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CHAPTER 1

Introduction

In medical applications such as clinical diagnosis and surgery as well as therapy

planning there is often a need to analyze 3D movies of deformable anatomical ob-

jects. This analysis is based on 3D imaging modalities such as MRS (Magnetic Reso-

nance Spectroscopy), PET (Positron Emission Tomography), SPECT (Single Photon

Emission Computed Tomography) for functional information, and CT (Computed

Tomography), MRI (Magnetic Resonance Imaging), Ultrasound Echography, X-ray,

etc. for anatomical visualization. However, the 3D movies obtained by such imaging

modalities are usually blurred by noise. The use of optical flow extraction methods

in combination with expert tagging only allows to reconstruct snapshots Sj of the
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anatomical object at successive time frames tj, 0 ≤ j ≤ q. The task in automated

3D image matching is the reconstruction of the 3D movie on the basis of these snap-

shots. This can be achieved by a time dependent family of R3 diffeomorphisms Ft

such that Ft0(S0) = S0 and Ftj(S0) is as close to Sj, 1 ≤ j ≤ q, as possible in terms

of appropriately chosen matching quality criteria. The matching of two snapshots S0

and S1 has been extensively studied in the literature. We refer to the concepts based

on diffeomorphic matching as developed by Grenander, Miller, Trouvé, Younes, and

others initiated during the second half of the nineties of the last century [23, 36, 49]

and subsequently studied in [12, 17, 30, 32, 44, 45]. A comprehensive exposition of

the basic methodologies of diffeomorphic matching as well as further references can

be found in the recent monograph by Younes [56]. In this thesis, we will focus on

the generalization of the concepts to an arbitrary number of snapshots resulting in

a minimization problem to be treated within a variational framework featuring a

Hilbert space setting by means of Reproducing Kernel Hilbert Spaces (RKHS). As

an application in medical imaging, we will consider the reconstruction of 3D movies

from echocardiographic data of the mitral valve apparatus of the human heart.

The thesis is organized as follows: After these introductory remarks, in Chapter 2 we

provide the mathematical tools that we need to set up the variational framework for

diffeomorphic matching. Moreover, we formulate the variational problem in case of

multiple snapshots as an optimal control problem for an objective functional featur-

ing a suitably chosen matching quality criterion and a regularization term by means

of an associated energy. The underlying state equation is a dynamical system for the

time dependent family of R3 diffeomorphisms, representing the state, whereas the
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control is a time dependent flow of vector fields.

Chapter 3 is devoted to a proof of the existence of a solution to that optimal con-

trol problem using standard tools from the calculus of variations and the theory of

evolution equations. Moreover, Chapter 3 contains the derivation of the first order

necessary optimality conditions involving an adjoint state equation in terms of a time

dependent family of regular Borel measures that satisfy a backward-in-time evolution

equation and a fundamental relationship between the adjoint state and the control

which is the gradient equation with respect to the control reduced formulation of the

problem.

The following chapters are concerned with the numerical solution of the optimal

control problem. In particular, in Chapter 4 we consider a semi-discretization in

space approximating the reference and target objects by point sets. Hence, the thus

semi-discretized optimal control problem amounts to the solution of a diffeomor-

phic point matching problem [19, 34, 35]. The associated optimality system consists

of a forward-in-time system of ordinary differential equations (ODEs) for the semi-

discrete state, a backward-in-time system of ODEs for the semi-discrete adjoint state,

as well as a gradient equation relating the semi-discrete adjoint state to the semi-

discrete control.

Chapter 5 deals with a further discretization in time of the semi-discrete optimality

system by applying the forward Euler scheme to the respective systems of ODEs.

We show that the fully discretized optimality system admits an interpretation as the

optimality conditions of an associated fully discrete optimal control problem.

In Chapter 6, we address the numerical solution of the fully discrete optimization
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problem by a gradient method with Armijo line search. Particular emphasis will be

on a continuation strategy for the regularization parameter in the objective func-

tional and on the proper choice of the scaling parameter for the Gaussian kernel in

the underlying RKHS.

In Chapter 7, we discuss a particular issue associated with the diffeomorphic match-

ing of multiple snapshots which is the occurrence of discontinuities in the adjoint

state due to jump conditions at the intermediate time frames. This leads to non-

smooth transitions in the reconstructed 3D movie. As a possible remedy, we suggest

the inclusion of a smoothing term in the objective functional.

The second part of the thesis is about the application of the algorithmic tools devel-

oped in the first part to the reconstruction of echocardiographic data of the human

mitral valve apparatus during one heart cycle. In Chapter 8, we briefly address

the use of interactive tagging to extract snapshots and their representation by non-

uniform rational B-splines (NURBS) [7, 9]. The main part of this chapter is devoted

to a detailed documentation of numerical results for the reconstructed motion of

essential parts of the mitral valve such as the annulus and the anterior as well as the

posterior leaflet [10].

In the final Chapter 10, we draw some conclusions and give an outlook on future

work.
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CHAPTER 2

Diffeomorphic Shape Matching

This chapter is dedicated to a brief summary of previous work related to the diffeo-

morphic framework followed by the mathematical setup required for the variational

formulation associated with optimal matching of multiple snapshots. Throughout

this chapter we will use standard notations from Lebesgue and Sobolev space theory

(cf., e.g., [48]). In particular, we refer Ω ⊂ Rd, d ∈ N, we refer to Ld(Ω), 1 ≤ p ≤ ∞,

as the Banach space of p-th power Lebesgue integrable vector valued functions with

norm ‖.‖0,p,D and to W s,p(Ω), s ∈ R+, as the associated Sobolev space with norm

‖.‖s,p,Ω. For p = 2, these space are Hilbert spaces, and we omit the subindex

2. For an interval I ⊂ R+ and a Hilbert space V with norm ‖.‖V , we denote

5



2.1. BRIEF HISTORY

Lp(I;V ), 1 ≤ p ≤ ∞, the Banach space of functions v : I → V, t ∈ T → vt ∈ V with

norm

‖v‖Lp(I;V ) := (

�
I

‖vt‖pV )1/p.

We refer C(Ω) as the Banach space of bounded, continuous functions on D with

norm ‖.‖C(Ω) and by M(Ω) the dual space of regular Borel measures µ with norm

‖µ‖M := sup{| < µ, ν >M;C |‖v‖C(Ω) ≤ 1}, where < ., . >M,C stands for the dual

pairing between M(Ω) and C(Ω), i.e.,

< µ, ν >M;C=

�
νdµ.

We denote C0,κ, κ > 0, refers to the subspace u ∈ C(Ω) that are Holder continuous

i.e. there exists a constant C ≥ 0 such that

|u(x)− u(y)| ≤ C|x− y|κ , x, y ∈ Ω.

C0,κ is a Banach space with the norm

‖u‖C0,κ := ‖u‖C(Ω) + sup
x,y

|u(x)− u(y)|
|x− y|κ

(2.1)

2.1 Brief History

In the field of image analysis there have been lot of developments occurred in the last

few decades, with applications in medical imaging, etc. The main goal of such work

was primarily to compare two observed images belonging to a same class of objects,

e.g. brain images, images concerning facial expressions, etc. New variational methods

were explored by G.Dupuis, J. Glaunès, U. Grenander, M. Miller, D. Mumford, A.

6



2.1. BRIEF HISTORY

Trouvé, L. Younes et.al. [12, 23, 31, 32] with applications to a quantified comparison

of images of human brains. In these papers, the regularization is achieved through the

replacement of the rigid constraint F (S0) = S1 by a soft constraint based on various

geometric ’surface matching’ distances dis [F (S0), S1]. The unknown diffeomorphism

F is restricted to be of the form F = F v, where F v is generated by integration

between times 0 and 1 of some time dependent flow v = (vt) of smooth R3-vector

fields vt, 0 ≤ t ≤ 1. The vector fields vt are required to belong to a Hilbert subspace

V of the Banach space C3
r of smooth functions from R3 to R3 tending to zero at

infinity. The Hilbert space norm in V is assumed to be bounded by a constant

multiple of the Banach space norm in C3
r . Then, for some fixed constant λ > 0 one

considers the variational problem of finding a vector field flow v = (vt) minimizing

the cost functional

J(v) =

� 1

0

‖vt‖2
V dt+ λ dis [F v(S0), S1] , (2.2)

which linearly combines a kinetic energy term and a surface matching term.

This variational point of view is directly linked (as λ → ∞) to the construction of

geodesics in infinite dimensional Lie groups of diffeomorphisms in the spirit of ideas

pioneered by Arnold, Ebin, and Marsden who showed (see, e.g., [4]) that for an in-

compressible fluid, obeying Euler equations, the spatial displacements Ft(x) between

times 0 and t of fluid particles emanating from x ∈ R3 minimize the integral in

time and space of the fluid kinetic energy. The time dependent R3- diffeomorphisms

Ft define a continuous path in the group of R3- diffeomorphisms, and this path is

a geodesic t → Ft of an infinite dimensional Lie group G of R3-diffeomorphisms,

endowed with the local Hilbert metric defined by the fluid’s kinetic energy on the

7



2.2. MATHEMATICAL SETUP

Lie algebra of G. This Lie algebra is naturally identified with the Hilbert space of

smooth vector fields on R3 defined by fluid velocities at time 0. The classical Euler

fluid mechanical equations for the fluid velocities become precisely interpreted as the

variational equations characterizing geodesics in G. Natural right-invariant deforma-

tion distances on the group G can then be associated to this Riemannian structure

(see, e.g., [49]).

For the diffeomorphic matching of two smooth k-dimensional shapes (k ∈ {1, 2, 3})

by R3-diffeomorphisms, the geometric view just outlined above has been intensively

explored in [12, 23, 31, 49] and numerically implemented for comparisons of key

anatomic parts of human brains such as the hippocampus, the temporal lobes, etc.

2.2 Mathematical Setup

2.2.1 Space of Diffeomorphims Associated with Time De-

pendent Vector Fields

Definition 2.1. A map φ : Ω → Ω is called diffeomorphism if: φ is one-one, onto,

continuously differentiable and φ−1 is continuous.

The collection of all such diffeomorphisms forms a group under the operation as

composition of functions. We restrict our search of diffeomorphism to a particular

class of diffeomphisms: generated by time-dependent vector fields, the idea pioneered

by U. Grenander et. al [23].

8



2.2. MATHEMATICAL SETUP

2.2.1.1 Time Dependent Vector Fields with Finite Kinetic Energy

We choose a Hilbert space V of vector fields on R3 and we consider the associated

Hilbert space L2(I, V ) of vector field flows v : t → vt ∈ V , indexed by a time

parameter t in the interval I = [t0, t1], having finite kinetic energy E(v) defined by

E(v) :=
1

2
‖v‖2

L2(I,V ) =
1

2

t1�

t0

‖vt‖2
V dt. (2.3)

We assume that the Hilbert space V of R3-vector fields is continuously embedded in

a Sobolev space W s,2(R3)3 for some s > 5/2. By the Sobolev embedding theorem,

W s,2(R3)3, s > 5/2, is continuously embedded in the Banach space C1, s−5/2(R3)3 of

R3-vector fields.

2.2.1.2 Dynamic System of Diffeomorphic Deformations

For t ∈ I and v = (vt) as above, we define the flow of R3-diffeomorphisms Ft as the

solution of the flow dynamics equations

∂tFt = vt(Ft) , t ∈ I, (2.4a)

F0 = Id, (2.4b)

where Id refers to the identity map of R3.

Theorem 2.1. Assume v ∈ L2(I;V ) where V is continuously embedded in W s,2(R3)

for some s > 5/2. Then, the initial-value problem (2.4a),(2.4b) admits a unique

solution.

9



2.2. MATHEMATICAL SETUP

Proof. [23]We first show existence and uniqueness of a solution for t ∈ [0, τ ] with

τ ≥ 0 sufficiently small. To this end, we reformulate the initial-value problem 2.4 as

the fixed point equation T F = F , where the non-linear operator T : C([0, τ ]×R3)3 →

C([0, τ ]× R3)3 is given by

T Ft = F0 +

� t

0

vs(Fs)ds.

For F (1), F (2) ∈ C([0, τ ]× R3)3 there holds

‖T F (1) − T F (2)‖C([0,τ ]×R3)3 = max
0≤t≤τ

∣∣∣∣� t

0

(vs(F
(1)
s )− vs(F (2)

s ))ds

∣∣∣∣ (2.5)

By the Sobolev embedding theorem [48], for 3/2 < s < 5/2 the Sobolev space

W s,2(R3)3 is continuously embedded in C1,s−3/2(R3)3
,i.e., there exist a constant C1 > 0

such that

‖u‖C([0,τ ]×R3)3 ≤ C1‖u‖s,R3 , u ∈ W s,2(R3). (2.6)

Also, due to the assumed continuous embedding V ⊂ W s,2(R3), there exists C2 > 0

such that

‖u‖s,R3 ≤ C2‖u‖V , u ∈ V. (2.7)

Again due to Sobolev embedding theorem ∀v ∈ V , v is a continuously differentiable

function and hence v will satisfy Liptschitz condition,cf. Chapter 4 of [5].

Observing (2.6) and (2.7) and using the Cauchy-Schwartz inequality, it follows

that

‖T F (1) − T F (2)‖C([0,τ ]×R3)3 ≤ C1C2 max
0≤t≤τ

� t

0

‖vs‖V |F (1)
s − F (2)

s |R3ds

≤ C1C2τ
1
2‖v‖L2([0,τ ];V )‖F (1) − F (2)‖C([0,τ ]×R3)3 . (2.8)

10



2.2. MATHEMATICAL SETUP

Hence, for τ > 0 such that C1C2τ
1
2‖v‖L2([0,τ ];V ) < 1, the non-linear operator T is

a contractions and we conclude. If τ ≥ 1, we are done. Otherwise, for m = 1, 2, . . .

we successively consider (2.4b) on (mτ, (m + 1)τ) with initial condition zmτ until

(m+ 1)τ ≥ 1.

Theorem 2.2. Under the assumptions in Theorem 2.1, the solution Ft, t ∈ I of

problem (2.4a),(2.4b) is an R3-diffeomorphism of smoothness class 1 ≤ r < s− 3/2.

Proof. We refer to [23] for the proof.

2.2.2 Reproducing Kernel Hilbert Space

In this section we define a RKHS and discuss the fundamental properties of RKHS.

For more details we mainly refer to [47],[6].

Definition 2.2. Let H be a Hilbert space of functions on Rd with inner product

(., .)H and norm ‖.‖H . A function K : R×R→ C is said to be a reproducing kernel

of H, if the following conditions are satisfied

RK1 For every x ∈ Rd, we have Kx ∈ H, where Kx : Rd → C is the function given

by

Kx(y) = K(y, x) , y ∈ Rd

RK2 For every x ∈ Rd and every f ∈ H there holds

f(x) = (f,Kx)H

11



2.2. MATHEMATICAL SETUP

Definition 2.3. The kernel K is called Hermitian, if for any finite set of points

{y1, · · · , yn} ⊂ Rd and for any collection of {γi|γi ∈ C, 1 ≤ i ≤ n} there holds

n∑
i,j=1

γiK(yi, yj)γj ∈ R,

and it is called positive definite,if

n∑
i,j=1

γiK(yi, yj)γj ≥ 0.

Definition 2.4. The Hilbert space H is said to be a Reproducing Kernel Hilbert

Space(RKHS), if there exists a reproducing kernel K on H.

Remark 2.1. By definition we observe that if we choose f = Kx in (RK2) and use

(RK1), we obtain

Kx(y) = (Kx, Ky)H = K(y, x), x, y ∈ Rd, (2.9)

‖Kx‖H = K(x, x)1/2, x ∈ Rd. (2.10)

Theorem 2.3. For any positive definite kernel K : Rd × Rd → C there exists a

uniquely determined RKHS of functions on Rd admitting the reproducing kernel K.

Proof. Let H0 be the linear space of functions f on Rd that can be represented as a

linear combination of generating functions Kxi with respect to a finite set of points

xi ∈ Rd, 1 ≤ i ≤ n, according to

f(y) =
n∑
i=1

αiKxi(y) , y ∈ Rd, αi ∈ C, 1 ≤ i ≤ n. (2.11)

For f as in (2.11) and g =
∑m

i=1 βiKyi , yi ∈ Rd, βi ∈ C, 1 ≤ i ≤ m, we define an inner

product (f, g)H0 by means of

(f, g)H0 :=
n∑
i=1

m∑
j=1

αiβjK(xi, yj). (2.12)

12



2.2. MATHEMATICAL SETUP

It follows that for x ∈ Rd

(f,K(x, .))H0 =
n∑
i=1

K(x, xi) = f(x)

i.e., H0 has the reproducing property and the inner product (f, g)H0 does not depend

on the representation of the functions f, g ∈ H0. We define H as the completion of

the pre-Hilbert space(H0(., .)H0)and show that H has a unique representation as an

RKHS with reproducing kernel K. For this, let (fn)N, (gm)N, fn, gm ∈ H0, n,m ∈ N,

be two Cauchy sequences in H0 with limit functions f, g : Rd → R. We define an

inner product

(f, g)H := lim
n,m→∞

(fn, gn)H0 .

Using the triangle inequality and the Cauchy Schwarz inequality it can be shown

that (., .)H is well defined. In order to verify that K has the reproducing property

with respect to H, let f ∈ H and (fn)N ⊂ H such that fn → f as n → ∞. Then,

for x ∈ Rd there holds

f(x) = lim
n→∞

fn(x) = lim
n→∞

(fn, Kx)H0 = ( lim
n→∞

fn, Kx)H0 = (f,Kx)H .

The uniqueness of H can be established as follows: Assume Ĥ to be another RKHS

with the same reproducing kernel K. Since Kx ∈ Ĥ, x ∈ Rd, we have H0 ∈ Ĥ. If

f ∈ Ĥ satisfies f(x) = (f,Kx)Ĥ , x ∈ Rd, then f ≡ 0 and hence, {Kx|x ∈ Rd} is

total in Ĥ ??. Hence, for any f, g ∈ Ĥ we find (fn)N, (gm)N ∈ H0, n ∈ N, such that

fn → f and gn → g as n→∞, which implies

(f, g)Ĥ = (f, g)H0 , f, g ∈ H0. (2.13)

Now since H0 ⊆ Ĥ and (2.13) there holds H ⊆ Ĥ. Also by construction of H we

must have Ĥ ⊆ H and thus H = Ĥ.
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2.2. MATHEMATICAL SETUP

In our context, the relevant Hilbert space V of R3-vector fields is often defined

as the self-reproducing Hilbert space V = VK of R3-vector fields defined by a smooth

symmetric bounded positive definite kernel K on R3 × R3 , where K is assumed to

be bounded, smooth, and invariant under translations.

For many shape matching applications, K can be the radial Gaussian kernel Kσ

Kσ(x, x′) =
1

(2π)3/2σ3
exp

(
−‖x− x

′‖2

σ2

)
(2.14)

with a suitable scale parameter σ > 0. Note that when V = VKσ , the Sobolev

embedding hypothesis above is satisfied for any s > 5/2 . The choice V = VKσ seems

to be a good pragmatic choice for diffeomorphic shape matching applications as seen

in previous studies[36].

2.2.3 Distance between Shapes

To compare two shapes S and S ′ with boundary, regularly embedded in R3 we

define smooth non-negative geometric distances D(S, S ′) quantifying the geometric

disparity between the two. The classical Hausdorff disparities h(S, S ′) and h(S ′, S)

between subsets S, S ′ of R3 are defined by

h(S, S ′) = max
x∈S

(
min
x′∈S′
|x− x′|

)
.

They determine the Hausdorff distance Dh by

Dh(S, S
′) = max (h(S, S ′), h(S ′, S))) . (2.15)

Hausdorff distances introduce theoretical complications in the variational framework

below, since Dh(S, S
′) is not always smooth with respect to small perturbations of S

14



2.2. MATHEMATICAL SETUP

or of S ′, but Hausdorff disparities are nevertheless quite useful in numerical schemes

as will be clarified later in chapter 6. For many shape matching applications, one can

identify as in [31], each submanifold S regularly embedded in R3, with the measure

µS ∈ BM3 induced on S by the Lebesgue measure of R3. Here, BM3 is the space

of bounded Borel measures m,m′ on R3 , endowed with the Hilbert norm ||m||Γ

associated with the scalar product

〈m,m′〉Γ =

�
R3

�
R3

Γ(x, x′)dm(x)dm′(x′), (2.16)

where Γ is any smooth, symmetric, translation invariant, and bounded positive def-

inite kernel on R3 × R3, such as the often used radial Gaussian kernel Kσ. The

corresponding distance between two bounded Borel subsets S, S ′ of R3 is then de-

fined by

D2
Γ(S, S ′) = ||µS − µS′ ||2Γ (2.17)

and has nice smoothness properties.

Denote by Diff(R3) the space of all R3-diffeomorphisms endowed with the topology

of uniform convergence on bounded subsets of R3. Then for any fixed pair S, S ′ of

bounded submanifolds regularly embedded in R3, the distance DΓ (G(S), S ′) is a

continuous function of G ∈ Diff(R3) (see [31]).
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2.3. VARIATIONAL FORMULATION IN CONTEXT OF MULTIPLE
SNAPSHOTS

2.3 Variational Formulation in Context of Multi-

ple Snapshots

We now present the variational formulation for diffeomorphic matching of inter-

mediary snapshots. Consider a given sequence of q + 1 instantaneous ’snapshots’

Sj = Stj ⊂ R3 generated at fixed intermediary times tj, 0 ≤ j ≤ q, by a deformable

shape St with unknown dynamics. Each Sj is typically a bounded piecewise smooth

submanifold with boundary, regularly embedded in R3. We seek a vector field flow

v = (vt) on R3 belonging to the Hilbert space L2(I, V ), I := [t0, tq] such that for

j = 1, · · · , q, the R3-diffeomorphism Ft solution of (2.4a),(2.4b) deforms the initial

snapshot S0 into a submanifold Ŝj = Ftj(S0) ’coinciding’ as well as possible with

the given snapshot Sj. We select a disparity functional D2(S, S ′) such as one of the

functionals introduced earlier, and quantify the constraint matching adequacy of v

by the q numerical disparities

Dispj(v) = D2(Ŝj, Sj) , j = 1, · · · , q.

We fix q positive numerical weights λj > 0, and we define the disparity cost functional

by

Disp(v) :=

q∑
j=1

λjDispj(v). (2.18)

These disparity functionals actually belong to a much wider class of functionals D(V )

which we now introduce.

For v ∈ L2(I, V ) we denote by F v
t ∈ Diff(R3) the solution of (2.4a),(2.4b) determined

by v. We define D(V ) as the space of all disparity functionals Disp : L2(I, V )→ R+

16
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SNAPSHOTS

which are of the form

Disp(v) = φ(F v
t1
, . . . , F v

tq) (2.19)

for some fixed, but arbitrary choices of the integer q, of the instants t1, · · · , tq in R+,

and of the continuous function φ : (Diff(R3))q → R+.

We define the objective functional J : L2(I, V )→ R by

J(v) := E(v) + Disp(v) , v ∈ L2(I, V ), (2.20)

where E(v) is the kinetic energy as given by (2.3) and Disp(v) is as in 2.19. We

consider the minimization problem

inf
v∈L2(I,V )

J(v). (2.21)

17



CHAPTER 3

Existence of a Solution of the Variational Problem.

Necessary Optimality Conditions

In order to show the existence of a solution to the variational problem 2.20 formulated

in Chapter 2, we use standard techniques from calculus of variations. The subtle part

of the proof lies in establishing that a sequence of diffeomorphic flows obtained by

solving (2.4) associated with a weakly converging bounded sequence of vector field

flows, is uniformly convergent on bounded subsets of R3. Further, in section 3.2 we

obtain the Gâteaux derivative of the functional J in terms of vector valued Borel

measures, and derive necessary optimality conditions for the optimal control problem

18



3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

in term of the Gâteaux derivative.

3.1 Existence of the Variational Problem

Theorem 3.1. Under the assumption that V is continuously embedded in W s,2(R3)3,

the optimization problem given below has a solution.

inf
v∈L2(I,V )

J(v) = E(v) + Disp(v) ,

where E(v) = 1
2
‖v‖2

L2(I,V ) is the kinetic energy as explained in (2.3) and Disp(v) =

φ(F v
t1
, . . . , F v

tq) as in 2.19 such that φ : (Diff(R3))q → R+ is a continuous function

where F v
t is solution of the following ODE.

∂tFt = vt(Ft) , t ∈ I,

F0 = Id.

Proof. Let {vn}N, v
n ∈ L2(I, V ), n ∈ N, be a minimizing sequence, i.e.,

J(vn)→ inf
v∈L2(I,V )

J(v) (n→∞). (3.1)

Obviously, this sequence is bounded in L2(I, V ) and hence is weakly compact. Con-

sequently, we find v∗ ∈ L2(I, V ) and a subsequence (still indexed by N) converging

weakly to v∗ in L2(I, V ). This implies

lim inf
n→∞

‖vn‖2
L2(I,V ) ≥ ‖v∗‖2

L2(I,V ). (3.2)
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3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

We denote by F n
t and F ∗t the unique flows of R3-diffeomorphisms solving (2.4a),(2.4b)

with respect to the vector field flows vn and v∗, respectively. The main part of the

proof will be to verify the following key convergence result

F ∗t (x) = lim
n→∞

F n
t (x) ∀ t ∈ I, x ∈ R3, (3.3)

where, for each fixed t ∈ I, the convergence in (3.3) is uniform in x on bounded

subsets B of R3. If we assume that (3.3) holds true, then F n
tj
→ F ∗tj , 0 ≤ j ≤ q,

in C(R3,R3)) as n → ∞ and hence, the continuity hypothesis on the disparity

functional implies

Disp(v∗) = lim
n→∞

Disp(vn). (3.4)

In view of (3.3), (3.2) and (3.4), we obtain

inf
v∈L2(I,V )

J(v) ≥ lim inf
n→∞

J(vn) = lim inf
n→∞

E(vn) + lim
n→∞

Disp(vn) ≥ E(v∗) + Disp(v∗) = J(v∗),

which implies

J(v∗) = inf
v∈L2(I,V )

J(v),

i.e., v∗ is a minimizer of J .

We now prove the key point (3.3). Let B be a fixed, but arbitrary bounded subset of

R3. Since V is continuously embedded in the Banach space of bounded continuous

vector fields, we have

||vt(x)||R3 ≤ sup
x∈R3

‖vt(x)‖R3 = ‖vt‖C(R3) ≤ C ||vt||V ∀ x ∈ R3, t ∈ I, v ∈ V. (3.5)

Then, the equations (2.4a),(2.4b) imply that for all (t, x) ∈ I × B and all n ∈ N
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3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

there holds

||F n
t (x)||R3 ≤ ||x||R3 +

� t

0

|vnt (F n
t (x))|R3dt ≤ ||x||R3 + C

t�

0

||vnt ||V dt

≤ ||x||R3 + C(t− t0)
1
2

� t

0

‖vnt ‖2
V dt ≤ ‖x‖R3 + C‖vn‖L2(I,V ) ≤ CB. (3.6)

Moreover, for all a, b ∈ I and x ∈ R3 we have

|F n
a (x)− F n

b (x)| = |
b�

a

vnt (F n
t (x))dt| ≤

b�

a

||vnt (F n
t (x))||R3dt (3.7)

≤ C

b�

a

||vnt ||V dt ≤ C (b− a)1/2 ‖vn‖L2(I,V ) ≤ C (b− a)1/2.

Due to the continuous embedding of V intoW s,2(R3)3, s > 5/2, v is a continuously

differentiable function. Hence v will satisfy Liptschitz condition, cf. Chapter 4 of [5].

‖vt(x)− vt(y)‖ ≤ ct ||vt||V ‖x− y‖ ∀ x, y ∈ R3, t ∈ I, v ∈ L2(I, V ) (3.8)

The inequalities (3.7) and (3.8) imply equicontinuity of the functions

(t, x) ∈ I × R3 → F n
t (x).

Moreover, for (t, x) ∈ I × B, the sequence of R3-norms ‖F n
t (x)‖ is bounded. By

Ascoli’s theorem, after extraction of a subsequence (for ease of notation still denoted

{vn}N), we may assume that the sequence {F n
t (x)}N converges uniformly for (t, x) ∈

I × B to some continuous function (t, x) → ut(x) ∈ R3. Applying this result to a

sequence of balls B ⊂ R3 with fixed center and radii tending to infinity, and selecting

a ’diagonal’ subsequence of {vn}N, we deduce the existence of a minimizing sequence
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3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

(still denoted {vn}N) and of a continuous function (t, x)→ z∗t (x) ∈ R3 such that

z∗t (x) = lim
n→∞

F n
t (x) uniformly for (t, x) in bounded subsets of I × R3. (3.9)

We fix a bounded set B ⊂ R3 and some ε > 0. Then, there exits n1 ∈ N such that

for n > n1

‖F n
t (x)− z∗t (x)‖ ≤ ε ∀ (t, x) ∈ I ×B.

We choose δ > 0 small enough such that the continuous function z∗ : (t, x)→ z∗t (x)

has oscillations less than ε on any rectangular box in I ×B with diameter less than

δ. We further consider a covering of the bounded set B ⊂ R3 by a finite family Ω

of disjoint rectangular boxes ω ∈ Ω and a finite partition Θ of the interval I into

subintervals T ∈ Θ such that all rectangular boxes T × ω have diameters less than

δ. Clearly, we can then select a function

Z : (t, x) ∈ I × R3 → Zt(x) ∈ R3,

which satisfies Zt(x) constant on each T × ω with T ∈ Θ, ω ∈ Ω, and such that

‖Zt(x)− z∗t (x)‖ < ε ∀ (t, x) ∈ I ×B. (3.10)

For a, b ∈ I and x ∈ B we want to estimate the integral

b�

a

(
vnt (F n

t (x))− v∗t (z∗t (x))
)
dt, (3.11)

where the integrand U := vnt (F n
t (x))− v∗t (z∗t (x)) can be split according to

U = U1 + U2 + U3 + U4 (3.12)
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3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

with

U1 = vnt (F n
t (x))− vnt (z∗t (x)) , U2 = vnt (z∗t (x))− vnt (Zt(x)),

U3 = v∗t (Zt(x))− v∗t (z∗t (x)) , U4 = vnt (Zt(x))− v∗t (Zt(x)).

For any two functions ft(x) and gt(x) that are continuous on I × B with values in

R3 and satisfy

‖ft(x)− gt(x)‖R3 ≤ ε ∀ (t, x) ∈ I ×B,

we have the bound

‖vt(ft(x))− vt(gt(x))‖R3 ≤ C ε ‖vt‖V ∀ t ∈ I, x ∈ B, v ∈ L2(I, V ).

This implies that for all a, b ∈ I, x ∈ B there holds

|
b�

a

(
vt(ft(x))− vt(gt(x))

)
dt| ≤ C ε

b�

a

||vt||V dt ≤ C ε ||v||L2(I,V ).

Applying the preceding argument separately to U1, U2, U3, we find that for all a, b ∈

I, x ∈ B, and all n > n1 we have

b�

a

[ |U1|+ |U2|+ |U3| ] dt ≤ C ε
(

2‖vn‖L2(I,V ) + ‖v∗‖L2(I,V )

)
≤ C ε. (3.13)

Since the Hilbert space V is continuously embedded in W s,2(R3)3, s > 5/2, for each

y ∈ R3 there exists a function kery ∈ V generating the evaluation map on V by

means of

w(y) = 〈kery, w〉, ∀ w ∈ V.
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3.1. EXISTENCE OF THE VARIATIONAL PROBLEM

Now, for each y ∈ R3 and each pair a, b ∈ I we define a function

KER : t→ KERt = 1[a,b](t) kery.

Clearly, KER ∈ L2(I, V ) and we have
�

[a,b]

vt(y) dt =

�

I

〈KER, vt〉V dt = 〈KER, v〉V ∀ v ∈ L2(I, V ), y ∈ R3.

Since vn− v∗ ⇀ 0 in L2(I, V ), the last equality shows that for each fixed y ∈ R3 and

each pair a, b ∈ I we have

lim
n→∞

( �

[a,b]

(vnt (y)− v∗t (y)) dt
)

= 0. (3.14)

For each pair (T, ω) ∈ Θ× Ω there is a fixed vector y(T, ω) ∈ R3 such that Zt(x) =

y(T, ω) for all (t, x) ∈ T × ω. Fixing ω ∈ Ω, for all x ∈ ω we have

b�

a

U4 dt =
∑
T ∈ Θ

�

T∩[a,b]

(
vnt (Zt(x))− v∗t (Zt(x))

)
dt (3.15)

=
∑
T ∈ Θ

�

T∩[a,b]

(
vnt (y(T, ω))− v∗t (t(T, ω))

)
dt.

In view of (3.14), we see that each term on the right-hand side of (3.15) tends to 0

as n→∞ uniformly for x ∈ ω. Since the partition Θ is finite and fixed, we deduce

lim
n→∞

[ b�

a

U4 dt
]

= 0 (3.16)

uniformly for x ∈ ω, and hence also uniformly for x ∈ B, since the partition Ω is

finite and fixed. Consequently, for given a, b ∈ I and all x ∈ B we can find n2 > n1

such that for n > n2 there holds

|
b�

a

U4 dt| ≤ ε. (3.17)
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Combining (3.17) with (3.12) and (3.13), we conclude that for any given a, b ∈ I and

uniformly for all x ∈ B there holds

lim
n→∞

( b�

a

(
vnt (F n

t (x))− v∗t (z∗(t, x))
)
dt
)

= 0. (3.18)

The equations (2.4a),(2.4b) for F n
t (x) imply

F n
t (x) = x+

t�

t0

(
vnt (F n

t (x)) ∀ t ∈ I, x ∈ R3.

Hence, the two limits (3.9) and (3.18) show that

z∗(t, x) = x+

t�

t0

(
v∗t (z

∗(t, x))) ∀ t ∈ I, x ∈ R3.

In view of Theorem 2.1, we see that z∗ must coincide with the unique solution F ∗ of

(2.4a),(2.4b) determined by v∗. This proves the key convergence result (3.3).

3.2 Necessary Optimality Conditions

We now derive first order necessary optimality conditions in terms of the Gâteaux

derivative of the objective functional J . Denote by CR3 = C(R3,R3) the vector

space of continuous maps from R3 to R3 endowed with the topology of uniform

convergence on bounded subsets of R3. Call MR3 the dual of CR3, i.e the space of

all linear continuous maps Λ : CR3→ R which are of the form

Λ(g) =

�

R3

〈λ(x), g(x)〉R3 dθ(x) ∀ g ∈ CR3, (3.19)
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3.2. NECESSARY OPTIMALITY CONDITIONS

where θ is any positive bounded Borel measure on R3 and λ : R3 → R3 is any Borel

function with compact support such that

�

R3

‖λ(x)‖R3 dθ(x) <∞. (3.20)

We introduce Gat(V, 3) as the space of all functions v → Gv from L2(I, V ) into CR3

having a Gâteaux derivative ∇Gv at each v ∈ L2(I, V ). The operators ∇Gv are

linear maps from L2(I, V ) to C(R3,R3) of the form

∇Gv.w = lim
ε→0

(1/ε) (Gv+εw −Gv) ∀ w ∈ L2(I, V ). (3.21)

We say that a functional φ : (CR3)q → R, φ has weak partial derivatives ∂jφ(Z) ∈

MR3 at Z ∈ (CR3)q, if for any set of q functions Gj ∈ Gat(V, 3) the composite

function f(v) = φ(Gv
1, . . . , G

v
q) has a Gâteaux derivative ∇f(v) at each v ∈ L2(I, V ),

and the derivative in the direction w ∈ L2(I, V ) is given by

∇f(v).w =

q∑
j=1

∂jφ(Z).[∇vGj.w] ∀ w ∈ L2(I, V ), (3.22)

where Z = (Gv
1, · · · , Gv

q).

Theorem 3.2. Let J be the objective functional as given by (2.20) with a disparity

functional of the form Disp(v) = φ(F v
t1
, . . . , F v

tq), where φ : (C(R3),R3)q → R3 has

Gâteaux partial derivatives ∂jφ. Assume that for all g ∈ CR3

∂jφ.g =

�

R3

< λj(x), g(x) >R3 dθj(x), (3.23)

where θj, 1 ≤ j ≤ q, are positive bounded Borel measures with compact support in

R3 and the λj : R3 → R3, 1 ≤ j ≤ q, are continuous functions . Then, the Gâteaux
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3.2. NECESSARY OPTIMALITY CONDITIONS

derivative ∇J(v) ∈ L2(I, V ) is given by

∇J(v).w =

tq�

t0

(�
R3

wt d(ρt,v + ηt,v)
)
dt, (3.24)

where for each t and v the quantities ρt,v and ηt,v are R3-vector valued Borel measures

on R3, and the measures ηt,v remain constant in t over each interval [tj, tj+1). Explicit

formulas for these measures are given below in the proof of this theorem.

If v∗ ∈ L2(I, V ) is a minimizing diffeomorphic flow, then ∇J(v∗) = 0, and this

implies ρt,v∗ + ηt,v∗ = 0 for all t ∈ I.

Proof. Obviously, the Gâteaux derivative ∇E(v) of the kinetic energy is given by

∇E(v).w =< v,w >L2(I,V ) . (3.25)

We fix v ∈ L2(I, V ) and x ∈ R3 and denote by DF v
t (x) : R3 → R3 the Jacobian m

of the diffeomorphism F v
t at x. Since

∂tF
v
t (x) = vt(F

v
t (x)) and F v

0 (x) = x,

the Gâteaux derivative

gt = gt(x, v, w) = ∇vF
v
t (x)

of F v
t (x) with respect to v in the direction w ∈ L2(I, V ) will be

gt(x, v, w) = lim
ε→0

F v+εw
t (x)− F v

t (x)

ε
. (3.26)
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3.2. NECESSARY OPTIMALITY CONDITIONS

Which implies

∂tgt(x, v, w) = lim
ε→0

∂tF
v+εw
t (x)− ∂tF v

t (x)

ε

= lim
ε→0

(v + εwt)(F
v+εw
t )− vt(F v

t (x))

ε

= lim
ε→0

v(F v+εw
t )− vt(F v

t (x))

ε
+ lim
ε→0

wt(F
v+εw
t )

= Dvt(F
v
t (x)).gt + wt(F

v
t ). (3.27)

Hence gt satisfies

∂tgt −Dvt(F v
t (x)).gt = wt(F

v
t (x)),

g0 = 0,

so that gt is the solution of an initial-value problem for a linear ordinary differential

equation with non-zero right-hand side rt = rt(x, v, w) = wt(F
v
t (x)). Setting pt =

pt(x, v) = Dvt(F
v
t (x)), this initial-value problem can be written as

∂tgt = pt.gt +mt, (3.28a)

g0 = 0. (3.28b)

We denote by Rs,t, t0 < s < t < tq the resolvent of the homogeneous linear ordinary

differential equation ∂tzt = pt.zt which satisfies

∂tRs,t = pt.Rs,t and Rs,s = Id ∀ s < t.

We note that Rs,t depends only on s, t, x, v and that the solution gt of (3.28a),(3.28b)

is then given by

gt =

t�

t0

Rs,t.ms ds.
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3.2. NECESSARY OPTIMALITY CONDITIONS

With a slight change of notations, omitting the explicit dependence on x ∈ R3, this

results in

∇vF
v
t .w =

t�

t0

Rv
s,t.ws(F

v
s ) ds. (3.29)

In view of the hypothesis on the functional φ, it follows that

(∇Dispv).w =

q∑
j=1

∂jφ.∇vF
v
tj
.w,

and hence, taking (3.29) into account, we have

[∇Dispv].w =

q∑
j=1

tj�

t0

[
∂jφ.R

v
s,tj
.
]
.[ws(F

v
s )] ds.

For each s ∈ I and fixed v ∈ L2(I, V ) we define the linear map As : V → R by

Avs =

q∑
j=1

1[t0,tj ](s)∂jφR
v
s,tj
, (3.30)

whence

[∇Dispv].w =

tq�

t0

Avs .[ws(F
v
s )] ds. (3.31)

Finally, due to (3.25) we obtain

∇J(v).w =

tq�

t0

[
< vt, wt >V +Avt .[wt(F

v
t )]
]
dt. (3.32)

We fix an instant s < tj and for x ∈ R3 temporarily define the 3 × 3 matrix R(x)

and the diffeomorphism x→ u(x) ∈ R3 according to

R(x) = Rv
s,tj

(x) and u(x) = F v
s (x).

For the function g : x→ g(x) = R(x)ws(u(x)) we thus get

∂jφ.[R
v
s,tj
.[ws(F

v
s )] =

�

R3

< λj(x), R(x)ws(u(x)) >R3 dθj(x).
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3.2. NECESSARY OPTIMALITY CONDITIONS

We define the bounded measure µj = u(θj) as the direct image of the measure θj

by the diffeomorphism u and note that µj depends only on j, s, v, which are fixed

temporarily. In view of the definition of transported measures, we have

�

R3

〈λj(x), R(x)ws(u(x))〉R3 dθj(x) =

�

R3

〈RT (u−1(y))λj(u
−1(y)), ws(y)〉R3 dµj(y),

(3.33)

where RT stands for the transpose of the matrix R.

Now, for s < tj we define

aj,s,v(x) := [Rv
s,tj

(x)]T .λj(x) ∀ x ∈ R3,

bj,s,v(y) := aj,s,v ◦ [F v
s ]−1(y),

µj,s,v := F v
s [θj].

It follows that

Avs .[ws(F
v
s )] =

q∑
j=1

1[t0,tj ](s)

�

R3

〈bj,s,v(y), ws(y)〉R3 dµj,s,v(y).

We introduce the vector-valued Borel measure νj,s,v, taking values in R3, as the

measure with vector-valued density bj,s,v with respect to the bounded Borel measure

µj,s,v, so that for any continuous function g : R3 → R3 there holds

�

R3

g dνj,s,v =

�

R3

〈bj,s,v(y)), ws(y)〉R3 dµj,s,v.

We then define the vector-valued measure ηs,v on R3 by means of

ηs,v =

q∑
j=1

1[t0,tj ](s)νj,s,v,
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3.2. NECESSARY OPTIMALITY CONDITIONS

and thus obtain

∇J(v).w =

tq�

t0

(
〈vt, wt〉V +

�

R3

wt dηt,v

)
dt. (3.34)

On the Hilbert space V , the norm and the scalar product are defined by the kernel

K(x, y), whence

< vt, wt >V =

�

R3

〈Kvt(x), wt(x)〉R3 dx =

�

R3

wt dρt,v.

Here, the vector-valued measure ρt,v has density Kvt with respect to the Lebesgue

measure on R3. Finally, we obtain the following representation which is valid for all

w ∈ L2(I, V )

∇J(v).w =

tq�

t0

(�
R3

wt d(ρt,v + ηt,v)
)
dt. (3.35)

Let v∗ ∈ L2(I, V ) be a minimizer of the objective functional J . Obviously, we must

have

∇J(v∗).w = 0 ∀ w ∈ L2(I, V ). (3.36)

In view of (3.35), this forces the measures ρt,v +ηt,v to be zero for all t ∈ I except for

a possible exceptional set Ω ⊂ I of Lebesgue measure zero. Since the measures ηt,v

are constant in t within each interval [tj, tj+1) and the measures ρt,v are continuous

in t, we conclude that Ω must be empty.
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CHAPTER 4

Dirac Measures and Diffeomorphic Point Matching

Diffeomorphic point matching [19, 34, 38] is a particular case of diffeomorphic match-

ing of measures that can be derived from the general framework of Chapter 2.

In such a framework, a given sequence of q + 1 instantaneous shape snapshots

Sj = Stj at fixed time frames tj, j = 0, · · · , q, is identified by a family of point

sets Xj =
{
xj1, . . . , x

j
Nj

}
. Let Ŝj = F v

tj
(S0) be a sequence of q submanifolds gener-

ated at instants tj, 1 ≤ j ≤ q, from the initial snapshot S0 by a R3-diffeomorphism

F v
t satisfying (2.4a),(2.4b) with unknown flow dynamics v ∈ L2(I, V ). Let X̂j =

F v
tj

(X0) =
{
F v
tj

(x0
1), . . . , F v

tj
(x0

N0
)
}

be the sequence of q point sets generated by F v
t

at instants tj, 1 ≤ j ≤ q from the initial point set X0. We denote by xn(t) = F v
t (x0

n),
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t ∈ I, the corresponding N0 trajectories emanating from x0
n, 1 ≤ n ≤ N0, at t = 0.

Thus we have X̂j = {x1(tj), . . . xN0(tj)}, 1 ≤ j ≤ q. It is natural to represent Sj and

Ŝj, 1 ≤ j ≤ q, as weighted sums of Dirac measures δxjm , 1 ≤ m ≤ Nj, and δxn(tj),

1 ≤ n ≤ N0, associated with the point sets Xj and X̂j. In particular, we assume

µSj =

Nj∑
m=1

bjm δxjm , µŜj =

N0∑
n=1

an δxn(tj), an, b
j
m ∈ R , j = 1, · · · , q.

It follows that the disparity cost functional (2.18) takes the form

Disp(v) =

q∑
j=1

λjD
2
Kσj

(Ŝj, Sj) =

q∑
j=1

λj‖µŜj − µSj‖
2
Kσj

. (4.1)

The terms ‖µŜj − µSj‖2
Kσj

, 1 ≤ j ≤ q, represent the Borel distances between the

shapes Sj and Ŝj associated with radial Gaussian kernels Kσj for suitable scale

parameters σj > 0. From (2.16) and (2.17), we have

‖µŜj−µSj‖
2
Kσj

= 〈µŜj−µSj , µŜj−µSj〉Kσj = 〈µŜj , µŜj〉Kσj−2〈µŜj , µSj〉Kσj+〈µSj , µSj〉Kσj ,

(4.2)

where

〈µŜj , µŜj〉Kσj =

�
R3

�
R3

Kσj(x, x
′)dµŜj(x)dµŜj(x

′) =

N0∑
n=1

N0∑
n′=1

anan′ Kσj(xn(tj), xn′(tj)),

(4.3a)

〈µŜj , µSj〉Kσj =

�
R3

�
R3

Kσj(x, x
′)dµŜj(x)dµSj(x

′) =

N0∑
n=1

Nj∑
m=1

anb
j
m Kσj(xn(tj), x

j
m),

(4.3b)

〈µSj , µSj〉Kσj =

�
R3

�
R3

Kσj(x, x
′)dµSj(x)dµSj(x

′) =

Nj∑
m=1

Nj∑
m′=1

bjmb
j
m′ Kσj(x

j
m, x

j
m′).

(4.3c)
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Recall that xn(t) = F v
t (x0

n), t ∈ I, 1 ≤ n ≤ N0, are the solutions of the ODEs

dxn(t)

dt
= vt(xn(t)), t ∈ (0, 1], (4.4a)

xn(0) = x0
n. (4.4b)

Thus the trajectories xn(t), 1 ≤ n ≤ N0, and the disparity cost functional Disp(v),

are uniquely determined by the values of vt taken at N0 points xn(t). Taking into

account that V = VK is a RKHS associated to a radial Gaussian kernel K = Kσ0 ,

this allows us to restrict the search for vt ∈ V to the set of linear combination of

Kxn(t), 1 ≤ n ≤ N0, and thus places us in a finite dimensional situation. We look

for the flow vt under the form vt =
∑N0

n=1 αn(t)Kxn(t), αn(t) ∈ R3, which may also be

written

vt(x) =

N0∑
n=1

Kσ0(xn(t), x)αn(t) , ∀x ∈ R3. (4.5)

By the self reproducing property of K, we have

‖vt‖2
V =

N0∑
n=1

N0∑
n′=1

Kσ0(xn(t), xn′(t))α
T
n (t)αn′(t).

We introduce the matrix-vector notations:

x(0) = (x
(0)
1 , · · · , x(0)

N0
)T ∈ RN0d, x(t) = (x1(t), · · · , xN0(t))T ∈ RN0d, t ∈ I,

α(t) := (α1(t), · · · , αN0(t))T ∈ RN0d, t ∈ I,

A(x(t)) = (Ann′(x(t)))N0

n,n′=1 ∈ RN0d×N0d , Ann′(x(t)) := Kσ0(xn(t), xn′(t))Id ∈ Rd×d.

It follows that the kinetic energy E(v) defined by (2.3) takes the form

E(v) =
1

2

� 1

0

α(t)TA(x(t)) α(t) dt. (4.6)

34



Hence, in terms of α ∈ L2(I,RN0d), the objective functional reads

J(α) =
1

2

� 1

0

α(t)TA(x(t)) α(t) dt+

q∑
j=1

λjDispj(x(tj)) (4.7)

where the q disparity functions Dispj(x(tj)) = ‖µŜj−µSj‖
2
Kσj

, 1 ≤ j ≤ q are given by

the right-hand sides in (4.2) and (4.3). The diffeomorphic point matching amounts

to the solution of the optimal control problem

inf
α∈L2(I,RN0d)

J(α), (4.8a)

subject to

dx(t)

dt
= A(x(t)) α(t), t ∈ (0, 1], (4.8b)

x(0) = x(0). (4.8c)

The existence of a solution α∗ of (4.8a)-(4.8c) follows from Theorem 3.1, whereas the

first order necessary optimality conditions can be either derived from Theorem 3.2

by evaluating the terms in (3.24) within the current setting (cf., e.g., [31]) or directly

as will be shown in the proof of the following result.

Theorem 4.1. Assume that α∗(·) is the solution of the optimal control problem

(4.8), and that x∗(·) is the corresponding trajectory. Then there exists a function

p∗(·), called the adjoint state, such that the triple (x∗, p∗, α∗) satisfies

dx∗(t)

dt
= A(x∗(t)) α∗(t), t ∈ (0, 1], (4.9a)

x∗(0) = x(0), (4.9b)
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−dp
∗(t)

dt
= B(x∗(t), α∗(t))T

(
p∗(t) +

1

2
α∗(t)

)
, t ∈ (tj−1, tj), (4.10a)

p∗(t+q ) = 0 , p∗(t−j ) = p∗(t+j ) + λj∇Dispj(x
∗(tj)) , j = q, · · · , 1, (4.10b)

A(x∗(t))(α∗(t) + p∗(t)) = 0, t ∈ (0, 1]. (4.11)

In the adjoint state equation (4.10a), the matrix

B(x∗(t), α∗(t)) = ∇x (A(x∗(t)) α∗(t)) ,

is given by

B(x∗(t), α∗(t)) = Bnm(x∗(t), α∗(t)))N0
n,m=1 ∈ RN0d×N0d,

Bnm(x∗(t), α∗(t)) := α∗m(t)(∇2Kσ0(x∗n(t), x∗m(t)))T + δnm

N∑
k=1

α∗k(t)(∇1Kσ0(x∗n(t), x∗k(t)))
T ,

where ∇x denotes the gradient with respect the argument x(t) and ∇iKσ0(·, ·), 1 ≤

i ≤ 2, stands for the gradient with respect to the i-th argument of Kσ0(·, ·).

Moreover, (7.6b) represents the jump discontinuities of p∗(·) at times tj, 1 ≤ j ≤ q.

Proof . Introducing Lagrange multipliers p(t) = (p1(t), · · · , pN0(t))T ∈ RN0d, t ∈ I,

the Lagrangian associated with (4.8a)-(4.8c) is given by

L(α, x, p) := J(α)−
1�

0

p ·
(
dx

dt
− A(x(t))α(t)

)
dt

= −
1�

0

p · dx
dt

dt+

1�

0

(p+ α/2) · A(t, x)α dt+

q∑
j=1

λjDispj(x(tj)).
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The optimality conditions for a critical point (α∗, x∗, p∗) of L(α, x, p) read as follows:

Lα(α∗, x∗, p∗) = 0, (4.12a)

Lx(α
∗, x∗, p∗) = 0, (4.12b)

Lp(α
∗, x∗, p∗) = 0. (4.12c)

Obviously, (4.12a) implies (4.11), whereas (4.12c) gives rise to (4.9). Using integra-

tion by parts

−
1�

0

p · dx
dt

dt = −
q∑
j=1

tj�

tj−1

p · dx
dt

dt =

q∑
j=1

 tj�

tj−1

dp

dt
· x dt− p(t−j ) · x(tj) + p(t+j−1) · x(tj−1)


=

1�

0

dp

dt
· x dt+

q−1∑
j=1

(
−p(t−j ) + p(t+j )

)
· x(tj)− p(1) · x(1) + p(0) · x(0),

(4.12a) yields (4.10).
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CHAPTER 5

The Fully Discrete Optimal Control Problem

In this chapter, we outline the basic matching algorithm based on gradient descent

and time discretizations of the optimality conditions (7.5a),(4.9b) and (4.10a),(7.6b)

as well as variants involving iteration-dependent weighting parameters for the match-

ing term in the objective functional. We will also summarize several initialization

schemes.

For the time discretizations of the optimal control problem (4.8) we introduce a

partition ∆I of I according to

∆I := ∪qj=1∆Ij , ∆Ij := {tj−1 =: tLj−1 < tLj−1+1 < · · · < tLj−1 < tLj := tj}, (5.1)
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where ∆Ij, 1 ≤ j ≤ q, are subpartitions of intervals Ij = [tj−1, tj] whose endpoints

tj are key time frames at which the shape snapshots Sj = S(tj) are given. We set

L0 := 0 and L := Lq and define step sizes ∆t` := t`+1 − t` > 0, 0 ≤ ` ≤ L− 1.

We introduce the discrete control space

U∆I = RL×(N0d), (5.2)

equipped with the inner product

(α,β)∆I
=

L−1∑
`=0

∆t`α` · β` =
L−1∑
`=0

N0∑
n=1

∆t` α`n · β`n,

and discretize the state equation (7.5a),(4.9b) and the adjoint state equation (4.10a),(7.6b)

by the explicit Euler method. Introducing the notations

x = {x`}L`=0, x` = {x`n}
N0
n=1, x`n ≈ xn(t`), (5.3a)

p = {p`}L−1
`=0 , p` = {p`n}

N0
n=1, p`n ≈ pn(t`), (5.3b)

α = {α`}L−1
`=0 , α` = {α`n}

N0
n=1, α`n ≈ αn(t`), (5.3c)

the discretized optimality system reads

x`+1 − x`

∆t`
= A(x`) α`, ` = 0, · · · , L− 1, (5.4a)

x0 = x(0), (5.4b)

p`−1 − p`

∆t`
= B(x`,α`)T

(
p` +

1

2
α`
)
, ` = Lj − 1, · · · , Lj−1, (5.5a)

pLq−1 = 0 , pLj−1 = pLj−1 + λj∇Dispj(x
Lj), j = q, · · · , 1 (5.5b)
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A(x`)
(
α` + p`

)
= 0 , 0 ≤ ` ≤ L− 1. (5.6)

The condition (5.5b), representing the jump discontinuities of pLj−1 at discrete times

tLj−1 (= tLj − ∆tLj), is the discrete version of (7.6b) for jump discontinuities of

p∗(·) at snapshot time frames tj (= tLj), 1 ≤ j ≤ q. This time backward shift of

jump discontinuities by steplength ∆tLj stems from our choice of the explicit Euler

method for the time discretization of the state equation (5.4a) and the adjoint state

equation (5.5a). It turns out that (5.4)-(5.6) represent the optimality conditions for a

discrete minimization problem. In fact, introducing J∆I (α) as the discrete objective

functional

J∆I (α) :=
L−1∑
l=0

∆t`

2
(α`)TA(x`) α` +

q∑
j=1

λjDispj(x
Lj), (5.7)

we have the following result.

Theorem 5.1. The equations (5.4)-(5.6) are the first order necessary optimality

conditions for the finite dimensional minimization problem

min
α∈U∆I

J∆I (α) (5.8)

subject to the discrete state equations (5.4a),(5.4b).

Proof . The proof is the discrete analogue of the proof of Theorem 4.1 and will thus

be omitted.

Corollary 5.2. Let (x∗,p∗,α∗) with x∗ = {x`∗}L`=0,p
∗ = {p`∗}L`=0,α

∗ = {α`∗}L`=0

satisfy the discrete optimality system (5.4)-(5.6). Then, it holds

0 = ∇J∆I (α∗), (5.9)
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where

∇J∆I (α∗) = {g`}L−1
`=0 , g` = A(x`)

(
α`∗ + p`∗

)
. (5.10)

Proof . We observe that

δJ∆I (α) = (∇J∆I (α), δα)∆I . (5.11)

From (5.7) we deduce

δJ∆I (α) =
L−1∑
l=0

∆t`
(

(α`)TA(x`) δα` +
1

2
(α`)TB(x`,α`) δx`

)

+

q∑
j=1

λj∇Dispj(x
Lj) δxLj , (5.12a)

where

δx`+1 − δx`

∆t`
= A(x`) δα` +B(x`,α`) δx`, ` = 0, · · · , L− 1, (5.12b)

δx0 = 0. (5.12c)

Multiplying both sides of (5.12b) by p`, partial summation yields

0 =
L−1∑
l=0

∆t` p` ·
(
δx`+1 − δx`

∆t`
− A(x`) δα` −B(x`,α`) δx`

)

=
L−1∑
l=1

∆t`
p`−1 − δp`

∆t`
· δx` + pL−1 · δxL − p0 · δx0 −

L−1∑
l=0

∆t` p` · A(x`) δα`

−
L−1∑
l=0

∆t` p` ·B(x`,α`) δx`. (5.13)

If we take (5.5a),(5.5b) into account, it follows from (5.13), (5.12a) that

δJ∆I (α) =
L−1∑
l=0

∆t` A(x`)
(
α` + p`

)
· δα`. (5.14)

Since δα = {δα`}L−1
`=0 is arbitrary, (5.11) results in

∇J∆I (α) = {g`}L−1
`=0 , g` = A(x`)

(
α` + p`

)
. (5.15)

41



In view of of (5.9),(5.10), the discrete minimization problem (5.8) can be solved

by a gradient based algorithm operating in U∆I .
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CHAPTER 6

Numerical Solutions of the Optimization Problem

6.1 Diffeomorphic Matching for Multiple Snap-

shots of 3D Curves and Surfaces

We compute a diffeomorphic matching for multiple snapshots of 3D curves, 3D sur-

faces, or finite unions of 3D curves and surfaces, by solving the minimization problem

(5.8) with q weighting factors λj = λ, 1 ≤ j ≤ q, in the objective functional (5.7),

where the weights help balance the various matching accuracies desirable for the q

given snapshots .
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6.1. DIFFEOMORPHIC MATCHING FOR MULTIPLE SNAPSHOTS OF 3D
CURVES AND SURFACES

The gradient descent algorithms we have implemented and tested all use an outer/inner

iterative scheme which features a continuation method in the regularization param-

eter λ as outer iterations and a gradient method with Armijo line search (cf., e.g.,

[3]) as inner iterations.

The continuation method plays an essential and efficient part : the regularization

parameter λ is initialized at a low value and is increased by moderate multiplicative

steps until the q geometric matching disparities with the given q snapshots have all

reached a preassigned low target level. After each multiplicative increase of λ, the

gradient G of the objective function jumps up in norm, and we keep λ fixed during

an ”inner” iteration of the gradient descent, until the norm of G reaches again a low

preassigned value. The value of λ is then increased again (”outer” iteration).

At the end of the inner gradient descent iteration performed at a fixed value λ, the

kinetic energy and the disparity term in the objective function J = Kin + λDisp

reach terminal values Kinλ and Dispλ. In R2, the points [Kinλ, Dispλ] define a

curve Γ ⊂ R2 parametrized by λ > 0 called the Pareto frontier of the objective

function J . The convexity of the Pareto frontier is usually a desirable feature for

regularized optimization problems, and we have empirically observed this convexity

in all the multiple snapshots matching applications we have studied below.

In the applications presented below, the given snapshots Sj = Stj ⊂ R3, 0 ≤ j ≤ q,

are assumed to have been generated at fixed instants t = tj by unknown diffeomor-

phic deformations S(t) of a known initial deformable shape S(0). The initial shape

S(0) is a finite union of geometric components Ci, where each Ci is either a segment of

piecewise smooth 3D-curve, or a piecewise smooth 3D-surface with piecewise smooth
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6.1. DIFFEOMORPHIC MATCHING FOR MULTIPLE SNAPSHOTS OF 3D
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boundary. Pairs Ci, Ck of components may intersect, but then these intersections are

also components of S(0).

Each snapshot Sj is then discretized (with arbitrary accuracy) by a finite mesh of

points Xj = {xj1, · · · , x
j
Nj
} where typically the number N0 of points on the reference

configuration S0 is much smaller than the number Nj, 1 ≤ j ≤ q, of points on the

other given snapshots. Indeed, the complexity of the numerical problem to be solved

after discretization is essentially determined by the number N0 of discrete trajecto-

ries recomputed at each step of each inner iteration.

6.1.1 Initialization of the Gradient Method with Armijo Line

Search

We first note that after the time and space discretization in order to initialize the

unknown vector α defined 5 , one can initialize first the unknown family of time

dependent vector fields v = (vt(x)) , and then invert, for each value t of the discretized

times, a large linear system of the type v = Mtα , where Mt is a positive definite

matrix for which the non zero coefficients are of the formK(x, y) for various x, y ∈ R3.

Here, K is the fixed radial Gaussian kernel defining the kinetic energy.

Of course to avoid this initial inversion of large matrices, one can crudely initialize

α by setting α = 0. This turns out to be an acceptable choice in several of our

numerical applications, but clearly does not allow the use of existing complementary

information on the solution which may be known in concrete situations.
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6.1.1.0.1 Rough initialization by a smooth flow of affine transformations.

Given two snapshots S and S ′ of homeomorphic 3D-surfaces with boundaries, one

can discretize S and S ′ by two finite point meshes X and X ′. Diagonalization of

the inertia matrices of X and X ′ around their centers of gravity O,O′ generates the

unit eigenvectors e1, e2, e3 and e′1, e
′
2, e
′
3 with associated positive eigenvalues γ1, γ2, γ3

and γ′1, γ
′
2, γ
′
3. Call T the translation mapping O on O′, R the rotation mapping

e1, e2, e3 on e′1, e
′
2, e
′
3, and A the affinity mapping e1, e2, e3 on

γ′1
γ1
e′1,

γ′2
γ2
e′2,

γ′3
γ3
e′3. The

affine linear transformation L = ART of R3 maps X on LX, which has the same

matrix of inertia as X ′. One can obviously imbed explicitly and separately A,R, T

into differentiable semi-groups A(t), R(t), T (t) of affinities, rotations, and transla-

tions, such that [A(1), R(1), T (1)] = [A,R, T ] and [A(0), R(0), T (0)] = [Id, Id, Id],

where Id is the identity transformation of R3. Then the affine linear transforma-

tions L(t) = A(t)R(t)T (t) are R3-diffeomorphisms depending smoothly on t such

that L(0) = Id, L(1) = L. They provide a first rough initialization for the unknown

flow of diffeomorphisms matching X and X ′ . The associated vector fields defined

for t ∈ R+, x ∈ R3 by vt(x) = dL(t)
dt
x are a crude initialization for the numerical

search of a vector field solution of an optimal matching between S and S ′.

For the multiple snapshots case, one applies this initialization successively between

Sj and Sj+1 on the time interval [tj, tj+1] to compute an initial family of time de-

pendent vector fields vt(x) such that the associated diffeomorphic flow quite roughly

matches S0 with the successive snapshots Sj.

6.1.1.0.2 Hierarchical initialization by B-splines matching. Consider two

homeomorphic bounded 3D surfaces S0 and S1 discretized by finite point meshes
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X0,X1 with compact piecewise smooth boundaries B0 and B1. Select arbitrary arc

length origins P0 and P1 on B0 and B1 and let (a0, a1) be the corresponding Euclidean

arc lengths abscissas on B0 and B1. Define a piecewise smooth diffeomorphism f of

B0 onto B1 as follows: for each Q ∈ B0, set f(Q) = U ∈ B1 where a1(U) = ca0(Q)

and c is the ratio of the lengths of B0 and B1. Using the gradient descent algorithm

defined above, we can then numerically determine a time dependent vector field

w = wt(x)), t > 0, x ∈ R3 such that the associated flow of R3-diffeomorphisms Ft

verifies F1(Q) close to f(Q) for all Q ∈ B0. This is an easy optimization problem,

since B0 is one dimensional and the desired mapping f of B0 onto B1 is known, so

that numerical convergence is quite fast.

One can then generate a discretized surface Xτ = Fτ (X0) with boundaries Bτ =

Fτ (B0) for any τ ≤ 1. Select a τ < 1 fairly close to 1 and discretize Bτ by a finite

mesh ∂Xτ . Fix ε > 0. By a relaxation algorithm, provided ε is not too small, it is

possible to select targets z(x) ∈ B1 for each x ∈ X0 such that the map x → z(x) is

injective on X0, and such that the points z(x) and Fτ (x) verify

||z(x)− Fτ (x)|| < ε+ d(Fτ (x), X1) , where d(y,X1) = minu∈X1 ||u− y||.

We then seek an R3-valued function Pol(t, x) defined for τ ≤ t ≤ 1 and x ∈ R3

by linear combinations of cubic B-splines and such that we have Pol(τ, x) = x for

all x ∈ Xτ ∪ ∂Xτ , and Pol(1, x) = z(x) ∀x ∈ Xτ . This involves the resolution

of a standard linear system for B-splines. Our initial time dependent vector fields

v = vt(x) for gradient descent is then defined by vt = wt for 0 ≤ t ≤ τ and by

vt(x) = ∂tPol(t, x) for all x ∈ R3 and τ < t ≤ 1.
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6.1.2 Smoothing of the Hausdorff Disparity

In general, the Hausdorff distance (2.15) is not a smooth function. For our gradi-

ent descent with Armijo line search we define a smoothed version of the Hausdorff

disparity as follows. Consider two compact 3D shapes S and S ′ discretized by finite

meshes X and Y . Define functions φ : X → Y and ψ : Y → X

φ(x) = argminy∈Y ||x− y|| ∀x ∈ X, (6.1)

ψ(y) = argminx∈X ||y − x|| ∀y ∈ Y. (6.2)

Clearly, these two functions are continuous but not necessarily injective. For each

x ∈ X define U(x) ⊂ X as the set of the r closest neighbors of x in X including x.

Similarly, one defines neighborhoods U(y) ⊂ Y of y for all y ∈ Y . The smoothed

Hausdorff disparities h(X, Y ) and h(Y,X) are defined by

h(X, Y ) = (1/r|X|)
∑
x∈X

∑
z∈U(φ(x))

||x− z||2, (6.3)

h(Y,X) = (1/r|Y |)
∑
y∈Y

∑
z∈U(ψ(y))

||y − z||2, (6.4)

where |X|, |Y | are the cardinals of X, Y . The numerical gradients of h(X, Y ) and

h(Y,X) with respect to variations of X when Y remains fixed are always approxi-

mated by ”freezing” temporarily the points φ(x) and ψ(y), since the functions φ and

ψ are not everywhere differentiable.

The smoothed Hausdorff disparity betweenX and Y will be defined byDH(X, Y ) =

h(X, Y ) +h(Y,X), and will sometimes be referred to below as ”global Hausdorff dis-

parity” between X and Y . For diffeomorphic matching of surfaces S and S ′ with
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boundaries ∂S and ∂S ′, we always compute separate Hausdorff disparities between

discretized versions of the interior sets So, S ′o and of the boundaries ∂S, ∂S ′.

6.1.3 Choice of the Scale Parameters in the Gaussian Ker-

nels

When the scale parameter σ > 0 of the radial Gaussian kernel Kσ (2.14) defining

the Hilbert space V = VK increases, then the spatial smoothness of the optimal

diffeomorphic deformations tends to increase. Call X the finite discretization of the

interior of an initial surface or curve S0. Define dim(X) as the dimension of S0 . For

each x ∈ X, and each fixed integer r > 0, define as above U(x) ⊂ X as the set of the

r closest neighbors of x in X ,including x itself. We then define the radius function

ρ(x) > 0 by

ρ(x) = maxz∈U(x)||x− z|| ∀x ∈ X.

The maximum R(X) = maxx∈X(ρ(x)) of the function ρ concretely defines the local

mesh size of X.

We naturally chose r = 3 when S0 is a curve segment or when X is a finite

discretization of the boundary ∂S0, and r = 5 when S0 is a surface.

Based on the local mesh size R(X) of X, we select the scale parameter σ for the

radial Gaussian kernel defining the kinetic energy as follows

σ = κ 2−1/2 R(X), (6.5)
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where κ is some constant satisfying 2 ≥ κ ≥ 1 . This choice clearly bounds the

number of neighbors y ∈ X of any given point x ∈ X such that the deformation

trajectory of y influences the deformation trajectory of x.

The scale parameter σ is generally kept fixed during the whole gradient descent, but

can be updated dynamically after enough iterations. Numerical evidence suggests

to choose σ according to (6.5) and to keep it fixed during the whole process, when

there is not much difference between the local mesh sizes selected for the multiple

snapshots.

The scale parameter of the radial Gaussian kernel defining the Hilbert distance be-

tween bounded measures on R3 (see (2.17) )is selected to have the order of magnitude

of the Hausdorff distances between the given snapshots Sj and the current deformed

shapes Ŝj at instants tj and is updated periodically , in particular when the initial-

ization is not close enough to the assigned multiple snapshots.

6.2 Continuation in the Regularization Parameter

Consider first the situation where the weights λj in the disparity cost functional func-

tional (2.18) are all equal to the same λ > 0. This regularization parameter provides

a weighting between the kinetic energy (2.3) and the disparity cost functional. For λ

small, the regularizing effect of the kinetic energy dominates, whereas large values of

λ enhance the matching quality of deformed shapes Ŝj and the given snapshots Sj.

To reach a good matching quality, one needs to minimize the objective function J

for fixed but sufficiently large λ. However, for increasing λ, the system of optimality
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equations equivalent to gradJ = 0 becomes more and more ill-conditioned, which

may result in divergence of the gradient descent. A convenient remedy to overcome

this obstacle is to use an appropriate ”continuation” in λ. The continuation method

consists in combining outer iterations in λ with inner iterations at fixed λ, which we

chose to implement by classical gradient descent with Armijo line search (cf., e.g.,

[3]).

To monitor progress during the outer iterations, we compute q performance in-

dicators Distj, one for each given snapshot Sj, j = 1, · · · , q, as follows.

j = 1, · · · , q, Distj := 90th percentile of {dj1, · · · , d
j
N0
}, (6.6)

where the distances djn, n = 1, · · · , N0, are defined by

djn = min
m=1,··· ,Nj

‖xn(tj)− xjm‖

Hence, each Distj provides an upper bound for 90% of the current geometric errors

affecting the points of the current deformed surface Ŝj. In practical applications, the

given snapshots Sj are typically determined by 3D-image data where geometric accu-

racy is bounded by the image resolution. For example in Chapter 8 the algorithmic

modeling of the Sj by NURBS introduces other sources of geometric inaccuracy in

the Sj data. Hence one can generally preassign a target threshold level THR > 0 for

the performance indicators Distj, and we can say that good matching with all the in-

termediary snapshots has been reached as soon as all the Distj are smaller than THR.

As described above, the continuation method implements a succession of inner

iterations, which are gradient descents at fixed λ, and at the end of each inner

51



6.2. CONTINUATION IN THE REGULARIZATION PARAMETER

iteration,the regularization parameter λ is increased (outer iteration) by a constant

multiplicative factor γ > 1.

At the end of each inner iteration, we want the norm of gradient J to have decreased

at least by a fixed multiplicative factor θ < 1.

Formally the continuation method reads as follows:

Step 1 (Initialization of the outer iteration)

Specify a small initial value λ0 > 0 and set ν = 0.

Step 2 (Initialization of the inner iteration)

Compute α
(0)
ν by one of the initialization procedures as outlined above in subsection

8.1 and set µ = 0.

Step 3 (Gradient method with Armijo line search)

Step 3.1 Set µ := µ + 1 and compute α
(µ)
ν by gradient descent with Armijo line

search.

Step 3.2 If the gradient ∇J of the objective function J verifies the termination

criterion

|∇J(α(µ)
ν | < θ |∇J(α(0)

ν | (6.7)

is satisfied, go to Step 4. Otherwise, go to Step 3.1.

If the gradient method fails to converge, adjust the parameter in the Armijo line

search, set µ := 0, and go to Step 3.1.

Step 4 (Termination of the outer iteration)

If the threshold based termination criterion

Distj < THR , 1 ≤ j ≤ q, (6.8)
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is satisfied, stop the algorithm.

Otherwise, set ν := ν + 1,α
(0)
ν := α

(µ)
ν−1, and increase the regularization parameter

by

λν := γ λν−1, (6.9)

and go to Step 3.
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CHAPTER 7

Smoothing in Time Domain

For the optimal control systems 3.1 in Chapter 2 and 4.8 in Chapter 4 which were

formulated to obtain optimal matching of a sequence of submanifolds in infinite di-

mensional setup and in diffeomorphic point matching setup, respectively, we observe

that the solution of the adjoint equation derived as a part of first order optimality

conditions is capable of being discontinuous in time, namely at the time instances

where we expect the deforming submanifold to match with a known submanifold.

Hence when we solve numerically the fully discrete system 5.12 associated with 4.8

we expect to see non-smooth transition of the deformed object in time. In this chap-

ter we present numerical experiments featuring multiple snapshots. We quantify the
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non-smooth transitions of the deformation in time by analyzing individual trajecto-

ries associated with the deformation of the mesh points of reference surface. We then

add a smoothing term with a smoothing parameter µ in the functional associated

with the semi discrete optimal control problem 5.12 and derive necessary optimality

conditions for the new control problem. In the last section of this chapter we study

the effect of the smoothing term on the optimal solution for two cases: multiple 1D

submanifolds and multiple 2D submanifolds, by varying the smoothing parameter µ

starting with µ = 0, i.e. the solution when the smoothing term is not present.

7.1 Solutions with Non-smooth Transitions in Time

In this section we discuss about the non-smooth transitions in time by presenting

some numerical experiments implemented using the methods described in Chapter

6.

7.1.1 Data

We have 10 parametric curves C0, . . . , C9 corresponding to 10 snapshots of a deform-

ing closed 3D curve available at 10 time instances, t0 < t1 . . . < t9. Here, without loss

of generality we assume that the time instances are between time unit 0 and 1. These

curves represent a fibrous ring part of human mitral valve known as annulus during

one heart cycle of a specific patient, and extraction of these parametric equations

involve a sequence of tedious work. For details we refer to section 8.1.4 of Chapter 8.
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However, for the time being we can just think of these as 1D submanifolds of R3. Our

task is to obtain a time dependent diffeomorphism Ft which deforms shape C0 such

that it is as close to the given snapshots at time tj, ∀1 < j < 9. We identify these

curves by set of points X0, . . . , X9 extracted using the parametric curve equations.

7.1.2 Quantifying the Non-smoothness of Solution

One way to observe the non-smoothness of the solution in time space, is to look

at the angles between the two line segments obtained by joining three consecutive

points on each trajectory xi(t) := Ft(xi(0)), t ∈ (0, 1) for all xi(0) ∈ X0 and 0 =

l0, l1, l2, . . . , LM = 1, i.e. we find θt(xi) as defined in (7.1).

θt(xi) = arccos

(
(xi(t+ 1)− xi(t)).(xi(t)− xi(t− 1))

|(xi(t+ 1)− xi(t))||(xi(t)− xi(t− 1))|

)
. (7.1)

The more bigger θt(xi) the more irregular the associated trajectory is and in turn the

obtained optimal diffeomorphism. Hence smaller values for θt, would imply smoother

solution. Figure 7.1 shows the time evolution of the average of θt i.e.

θAvg
t =

1

Nx

Nx∑
i=1

θt(xi) (7.2)

Clearly we observe that the angle is very sharp at the time instances tj, j = 1, . . . 9,

i.e. time when the snapshots are known.

7.2 Modified Functional

The discontinuity of the solution of the adjoint state equations is not only reflected

in the state variables but is also reflected on control variable α, cf figure(7.2). Since
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Figure 7.1: x axis represent the time and y axis represent θAvg
t as defined in 7.2, ’o’

represent the value at time tj, j = 1, . . . 9 i.e. time instances with known snapshots
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Figure 7.2: Left figure depicts the time evolution of the average of the norm of α(t),
right figure depicts the evolution of the average of finite difference derivative of α(t)

with respect to time
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we also observe discontinuity in control variable we add a smoothing term involving

the time derivatives of the control variable in the objective functional. Recalling the

notations from page 35 we write the new objective function as

J(α) =
1

2

� 1

0

α(t)TA(x(t)) α(t) dt+ λ

(
q∑
j=1

λjDispj(x(tj)) +
µ

2

� 1

0

dα

dt

T dα

dt
dt

)
.

(7.3)

Hence the new diffeomorphic matching amounts to the solution of the following

control problem

inf
α
J(α), (7.4a)

subject to

dx(t)

dt
= A(x(t)) α(t), t ∈ (0, 1], (7.4b)

x(0) = x(0). (7.4c)

Using the Lagrange multiplier techniques as used in chapter 4 we derive the following

necessary optimality conditions for the above system

dx∗(t)

dt
= A(x∗(t)) α∗(t), t ∈ (0, 1], (7.5a)

x∗(0) = x(0), (7.5b)

−dp
∗(t)

dt
= B(x∗(t), α∗(t))T

(
p∗(t) +

1

2
α∗(t)

)
, t ∈ (tj−1, tj), (7.6a)

p∗(t+q ) = 0 , p∗(t−j ) = p∗(t+j ) + λj∇Dispj(x
∗(tj)) , j = q, · · · , 1, (7.6b)

A(x∗(t))(α∗(t) + p∗(t))− λµd
2α

dt2
= 0, t ∈ (0, 1]. (7.7)
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7.3 Adding Local Smoothing Terms to the Objec-

tive Functional

We first add local smoothing terms at the time instance where snapshot is known

i.e.

J(α) =
1

2

� 1

0

α(t)TA(x(t)) α(t) dt+ λ

(
q∑
j=1

λjDispj(x(tj)) +

q∑
j=1

µj
|αtj − αtj−1|2

2∆tj−1

)
.

(7.8)

7.3.1 Numerical Experiments

We compare different optimal solutions we obtain by solving original variational

problem and the one with local regularization term added as described in 7.8. We

take values of all µj same and call it as µ and we take λj = 1, j = 1, . . . q. As

described in section 6.2, we use the continuation in regularization parameter λ. This

implies that the ratio between matching term and smoothing term remains same.

Figure(7.3) represent the average of θt over the mesh points, we see the solution

for the original variational form has very narrow angles at tj but adding the regularity

term increases measure of these angles and as we increase the value of the parameter

µ it gets better at the intermediary time steps. However if we carefully observe as

we start increasing µ the angles start getting narrower around the intermediary time

steps.
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Figure 7.3: average of angles: green-for the original solution,blue-for µ = 0.5, pink-
for µ = 2, red-for µ = 4 solution with local smoothing term

7.4 Adding the Global Smoothing Term to the

Objective Functional

7.4.1 Results for Curves

We work with same example as discussed above and optimize the new functional

7.3 with different values of µ. Figure(7.5) represent the average of θt over the mesh

points, we see the solution for the original variational form has big angles at tj but

adding the regularity term reduces angles and as we increase the value of the param-

eter µ it improves at the intermediary time steps. In Figure(7.6) we see the changes
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Figure 7.4: average of the norm of αi, 0 ≤ i ≤ Nx − 1(left),norm of the difference
between the alpha of two consecutive time(right)

µ Kin Dtarg Dt1 Dt2 Dt3 Dt4 Dt5 Dt6 Dt7 Dt8

0 57 0.17 1.12 0.8 0.5 0.7 0.7 0.5 0.84 0.3
0.5 58 0.2 1.15 0.8 0.6 0.65 0.67 0.54 0.7 0.3
2 62 0.2 1.2 0.8 0 .7 0.7 0 .5 .4 .4 0.3

Table 7.1: Performance indicator at different level of µ

between different adjoin variable solution αt and approximation of it’s derivative in

time.

In Table(7.1) we compare the performance indicator Dtj for each snapshot, cf

equation(6.6) in Section 6.2. Since we add an extra term in the objective function

the desired level of accuracy is attained at different levels of λ, however it is reached

at comparable kinetic energy.
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Figure 7.5: average of angles: green-the original solution, blue- µ = 0.5, pink- µ = 2
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Figure 7.6: average of the norm of αt(left),norm of the difference between the alpha
of two consecutive time(right)
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Figure 7.7: One trajetory: uniform time steps and different µ: µ = 0-green,µ = 0.5-
blue,µ = 2-pink

µ mean(
∑

l θl(x)) max(
∑

l θl(x)) min(
∑

l θl(x))
0 450 647 262
0.5 470 661 249
2 441 623 235

Table 7.2: Sum of angles
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Figure 7.8: Average of angles: green-for the original solution, blue-for µ = 0.5,
pink-for µ = 2

7.4.2 Result for Surfaces

We consider four snapshots of a dynamic surface. These surfaces are identified by

NURBS model, for more details we refer to Section 8.1.4. But for the time being

we can just consider them as 2-D sub-manifolds in R3. Since we have less snapshots

as compare to the previous case, we expect to get relatively smaller angles. Figure

7.8 is a similar comparison of average of angles for different values of µ. Figure 7.9

shows the level of accuracy of the matching at different time instances.
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Figure 7.9: Represent the accuracy of the matching, as we can see all the curves
overlap and hence we don’t compromise on accuracy

µ mean(
∑

l θl(x)) max(
∑

l θl(x)) min(
∑

l θl(x))
0 50 313 8
0.5 49 315 7
2 49 315 6.81

Table 7.3: Sum of angles
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CHAPTER 8

Numerical Results: Reconstructed Motion of Human Mitral

Valve

8.1 Human Mitral Valve Apparatus

Heart is a muscular organ responsible for blood circulation in body through the

cardiac cycle. It consists of four chambers: two chambers on top namely the left

and right atrium and two chambers on bottom namely the left and right ventricle

chambers. Right atrium and right ventricle are connected via tricuspid valve and

right atrium is connected to pulmonary arteries via pulmonary valve. Similarly left
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Figure 8.1: Stucture of Human Heart

atrium and left ventricle are connected by Mitral Valve and left atrium with arota

by aortic valve, cf. Figure 8.1. The deoxygenated blood of the body enters through

superior and inferior vena cava and fills in right atrium during diastole, the tricuspid

valve is open and right ventricle is filled with venous blood, which is then pumped

through pulmonary valve in lungs during systole. Similarly oxygenerated blood is

filled in the left atrium during diastole and Mitral Valve is open and let the blood fill

in left ventricle, which is then pumped into the body via arota through aortic valve

during systole,cf. Figure 8.2. All these four valves are unidirectional which is a very

important feature required for healthy functioning of heart. Valvular heart disease:

stenosis and regurgitation are very commonly found in people. Here we focus on

patients suffering from mitral valve regurgitation.
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8.1. HUMAN MITRAL VALVE APPARATUS

Figure 8.2: The four valves during diastole and systole

8.1.1 Anatomy and Physiology of Mitral Valve

Mitral valve is typically 4-6 cm2 in area. The mitral valve apparatus consists of

a saddle shaped annulus(a fibrous ring) and two flaps called leaflets: the anterior

and posterior leaflet. Virtually annulus can be divided into two parts anterior and

posterior annulus according to the leaflet insertion. The semi-circular shaped anterior

leaflet is attached to approximately 40 % of the annulus with its free boundary being

indetation free. On the other hand, the quadrangular shaped posterior leaflet has

two well-defined indentations that support the opening of the mitral valve.

In a healthy functioning heart, during left ventricle diastole, after the pressure

drops in the left ventricular due to relaxation of the ventricular myocardium, the

mitral valve opens, and blood filling in left atrium through pulmonary vein starts

traveling to left ventricular, followed by the discharge of electrical impulses generated

by sinoatrial node( impulse generating tissue located in the right atrium), triggering
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the atrium to contract. It’s then when the left atrium empties the remaining oxy-

generated blood in the left ventricular which contributes 20% to the volumn in the

left ventricles prior to ventricular systole. This is also known as left atrial systole.

While the left atrium starts relaxing, the mitral valve prevents the oxygenerated

blood from flowing back into the atrium by coapting the two leaflets together. Left

ventricle systole starts exactly when the mitral valve closes. At this point arotic valve

is open, the left ventricle receives impulses from the Purkinje fibers (located at the

inner walls of the ventricles) and contracts and the oxygenerated blood is pumped

into the arota. All this time mitral valve is closed and the leaflets are prevented from

prolapsing into the left atrium by the action of tendons attached to the posterior

surface of the valve, chordae tendineae. The inelastic chordea tendinea is made of

approximately 80% collagen, and the remaining is made up of elastin and endothelial

cells. The chordea are attached at one end to the papillary muscels and the other to

the valve leaflets, cf Figure (8.3). Papillary muscels are attached to the inner wall

of the ventrical. When the left ventricle contract the intraventricular pressure forces

the valve to close, while the tendons keep the leaflet coapting together and prevents

prolapsing which result in blood flow in opposite direction.

8.1.2 Mitral Valve Regurgitation

Mitral regurgitation is backward flow of oxygenized blood in left atrium during sys-

tole, caused by improperly closed mitral valve. It has prevalence of approximately

2% of the population, affecting males and females equally,[55]. Prevelance of this

condition would force the heart to work harder to pump the blood to the rest of the
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Mitral Valve

Chordea Tendinea

Papillary Muscels

Left Ventrical

Left Atrium

Figure 8.3: Mitral valve posterior surface, chordae tendinea and papillary muscles

body which can lead to congestive heart failiur. The most common cause of mitral

regurgitation is mitral valve prolapse, which usually happen due to the elongation

of the valve leaflets and the chordae tendineae which prevent the valve to coapting

fully.

8.1.3 Mitral Valve Regurgitation Treatment: Repair vs. Re-

placement

There are two surgical options available as a cure for regurgitation: mitral valve

repair and mitral valve replacement. Starting from about 1960s, for few decades

replacement of mitral valve replacement (valve replaced by an artificial valve) was

the only surgical option available. But there were many possible drawbacks with this

procedure including: infection of the valve, patients required to take blood thinner
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can result in many medical complications, more likely to get a stroke, and wear out

of the valve in about 10-15 years. In the past two decades a new technique was

used where rather than replacing the valve surgeons started repairing the valve. The

idea was pioneered by Dr. Alain F Carpentier. One such technique is to insert

a ring around the valve to reduce the size of the annulus which supports proper

coapting of the leaflets. Mitral vavle repair is still an emerging field and surgeons want

to study the functional impact of surgery by visualizing echocardiographic images

available as key time frames. We recompute the dynamic deformation of the mitral

vavle apparatus using these images which help us finding various quantifications like

strain and stress maps for the leaflets etc. Hence allowing the surgeons to perform a

comparative study of various quantifications for normal organic and post-operative

patients and understand the impact of mitral valve repair surgery.

8.1.4 Mitral Valve Shape Models: From Ecocardiograhic

Images to Static Modeling using NURBS

8.1.4.1 Acquisition of Echocardiographic 3D images and tagging by TMHRI

The 3D volumes image data are obtained via Phillips iE33 transthoracic ultrasound.

Raw Phillips image data are converted to the Dicom format by Q-lab 7 ( software

provided with the Phillips system). Each 3D echocardiographic movie includes 27-30

3D frames per heartbeat cycle and represents a high volume of image data corrupted

by ’speckle’ noise. Our group at the Dept. of Mathematics, University of Houston

developed a proprietary software ITMA, built on the SLICER (version 3.4) freeware,
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dedicated to the interactive tagging of the mitral valve apparatus. The Dicom files

are then read into ITMA.

The tagging was focused on four components of MVA, viewed as deformable

smooth shapes in R3: the anterior and posterior leaflets Al and PL, enclosed by the

fibrous ring annulus and the coaptation line along which leaflets close the valve during

systole. To tag the mitral apparatus on a 3D image frame, one first identifies 1 plane

PL1 ”parallel” to the mitral annulus MA and 2 other planes PL2 and PL3 orthogonal

to PLMA, intersecting roughly at the center of the MA. Plane PL2 is then rotated

by successive small angles to span and tag the MA circumference. The anterior

and posterior leaflets (AL and PL), the coaptation line, and leaflet boundaries are

tagged on a second set of planes, perpendicular to plane PL1, and intersecting at

the mitral-aortic continuity. These tags are stored as lists of 3D points in ITMA and

automatically exported to Matlab file formats for algorithmic processing.

8.1.4.2 Modeling of mitral valve annulus and leaflets

The mitral leaflets and annulus are mathematically modeled by NURBS (Non-

Uniform Rational B-Splines) using Matlab coded algorithms developed by [9]. 3

NURBS model are obtained, one for each leaflet and a third one for the MA.

For each patient we have roughly 40 tagging points on the mitral annulus at

both MidSystole (MS) and EndSystole (ES). These tagged points are automatically

ordered in a natural periodic geometric sequence. We fit a NURBS model to this

ordered sequence, by simultaneous optimization of the curve smoothness and of the
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accuracy of fit to the data.

Tagged points are not uniformly distributed along the MA circumference, so

quadratic errors of fit are pondered by weights linked to distances between neighbor-

ing tagged points. This 1st model fitting generates errors of fit, and a 2nd fitting is

implemented, with new weights based on these errors of fit. This automatic proce-

dure generates smooth MA models with very good accuracy, which are then displayed

in 3D-graphics within SLICER. For a normal patient, for each leaflet there are about

500 points tagged and transported to Matlab. Using PCA analysis a local plane is

found and the points are projected on this plane. Using spline models a function

f : R2 → R is generated such that the surface created by (x, y, f(x, y)) approximates

the leaflet with minimal errors. But for organic patients due to the prolapsing of the

leaflets, the thin surface is curled in itself and hence different techniques are used to

fit the models.

Due to speckle noise, manual tagging and fitting of models using minimization

techniques, the accuracy of the models is up-to one unit.

8.2 Mitral Valve Apparatus as a NURBS Model

As explained about, the mitral valve models Sj are based on NURBS (non-uniform

rational B-splines), and were obtained in [9] by combining optical flow extraction

algorithms with sparse tagging by medical experts. The number q+1 of intermediary

key heartbeat cycle instants tj ranged from 3 to 8, and the time range I = [t0, t1]

covers either a half or a whole heartbeat cycle with total duration between 1/2 to 1
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second.

Anterior Leaflet

Posterior Leaflet

Coaptation Line

Annulus Curve

Figure 8.4: Mitral valve: the middle line is the coaptation line along which the
surfaces of the anterior and posterior leaflets meet when the valve is closed. The
closed black thick curve is the mitral annulus.

The mitral valve apparatus (MVA) involves the annulus (a closed thin deformable

ring) and two deformable surfaces with boundaries, namely the anterior and posterior

leaflets. These mitral leaflets are flexibly linked to the annulus by a subsegment of

their boundaries. When the valve is closed, the exterior parts of the leaflets have a

common boundary called the coaptation line.

The MVA can be viewed as a composite deformable object built from several smooth

deformable shapes (see Figure 8.4), namely a closed curve MA (the mitral annulus),

a curve segment COA (the coaptation line), two surfaces AL and PL (the mitral

leaflets) with boundaries ∂AL = COA ∪ antMA and ∂PL = COA ∪ postMA, where

antMA and postMA are complementary subsegments of the MA.
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8.3 Multiple Snapshots for the Mitral Annulus

and Leaflets

The given snapshots are modeled by parametrized closed curves in R3 for the mi-

tral annulus, and by parametrized surfaces with boundaries in R3 for the anterior

and posterior leaflets. The parametric equations of these curve and surface models

and of their boundaries have previously been extracted from 3D-image data as indi-

cated above, and are explicit linear combinations of cubic B-splines which are tensor

products of polynomials of degree 3 in one variable restricted to bounded intervals.

 

 

ref intermediary target trajectories

Figure 8.5: The 5 closed curves are 5 successive annulus snapshots. The dotted curve
is the initial snapshot. From bottom to top, the next 3 curves are the intermediary
snapshots and the last one is the final target. The vertical ’−−’ lines are computed
deformation trajectories for selected points of the reference curve.

For example for a particular patients for which we will present examples here, for
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the annulus, we have 10 given snapshots, and we focus first on the 5 annulus snapshots

A0, A1, A2, A3, A4 corresponding to instants t0 = 1, t1 = 3, t2 = 5, t3 = 7, t4 = 10.

The time unit, equal to 1/27 second, is the time interval between 2 frames.

The annulus B-spline models enable the selection of point meshes XAj on Aj with

equal arc length between successive points. The first discretizations used in the

numerical implementations of continuation algorithms presented here start with 42

points for XA0, and approximately 500 points for each one of the other XAj.

For each mitral leaflet, 4 snapshots S0, S1, S2, S4 are available at instants t0 =

0, t1 = 1, t2 = 5, t4 = 10. We discretize them by meshes for which distances between

any mesh point and its closest neighbor are approximately constant. Separate dis-

cretizations are applied to the interior of the Sj and to their boundaries. For the

anterior leaflet, we initially select a mesh of 126 points on the reference surface S0,

split into 84 points for its interior and 42 points on its boundary, and meshes of

approximately 1600 points each on each one of the other snapshots of the anterior

leaflets.

8.4 Diffeomorphic Matching for Multiple Annulus

Snapshots

We sketch the results of optimized diffeomorphic matching for multiple annulus snap-

shots, first when the disparity term is the smooth Hausdorff disparity (”Hausdorff

matching”)as described section 6.1.2, and second when the disparity is computed by
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Hilbert distances between Borel measures (” measure matching”), see equation (4.2).

In both cases, we have used the continuation algorithm described in last chapter 6.2

and the trivial initialization α = 0 with discrete time steps ∆t` = 1/18 and θ = 0.3

in the termination criterion (6.7) for gradient descent with Armijo line search. The

scale parameter computed by (6.5) is σ = 3.53 for the Gaussian kernel Kσ.

The computational performance of the continuation algorithm is evaluated first by

the convergence history for the q indicators of the geometric matching accuracy Distj

6.6 and for the corresponding values Dispj of the q components of the disparity func-

tional.

We also record and display the tradeoffs between these matching quality indicators

and the kinetic energy of the corresponding deformation flows. At the end of each

inner iteration of gradient descent with fixed regularization parameter λ, we generate

a point on each one of the approximate Pareto frontiers displaying matching quality

indicators as functions of the kinetic energy. For the global disparity term (sum

of the q individual snapshot disparities Dispj), we expect and empirically observe

convexity of these approximate Pareto frontiers, viewed as usual as the location of

the weak Pareto optima for the pair of competing criteria (kinetic energy versus

matching disparity) (cf., e.g., [18]).
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8.4.1 Smoothed Hausdorff Matching for Multiple Annulus

Snapshots.

The initial value λ(0) = 1 of the regularization parameter is increased at each outer

iteration by the multiplicative factor γ = 1.1 (cf. (6.9)). The convergence history is

documented in Figure 8.6 which displays the decrease of the geometric accuracy indi-

cators Distj and of the disparity components Dispj for our 4 snapshots Aj, 1 ≤ j ≤ 4.

It takes 200 iterations to reach the threshold geometric accuracy required for this

application (see (6.8) ), but we have extended iterations beyond this value to obtain

a more complete view of the Pareto frontiers.
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Figure 8.6: Diffeomorphic matching for multiple mitral annulus snapshots, using
smoothed Hausdorff distances: Convergence history for the geometric accuracy indi-
cators Distj and for the smoothed Hausdorff disparity components Dispj.

The Pareto frontiers for the geometric accuracy indicators Distj, the Hausdorff
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disparities Dispj, and the global Hausdorff disparity
∑

j Dispj are shown in Figure

8.7. Note that for the first annulus snapshot the geometric accuracy Dist1 and the

Hausdorff disparity Disp1 do not exhibit a convex decrease pattern at the beginning

of the continuation procedure. Indeed, the implemented algorithmic optimization

strategy first ”focuses” on matching the final snapshot A4 and then successively

shifts the focus on the matching of the intermediary snapshots A3, A2, A1 in decreas-

ing order. This is due to the fact that in the backwards adjoint ODE, the snapshots

matching errors kick in successively in the same reverse order. Hence, as long as the

final snapshots errors are large, the corrections implemented for the first snapshots

remain quite fuzzy, and only turn out to be efficient once the matching errors on the

final snapshots have become small enough.

8.4.2 Diffeomorphic Matching for Multiple Annulus Snap-

shots: Measure Matching.

Here, the disparity terms are the squared Hilbert distances between measures. The

regularization parameter λ starts at λ(0) = 200 and is multiplied by γ = 2 at each

outer iteration. Figure 8.8 displays the corresponding convergence history for 4 in-

dividual geometric accuracy indicators and 4 measure matching disparities. The

desired threshold geometric accuracy is achieved for all snapshots after 70 iterations.

But the computing time for each iteration is about 3 times higher than for Hausdorff
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Figure 8.7: Diffeomorphic matching for multiple annulus snapshots, using smoothed
Hausdorff distances: Pareto frontiers for the geometric accuracy indicators Distj (top
left), for the Hausdorff disparities Dispj (top right), and for the global Hausdorff
disparity

∑
j Dispj (bottom).
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matching, due to the fact that measure matching invokes large numbers of evalua-

tions of exponentials. This unfavorable computational feature of measure matching

with respect to Hausdorff is quickly amplified when the number N0 of trajectories

increases.
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Figure 8.8: Diffeomorphic matching for multiple annulus snapshots, using measure
matching disparities: Convergence history for the individual geometric accuracy in-
dicators Distj (left) and the measure matching disparities Dispj (right).

The corresponding Pareto frontiers are shown in Figure 8.9. As in the case of

Hausdorff matching, and for the same algorithmic reasons, the performance indica-

tors improve first for the final snapshots and the improvements successively kick in

for the other snapshots in reverse order of the snapshot times tj. Comparing Figures

8.9 and 8.7, we see that for a given geometric matching accuracy, the achievable

kinetic energy remains higher for measure matching than for smoothed Hausdorff

matching.
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Figure 8.9: Diffeomorphic matching for multiple annulus snapshots using measure
matching disparities: Pareto frontiers for the geometric accuracy indicators Distj
(top left), for the individual measure matching disparities Dispj (top right), and for
the global measure matching disparity

∑
j Dispj (bottom).
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8.4.3 Diffeomorphic Matching for 10 Annulus Snapshots

We consider here the 10 annulus snapshots Aj, 0 ≤ j ≤ 10, acquired at times

0, 1, 3, 5, 7, 10, 14, 18, 22, 26 . We choose 42 points on the reference A0 and approxi-

mately 500 points on the other snapshots. We use the smoothed Hausdorff disparity

(2.15). We initialize α by α = 0, and use 52 discretized time steps. The parameters

θ, σ, ρ are the same as above.

Since good matching accuracy for the first snapshots now takes a longer time (see

Figure 8.10), we perform continuation with different weights λj for the individual

Hausdorff disparities Dispj, adjusted to dynamically balance the current average

sizes of these distinct disparities (cf. Figures 8.11). Since we dynamically change the

global disparity functional, we cannot expect to have nice convex Pareto frontiers

(cf. Figure 8.11).
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Figure 8.10: Diffeomorphic matching for ten annulus snapshots using Hausdorff dis-
parities: Convergence history of geometric accuracies (left) and corresponding Pareto
frontiers (right) using a single regularization parameter λ for the nine Hausdorff dis-
parities.
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Figure 8.11: Diffeomorphic matching for ten annulus snapshots: Convergence history
of the geometric accuracies (left) and corresponding Pareto frontiers (right) using
nine dynamic regularization parameters λj.

8.5 Diffeomorphic Matching of the Anterior Leaflet

We present the performances of diffeomorphic matching for 4 snapshots S0, S1, S2, S3

of the anterior leaflet, acquired at times 0, 1, 5, 10, using smoothed Hausdorff snapshot

disparities, where the disparities are separately computed for the boundary and the

interior of each snapshot as outlined in 6.1.2. Indeed, initial experiments where

this distinction was not implemented quickly displayed much poorer performances.

Rough initial discretization starts with point meshes of cardinals 400 for S0 and

roughly equal to 1700 for S1 and S2.

The continuation algorithm starts with λ = 0.1, and λ is multiplied by γ = 1.5 at

each outer iteration. The scale and termination parameters σ and θ are as above.

The following Figures 8.12 and 8.13 display satisfactory performance results.

We display in Figure 8.14 a visualization of the computed deformations of the
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Figure 8.12: Diffeomorphic matching of four anterior leaflet snapshots: Pareto fron-
tiers for the separate Hausdorff disparities to snapshots (left) and for the global
Hausdorff disparity (right).
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Figure 8.13: Pareto frontiers for the maximum distances to snapshots (left) and for
their 90th percentiles (right).
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8.5. DIFFEOMORPHIC MATCHING OF THE ANTERIOR LEAFLET

anterior leaflet at the 4 snapshot times 0, 1, 5, 10. The corresponding dynamic defor-

mations of the anterior leaflet boundary are presented in Figure 8.15. A few defor-

mation trajectories are indicated. They are computed as solutions of the dynamics

equations (2.4).
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Figure 8.14: Computed deformations matching four snapshots of the anterior leaflet
at instants 0, 1, 5, 10 .

For each computed deformation Ŝj of the initial snapshot S0, the three graphs

in Figure 8.16 display several level curves for the point matching errors between Ŝj
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Figure 8.15: Computed deformations of the anterior leaflet boundary: for easier
visualization, the boundary deformations are displayed separately for instants 0, 1
and for instants 1, 5, 10.

and the given anterior leaflets snapshots Sj. The coordinate system has been modi-

fied isometrically at each snapshot instant in order to display a better ”horizontal”

projection of Ŝj.
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Figure 8.16: Matching errors between the computed anterior leaflet deformations Ŝj
and the snapshots Sj.
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8.6 Diffeomorphic Matching for Multiple Snap-

shots of the Posterior Leaflet

We have similarly implemented the diffeomorphic matching for 4 snapshots S0, S1, S2, S3

of the posterior leaflet acquired at times 0, 1, 5, 10, using smoothed Hausdorff snap-

shot disparities, with disparities separately computed for the surface boundary and

the interior as outlined in 6.1.2. Time is discretized into 30 equal intervals. The 4

snapshots are discretized by point meshes of approximate cardinals 250 for the initial

leaflet S0, and 1100 for the other snapshots.

The initialization and the choice of the algorithmic parameters are similar to the

implementation just described for the anterior leaflet (cf. 8.5). As already noted

above, when one uses the same value λ for all 3 regularization weights λj, the match-

ing quality between Sj and Ŝj improves more slowly for j = 1 than for j = 3 (see

Figure 8.17). We have compared this approach to a more adaptive one, where one

dynamically adjusts the weights λj at each outer iteration by appropriately balanc-

ing current values of the 3 Hausdorff disparities (cf. Figure 8.18). The geometric

matching accuracies reach a desirable pragmatic threshold slightly faster for the dy-

namically independent weights, at the cost of some loss of convexity for the Pareto

frontiers, which suggests that dynamic adjustment of weights may provide less ro-

bustness in the continuation procedure.

Figure 8.19 displays the computed deformations of the posterior leaflet at the

4 instants 1, 4, 16, 31. The computed dynamic deformations of the posterior leaflet
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boundary are presented in Figure 8.20 with a few deformation trajectories.
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Figure 8.19: Computed deformations matching four snapshots of the posterior leaflet
at instants 0, 1, 5, 10.

Figure 8.16 displays point matching errors between computed deformations Ŝj of

the posterior leaflet and the given snapshots Sj. The coordinate system is modified

isometrically for each computed deformation Ŝj to display a good ”horizontal” pro-

jection of Ŝj.
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Figure 8.20: Computed deformations of the posterior leaflet boundary: the continu-
ous boundary deformations are displayed separately for instants 0, 1 and for instants
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8.7 Diffeomorphic Matching of the Whole Mitral

Valve Apparatus

We now compute diffeomorphic deformations of the whole mitral valve apparatus

(”MVA”) viewed as one single composite deformable object as introduced above.

We apply the diffeomorphic matching algorithms outlined above to 3 given MVA

snapshots MVA0,MV A1, MV A2, acquired at instants 1, 5, 10. Our discretization

meshes involve roughly 150 points each for the initial anterior leaflet AL0 and pos-

terior leaflet PL0, and respectively 3200 and 1700 points each for the anterior and

posterior leaflets snapshots AL1, PL1, AL2, PL2. The smoothed Hausdorff dispari-

ties involve several disparity terms for each one of the given MVA snapshots MVA1

and MVA2, quantifying separately the disparities between AL surfaces, PL surfaces,

annulus curves, and coaptation lines. We initialize α by α = 0. All the choices

of parameter values driving the continuation algorithm are identical to the choices

made above to compute deformations of the anterior leaflet (see 8.5).
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Figure 8.22: Diffeomorphic matching of the whole Mitral Valve Apparatus: Conver-
gence history for the geometric matching accuracy.
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CHAPTER 9

Conclusions and Future Work

In this thesis, we have focused on finding optimal matching for multiple sub-manifolds

in R3. Given an arbitrary number of snapshots Stj , j = 0 . . . q, of a deforming object

available at time instances t0 < t1 . . . < tq while in motion, our goal is to obtain

a time dependent diffeomorphism Ft which can regenerate the motion of the ob-

ject. We use a variational approach pioneered by Grenander et al. in the context

of pattern recognition and further explored by Dupuis, Miller, Mumford, Trouvé,

Younes et. al. focusing mainly on comparing shapes. However, the key difference

here is that we extend the existing framework to multiple snapshots in order to
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recover the full motion. Akin to their work, we restrict our search for time depen-

dent diffeomorphisms to the solution of non linear differential equations associated

with time dependent vector fields belonging to a certain class of Hilbert spaces [23].

Further, due to various computational advantages of using a Reproducing Kernel

Hilbert Space (RKHS) as experienced in the past, we work with RKHS associated

with Gaussian kernels. We formally introduce the variational problem in the infinite

dimensional setting where the objective functional consists of two terms: the first

term features functions quantifying disparities between the deformed shape and the

associated available shape so that the reconstructed motion of the dynamic shape is

close to the original deformation of the shape, and the second term is a regularizing

energy term. In the description of the former term, the word ’close’ is relative to the

context, i.e., a suitable disparity function or a union of disparity functions can be

used to achieve the desired standards of closeness. Chapters 3-5 are then dedicated

to prove the existence of an optimal solution and to derive the necessary optimality

conditions in the infinite dimensional case followed by the semi-discrete system (in

spatial domain), and finally the fully discrete system (in spatial and time domain)

so as to make it numerically accessible. The optimality conditions comprise coupled

dynamical systems with a state equation forward in time and an adjoint state equa-

tion backward in time as well as the gradient of the objective functional with respect

to the control variable. We observe that due to the fact that disparity functionals de-

pend on various time instances, the lack of smoothness of the solution of the adjoint

state equations results in non-smooth transitions of the solution in time. Hence, we

introduce a smoothing term involving first-order derivatives of the control variable
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in time as part of the objective functional and present numerical results to illustrate

the benefits of this approach.

As an application to the model developed in the thesis, we reconstruct the defor-

mation of the mitral valve apparatus between the available snapshots. The mitral

valve apparatus comprises two thin leaflets and a fibrous ring called annulus. The

annulus serves as a 1-D sub-manifold matching problem, whereas the leaflets rep-

resent 2-D manifold matching cases. We also show that it is possible to deform all

these parts of the mitral valve leaflet as one object and hence to reconstruct the

deformation of the MVA between available snapshots.

In this thesis, we have used first order optimality conditions to obtain the optimal

solution of the control problem. However, it is well known that using second order

information can lead to faster iterative methods. We further plan to apply Newton’s

method to the optimality conditions in terms of a predictor-corrector method based

on [58, 59] featuring an adaptive choice of the continuation parameter [1, 40].

Multiscale diffeomorphic point matching. In various practical applications, one

often encounters deformable objects with complex structures. It is preferable to use

a finer mesh in order to precisely capture the local properties of the object, e.g.,

in the application presented in the thesis concerning the deformation of the mitral

valve apparatus, a higher Gaussian curvature is observed for the leaflets associated

with organic patients. But increasing the size of the mesh points is computationally

challenging. One of the obvious remedies is to take advantage of multiscaling tech-

niques, and the other is to use a non uniform mesh size, i.e., choosing finer points in

the respective regions. However, due to the high dependency of the scale parameter
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σ on the resolution of the mesh size, the transition between different levels of meshes

demands an adapted multiscale algorithm to deal with the choice of new continuation

parameters and initialization techniques to move to a finer mesh.

Additional matching requirements. One of the advantages of the present algo-

rithms is that it can accommodate a wide range of matching requirements. For

example, for MVA applications the shapes of various parts of the MVA are extracted

using echocardiographic images and hence, at each snapshot we also have intensity

information available. In order to obtain more precise matching, one can add an

intensity matching term to the objective functional. Since the available intensity

functions are discrete functions, one can use standard interpolation techniques to

obtain an intensity functional defined on an open set of R3. Experiments concerning

curve matching with additional terms as intensity matching have already been im-

plemented by our group with successful results. We further plan to analyze the effect

of intensity matching in the context of surfaces. A study done in the group shows

that image matching disparity evaluated for deformed shapes obtained by solving

the original system itself is small. Hence, we expect that adding this will further

help the system to converge faster and give more precise results. Another aspect

of these elastic deformations is to study the amount of spatial stretch during the

deformation. Depending on the requirement of the application, one can use bending

energy terms as well to restrict large spatial deformations [26].
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