂ ∇p̂

)
+ ĉp̂ = F̂ in Ω ,

−
(
K̂ ∇̂p̂

)
· n̂ = 0 on ∂Ω .

(6.9)

With the imposed restrictions, we can explicitly find the reference solution p̂∗ for

the problem (6.9) in the domain Ω. Then, we set the boundary conditions for the

problem (6.1) to be

GN = û∗
(x, z) · n on ∂G, (6.10)

where

û∗
(r, θ) = −K̂ ∇̂p̂∗
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is the reference flux for the domain Ω. Consequently, the reference solution of the

problem (6.1) on the domain G should coincide with the restriction of the reference

solution of the problem (6.9) to the subdomain G, i.e.

u∗ = û∗
(x, z)|G and p∗ = p̂∗(x, z)|G , (6.11)

where p∗ is the solution of the problem (6.1), and u∗ = −K∇p∗.

With the boundary conditions explicitly defined, the list of assumptions required to

describe the benchmark problem is complete.
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6.2 Obtaining the solution of the benchmark prob-

lem

In order to obtain the solution of the benchmark problem described in Section 6.1,

we expand the solution function p = p(r, θ) of the problem (6.9) with respect to the

eigenfunctions (6.6):

p(r, θ) =
∞∑

i=0

pi(r)wi(θ) . (6.12)

Then, the benchmark problem

−1
r
∂
∂r

(
Krr

∂p
∂r

)
− 1

r2
∂
∂θ

(
Kθ

∂p
∂θ

)
+ ĉp = F̂ in Ω ,

∂p
∂r

= 0 on ∂Ω ,

(6.13)

can be written as

− d
dr

(
Kr

∞∑
i=0

dpi

dr
(r)wi(θ)

)
− 1

rKr

∞∑
i=0

dpi

dr
(r)wi(θ) −

− 1
r2

d
dθ

(
Kθ

∞∑
i=0

pi(r)
dwi
dθ

(θ)

)
+ ĉ

∞∑
i=0

pi(r)wi(θ) =
1∑

i=0

fiwi(θ) in Ω ,

dpi

dr
(r) = 0 on ∂Ω for i ≥ 0 .

(6.14)

Recall that K̂|Ωs
≡ K̂s ≡ const, where Ω ≡ ⋃L−1

s=0 (rs, rs+1) × (0, 2π) as before.

Since the basis {wi}∞i=0 is orthonormal, these two facts imply that

pi(r) ≡ 0, i ≥ 2 , (6.15)
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and the resulting system is as follows:

−kr,s
d2pi,s

dr2 (r) − kr,s
r
dpi,s

dr
(r) + σi,s(r)pi,s(r) = fi,s ,

dpi,1

dr
(r1) = 0 ,

dpi,L

dr
(rL) = 0 ,

pi,s(rs − 0) = pi,s+1(rs + 0), s = 1, L− 1 ,

Kr,s
dpi,s

dr
(rs − 0) = Kr,s+1

dpi,s+1

dr
(rs + 0), s = 1, L− 1 ,

(6.16)

s = 1, L, i = 0, 1. Here,

σ1,s(r) = ĉs, σ2,s(r) = ĉs +
kθ,s

r2 . (6.17)

The solution to this system, i.e. function pi,s(r), s = 1, L, is obtained by applying

a finite-difference numerical scheme with sufficiently small step. With that, the

reference solution of our benchmark problem can be written as

ps(r, θ) = p0,s(r) +
1√
π

cos(θ) · p1,s(r), s = 1, L. (6.18)
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6.3 Non-conforming mesh description

In this section we describe the construction of non-conforming meshes for domains

with concentric thin geological layers.

Let the considered domain G be a rectangle partitioned into a union of subdomains

Gs, s = 1, L, which correspond to different geological layers. We assume that all the

middle layers have coaxial circular boundaries centered at the point C(xC , yC), and

we denote the radiuses of the circular arcs separating the geological layers inside of

G by rs, s = 1, L− 1. We associate a Cartesian coordinate system (x, y) with the

lower left corner of the rectangle G, axes directed along its lower and left sides, and

introduce a polar coordinate system (r, θ) with the origin at the point C(xC , yC).

We start with a conforming mesh Gh which is uniform in variable x. Also, the mesh

inside of each geological layer, Gh,s ≡ Gh|Gs
, is chosen so that along every vertical

line x = xj , it is uniform in variable z with respect to the coordinates of the mesh

nodes in the Cartesian system for s = 1, L, and is uniform in variable r with respect

to the coordinates of mesh nodes in the polar system for s = 2, L− 1. Mesh cells are

quadrilaterals, more specifically, they are trapezoids with parallel vertical interfaces.

We say that the interface γk,i is an interior vertical interface of the cell ek in the

middle layer Gs, s = 2, L− 1, provided it doesn’t belong to the boundary of the

domain, i.e. γk,i /∈ ∂G, and the r-coordinates of its endpoints in the polar system

are not the same. We say that the interface γk,i is an interior horizontal interface of

the cell ek provided it doesn’t belong to the boundary of the domain, and it’s not an

interior vertical interface. It follows that the r-coordinates of the endpoints of such

interface with respect to the polar system are the same.
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Then, for every mesh cell ek inside every “thin” geological layer Gs, we replace all

the interior vertical interfaces γk,i by interfaces γ̂k,i such that the θ-coordinates of

the endpoints of γ̂k,i are the same with respect to the polar system (r, θ).

To do this, we take the middle point of the interface γk,i. Say, the endpoints of γk,i

are V
(1)

k,i and V
(2)

k,i , then the middle point V
(M)

k,i is just 1
2

(
V

(1)
k,i + V

(2)
k,i

)
. The new

interface γ̂k,i is constructed so that it lies on the line connecting the point V
(M)

k,i and

the origin of the polar coordinate system C, i.e. it is orthogonal to the tangent line

to the circle centered at C and passing through the point V
(M)

k,i . The endpoints V̂
(1)
k,i

and V̂
(2)
k,i have the same r-coordinate as the endpoints V

(1)
k,i and V

(2)
k,i , respectively,

and the same θ-coordinate as the middle point V
(M)

k,i , i.e. v̂
(1)
k,i,r = v

(1)
k,i,r, v̂

(2)
k,i,r = v

(2)
k,i,r,

and v̂
(1)
k,i,θ = v̂

(2)
k,i,θ = v

(M)
k,i,θ. Then we adjust the interior horizontal interfaces of ek to

account for the shift of the cell’s vertices. We denote these new interfaces by γ̃k,i.

Note that if the interior vertical interface γk,i was an interface between mesh cells ek

and el, i.e. γk,i ≡ γl,j ≡ γk,l, then we have that γ̂k,i ≡ γ̂l,j ≡ γk,l. For the interior

horizontal interfaces we still write that γ̃k,i ≡ γl,j ≡ γk,l, but implying the equivalence

in a logical sense, as geometrically interfaces γ̃k,i and γl,j no longer coincide.

An example of a conforming mesh is shown on Figure 6.1. A non-conforming mesh

constructed in accordance with the described procedure is shown on Figure 6.2.

98



0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 6.1: An example of a conforming mesh
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Figure 6.2: An example of the corresponding non-conforming mesh
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6.4 Error analysis of mixed FE method

In this section, we describe how the benchmark problem can be used to estimate

the accuracy of the discrete solution in the case of domains with concentric curved

geological layers.

We consider the benchmark problem (6.9) in the rectangular domain G with curved

middle layers. The boundaries of all the middle layers are concentric circular arcs,

i.e. parts of the coaxial circles sharing the same center C(xC , yC). We denote the

corresponding reference domain by Ω and impose all the restrictions listed in the

Section 6.1. The reference solution pair is then (p∗, u∗). We use a quadrilateral

mesh Gh in the domain G, either conforming or non-conforming, as described in

Section 6.3, and denote mesh cells by ek, k = 1, n, where n is the total number of

cells. The interfaces between the cells, as well as the boundary edges, are denoted by

γj, j = 1, m, where m is the total number of interfaces and boundary edges. Γs is

then a set of all the interfaces and boundary edges in the mesh layer Gh,s, i.e. such

γj that γj ∈ ek, where ek ∈ Gh.

The reference solution u∗ is known in the entire domain Ĝ and, therefore, its entire

subdomain G, so we explicitly know uj
∗ ≡ u∗|γj

, the reference solution along every

mesh edge. Then, the normal component of the reference solution in the center of

the face γj is denoted by u∗c,j. For all the vertical faces, the boundary edges, and the

horizontal interfaces between the mesh cells in the top and bottom mesh layers Gh,1

and Gh,L, the center of the interface is taken to be the middle point of the linear

segment connecting its two vertices. In the case of the horizontal interfaces where at

least one of the cells it belongs to is in one of the middle layers Gh,s, s = 2, L− 1,

we say that the center of the interface is the center of the arc connecting its two
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vertices, i.e. if V
(1)

j and V
(2)

j are the vertices of the interface γj with corresponding

polar coordinates (v
(i)
j,r, v

(i)
j,θ), i = 1, 2, then V

(c)
j , the center of the interface γj, has

coordinates (v
(1)
j,r ,

1
2
(v

(1)
j,θ + v

(2)
j,θ )).

Now, we can discretize the equation (6.9) by applying either KR mixed FE method or

PWC approximation, and obtain the interpolants ph and wh of the solution functions

p∗ and u∗. For every interface γj we compute the reference flux and its interpolant

in the center of the face as described above, and project it onto the normal vector

to the corresponding interface γ̂j belonging to the non-conforming mesh. We denote

the resulting values of normal components by u∗c,j and wh,j.

Then, for every geological layers Gs, s = 1, L, we compute the following relative

error:

ǫGs
= 100 ·




∑

γj∈Γs

(
|γj|

(
wh,j − u∗c,j

))2

∑

γj∈Γs

(
|γj|u∗c,j

)2




1

2

. (6.19)
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6.5 Numerical results

In this section, we consider the benchmark problem for a number of domains with

curved geological layers, and estimate the accuracy of KR mixed FE method and

PWC approximation as described in Section 6.4. We use both conforming and non-

conforming meshes introduced in Section 6.3.

Values of parameters used in experiments are listed in Table 6.1.

Table 6.1: Parameters for the chosen test problem

Ĝ1 Ĝ2 Ĝ3

kθ,s 1 1000 10

kr,s 1 10 5

cs 1 1 1

f̂0 5 1000 1

f̂1 0.1 10 0.05

We choose our domain G so that it contains three geological layers with the one in

the middle being “thin”. The angle between the tangent line to the arcs separating

geological layers inside of G, z1(x) and z2(x), and the x-axis is denoted by α(x), and

in all the experiments z2(0) − z1(0) = 10−5.

In the following experiments, G is a (0, 0.2) × (0, 1) rectangle with a curved layer,

and the finest mesh has 160 × 80 cells in Gh,1, 160 × 4 cells in Gh,2, and 160 × 80

cells in Gh,3. We denote the mesh step corresponding to the finest mesh by h.
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We consider several choices of the center of curvature for the middle layer, resulting

in different inclination angles. Example of such domain is given on Figure 6.3. An

example of the embedding of the original domain into the reference domain is shown

on Figure 6.4. The results for the different choices of inclination angles are given in

the tables below.
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Figure 6.3: Domain G and mesh Gh for mesh step size 4h, (xC , yC) = (−1.475, 0.05)
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Figure 6.4: Embedding of the original domain G into the reference domain Ω,

(xC , yC) = (−0.02, 0.15)
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Figure 6.5: Left and right sides of the mesh cells in the thin layer Ω2 next to the left

boundary of Ω, (xC , yC) = (−0.02, 0.15), conforming mesh
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Figure 6.6: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−0.02, 0.15), conforming mesh
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Figure 6.7: Left and right sides of the mesh cells in the thin layer Ω2 next to the left

boundary of Ω, (xC , yC) = (−0.02, 0.15), non-conforming mesh
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Figure 6.8: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−0.02, 0.15), non-conforming mesh
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Table 6.2: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−0.02, 0.15),

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 3.43 35.39 0.037787 0.542793 4.296938

2h 3.24 35.63 0.023026 0.318449 2.186214

h 3.15 35.74 0.011486 0.175824 1.103039

Table 6.3: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−0.02, 0.15),

non-conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 3.43 35.39 0.037671 0.734999 4.291759

2h 3.24 35.63 0.023040 0.371872 2.180725

h 3.15 35.74 0.011602 0.187379 1.097456
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Table 6.4: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−0.02, 0.15),

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 3.43 35.39 0.026212 0.049375 0.035678

2h 3.24 35.63 0.007003 0.014074 0.010013

h 3.15 35.74 0.001968 0.003964 0.003150

Table 6.5: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−0.02, 0.15),

non-conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 3.43 35.39 0.026857 0.045561 0.029412

2h 3.24 35.63 0.007749 0.013327 0.008297

h 3.15 35.74 0.002854 0.008940 0.009742
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Figure 6.9: Left and right sides of the mesh cells in the thin layer Ω2 next to the left

boundary of Ω, (xC , yC) = (−0.1, 0.2), conforming mesh
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Figure 6.10: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−0.1, 0.2), conforming mesh
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Figure 6.11: Left and right sides of the mesh cells in the thin layer Ω2 next to the

left boundary of Ω, (xC , yC) = (−0.1, 0.2), non-conforming mesh
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Figure 6.12: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−0.1, 0.2), non-conforming mesh
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Table 6.6: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−0.1, 0.2), con-

forming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 15.31 50.05 0.124941 0.518597 3.100448

2h 15.12 50.33 0.062150 0.305697 1.573861

h 15.03 50.48 0.031047 0.169229 0.793169

Table 6.7: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−0.1, 0.2), non-

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 15.31 50.05 0.124934 0.671095 3.094415

2h 15.12 50.33 0.062192 0.333744 1.567483

h 15.03 50.48 0.031135 0.165974 0.786714
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Table 6.8: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−0.1, 0.2),

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 15.31 50.05 0.033708 0.073180 0.054000

2h 15.12 50.33 0.009046 0.020717 0.014866

h 15.03 50.48 0.002593 0.005985 0.004385

Table 6.9: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−0.1, 0.2),

non-conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 15.31 50.05 0.034445 0.065410 0.046186

2h 15.12 50.33 0.009942 0.018719 0.009488

h 15.03 50.48 0.003657 0.012302 0.009182
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Figure 6.13: Left and right sides of the mesh cells in the thin layer Ω2 next to the

left boundary of Ω, (xC , yC) = (−1.475, 0.05), conforming mesh
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Figure 6.14: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−1.475, 0.05), conforming mesh
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Figure 6.15: Left and right sides of the mesh cells in the thin layer Ω2 next to the

left boundary of Ω, (xC , yC) = (−1.475, 0.05), non-conforming mesh
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Figure 6.16: Left and right sides of the mesh cells in the thin layer Ω2 next to the

right boundary of Ω, (xC , yC) = (−1.475, 0.05), non-conforming mesh
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Table 6.10: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−1.475, 0.05),

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 61.71 85.5 0.874341 0.317107 1.540151

2h 61.62 85.97 0.427795 0.176139 0.771348

h 61.57 86.26 0.211650 0.095248 0.385448

Table 6.11: Relative error in KR interpolant wKR
h , %, (xC , yC) = (−1.475, 0.05),

non-conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 61.71 85.5 0.874809 0.300527 1.539996

2h 61.62 85.97 0.427058 0.128813 0.769416

h 61.57 86.26 0.210398 0.058555 0.383108
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Table 6.12: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−1.475, 0.05),

conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 61.71 85.5 0.133505 0.139052 0.122189

2h 61.62 85.97 0.037234 0.043556 0.032024

h 61.57 86.26 0.009843 0.013469 0.008046

Table 6.13: Relative error in PWC interpolant wPWC
h , %, (xC , yC) = (−1.475, 0.05),

non-conforming mesh

α(0) α(0.2) ǫG1
ǫG2

ǫG3

4h 61.71 85.5 0.130754 0.141022 0.121639

2h 61.62 85.97 0.039405 0.047554 0.029495

h 61.57 86.26 0.018608 0.030809 0.010028
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P.Neitaanmäki). Springer, pp. 27–41, 2007.

[22] Y. Kuznetsov, K. Lipnikov, M. Shashkov, Mimetic finite difference method on

polygonal meshes for diffusion-type problems, Comput. Geosciences, 8, pp. 301–

324, 2004.

[23] Yu. Kuznetsov, O. Boyarkin, A. Prokopenko, and N. Yavich. Preconditioned

Iterative Solvers for Diffusion Equation in Heterogeneous Media. Report on

ExxonMobil Project, December 2008.

[24] Yu. Kuznetsov and A. Prokopenko, A new multilevel algebraic preconditioner

for the diffusion equation in heterogeneous media, Numerical Linear Algebra

with Applications, 17(5), pp. 759–769, 2010.

[25] Yu. Kuznetsov and S. Repin, New mixed finite element method on polygonal

and polyhedral meshes, Russian J. Numer. Anal. Math. Modelling, 18, pp. 261–

278, 2003.

120



[26] Yu. Kuznetsov and S. Repin, Mixed finite element method on polygonal and

polyhedral meshes, In: Proc. of the 5th ENUMATH conference, Prague, 2003.

World Scientific Publ. Co., 2004.

[27] Yu.A. Kuznetsov and S.I. Repin, Convergence analysis and error estimates for

mixed finite element method on distorted meshes, J. Numer. Math. 13, pp. 33–

51, 2005.

[28] Yu. Kuznetsov and M. F. Wheeler, Optimal order substructuring precondition-

ers for mixed finite element methods on nonmatching grids, East West Journal

of Numerical Mathematics, 3 pp. 127–144, 1995.

[29] P. J. Lanzkron, D. J. Rose, and D. B. Szyld, Convergence of nested classical

iterative methods for linear systems, Numerische Mathematik, 58(1) pp. 685–

702, 1990.

[30] M. Lenoir, Optimal isoparametric finite elements and error estimates for do-

mains involving curved boundaries, SIAM J. Numer. Anal., 23, pp. 562–580,

1986.

[31] S. Margenov and P. Vassilevski, Algebraic multilevel preconditioning of

anisotropic elliptic problems, SIAM J. Sci. Comput., 15(5) pp. 1026–1037, 1994.

[32] L. Margolin, M. Shashkov, and P. Smolarkiewicz, A discrete operator calculus

for finite difference approximations. Comput. Meth. Appl. Mech. Engrg., 187,

pp. 365–383, 2000.

[33] S. F. McCormick, Multigrid Methods, Philadelphia, SIAM, 1987.

[34] J. Morel, M. Hall, and M. Shashkov, A local support-operators diffusion dis-

cretization scheme for hexahedral meshes. J. Comput. Phys., 170, pp. 338–372,

2001.

121



[35] J. Morel, M. Hall, and M. Shashkov, A local support-operators diffusion dis-

cretization scheme for quadrilateral r − z meshes. J. Comput. Phys., 144, pp.

17–51, 1998.

[36] J.C. Nedelec, Mixed Finite Elements in R3, Numer. Math., 35, pp. 315-341,

1980.

[37] A. Prokopenko, Multilevel preconditioners and their applications in geoscience,

PhD Thesis, University of Houston, 2011.

[38] P.A. Raviart and J.-M. Thomas, A mixed finite element method for 2nd order

elliptic problems, In: Mathematical Aspects of Finite Element Methods (Eds.

I. Galligani and E. Magenes), Springer-Verlag, New York-Berlin, pp. 292–315,

1977.

[39] J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods. In: Handbook of

Numerical Analysis, Vol. 2 (Eds. P.-G. Ciarlet and J.-L. Lions). Elsevier Sci.

Publishers, Amsterdam, pp. 523–639, 1991.

[40] A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick,

G. Miranda, and J. Ruge, Robustness and scalability of algebraic multigrid,

SIAM J. Sci. Comput, 21 pp. 1886–1908, 1998.

[41] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc. New

York-Basel, 2001. (Translation from Russian version Teoriya Raznostnych

Schem, Moscow, Nauka, 1977).

[42] J. Shen, Mixed finite element methods on distorted rectangular grids, Techni-

cal Report ISC-94-13-MATH, Institute of Scientific Computation, Texas A&M

University, July 1994.

122



[43] G. Strang, and G.J. Fix, An Analysis of the Finite Element Method, Prentice

Hall, Englewood Cliffs, NJ, 1973.
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