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ABSTRACT

Stochastic differential equations (SDEs) with space dependent coefficients are used to model

asset price and volatility dynamics in the mathematical study of financial markets. The

valuation of option contracts based on a given asset is then derived by numerically solving

associated partial differential equations (PDEs), derived themselves from the SDEs driving

the underlying asset and volatility. The parameters of these SDEs have to be estimated from

observed data recording daily asset price and volatility. We quantify how the unavoidable

errors in the estimation of model parameters impact the valuation of option contracts,

generating errors in option pricing.

We have developed and numerically implemented a fast and efficient approximate max-

imum likelihood approach to estimate the 5 parameters of the widely used Heston model

which involves two interacting SDEs from realistic numbers of recorded asset price and

volatility data. We study and prove the asymptotic consistency of these estimators and

evaluate explicitly their speed of convergence as the number of observations increases. We

evaluate the sensitivity of option pricing to parameter estimation errors by solving numer-

ically the 6 PDEs satisfied by the option price and by its derivatives with respect to the 5

underlying parameters. We study the size of the option pricing errors by intensive simu-

lations of SDEs for realistic bench test groups of 5 parameters. We successfully apply our

methods to the computation of option pricing errors for actual stock market data : the

daily S&P 500 index and its approximate volatility (namely the VIX index).
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Chapter 1

Introduction

1.1 Stochastic models in finance

Stochastic differential equations (SDEs) with space dependent coefficients have been used

to model asset price and volatility dynamics in the mathematical study of financial markets.

A widely applied model that captures the joint dynamics of the asset price and its volatility

is the Heston stochastic volatility model introduced by Heston in 1993. The Heston model

is given by a pair of correlated autonomous stochastic differential equations and depends on

five intrinsic parameters. We will consider as our underlying model the joint SDE parametric

model of Heston. The popularity of the Heston model in practice is due to it’s ability to

capture empirically observed stylized asset price and asset volatility behavior and for the

numerical tractability of option price formulas under this model.

1.2 Estimation: Heston model

We develop a pragmatic approach to estimate the parameters of Heston’s stochastic volatil-

ity model with the objective of option pricing under this model. The joint density of the

equations is not known and hence the exact likelihood function is not known. We develop
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a constrained approximate maximum likelihood method based on an Euler-Maruyama dis-

cretization of the Heston SDEs. We estimate the five model parameters under pragmatic

constraints. We propose a decoupled estimation of the model and obtain closed form ex-

pressions for all the five model parameters. The estimation method is computationally

inexpensive. We report small sample results for realistic values of the observation size given

the S&P 500 daily data with its approximate volatility, namely the VIX index. We prove the

consistency of the estimators and illustrate our theoretical results with detailed numerical

examples. For the pricing of options under the principles of no arbitrage in the market, an

extra parameter called the market price of volatility risk needs to be estimated from market

data. We propose a first attempt at estimating this parameter from options data.

1.3 Sensitivity: Heston model

Financial contracts such as options were introduced to be used as hedging tools, and are now

heavily traded in the market. Trading prices of options are indicators of market expectations

for the near future. Due to high volatilities, efficient hedging tools require accurate pricing

of the options contract. When the underlying asset price, on which the option contract is

defined, satisfies a stochastic differential equation, the option price satisfies an associated

parabolic partial differential equation whose coefficients are the parameters of the underlying

asset price stochastic model. For our purpose, we will think of an asset to be a financial stock

and we will use the two terms interchangeably. The true values of the model parameters are

never known. To evaluate option prices through robust model based inference from asset

dynamics data, it is therefore crucial to understand the impact of parameter estimation

errors on the option price. Since in practice the model parameters are estimated from only

a small data sample the estimated parameters are indeed fraught with errors. Our goal is

to understand how errors in the estimated parameters impact the price of options. Toward

this end we develop a novel approach to study the sensitivity of an European option price

2



with respect to each of its parameters when the underlying asset price and its volatility

satisfy Heston’s model. We solve numerically the partial differential equation satisfied by

the European option price and the partial differential equations satisfied by its derivatives

with respect to the parameters of the Heston model. We define and illustrate the impact of

option pricing errors due to model estimation with detailed numerical examples for actively

traded options on the S&P 500 index.

One possible application of this study is to determine the parameters to which the option

price is highly sensitive. This can be used as a guidance in determining the accuracy

with which these parameters should be estimated. Clearly high sensitivity parameters will

need to be estimated with sharp accuracy while parameters for which the sensitivity is not

significant may not require high accuracy estimators.

Another area of application is portfolio hedging. It is often desirable in practice to

construct portfolios which are neutral or insensitive to changes in one or more underlying

parameter values. For example, in option pricing under the Black-Scholes model assumption

the key parameter is the volatility, σ, of the asset price. Under this model, let P (t, s) be

the price of a portfolio at time t, consisting of one option where s denotes the value of

the underlying asset. This portfolio can be ‘vega-hedged’ or be made volatility-neutral by

adding x units of the underlying asset so that the derivative of P (t, s) + x.s with respect to

volatility is zero. The option price P (t, s) under Black-Scholes model is differentiable with

respect to volatility. Taking the derivative of the portfolio with respect to volatility and

setting it to zero gives that at time t, x should be equal to −∂σP
∂σs . Note that the numerator

is just the derivative of the option price with respect to σ. For the Black-Scholes model,

the numerator and denominator are known in closed form. For the more realistic stochastic

volatility models that we study closed form expressions for the option price derivatives are

not known. Our study can therefore be used in the direction of portfolio hedging when

3



asset prices follow stochastic volatility models.

1.4 Outline of thesis

The detailed structure of the thesis is as follows. Chapter 2 is a brief review of stochastic

models used in finance, in particular stochastic volatility models where the volatility of

the asset price is a stochastic process. We give references to some papers from the existing

literature on the estimation of Heston’s model and on the estimation of asset price volatility.

In Chapter 3, we describe our constrained approximate maximum likelihood method and

give closed form expressions for all the five Heston model parameters. In the Heston model,

there is a non-linear interplay between the choice of time unit and the model parameters.

We clarify this explicitly by re-parametrizing the Heston model in Section 3.3. In Section

3.3 we define the decoupled estimation strategy and perform a constrained optimization to

obtain in closed form the parameter estimators corresponding to the stochastic differential

equation driving the asset price volatility. In Section 3.4.4 we obtain the estimator for the

asset price process and finally in Section 3.4.5 we estimate the coefficient of correlation

between the two processes. In Chapter 4, we prove the consistency of the estimators. The

ergodicity property of the continuous process is not preserved after discretization. We

therefore study the limits of the estimators as the time between observations goes to zero

and the time till which the data is observed goes to infinity. Chapter 3 and Chapter 4

are extensions of the work presented at the 7th AIMS Conference on Dynamical Systems

and Differential Equations, Arlington, Texas, May 18-21 2008. In Chapter 5 we present

numerical examples for eight benchmark Heston models to validate the consistency of the

estimators and the decay in the variance of estimators for different values of the T , the time

between observations and S, the time till which the the data is observed. In Section 5.3

we present small sample bias and errors for the estimators corresponding to the S&P 500

and VIX daily data from Jan 03 1006 to Dec 29 2006. The parameter estimation and error

4



computations can be similarly carried out for the Heston model fitted to intra-day data

after considering the implicit behavior of intra-day data.

In Chapter 6 we study the partial differential equation satisfied by the European option

price under Heston’s model and discuss the existence and uniqueness of the solution. We

present a methodology to estimate the market price of volatility risk from observed option

price data. The error in the option price is defined as the L2 norm of the difference between

the option price at the true parameter value and the price at the estimator. In Chapter 7

an expression for the L2 error in the option price is obtained in terms of the L2 errors in

the estimators and the derivative of the option price with respect to the parameters. The

sensitivity of the option price to each parameter is defined in Section 7.6. In Section 8.1

the numerical scheme used to solve the six partial differential equations for the option price

and its derivatives is described. In Section 8.2 the impact of estimation errors on option

price and the sensitivity of the option price to the five underlying parameters is illustrated

by considering four different options each for four Heston models in a moderately large

neighborhood of the 2006 S&P 500 model. Finally we conclude in Section 8.3 with some

applications of our work. Parts of the work in Chapters 6, 7, and 8 was presented at

the SIAM Conference Mathematics for Industry: Challenges and Frontiers, San Francisco,

California, October 9-10, 2009 and appeared in [7].
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Chapter 2

Stochastic models in finance and

applications

2.1 Brief history and references

In the theory of continuous time option pricing, the underlying traded or non-traded in-

strument, on which an option contract is defined, is modeled by a Stochastic Differential

Equation. The earliest work in this direction is by Bachelier in his thesis [8] in 1900 where

he derived option pricing formulas under the assumption that stock price fluctuations are

normally distributed random variables. The asset price model of Bachelier was developed by

Samuelson [66] in 1965 who proposed that asset prices follow a geometric Brownian motion.

The theory of option pricing when the price of an asset is a geometric Brownian motion was

developed by Black and Scholes [15] and Merton [58] in 1973. The option pricing theory of

Black and Scholes has been popular in practice and significantly extended since then (see

e.g., [12, 24, 9]). A key assumption in the Black-Scholes model is that the instantaneous

asset price volatility is constant in time irrespective of the direction of the asset price.
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The constant volatility assumption of the Black-Scholes model has been called into ques-

tion by evidence from market data for asset price (e.g., [31, 55, 50, 3]). Black [14] commented

on the non-Gaussian distribution of the returns process by analyzing the time series of stock

price returns. Empirical evidence from option price data also shows that volatility is not

constant [10, 64, 22, 74]. These papers show that the option price varies as a function

of the strike price and time-to-maturity of the options contract. The volatility recovered

from option price with varying strike price by inverting the Black-Scholes formula (called

Black-Scholes implied volatility) is a U-shaped curve called the smile curve in finance jargon

[26]. The Black-Scholes option price is an increasing function of volatility and hence such

an inversion is possible. As a response, non constant volatility models have been proposed,

e.g., local volatility models where volatility is a function of the underlying asset and time

[26, 29, 65], and stochastic volatility models where volatility is itself driven by a stochastic

process.

2.2 Stochastic models for asset prices and asset volatilities

Stochastic volatility models provide a natural generalization of the Black-Scholes model that

describe a more complex market and capture some of the empirical features of the joint series

of the asset price and options data (see e.g., [38, 11, 56, 57]). Stochastic volatility models

are often given by a system of two possibly correlated stochastic differential equations for

the asset price and volatility respectively, (see [47, 67, 73, 70, 44]). In particular, Stein and

Stein [70] specify volatility to be given by an uncorrelated arithmetic Ornstein Uhlenbeck

process while Heston [44] considers that the square of volatility satisfies the mean reverting

square root process of Feller [32].
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2.3 Heston model: description and history

The stochastic volatility model of Heston for asset price Xt and squared-volatility σ2
t was

introduced in 1993 in [44]. In Heston’s framework the asset price and volatility satisfy the

following pair of stochastic differential equations, (see 3.2),

dXt = µXtdt + σtXtdZt, (2.1)

dσ2
t = κ(θ − σ2

t )dt + γσtdBt, (2.2)

where Z and B are correlated standard Brownian motions with correlation coefficient ρ.

The five parameters in Heston’s model allow for greater flexibility in capturing stylized

asset price and volatility behavior which cannot be captured by more limited models. For

example, empirical evidence in the econometrics literature shows that there is indeed a

correlation between the price of an asset and its volatility [14]. In fact, it has been suggested

that the asset price is negatively correlated with its volatility in [14]. We find evidence to

support this from our numerical results on the S&P 500 data. The Black-Scholes implied

volatility surface under Heston’s model is in close agreement with empirically observed

implied volatility. The option pricing formulas are numerically tractable for the Heston

model. Heston [44] provides a semi-closed form for the price of an option in terms of the

inverse characteristic function of the underlying probabilities. Existing literature on the

numerical methods for option pricing under Heston’s model is discussed briefly in 6.

Here we will consider Heston’s model as the underlying asset price and volatility model

and study first the estimation problem for this model and then the impact of estimation

errors on option price under this model.
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2.4 Heston model: survey of previous estimation techniques

Option pricing under Heston model requires an additional parameter λ which arises due to

the non-tradability of volatility. The true value of λ is not known and has to be estimated

from market data. Therefore one needs to estimate six parameters for an application of the

Heston SDEs to model asset price and volatility dynamics. The volatility of an asset is not

traded in the market. Therefore a time series of observations for the volatility process is

not available unlike for asset price such as a stock price whose trading price at any instant

is taken to be its observed value at that time. Recent work on the estimation of Heston

model use the joint series of the stock price and options data to estimate the parameters

including λ and an estimation or filtration method to recover the underlying volatility.

Chernov and Ghysels [20] apply efficient method of moments to estimate the parameters

of the Heston model from the joint series of the option price and stock price data. They

simulate the required moments by an Euler-Maruyama discretization of the Heston model.

The article by [60] describes a least-squares error fit between the model predicted and

observed option price to estimate the model parameters and λ. They test deterministic

and stochastic optimization algorithms to solve the resulting non-linear problem. Aı̈t-

Sahalia and Kimmel [2] propose a maximum likelihood approach to estimate the Heston

model parameters. They use a Hermite approximation of the log-likelihood function. They

compare estimation results obtained from using the joint series of stock price and options

data to the results obtained when using the joint series of the stock price and a volatility

proxy, namely the Black Scholes implied volatility. They show that there is a significant

computational gain in using the latter series with no real loss of estimation accuracy except

that the asset price and volatility series does not allow the estimation of the parameter λ. A

survey of estimation techniques for the Heston model and in general for stochastic volatility

models is in [19, 38, 16].
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In our numerical examples with real data, namely the S&P 500 index; we will use the

VIX index as an approximation of volatility. The VIX index is an adjusted Black-Scholes

implied volatility computed from a group of 30 options (see [72]). However, our estimation

method does not make any assumptions on how the volatility series is obtained. Methods for

estimation of the diffusion coefficient from discrete observations have been proposed in the

classical literature [37, 27, 25]. We will only assume that an estimate of the volatility series

is available. Using the joint asset price and volatility series we will obtain the parameters

of the Heston model. We will then estimate separately the parameter λ from options data

(see chapter 6).
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Chapter 3

Parameter estimation for Heston

model : Theoretical construction

3.1 Introduction

We compute fast and robust constrained approximate maximum likelihood estimators for

the parameters of the prototypical stochastic volatility model of Heston given the joint series

for the asset price and volatility. The Heston model is described by a two-dimensional

stochastic differential equation (SDE) where the asset price and its volatility are driven

by correlated Ito processes [48]. In this chapter we derive closed form expressions for

the parameter estimators, enabling very efficient numerical implementations. We study the

asymptotic properties of the estimators as the observation time goes to infinity and the time

between consecutive observations goes to zero in chapter 4. We prove that the estimators

are consistent and validate numerically that the variance of the estimators goes to zero as

the observation time increases. In chapter 5 we illustrate our method by application to

actual financial data (S&P 500 index paired with its approximate volatility, namely the

VIX index).
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3.2 Heston Stochastic Volatility model

Let (Ω,Ft, P r) be the underlying probability space, endowed with a filtration Ft [21]. We

will denote by X = {Xt}0≤t<∞ the asset price process. Then Xt is the price of the asset

at time t, 0 ≤ t < ∞. Let σt be the instantaneous relative volatility of the returns process

dXt. We will refer to σt as the volatility variable. Let Yt = σ2
t . Then Yt is the squared

volatility at time t and Y = {Yt}0≤t<∞ is the associated process. In the Heston model [44],

the pair {Xt, Yt} observed in the market satisfies the following coupled stochastic differential

equations (SDEs),

dXt = µXtdt +
√

YtXtdZt, (3.1)

dYt = κ(θ − Yt)dt + γ
√

YtdBt, (3.2)

where the processes Z = {Zt}0≤t<∞ and B = {Bt}0≤t<∞ are standard Brownian motions

adapted to Ft taking values in R with E[dZtdBt] = ρdt. We observe that the drift and

diffusion coefficients of the SDEs (3.1)-(3.2) are space dependent and autonomous. The

diffusion coefficients of (3.1)-(3.2) do not satisfy a global Lipschitz condition and hence the

classical existence and uniqueness results for SDEs [39] cannot be applied. The existence and

uniqueness of a strong solution for the SDEs (3.1)-(3.2) follows from a result due to Yamada

and Watanabe [75] which requires only continuity of the drift coefficient and replaces the

Lipschitz continuity constant by a suitably integrable increasing function.

For κ, θ > 0 the squared volatility process {Yt} follows the mean reverting square root

process studied by Feller [32] and originally used by Cox, Ingersoll, and Ross to model

short-term interest rates [23]. The parameter γ is the instantaneous relative volatility of Yt

and ρ is the instantaneous correlation coefficient between the two Brownian motions driving

the SDEs. The parameter µ is the mean rate of return of the asset price. The reversion of

the volatility process about θ is illustrated in Fig. 3.1 for two different values of κ. The two
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Figure 3.1: Reversion of volatility about its long run mean θ = .017

trajectories are generated by numerical simulation of the SDE (3.2) for θ = .017, γ = .28

and κ = 5 and 50.

The singularity of the diffusion coefficient in (3.2) at the origin implies that starting with

a non-negative initial value Y0 = y0 ≥ 0, the process can subsequently never take negative

values. This follows from the comparison theorem for one-dimensional Ito processes [48].

The classical condition, 2κθ ≥ γ2 due to Feller [32], ensures inaccessibility of the origin,

hence for Y0 > 0, the process {Yt} remains strictly positive for all t, Pr − almost surely.

This condition is an important restriction if we want Yt to realistically model the square of

asset price volatility. The properties of SDE (3.2) by itself are of interest because as we will

see later we decouple the estimation of (κ, θ, γ) from the estimation of µ and ρ. The law of

Ys conditional on its value Yt = yt at time t (t < s) is a scaled non-central chi-square with

4κθ/γ2 degrees of freedom and parameter of non-centrality 2yte
−(s−t) [23].

Proposition 3.2.1. The first two moments E[Yt] and E[Y 2
t ] of Yt satisfying the SDE (3.2)

are given by,

E[Yt] = E[Y0]e
−κt + θ(1 − e−κt),
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and

E[Y 2
t ] = e−2κt(Y 2

o + (
2κθ + γ2

κ
)(

θ

2
− Yo)) + e−κt(

2κθ + γ2

κ
)(Yo − θ) + θ

2κθ + γ2

2κ
.

Proof. Writing SDE (3.2) in the integral form we get,

∫ t

0
dYu =

∫ t

0
κ(θ − Yu)du + γ

∫ t

0

√

YudZ(u),

⇒ E[Yt] =E[Y0] +

∫ t

0
E[κ(θ − Yu)]du,

To obtain the preceding equation we observe that the stochastic integral
∫ t
0

√
YudZu is a

continuous Ft martingale with E[
∫ t
0

√
YudZu] = 0 because

∫ t
0 E[Yu]du < ∞ on any finite

interval (0, t), by the definition of stochastic integrals [21]. Differentiating both sides with

respect to the time variable t we obtain

d

dt
E[Yt] = E[κ(θ − Yt)] = κθ − κE[Yt].

Denoting E[Yt] by f(t) we get the following ordinary differential equation (ODE) from the

preceding equation,

f ′(s) = κ(θ − f(s)).

Integrating both sides from 0 to t we get,

κt = ln(θ − f(0)) − ln(θ − f(t)),

⇒ E[Yt] = E[Y0]e
−κt + θ(1 − e−κt).

Similarly we can compute the second moment of Yt,

E[Y 2
t ] = e−2κt(Y 2

o + (
2κθ + γ2

κ
)(

θ

2
− Yo)) + e−κt(

2κθ + γ2

κ
)(Yo − θ) + θ

2κθ + γ2

2κ
.
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We observe from Proposition 3.2.1 that E[Yt] → θ and V ar(Yt) → γ2θ
2κ as t → ∞ at

an exponential speed with rate κ. As noted in [23], for κ, θ > 0, the process {Yt} has a

stationary Gamma distribution [32], with density g(y),

g(y) =
ξ

Γ(ν)
(ξy)ν−1e−ξy1{y>0},

where

ξ = v/w = 2κ/γ2, ν = u/w = 2κθ/γ2, Γ(a) =

∫ ∞

0
ta−1e−tdt.

Denote by H the vector of five parameters determining a Heston model,

H = {κ, θ, γ, ρ, µ}.

The natural domain in R
5 for the unknown vector of parameters is defined by the following

classical constraints,

κ > 0, θ > 0, γ > 0, 0 < θ < 1, −1 ≤ ρ ≤ 1, 2κθ > γ2. (3.3)

The condition θ < 1 ensures a realistic upper bound on its estimated value. The volatility
√

Yt in (3.1) is expressed relative to the asset price. For instance in the historical data for

the S&P 500, even in extremely volatile markets, such as the period between 2006 and 2008,

the implied volatility was not higher than 85% [18]. The parameter θ is the long run mean

of Yt and should therefore realistically stay under 1. The parameter γ is taken to be positive

by convention. We impose the strict constraint 2κθ > γ2 because a closed form expression

for the first moment of the process {1/Yt} with respect to the stationary distribution exists

under this condition (see chapter 4). We note that under the condition 4κθ = γ2, the
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process {σt} = {
√

Yt} is the well known Ornstein-Uhlenbeck stochastic process [35]. The

proof follows from a direct application of Itô’s lemma (6.6).

3.3 Estimation of parameters for Heston joint SDEs

3.3.1 Estimation strategy

In practice, volatility is not directly observed, but as discussed in the last chapter, well

known methods are available to estimate these volatility values from market data. Hence

we consider that we are given a data set of N joint observations for the asset price Xt and

its volatility
√

Yt, and we want to estimate the vector of model parameters H ∈ R
5.

We will use a maximum likelihood estimation approach to estimate the parameters after

discretization of the joint SDEs model. The joint density of {Xt, Yt} is not available in

closed form, so that an explicit compact expression for the log-likelihood function of our

joint SDEs (3.1)-(3.2) is not available. We will therefore compute the log-likelihood function

from the discretized model. The parameters κ, θ and γ appear only in SDE (3.2) while the

parameter µ appears only in SDE (3.1). After a time discretization of the SDEs (3.1)-(3.2),

we will naturally decouple the estimation of (κ, θ, γ) and (µ, ρ). The maximum likelihood

estimators (MLE) of (κ, θ, γ) will be based on {Yt} only. The parameter µ is then estimated

by MLE based on the first SDE only. Finally we will recover an explicit approximation of

the two underlying correlated Brownian motions {Zt} and {Bt} and then estimate ρ as

their empirical correlation coefficient.

Decoupling the estimation of parameters provides a strong numerical gain, because our

parameter estimators can be explicitly computed and we can prove consistency of our esti-

mators.
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3.3.2 Change of time unit in the joint Heston SDEs

In the Heston model, there is a non-linear interplay between the choice of time unit and the

model parameters, and one needs to clarify explicitly this relation, since in practical model

fitting to discrete market data, the time unit is somewhat arbitrary.

Proposition 3.3.1. Let {Xt, Yt} be solutions of the joint SDEs (3.1)-(3.2) above. Fix a

new “time unit” T > 0, and define Us = XsT and Vs = YsT for all s > 0. Then the process

trajectories {Us, Vs} have the same joint probability distributions as the solutions of the joint

SDEs

dUs = TµUsds +
√

T
√

VsUsdZ1(s), (3.4)

dVs = Tκ(θ − Vs)ds + γ
√

TVsdB1(s), (3.5)

where Z1(s), B1(s) are standard Brownian motions with correlation ρ.

Proof. Define new processes Z1(s), B1(s) by,

Z1(s) =
ZsT√

T
, B1(s) =

BsT√
T

.

Then the processes Z1(s), B1(s) are both Gaussian with mean zero and have the same

covariance function K(s, t) = min(s, t). Hence they are Brownian motions, with instanta-

neous correlation equal to ρ. Starting from the original SDEs (3.1)-(3.2), the effect of our

linear time change can now be seen to generate equations (3.4)-(3.5) [4].

Note that in practice only discrete observations (daily or intraday) are available. We

define here T to be the time separating two consecutive available discrete observations,

and we hence assume that T has already been selected and fixed before implementing an

estimation procedure. Typically for the modeling of daily observations, one fixes T = 1/252.
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We shall focus first on the estimation of the 3 parameters (κ, θ, γ), using only a discrete

set of N volatility observations Vn = YnT , n = 0, 1, 2, . . . , N − 1, where Yt is solution of the

SDE (3.2).

3.3.3 Reparametrization of the volatility SDE

As seen above, the new continuous time square volatility process Vs = YsT is a solution of

SDE (3.5), analogous to SDE (3.2), but with new parameters u, v,w given by

u = Tκθ, v = Tκ, w =
Tγ2

2
. (3.6)

With these notations, the SDE (3.5) verified by {Vt} can clearly be written as

dVs = (u − vVs)ds +
√

2w
√

VsdB1(s). (3.7)

Note that these 3 new parameters are proportional to the time interval T between two

successive observations of Vn = YnT , n = 0, 1, 2, . . . , N − 1. This change of parameters is

clearly invertible by the formulas

κ = v/T, θ = u/v, γ =
√

2w/T . (3.8)

Note also that the domain of admissibility C ⊂ R
3 for the vector of new parameters P =

(u, v,w) is a convex cone immediately deduced from the set of constraints (3.3), namely

C = {(u, v,w) : 0 < w < u < v}. (3.9)

We will now define and study nearly optimal estimators P̂ = (û, v̂, ŵ) of the unknown

vector P ∈ C given a set of discrete observations Vn of the process Vs = YsT driven by

the SDE (3.7). Further below, we will then generate estimators (κ̂, θ̂, γ̂) of (κ, θ, γ) by the
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deterministic transformation (3.8)

κ̂ = v̂/T, θ̂ = û/v̂, γ̂ =
√

2ŵ/T . (3.10)

3.4 Maximum likelihood estimators for volatility parameters

3.4.1 Euler discretization of the volatility process

For n = 0, 1, . . . , N , let Vn = YnT be the N + 1 observed data for the squared volatility

process {Yt} where T is the known and fixed time between consecutive observations. We

obtain closed form expressions for the parameter estimators such that the Euler discretiza-

tion of (3.7) best fits the given data in a maximum likelihood sense. The classical Euler

discretization of SDE (3.7) replaces the SDE by the approximate recurrence relations

Vn+1 ≈ Vn+u−vVn+
√

2w
√

Vn∆B1(n), n = 0, 1, 2, . . . , N−1, V0 = Y0 = y0 > 0, (3.11)

where ∆B1(n) = B1(n + 1) − B1(n) and y0 > 0 is a given fixed constant.

The convergence of the Euler discretization scheme for the volatility dynamics as T → 0

has been studied in [45]. The standard convergence theory for numerical simulations of

SDEs (see [52]) indeed does not cover the Heston SDEs, since the diffusion coefficient of

Vs does not satisfy a global Lipschitz condition. For the Euler discretization of the Heston

SDE (3.7), the results of [45] show that, over fixed bounded time intervals [0, S], the Euler

discretization converges pathwise to the true process as T → 0. They also show that for any

fixed T < 2
κ , the first moments of the discretized process converge to the true moment as

N → ∞. Of course for large T the Euler approximation becomes a very fuzzy approximation

of the true continuous dynamics. In our numerical study, we use daily observations spanning

one year for the asset price and volatility, and in agreement with current practice, we select
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the fairly small value T = 1/252.

3.4.2 Approximate maximum likelihood for the volatility process

We now generate estimators of P = (u, v,w) by maximizing the likelihood of the observa-

tions under the discretized approximate dynamics (3.11). From (3.11), we derive

√
2w∆B1(n) ≈ Qn =

(∆Vn − u + vVn)√
Vn

,

for n = 0, 1, . . . , N − 1 where ∆Vn = Vn+1 − Vn. Under the discrete approximation, the

random variables Qn are independent and Gaussian with mean zero and variance 2w. Define

SN =
1

N

N−1
∑

n=0

Q2
n.

The sum of squares SN is clearly a positive quadratic function of u, v,w given by

SN = a + bu + cv +
1

2
du2 − 2uv +

1

2
fv2,

where the statistics a, b, c, d, f are explicit functions of the N observations

{Vn = YnT , 0 ≤ n ≤ N − 1}, namely

a =
1

N

N−1
∑

n=0

(∆Vn)2

Vn
, b =

−2

N

N−1
∑

n=0

∆Vn

Vn
, c =

2

N

N−1
∑

n=0

∆Vn,

d =
2

N

N−1
∑

n=0

1

Vn
, f =

2

N

N−1
∑

n=0

Vn.

(3.12)

We note that we almost surely have

a > 0, d > 0, f > 0, df − 4 > 0, 2af − c2 > 0, d + f − 4 > 0. (3.13)
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Indeed the positivity of a, d, f follows from the almost sure positivity of all Vn = YnT , and

the Cauchy-Schwartz inequality in R
N implies

df =
4

N2

N−1
∑

n=0

1

Vn

N−1
∑

n=0

Vn > 4
1

N
|
N−1
∑

n=0

1√
Vn

√

Vn| = 4.

Combining this with a generic inequality we have (d+ f)2 ≥ 4df > 16 and hence d+ f > 4.

Another Cauchy-Schwartz application shows that 2af − c2 > 0.

We denote by f the true density function of the continuous process Yt. By definition Yt

is a Markov process and the Chapman-Kolmogorov equation [63] applied to Vn = YnT then

yields,

f(V0, V1, V2, . . . , VN ) = ΠN
n=1f(Vn|Vn−1),

for fixed V0 = Y0 = y0. With a slight abuse of notation we use Vn to denote a random

variable here. From the discrete approximation (3.11) we get,

f(Vn|Vn−1, P ) ≈ 1√
4πwVn−1

exp{− 1

4w
(Vn − u − vVn−1)

2}, n = 1, 2, . . . , N.

The approximate log-likelihood function L̃N (P ) of the observations V0, V1, . . . , VN , computed

according to the (approximate) discretized dynamics is then given up to a constant by

2

N
L̃N (u, v,w) = − log 2π − log(2w) − SN

2w
.

Our estimator P̂ will hence be computed by minimizing, for P ∈ C the function

L(P ) = LN (P ) = − 2

N
L̃N − log 2π = log(2w) +

SN

2w
. (3.14)
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The estimation problem formulated in terms of the variables u, v,w is then:

min L(u, v,w) = log(2w) +
1

2w
[a + bu + cv +

1

2
du2 − 2uv +

1

2
fv2],

on the convex cone C : 0 < w < u < v.

(3.15)

3.4.3 Constrained optimization of approximate log likelihood

The objective function L(u, v,w) is a differentiable function of its parameters on C but it is

not convex on C, as seen by computing the diagonal of the Hessian HL of L.

HL =
1

2w













d −2 −b − 2v + du

w

−2 f −c − 2u + fv

w

−b − 2v + du

w
−c − 2u + fv

w

2

w2
(−w + SN )













.

The third term on the diagonal of this matrix may not be positive for a fixed value of T

and small N . For fixed w > 0 however, L is a convex function of (u, v) due to inequalities

(3.13). The true parameter vector P is in the open cone C but the infimum of L on C may

a priori be reached on the closed convex cone

C = C ∪ ∂C = {(u, v,w) : 0 ≤ w ≤ u ≤ v}.

We clearly have L(P ) → ∞ when P → ∞ in C, and hence L must actually reach its

minimum on C.

Let P = (u, v,w) ∈ C be any minimizer of L on C. We distinguish the following four

different cases according to the position of the minimizer in C.

Case 1: The minimizer P = (u, v,w) belongs to C:

Since C is open the gradient of L must be zero at P . The equations ∂uL(p) = ∂vL(p) = 0
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immediately imply

u = −bf + 2c

df − 4
, v = −2b + cd

df − 4
.

Since SN is positive definite, u, v obtained as above minimize SN and hence L for fixed

w. Since P is in C we must have u > v > 0, which in view of (3.13) is equivalent to the

requirement

2b + cd < bf + 2c < 0.

The quadratic form SN then takes the value

A = SN (u, v) = a − 1

2(df − 4)
(b2f + 8bc + c2d).

Note that by its definition the statistic A is a sum of squares and is therefore always positive.

To determine w in the open interval J =]0, u[, we now minimize

B(w) = log 2w +
A

2w
.

Since w is an interior point of J we have B′(w) = 0 and hence w = A/2. Since B′ is negative

on (0, A/2) and positive on (A/2,∞), we establish that w = A/2 is a minimizer of B. To

enforce w ∈ J , we must have A/2 < u which is equivalent to

2a(df − 4) − (b2f + 4bc + c2d) + 4(2c + bf) < 0.

Hence Case 1 is realized if and only if the following conditions hold

2b + cd < bf + 2c < 0 and 2a(df − 4) − (b2f + 4bc + c2d) + 4(2c + bf) < 0. (3.16)
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Then the minimizer P ∈ C is unique and given by

u = −bf + 2c

df − 4
, v = −2b + cd

df − 4
, w =

a

2
− 1

4(df − 4)
(b2f + 4bc + c2d). (3.17)

Note also that as soon as the Case 1 applicability conditions (3.16) are satisfied, the unique

minimizer P thus obtained on C is also necessarily an absolute minimizer on the closure C,

and hence we do not need to study the 3 other “boundary cases” analyzed below.

Case 2: Case 1 is not applicable and the minimizer P = (u, v,w) verifies 0 < w = u < v:

Then for a fixed w, L is a function of v only in an open set. We must then have ∂vL(w, v,w) =

0 which immediately implies

v =
−c + 2w

f
.

By definition of Case 2 we must have w < v , whence the condition c+ (f − 2)w < 0, which

is equivalent to imposing a single one of the following three mutually exclusive constraints

on w:

f < 2 and w > max(0,
c

2 − f
),

f > 2 and c < 0 and 0 < w <
c

2 − f
,

f = 2 and c < 0 and w > 0.

(3.18)

Then L(u, v,w) = L(w,
−c + 2w

f
,w) becomes a function G(w) of w only given by

G(w) = L(w,
−c + 2w

f
,w) = log 2w +

(2af − c2) + 2w(bf + 2c) + w2(df − 4)

4fw
.
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Clearly w must minimize G(w) in w under one of the 3 mutually exclusive constraints (3.18).

This forces G′(w) = 0 which yields the following quadratic equation for w,

4fw2G′ = (df − 4)w2 + 4fw − (2af − c2) = 0.

Let

q(w) = (df − 4)w2 + 4fw − (2af − c2) = 0,

which in view of (3.13), has a unique positive solution given by

w =
−2f +

√

4f2 + (2af − c2)(df − 4)

df − 4
.

It follows that q(w) (and hence also G′ ) is negative on the interval (0, w) and positive on

(w,∞). To compare w to c/(2 − f) , we define the statistic

R = (2 − f)2Q(c/(2 − f)) = (df − 4)c2 + 4fc(2 − f) − (2af − c2)(2 − f)2. (3.19)

We now determine the constrained minimizer under the conditions (3.18). We consider

separately the three versions of constraint (3.18):

(i) f < 2 and c > 0: If R > 0 so that G reaches its constrained minimum for w =

c/(2− f), which violates the strict constraint (3.18); so this case is not acceptable. If

R < 0 we must have 0 < c/(2 − f) < w so that G reaches its constrained minimum

for w.

(ii) f < 2 and c ≤ 0: The interval defined by (3.18) is simply 0 < w and we have just

seen that G′ is negative on (0, w) and positive on (w,∞), so that the minimum of G

is reached at w.
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(iii) f > 2 and c ≥ 0: Since 2− f < 0, we have c/(2− f) ≤ 0. Therefore the constraint

0 < w < c/(2−f) cannot be satisfied and we don’t have an acceptable solution under

this condition.

(iv) f > 2 and c < 0: Then c/(2 − f) > 0. We study again the sign of R. If R > 0

we must have w < c/(2 − f) so that G reaches its constrained minimum for w, which

satisfies the strict constraint in (3.18). If R < 0 we must have 0 < c/(2 − f) < w so

that G reaches its constrained minimum for w = c/(2− f) which does not satisfy the

strict constraint in (3.18) and hence this condition is not acceptable.

(v) f = 2 and c < 0: In this case we solve only under the positivity constraint and the

constrained minimizer is w.

This analysis of the feasibility conditions (3.18) shows that Case 2 can only occur if the

statistics a, b, c, d, f belong to one of the 4 following mutually exclusive situations:

(1) f < 2 and c > 0 and R < 0.

(2) f < 2 and c ≤ 0.

(3) f > 2 and c < 0 and R > 0.

(4) f = 2 and c < 0.

Whenever one of these 4 conditions is satisfied, there is a unique minimizer P = (u, v,w)

such that 0 < w = u < v, given by

u = w =
−2f +

√

4f2 + (2af − c2)(df − 4)

df − 4
and v =

−c + 2w

f
. (3.20)

Case 3: Case 1 is not applicable and the minimizer P = (u, v,w) verifies 0 < w < u = v:

On the set 0 < w < u = v, the function L(u, v,w) becomes a function H(v,w) given by,

H(v,w) = L(v, v, w) = log(2w) +
1

2w
[a + (b + c)v + (

d

2
+

f

2
− 2)v2].
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We must then have ∂vH = ∂wH = 0. These two equalities easily show that the minimizer

u, v,w is uniquely determined and given by

u =v = − (b + c)

(d + f − 4)
,

w =
a

2
− (b + c)2

4(d + f − 4)
.

(3.21)

Since d+f−4 > 0, the minimizer just computed verifies the Case 3 conditions 0 < w < u = v

if and only if we have the conditions,

4(b + c) < (b + c)2 − 2a(d + f − 4) < 0. (3.22)

Case 4: Case 1 is not applicable and the minimizer P = (u, v,w) verifies u = v = w > 0:

In this case L(u, v,w) becomes a function K(w) given by

K(w) = log(2w) +
1

2w
(a + (b + c)w +

1

2
(d + f − 4)w2).

Solving K ′(w) = 0 we obtain the unique minimizer

u = v = w =
a

1 +
√

1 + a(d + f − 4)/2
, (3.23)

which has positive coordinates since a > 0 and d + f − 4 > 0.

Clearly the last boundary case u = v = w = 0 is never a minimizer. Finally we see that

the minimization problem (3.15) on the closed C will almost surely have a unique solution

P ∗ = (u∗, v∗, w∗) computed as follows.

Given the discrete volatility observations Vn, we compute the statistics a, b, c, d, f . For

each j = 1, 2, 3, 4, we shall say that Case j is “applicable” to our data if the explicit
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validity conditions given above for Case j are satisfied by a, b, c, d, f , and we then define

Lj = L(P (j)) where P (j) is the unique minimizer for Case j, explicitly computed above. If

Case j is not applicable to our data, we set Lj = +∞.

If Case 1 is applicable, we do not need to consider any other case, as explained above,

and we define our estimator P̂ of P by P̂ = P (1). If Case 1 is not applicable, the index

k = 2, 3, 4 of the optimal applicable Case k is determined by Lk = min(L2, L3, L4) and we

then define P ∗ by P ∗ = P (k). However the parameter vector P ∗ is then on the boundary

∂C, and boundary vectors are not acceptable parameter vectors.

We shall see in chapter 4 that for small T and large fixed S = NT this situation has a very

small probability of occurrence, which indeed tends to zero as T → 0 and S = NT → ∞.

Our approximate maximum likelihood estimator P̂ for the unknown vector of parameters

P will then be any P̂ = (û, v̂, ŵ) ∈ C which is quite close to P ∗.

After computing P̂ , we will then estimate κ, θ, γ by applying the inversion formulas (3.10)

to P̂ .

3.4.4 Approximate maximum likelihood estimation of the asset price

Let Un = XnT be the asset price data jointly observed with volatility data Vn = YnT , for

n = 0, 1, 2, . . . , N . We estimate the new drift parameter Tµ by maximum likelihood given

all the observations Un and Vn. The Euler discretization of the asset price SDE (3.4) leads

to the following approximation,

Un+1 ≈ Un +TµUn +
√

T
√

VnUn∆Z1(n), n = 0, 1, 2, . . . , N −1, U0 = X0 = x0, (3.24)

where ∆Z1(n) = Z1(n+1)−Z1(n), X0 = x0 is a fixed constant and E[∆B1(n)∆Z1(n)] = ρ.

We want to determine µ such that the discrete approximation for the asset price best fits
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the given data in a maximum likelihood sense where we fix the volatility observations Vn.

The discretized SDE driving the asset price immediately yields,

√
T∆Z1(n) ≈ ∆Un − νUn

Un

√
Vn

,

for n = 0, 1, . . . , N − 1. As above, maximization of the approximate log-likelihood is equiv-

alent to minimizing in µ the sum of the (∆Z1(n))2, and this yields the estimator

µ̂ =
2

NTd

N−1
∑

n=0

∆Un

UnVn
, (3.25)

where the statistic d was defined in (3.12). It should be noted that we have computed the

log-likelihood estimator for µ by maximizing the joint density for only the observations Un

keeping Vn fixed.

Under the so-called “no arbitrage” principle, the option price does not depend on the

“rate of return” parameter µ. However, for completeness, we will also study the estimator

µ̂ of µ, prove its consistency and evaluate its correlation with other parameter estimators

3.4.5 Estimation of the correlation between Brownian motions

After estimating the parameters of the volatility model and the drift µ, we now estimate

the underlying Brownian motion increments ∆Z1(n) and ∆B1(n) by

∆Z1(n) ≈ ∆Un − T µ̂Un√
T
√

VnUn

,

∆B1(n) ≈ ∆Vn − (û − v̂Vn)√
2ŵ

√
Vn

.

(3.26)
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The empirical estimator ρ̂ of ρ is then naturally defined by,

ρ̂ =
1

N

N−1
∑

n=0

[

∆Un − ν̂Un√
T
√

VnUn

]

×
[

∆Vn − (û − v̂Vn)√
2ŵ

√
Vn

]

. (3.27)

Therefore we have now obtained formulas for all the five estimators of the Heston model.

A complementary study was done to evaluate if there was a numerical improvement in

the use of simultaneous maximum likelihood estimators based on the joint density of the

discretized process over the decoupled estimation approach described in this chapter. We

compared the accuracy of estimators and the CPU time for both the methods. We report

on this in the Technical Annex.
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Chapter 4

Parameter estimators :

Asymptotic behavior

4.1 Asymptotics of the estimators when T → 0 and S = NT

is fixed

Definition 4.1.1. Let Y ∈ R
k be a random vector whose distribution has a density ΦΘ

depending on the parameter Θ ∈ R
k. Let X = (X1,X2, . . . ,Xn) be a discrete time random

process whose distribution depends on the parameter Θ. Let Θ̂n be an arbitrary estimator

of Θ based on observation X1,X2, . . . ,Xn. Then the sequence Θ̂n is said to be a consistent

sequence of estimators if Θ̂n → Θ, in probability.

The process Yt satisfying the SDE (3.2) has a stationary Gamma distribution. However

the transition density of the discrete process Vn = YnT from the Euler approximation of

the process Yt does not satisfy Doeblin’s condition for uniform ergodicity (see [28]) for fixed

T . As a result for fixed T , the asymptotic properties of the estimator as the number of

observations goes to infinity cannot be studied. We prove the consistency of the estimators

by first letting T → 0, and then letting S → ∞.
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4.2 Basic approximation results for generic SDEs

We first recall a few well known consequences of classical results for generic stochastic

integrals (see P.A. Meyer’s reference books [59]).

Theorem 4.2.1. (see [59]). Fix a time interval [0, S]. Let Bt be a standard Brownian

motion defined on a probability space (Ω,Ft, P r), endowed with a filtration Ft adapted to

Bt. Let h(t), j(t), k(t) be arbitrary almost surely continuous and non-anticipative random

functions of time on the time interval [0, S].

Define the random continuous non-anticipative process H(t), J(t), R(t) by

H(t) =

∫ t

0
h(t)dt, J(t) =

∫ t

0
j(t)dBt, R(t) = H(t) + J(t).

Hence R(t) is the explicit solution starting at R(0) = 0 of the SDE

dR(t) = h(t)dt + j(t)dBt.

Note that R = H +J is the classical (see [59]) decomposition of R into a bounded variation

component and a martingale component.

For any integer N , set T = S/N and

∆B(n) = B(n+1)T − BnT , ∆R(n) = R(n+1)T − RnT .

Define the discrete sums

JN =

N−1
∑

n=0

j(nT )∆B(n), KN =

N−1
∑

n=0

k(nT )∆R(n), MN =

N−1
∑

n=0

k(nT )(∆R(n))2.
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Then as T = S/N → 0, the following limits hold for convergence in probability,

lim
T→0

JN =

∫ S

0
j(t)dBt,

lim
T→0

KN =

∫ S

0
k(t)dR(t) =

∫ S

0
k(t)h(t)dt +

∫ S

0
k(t)j(t)dB(t),

lim
T→0

MN =

∫ S

0
k(t)j(t)2dt.

(4.1)

Proof. Note that the first basic result concerning limT→0 JN is a classical consequence of

the definition of stochastic integrals with respect to Brownian motion (see [59]). Assume

temporarily that |h(t)|, |j(t)|, |k(t)| are bounded by a deterministic constants for t ∈ [0, S].

Then the results (4.1) are well known consequences of stronger classical theorems for gen-

eralized stochastic integrals (see for instance P.A. Meyer’s books [59]).

In the more general case where there is no fixed deterministic bound for |h(t)|, |j(t)|, |k(t)|,

select and fix an arbitrary large constant A, and let η be the ( random ) first time t ∈ [0, S]

at which one has |h(t)| + |j(t)| + |k(t)| ≥ A, with the convention η = S when there is no

such t ∈ [0, S].

Consider the set Ω(A) of all ω ∈ Ω such that η(ω) = S. The continuous random function

|h|+ |j|+ |k| has necessarily an almost surely finite random upper bound A. Hence we have

lim
A→+∞

Pr[Ω(A)] = Pr[A is finite] = 1.

Given any ǫ > 0, we hence select and fix A = A(ǫ) large enough so that Pr[Ω(A)] > 1 − ǫ.

On the set Ω(A) ⊂ Ω the random functions and variables h̃, j̃, k̃, R̃, K̃N , M̃N obviously

are respectively identical to h, j, k,R,KN ,MN . Define then the deterministically bounded

continuous and non-anticipative random functions

h̃(t) = h(min(t, η)) ; j̃(t) = j(min(t, η)) ; k̃(t) = k(min(t, η)).
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Replacing h, j, k by h̃, j̃, k̃ in the definitions of R(t),KN ,MN defines the corresponding

R̃(t), K̃N , M̃N . As pointed out at the beginning of this proof, the limits in probability

stated in (4.1) must hold for h̃, j̃, k̃ and R̃, K̃N , M̃N . Hence there is a number T (A, ǫ) > 0

small enough, such that for each T < T (A, ǫ) one has Pr[Λ(T )] > (1 − ǫ), where the event

Λ(T ) is the set of all ω ∈ Ω such that

|K̃N −
∫ S

0
k̃(t)dR̃(t)| ≤ ǫ, |M̃N −

∫ S

0
k̃(t)j̃(t)2dt| ≤ ǫ.

For T < T (A(ǫ), ǫ), the event Ωǫ,T = Ω(A(ǫ)) ∩ Λ(T ) has probability larger than (1 − 2ǫ),

and for all ω ∈ Ωǫ,T the last inequalities can immediately be rewritten as

|KN −
∫ S

0
k(t)dR(t)| ≤ ǫ, |MN −

∫ S

0
k(t)j(t)2dt| ≤ ǫ.

This achieves the proof.

4.3 Summary of main notations

The processes Xt and Yt driven by the two Heston SDEs (3.1)-(3.2) are associated to two

standard Brownian motions Zt, Bt, with instantaneous correlation ρ. Call S = NT the

available global observation time for Xt and Yt, where T is the time interval between con-

secutive observations and N is the total number of observations. We will first study the

asymptotics of our parameter estimators when S is fixed and T → 0, so that N → ∞.

Recall Vn = YnT and Un = XnT are the observed squared volatility and asset price re-

spectively at time nT , for n = 0, 1, . . . , N . The estimators for the parameters κ, θ, γ are

algorithmically computed in terms of the statistics a, b, c, d, f , which were explicitly defined

earlier in terms of the N observations Vn = YnT , by formulas (3.12).
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4.4 Asymptotics of basic statistics a, b, c, d, f as T → 0

We first compute the limits, for convergence in probability, of the statistics a, b, c, d, f as

T → 0 and S = NT is fixed.

Proposition 4.4.1. Consider the squared volatility Yt solution of the Heston SDEs (3.2),

which verifies the autonomous SDE

dYt = κ(θ − Yt)dt + γ
√

YtdBt,

where Bt is a standard Brownian motion. Consider N approximate observations Vn = YnT

of Yt with n = 0, . . . , N − 1. The estimators κ̂, θ̂, γ̂ of κ, θ, γ are then computed by the

algorithm of chapter 3 as deterministic functions of the statistics a, b, c, d, f , which are

explicitly defined in terms of the Vn by the expressions (3.12).

For fixed S = NT we define the five random variables β(S), χ(S), δ(S), φ(S), τ(S) by

χ(S) =
2

S
(YS − Y0), δ(S) =

1

S

∫ S

0

1

Yt
dt, φ(S) =

1

S

∫ S

0
Ytdt,

τ(S) =
1

S

∫ S

0

1√
Yt

dBt, β(S) = 2κ − 2κθδ(S) − 2γτ(S).

(4.2)

As T → 0 and S is kept fixed, we have the following convergence in probability results

lim
T→0

(a/T ) =γ2, lim
T→0

(b/T ) = β(S), lim
T→0

c/T = χ(S),

lim
T→0

d =2δ(S), lim
T→0

f = 2φ(S).

(4.3)

Proof. Define the random variables χ(S), δ(S), φ(S), τ(S) by the explicit expressions in

(4.2) above. Formulas (3.12) give for statistic c the expression

c =
2

N

N−1
∑

n=0

∆Vn =
2

N
(VN − V0),
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which obviously implies the following convergence in probability

lim
T→0

c/T =
2

S
(YS − Y0) = χ(S). (4.4)

Statistics d and f have the expressions (see (3.12))

d =
2

S

N−1
∑

n=0

T

Vn
, f =

2

S

N−1
∑

n=0

TVn.

The two sums above are the classical Riemann sums discretizing the Riemann integrals δ(S),

φ(S), where the respective integrands are the almost surely continuous random functions

1/Yt and Yt. The definition of Riemann integrals for continuous functions then yields the

following almost sure limits (and hence a fortiori the convergences in probability)

lim
T→0

d = 2δ(S), lim
T→0

f = 2φ(S). (4.5)

From the equation (3.12) we get

a/T =
1

S

N−1
∑

n=0

(∆Vn)2

Vn
,

b/T =
−2

S

N−1
∑

n=0

∆Vn

Vn
.

(4.6)

Since the squared volatility Yt remains almost surely strictly positive when Y (0) > 0, the

function 1/Yt is almost surely continuous in t, and we can apply Theorem 4.2.1 with

R(t) = Yt, h(t) = κ(θ − Yt), j(t) = γ
√

Yt, k(t) = 1/Yt.
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We then have with the notations of Theorem (4.2.1)

a

T
=

1

S
MN , b/T =

−2

S
KN .

Hence Theorem (4.2.1)now entails the following convergences in probability

lim
T→0

a

T
=

1

S
lim
T→0

MN =
1

S

∫ S

0
k(t)j(t)2dt = γ2,

lim
T→0

b

T
=

−2

S
lim
T→0

KN =
−2

S
[

∫ S

0
k(t)h(t)dt +

∫ S

0
k(t)j(t)dB(t)]

=2κ − 2κθδ(S) − 2γτ(S).

(4.7)

4.5 Asymptotics of the random variables β(S), χ(S), δ(S),

φ(S), τ(S) for large global observation time S

Note that the explicitly defined random variables β(S), χ(S), δ(S), φ(S), τ(S) involved in

the limits as T → 0 of our parameter estimators depend on the fixed global observation

time S but do not depend on T,N any more.

Proposition 4.5.1. Let Yt be the squared volatility process solution of the Heston SDE

(3.2) on R
+. Then as the global observation time S tends to infinity, we have the following

limits for convergence in probability

lim
S→∞

β(S) = − 2κγ2/(2κθ − γ2), lim
S→∞

χ(S) = 0,

lim
S→∞

δ(S) =2κ/(2κθ − γ2),

lim
S→∞

φ(S) =θ, lim
S→∞

τ(S) = 0.

(4.8)
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Proof. Note first the L2 - limit, implying a fortiori the convergence in probability

lim
S→∞

χ(S) = lim
S→∞

YS/S = 0. (4.9)

The probability distributions Gt of Yt converges weakly to the stationary distribution G on

R
+, as t → ∞ (see [32]), and G has a density function g(y) given by

g(y) =
ξ

Γ(ν)
(ξy)ν−1e−ξy1{y>0}.

where

ξ = v/w = 2κ/γ2, ν = u/w = 2κθ/γ2, Γ(a) =

∫ ∞

0
ta−1e−tdt.

One can uniformly control the tails of all the probabilities Gt on R
+ near 0 and near +∞,

in order to show that

lim
S→∞

E[YS ] =

∫ ∞

0
yg(y)dy, lim

S→∞
E[

1

YS
] =

∫ ∞

0

1

y
g(y)dy.

and the explicit form of g(y) then easily provides the explicit expressions

∫ ∞

0
yg(y)dy =

ν

ξ
= θ,

∫ ∞

0

1

y
g(y)dy =

ξ

(ν − 1)
= 2κ/(2κθ − γ2).

Hence the random variable δ(S) verifies

lim
S→∞

E[δ(S)] = limS→∞
1

S

∫ S

0
E(

1

Yt
)dt = lim

S→∞
E[

1

YS
] = 2κ/(2κθ − γ2).

and the ergodic theorem implies the following convergence in probability

lim
S→∞

δ(S) = lim
S→∞

1

S

∫ S

0

1

Yt
dt = lim

S→∞
E[

1

YS
] = 2κ/(2κθ − γ2).
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By definition (4.2) of the stochastic integral τ(S), we have E[τ(S)2] =
E[δ(S)]

S
. Since

E[δ(S)] tends to a finite constant limit as S → ∞, we conclude that limS→∞ E[τ(S)2] = 0,

and hence a fortiori that limS→∞ τ(S) = 0 for convergence in probability.

Again by the ergodic theorem, we have the following convergences in probability

lim
S→∞

φ(S) = lim
S→∞

1

S

∫ S

0
Ytdt = lim

S→∞
E[YS ] = θ.

The random variable β(S) is defined in (4.2) as an explicit linear combination of δ(S)

and τ(S) with fixed coefficients so that we immediately have the following convergence in

probability

lim
S→∞

β(S) = − 2κγ2

2κθ − γ2
.

4.6 Asymptotic behavior of parameter estimators for Heston

SDEs

We have noted in chapter 3 that the maximization algorithm, which a priori may consider

four cases, actually needs only to implement the Case 1 estimation formulas (3.17) as soon

as the applicability conditions (3.16) are satisfied. For convenience we recall here these 3

conditions

2b + cd < bf + 2c < 0 and 2a(df − 4) − (b2f + 4bc + c2d) + 4(2c + bf) < 0.

As T → 0 with S fixed, our preceding asymptotics results (4.3) have expressed the limits in

probability of statistics a/T, b/T, c/T, d, f in terms of five random explicitly defined random

variables β(S), χ(S), δ(S), φ(S), τ(S).

These asymptotic formulas (4.3) show that the three inequalities imposed on a, b, c, d, f
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by the Case 1 feasibility conditions (3.16) are asymptotically equivalent to the following

set of three asymptotic inequalities involving explicit polynomials in the random variables

[β(S), χ(S), δ(S), φ(S), τ(S)], namely

Q1(S) =β(S)(1 − φ(S)) + χ(S)(δ(S) − 1) < 0,

Q2(S) =β(S)φ(S) + χ(S) < 0,

Q3(S) =γ2(δ(S)φ(S) − 1) + χ(S) + β(S)φ(S) < 0.

(4.10)

Proposition 4.6.1. Consider the three random variables Q1(S), Q2(S), Q3(S) defined by

(4.10), which depend only on S. We have the following convergences in probability

lim
S→+∞

Qj(S) < 0 for j = 1, 2, 3

and hence for large global duration time S the asymptotic applicability conditions (4.10) for

Case 1 are satisfied with probability tending to 1 as S → ∞.

Proof. The convergence in probability of β(S), χ(S), δ(S), φ(S), τ(S) to finite limits as S →

∞ naturally extends to the corresponding convergence in probability for any polynomial in

those five random variables. Hence to compute the limit in probability of Qj(S) as S → ∞,

we simply replace in the polynomial Qj(S), all the variables β(S), χ(S), δ(S), φ(S) by their

explicit constant limits, which were computed above in (4.8). This immediately implies

lim
S→∞

Q1(S) = − 2(1 − θ)κγ2/(2κθ − γ2) < 0,

lim
S→∞

Q2(S) = − 2θκγ2/(2κθ − γ2) < 0,

lim
S→∞

Q3(S) = − γ2 < 0.

In the background probability space Ω on which all our processes and random variables
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are defined, denote by ΩS the following subset

ΩS = {ω ∈ Ω | Qj(S) < 0 for j = 1, 2, 3}.

In view of the last proposition, for any fixed small ǫ > 0, we can find a global observation

time S(ǫ) such that for each fixed S > S(ǫ), we will have

Pr(ΩS) = Pr(Qj(S) < 0 for j = 1, 2, 3) > 1 − ǫ.

From now on we fix S > S(ǫ) and we will now focus only on the set of random trajectories

in ΩS .

We now show that as T → 0, the estimators κ̂, θ̂, γ̂ computed by the Case 1 formula

(3.17) have limits in probability. The estimation formula (3.17) combined with the inversion

formula (3.8) linking u, v,w and κ, θ, γ show that

κ̂ = − 2b + cd

T (df − 4)
, θ̂ =

bf + 2c

2b + cd
, γ̂ =

√

[
a

T
− b2f + 4bc + c2d

2T (df − 4)
].

Combining these formulas with the limits in probability of a/T, b/T, c/T, d, f obtained above

as T → 0 with S = NT fixed, yields for all random trajectories in ΩS , the following limits

for convergence in probability

lim
T→0

κ̂ = − β + χδ

2(δφ − 1)
, lim

T→0
θ̂ =

βφ + χ

β + χδ
, lim

T→0
γ̂ = γ, (4.11)

where the argument S has been omitted for brevity. In particular we see that on the subset

ΩS of the probability space Ω, the estimator γ̂ of γ is asymptotically unbiased as T → 0

with S fixed.
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The other parameter estimators κ̂ and θ̂ constructed here still have an asymptotic bias

as T tends to zero with S fixed. Their limits in probability as T → 0 with S fixed, defined

by (4.11) above for trajectories in the (large) set ΩS , can be considered as new estimators

κ̂cont(S), θ̂cont(S) for all the random trajectories belonging to the (large) set ΩS . Hence we

define these new estimators for all trajectories in Ω by the explicit formulas

κ̂cont(S) = − β + χδ

2(δφ − 1)
, θ̂cont(S) =

βφ + χ

β + χδ
. (4.12)

We note that these “continuous time ” estimators are essentially the maximum likelihood

estimators when the whole process trajectory Yt, 0 ≤ t ≤ S is known. We can now compute

the following limits in probability

lim
S→∞

[β + χδ] = − 2κγ2

2κθ − γ2
< 0,

lim
S→∞

[βφ + χ] = − θ
2κγ2

2κθ − γ2
< 0,

lim
S→∞

[δφ − 1] =
2κθ

2κθ − γ2
− 1 =

γ2

2κθ − γ2

(4.13)

and this immediately implies the convergences in probability

lim
S→∞

κ̂cont(S) = κ, lim
S→∞

θ̂cont(S) = θ. (4.14)

Therefore, we have proved that on the large set ΩS, the estimators κ̂, θ̂ and γ̂ converge in

probability to the true parameters as T → 0 and S → ∞.

The estimators µ̂ and ρ̂ can similarly be shown to converge in probability to their true

parameter values. The asymptotic limit of µ̂ follows from the corresponding limit of the

statistic d and an application of Theorem 4.2.1 and Proposition (4.8). The asymptotic limit

of ρ follows as a result of the corresponding limits of all the other estimators together with

an application of Theorem 4.2.1 and Proposition (4.8).
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Chapter 5

Parameter estimation : Numerical

tests on simulated and real data

5.1 Fitting the Heston model to actual stockmarket data

We present numerical Heston model fitting for the daily S&P 500 index together with its

volatility approximation, namely the VIX index for the period Jan 03 2006 to December 29

2006. This gives us a set of N = 252 observed data points. The parameter estimation and

error computations can be similarly carried out for the Heston model fitted to intra-day

S&P 500 data.

The methodology for the computation of the VIX index is described in the VIX white

pages [72]. The Chicago Board Options Exchange computes and maintains a record of

historical VIX index values. We take daily closing data for both indices in order to simul-

taneously observe the two data series [18]. The evolution of SPX and VIX over this period

is displayed in Fig. 5.1(a) and Fig. 5.1(b). According to what would be a fairly common

practice in concrete modeling of stock data by SDEs, we choose T = 1/252 as the time

separating two consecutive observations.
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Figure 5.1: Asset price and volatility
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Using the estimation algorithms described in chapter, we obtain the following estimates

for the parameters u, v,w

û = .0011, v̂ = .0664, ŵ = 1.59710−4.

By relation (3.8) we then compute the following estimates for the parameters of the Heston

SDEs (3.1)-(3.2),

κ̂ = 16.6, θ̂ = .017, γ̂ = .28, ρ̂ = −.54, µ̂ = .102. (5.1)

The negative value of ρ is linked to the fact that the asset price and squared volatility are

negatively correlated. This is termed as the ‘skew’ or ‘leverage’ effect in financial jargon.

When asset prices are high the squared volatility is low and when asset prices are low the

squared volatility tends to be high.

The parameter estimation algorithm outlined above identifies Case 1 as the applicable case

for this set of S&P data. The estimation algorithm is computationally very fast, because

all our estimators are available in closed forms. The CPU-time to estimate the parameters

from 252 data points is .002 seconds on a standard PC.

We will consider this estimated Heston model as a benchmark example to study numer-

ically the small sample properties of our estimators and later to verify numerically our

results on the asymptotic properties of the estimators. We will refer to the Heston model

numerically parametrized by (5.1) as the 2006 S&P 500 model. Before presenting the results

we describe the simulation method we will use to generate joint random trajectories for the

asset price and squared volatility.
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5.2 Simulation of the Heston SDEs

We fix a “global observation time” S = NT for the joint processes (Xt, Yt), where N is the

number of discrete observations, and T the time interval between successive observations of

the squared volatility Yt.

To study small sample behavior and empirical asymptotics of our parameter estimators,

we have implemented and analyzed Monte-Carlo simulations of the discretized SDEs driving

jointly the asset price and squared volatility (see (3.24), (3.11)). Our objective is to first

simulate trajectories which indeed are good approximations of the true continuous squared-

volatility trajectory Yt. We will denote by Wn this simulated discrete random trajectory

emulating the squared volatility process Yt, where Wn approximates Ynδ . The choice of

the simulation step δ depends on the level of simulation accuracy we desire. In order to

obtain a good approximation to the true process, δ has to be chosen sufficiently small. A

discussion on the results for the convergence of W to Y is presented below.

The simulation of Wn is initiated by W0 = V0 = yo > 0, and recursively generated by the

equation

∆Wn = Wn+1 − Wn = δκ(θ − Wn) + γ
√

Wn∆B(n) for n < STOP. (5.2)

where ∆Bn = (B((n+1)δ)−B(n)) is a sequence of independent Gaussian random variables

with mean zero and variance δ, and STOP is the random first time when Wn < 0. We fix

a small simulation step δ, and an associated integer m such that T = mδ. After simulating

the discrete random trajectory Wn by (5.2), we generate an associated random sample of

N “virtual” squared volatility observations Vk = YkT , by setting V0 = W0 = Y0 = y0 > 0
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and

Vk = YkT = Wkmδ.

For T small, the approximation (3.11) holds for Vk. As mentioned earlier for the study of

S&P data the choice of T is the fairly small value T = 1/252.

It can be shown that for S = NT = mNδ fixed, the probability Pr(STOP > Nm) tends

to 1 as δ tends to zero. The recurrence relation (5.2) defines a time homogeneous discrete

parameter Markov chain, where the conditional transition density of Wn+1 given Wn = x

is Gaussian with mean m(x) = x + u − vx and variance var(x) = 2wx.

Direct Monte Carlo simulations of the Euler discretized dynamics Wn without the restric-

tion n < STOP would ultimately generate negative values of Wn even when the parameters

satisfy the imposed constraint u > w. So when simulating a discrete trajectory of fixed

length mN , we naturally stop the simulated dynamics whenever Wn becomes negative for

some n ≤ mN . The corresponding truncated trajectory is then eliminated, and to replace

it, we generate a new trajectory.

The discretized asset price process Ũn approximating Un = Xnδ is then generated by the

recursive relation

Ũn+1 = Ũn + µδŨn +
√

VnŨn(ρBn +
√

1 − ρ2Kn), U0 = X0 = x0,

where the Kn are independent Gaussian random variables with mean zero and variance δ,

and are independent of all the Bm.

47



For 0 ≤ t ≤ S, define non-anticipative left continuous processes (see [59] for definition)

Wt and Ũt by,

Ũt = Ũn for nδ ≤ t < (n + 1)δ; Wt = Wn for nδ ≤ t < (n + 1)δ.

In [45], the authors prove that the discrete process {Wn} has finite second moments. For

S = mNδ fixed, they also show that as δ → 0, Wt converges in L2 to the squared volatility

Yt, with uniform L2- speed of convergence over all t ∈ [0, S].

This result can be extended to show also that as δ → 0 with S fixed, the discretized

approximating process Ũt converges in L2 to Xt for each t ∈ [0, S].

5.3 Small sample bias and variances of parameter estimators

We study the small sample bias and errors in the estimators of the Heston model, denoted

here “HSP”, parametrized by the numerical values (5.1), values which were deduced above

from our sample of 252 joint observations of the 2006 S&P daily data.

We first fix a very small simulation time step δ = 1/25, 200 and the time interval T =

100δ = 1/252 between virtual observations of the squared volatility. We then simulate

5000 paths of the Heston model HSP using the small discretization time step δ. We then

sub-sample each one of these 5000 trajectories, at time intervals T, 2T, . . . ,NT to generate

N “virtual” observations Vk = Ykmδ . For each one of these virtual V -trajectories of length

N , we compute an estimate of the parameters, thereby generating a random sample of size

5000 for each parameter estimator. For each parameter, we then compute the empirical

mean and standard deviation of the associated estimator over these 5000 trajectories. The

Bias of an estimator is classically the expected value of the difference between the estimator

and the true parameter value, where the expected value is taken with respect to the true

underlying probability distribution Pr. The estimated bias of a parameter estimator is then
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the difference between its empirical mean and its target numerical value given by (5.1).

The estimation error ERR of a parameter estimator is here defined as the L2 norm of the

difference between the estimator and the corresponding true parameter value. One always

has the elementary relation

(ERR)2 = Bias2 + V ariance. (5.3)

In the numerical examples below, to evaluate the estimation error ERR, we replace bias and

variance by their empirical estimates computed from the sample of 5000 estimator values

generated above.

In Table 5.1, we fix N = 252, T = 1/252, and hence S = NT = 1, and we present, for the

4 parameter estimators κ̂, θ̂, γ̂, ρ̂, accurate empirical estimates of their mean, relative bias,

relative standard deviation and relative error. Here the term “relative” stands for “relative

to the mean” of the estimator. Clearly this natural notion is only useful when the mean

of the estimator is not too small. Note also that the relative bias is here always presented

by its modulus, since its sign is not relevant. To simulate 5000 trajectories of N = 252

observations generated using δ = 1/25200 and T = 100δ, the CPU-time is 30 seconds on a

standard PC. To generate the corresponding sample of 5000 parameter estimators values,

the CPU-time is 5 seconds on a standard PC. We present separately the estimation error

for the estimator µ̂.

For the Heston model HSP, we also present, in Table 5.1, results for larger values of the

number of observations N , namely N = 504, S = NT = 2; and N = 1008, S = NT = 4.

Pragmatically, an SDE model with constant parameters for the S&P data cannot remain

accurate over periods of several years. Therefore values of N larger than 300 for daily stock

and volatility observations are definitely unrealistic. We nevertheless present results for
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N > 300 to illustrate the decrease in estimation errors.

N=252 N=504 N=1008

Mean
|Bias|/ Std/ Rel.

Mean
|Bias|/ Std/ Rel.

Mean
|Bias|/ Std/ Rel.

Mean Mean Error Mean Mean Error Mean Mean Error
κ̂ 20.1 18% 33% 38% 18.1 8% 24% 25% 17.3 4% 20% 20%

θ̂ .017 .3% 13% 13% .017 .2% 9% 9% .017 .2% 7% 7%

γ̂ .273 4% 5% 5% .273 3% 3% 4% .274 3% 3% 4%

ρ̂ -.543 .2% 11% 11% -.544 .02% 8% 8% -.545 .1% 6% 6%

Table 5.1: Small sample relative accuracy of parameter estimation for different values of
N . True parameter values : κ = 16.6, θ = .017, γ = .2826, ρ = −.5441,

µ = .1017, T = 1/252 = .004.

The value of µ for the Heston model HSP is quite small, so that the mean of µ̂ is then also

quite small, and the relative estimation error for µ̂ is practically meaningless, particularly

for moderate values of N . Therefore we will only consider absolute bias, standard deviation,

and L2 error for µ̂, which we present along with the absolute bias, standard deviation and

L2 error of the other parameters in Table 5.2. We observe that as N increases the absolute

errors in all parameters indeed decrease.

We point out that in chapter 7 when we study the impact of estimation errors on option

price we will only need the absolute errors in the parameter estimators κ̂, θ̂, γ̂, ρ̂. We will

not need to use the estimation errors of the estimator µ̂ because option prices do not depend

on µ.
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N=252 N=504 N=1008
Mean |Bias| Std Error Mean |Bias| Std Error Mean |Bias| Std Error

κ̂ 20.1 3.54 6.8 7.66 18.1 1.45 4.4 4.60 17.3 .72 3.4 3.5

θ̂ .017 .0001 .0022 .0022 .017 3. 10−5 .0016 .0016 .017 3.10−5 .0013 .0013

γ̂ .273 .010 .012 .016 .273 .009 .001 .013 .274 .009 .007 .011

ρ̂ -.543 .001 .059 .059 -.544 .0001 .041 .041 -.545 .0008 .034 .034

µ̂ .091 .0105 .122 .1227 .096 .006 .085 .085 .097 .004 .070 .070

Table 5.2: Small sample absolute accuracy of parameter estimation for different values of
N . True parameter values : κ = 16.6, θ = .017, γ = .2826, ρ = −.5441,

µ = .1017, T = 1/252 = .004.

5.4 Numerical results on consistency of parameter estima-

tors

We show by extensive numerical simulations that the asymptotic consistency results proved

in chapter 4 are validated numerically for the Heston model parameters κ, θ and γ. We study

the asymptotic estimation errors of our parameter estimators for a family of 8 = 2 × 2 × 2

arbitrary Heston models.

For more pragmatic pertinence we choose the parameter vectors of our 8 benchmark

Heston models in a moderately large neighborhood of the Heston model HSP estimated

from our 252 joint daily observations of the 2006 S&P 500 and VIX data (5.1). The
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parameter values we have selected for our 8 benchmark Heston models are listed below.

κ θ γ

16.6 .017 .28

16.6 .017 .10

16.6 .50 .28

16.6 .50 .10

25 .017 .28

25 .017 .10

25 .50 .28

25 .50 .10

(5.4)

For each one of these 8 benchmark models, we fix the parameters µ = .01 and ρ = −.54, as

in (5.1).

We simulate 1000 random trajectories for each one of our 8 benchmark Heston models,

using the method described in section 5.2, with a very small simulation step δ = 1/10000.

The T value will then have to be larger than 10 × δ to maintain good simulation accuracy

by (3.11). To decide on a reasonable ratio T/δ for accurate simulations we evaluate the

Gaussianity of the random variables,

QT,S
n =

∆V T,S
n − Tκ(θ − V T,S

n )

γ

√

V T,S
n

√
T

,

where {V T,S
n } denotes the observations up to time S sampled at intervals of length T =

mδ. Recall, that with large probability the Case 1 algorithm is the only one we need

to apply to estimate the parameters κ, θ and γ. We observe numerically from the 1000

simulated trajectories of each one our 8 benchmark models that indeed the algorithm Case

1 is applicable with probability one for various pairs of reasonable values of T and S.
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We have shown in the previous section that for a fixed S, as T → 0, the estimators κ̂, θ̂, γ̂

converge in probability to estimators κcont, θcont, γcont, corresponding to the continuous

process Yt. If we then let S → ∞, the estimators κ̂, θ̂, γ̂ indeed converge in probability to

the true parameters, i.e.,

Pr(|κ̂cont(S) − κ| < tol) → 1, P r(|θ̂cont(S) − θ| < tol) → 1,

P r(|γ̂cont(S) − γ| < tol) → 1.

as S → ∞. We use the following notations to denote the probabilities of the estimators

κ̂, θ̂, γ̂ being within a prescribed tolerance of their ideal limit values κ, θ, γ respectively.

Prκ(S, T ) = Pr(|κ̂ − κ| < tolκ), P rθ(S, T ) = Pr(|θ̂ − θ| < tolθ),

P rγ(S, T ) = Pr(|γ̂ − γ| < tolγ).

Clearly these probabilities depend on the choice of the prescribed tolerances but for brevity

our notations deliberately omit to keep track of the tolerances. We will explicitly specify

the value of each of tolκ, tolθ and tolγ for our results. Note that our choice of tolerance level

for each parameter should naturally depend on the size of the parameter. We illustrate

with numerical examples the theoretical results for each of our 8 benchmark models. We

first study numerically the convergence in probability of κ̂, θ̂, γ̂ to κ, θ, γ. Then we present

a comparative study of this convergence in probability for each one of our 8 benchmark

models.
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5.5 Asymptotic study of model estimated from stockmarket

data

We present first numerical asymptotic results for the Heston model HSP associated to the

2006 S&P 500 data, with parameter values given by the first row of (5.4). For the errors of

estimation of κ̂, θ̂, γ̂, we fix “acceptable tolerance levels” as follows

tolκ = .83, tolθ = 8.10−4, tolγ = .014.

We fix a very small discretization time step δ = 1/10, 000 and a small value T = 1/1000 =

10δ. We then simulate N = S/T virtual observations Vn of the squared volatility at time

intervals nT, (n = 1, 2, . . . , N). We study the asymptotic behavior of κ̂, θ̂, γ̂ as S = NT ,

and hence N , increase.

Fig. 5.2, 5.3, and 5.4 present the values of Prκ, P rθ, P rγ respectively as S = NT increases

for fixed T = 1/1000. We compute the empirical probabilities Prκ, P rθ, P rγ as S increases

from 0.5 to 20 by increments of 1.5. The corresponding values of the number of observations

N increase from N = 500 to N = 20, 000 by increments of 1, 500.

For each S, we have indeed verified that Case 1 is applicable with empirical probability

equal to 1.
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Figure 5.2: Model Parameters : κ = 16.6, θ = .017, γ = .28, fixed T = 1/1000.
Slow increase to 1/2 for Prκ, as N = S/T increases from 500 to 20,000.
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Figure 5.3: Model Parameters : κ = 16.6, θ = .017, γ = .28, fixed T = 1/1000.
Convergence towards 1 of Prθ as N = S/T increases from 500 to 20,000.
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Figure 5.4: Model Parameters : κ = 16.6, θ = .017, γ = .28, fixed T = 1/1000.
Fast Convergence to 1 of Prγ as N = S/T increases from 500 to 20,000.

We observe that for fixed T = 1/1000 the probabilities Prθ(S, T ) and Prγ(S, T ) indeed

converge to one as N increases from N = 500 to N = 20, 000, while for Prκ(S, T ) to

converge to one, much larger number of observations are needed for adequate convergence.

We find indeed that about N = 60, 000 observations are needed for adequate convergence

of κ̂− κ within a tolerance of 0.83. We observe on our benchmark models that κ̂ converges

faster for larger values of θ. This is illustrated in Fig. 5.5 where we fix κ = 16.6, γ = .28

and vary θ. In Fig. 5.5 the data are simulated at T = 1/1000, with S increasing from 0.5

to 10, corresponding to N increasing from 500 to 10, 000
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Figure 5.5: The ordinate represents the value of Prκ. We observe higher
values of Prκ for larger values of θ.
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In the next set of results we study the asymptotic behavior of the estimators when the

global observation time S = NT remains fixed, and the sampling time interval T tends to

0. We compute the values of the parameter estimators for sampling times varying from

T = 10δ = .001 to T = 960δ = .096 with increments of T = 50δ = .005.

We illustrate the results for the convergence to one of Prκ, P rθ, P rγ respectively in Fig.

5.6, Fig. 5.7, and Fig. 5.8. In each figure we illustrate the probabilities corresponding

to S = 10, 20, 30. The probabilities Prκ, P rθ, P rγ are estimated over 1000 simulated

trajectories.
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T: time between consecutive observations
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Figure 5.6: Slow “Convergence to 1” of Prκ as T decreases from .096 to .001.
Parameters : κ = 16.6, θ = .017, γ = .28.
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Figure 5.7: Convergence to 1 of Prθ as T decreases from .096 to .001.
Parameters : κ = 16.6, θ = .017, γ = .28.
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Figure 5.8: Convergence to 1 of Prγ as T decreases from .096 to .001.
Parameters : κ = 16.6, θ = .017, γ = .28.
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We see that the estimator γ̂ converges in probability to γ at the tolerance level tolγ for

each fixed S as T becomes smaller. This validates our theoretical convergence result (4.12)

for γ̂.

For κ̂ and θ̂ we know from (4.12) that for each fixed S the estimators κ̂, θ̂ converge to the

continuous time estimators κ̂cont, θ̂cont, which are random variables with non zero disper-

sions. The numerical results show that for fixed large enough values of S such as S = 30

corresponding to a fixed large enough N = 30, 000, the estimators κ̂ and θ̂ converge in

probability to the true parameter values at the tolerance levels tolκ and tolθ respectively.

However, for κ̂ we need to simulate observations for much longer observation times S in

order to achieve a probabilistic accuracy comparable to the accuracy of θ̂.

We observe that for κ̂ and γ̂ the accuracy of the estimators quickly deteriorates as the

sampling time interval T increases. On the other hand for the estimator θ̂, the accuracy is

maintained even at very high sampling steps.

5.6 Comparative study of eight benchmark Heston models

Our second set of results is a comparative study of the 8 different models associated to

the parameter values given in (5.4). In order to carry out a comparative study we fix the

tolerance level to be 5% of the true parameter value for each of the three parameters. We

choose the tolerance error as a fixed percentage of the parameter values only to facilitate

numerical comparison of results. The numerical results in this section show the convergence

of the probabilistic accuracies Prκ, P rθ, P rγ to one for fixed T = 1/1000 when S increases

from 0.5 to 30 by increments of 1.5. This corresponds to values of N increasing from 500

to 30, 000 by increments of 1, 500.
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Figure 5.9: Convergence to 1 of Prκ as N = S/T increases from 500 to 30,000.
Here T = 1/1, 000 and γ = .1.

We first fix γ = .1. We then perform the preceding simulations and studies for the 4

benchmark models for which γ = 0.1.

Fig. 5.9 and Fig. 5.10 illustrate the asymptotic behavior of the estimators κ̂ and θ̂. Each

figure displays 4 curves (one per benchmark Heston model) plotting the probability that a

specific parameter estimator falls within the preassigned tolerance interval centered at the

true parameter value. The legends describe the parameter values associated to each curve.

We have not displayed the convergence of Prγ to 1 because for each one of our 4 benchmark

models, we have Prγ = 1 as soon as S ≥ 15, which corresponds to N ≥ 15, 000.

61



0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

S: Global observation time

 

 

κ=16.6,θ=.017,γ=.1

κ=16.6,θ=.5,γ=.1

κ=25,θ=.017,γ=.1

κ=25,θ=.5,γ=.1

Figure 5.10: Convergence to 1 of Prθ as N = S/T increases from 500 to 30,000.
Here T = 1/1, 000 and γ = .1.
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Figure 5.11: Convergence to 1 of Prκ as N = S/T increases from 500 to 30,000.
Here T = 1/1000 and γ = .28.

Fig. 5.11, Fig. 5.12 illustrate similar results for the estimators κ̂, θ̂, γ̂ but now for γ fixed

at γ = .28. Again we observe that for our 4 benchmark models, we have Prγ = 1 as soon

as S ≥ 10, which corresponds to N ≥ 10, 000 and so we do not display the results for γ̂.

We note that the Prκ and Prθ converge to 1 for all these 4 benchmark models. We observe

that for higher values of γ we need larger numbers N of observations to reach adequately

high values for Prκ and Prθ.
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Figure 5.12: Convergence to 1 of Prθ as N = S/T increases from 500 to 30,000.
Here T = 1/1000 and γ = .28.
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5.7 Asymptotic behavior of ρ̂ and µ̂

We now present numerical results on the convergence of the probabilities,

Prρ(S, T ) = Pr(|ρ̂ − ρ| < tolρ), P rµ(S, T ) = Pr(|µ̂ − µ| < tolµ),

at the tolerance levels given below,

tol(ρ=−.54) = .03, tol(µ=.3) = .045, tol(ρ=−.8) = .04, tol(µ=.6) = .09.

We present our results for the following 4 benchmark Heston models,

ρ µ

−.54 .3

−.8 .6

−.54 .6

−.8 .3

(5.5)

with κ, θ, γ fixed at κ = 16.6, θ = .017 and γ = .28.

Fig. 5.13 and Fig. 5.14 display the convergence to 1 of Prρ and Prµ for fixed T = 1/1000

when S increases from 0.5 to 30 by increments of 1.5. This corresponds to values of N

increasing from 500 to 30, 000 by increments of 1,500.
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Figure 5.13: Convergence to 1 of Prρ as N = S/T increases from 500 to 30,000.
Here T = 1/1000, κ = 16.6, θ = .017, γ = .28.
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Figure 5.14: Convergence to 1 of Prµ as N = S/T increases from 500 to 30,000.
Here T = 1/1000, κ = 16.6, θ = .017, γ = .28.
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5.8 Variance and covariance of estimators

We show numerically below that the covariance matrix of κ̂, θ̂, γ̂ and ρ̂ corresponding to the

parameter vector P of the Heston model HSP model (row one of (5.4)) can be approximated

by a deterministic symmetric positive definite matrix L(P )/N for a reasonable range of

N values and small T fixed. In view of the sensitivity study further below, we will fix

T = 1/252.

We compute the empirical variances and covariances of our parameter estimators when

S increases from 0.5 to 60.5 by increments of 1.5. Our empirical estimates are computed

after simulating 1000 random trajectories, using a very small discretization step δ as above.

The corresponding number of observations N increases from 500 to 15, 246 by increments

of 1500.

Fig. 5.15 shows that for this range of N values the empirical variance of all the four main

parameters is very small.

Fig. 5.16 shows that in the same range of N -values, the empirical covariances between these

4 parameter estimators are practically negligible.

Let ΣN denote the 4× 4 empirical covariance matrix of the estimators κ̂, θ̂, γ̂, ρ̂ when one

has N observations. We show in Fig. 5.17 that for N large enough, the matrix N × ΣN

is well approximated by a fixed diagonal matrix. In large classes of situations, this type of

asymptotic result is often valid for classical maximum likelihood estimators, but of course

the limit matrix is not necessarily diagonal [5]. In our numerical simulations, we estimate

ΣN by computing empirical covariances over 1000 simulated random trajectories.

67



0 20 40 60 80
0

20

40

60

80

100

120

140

Variance in the estimator of κ
0 20 40 60 80

0

0.2

0.4

0.6

0.8

1
x 10

−5

Variance in the estimator of θ

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Variance in the estimator of γ
0 20 40 60 80

0

1

2

3

4

5

6

7
x 10

−3

Variance in the estimator of ρ

Figure 5.15: Model Parameters : κ = 16.6, θ = .017, γ = .28, ρ = −.54, µ = .01.
Decreasing variances of 4 parameter estimators. The abscissa is the global observation

time S. The number of observations is 252 × S.
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Figure 5.16: Model Parameters : κ = 16.6, θ = .017, γ = .28, ρ = −.54, µ = .01. Negligible
covariances of 4 parameter estimators. The abscissa is the global observation time S. The

number of observations is 252 × S.
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Figure 5.17: Model Parameters : κ = 16.6, θ = .017, γ = .28, ρ = −.54, µ = .01.
Asymptotic stabilization of N× (variance) for our 4 parameter estimators . The abscissa

is the global observation time S. The number of observations is 252 × S
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Let P denote the vector of parameters for our Heston models, and call P̂ our estimator

of P . Call ΣN the covariance matrix of P̂ when N is the number of observations. Denote

by L(P ) the limit of NΣN as N → ∞, which is a deterministic positive definite matrix.

When P is the vector of parameters for the Heston model HSP, we observe numerically

that for fixed small T , the asymptotic bias of the vector of parameter estimators P̂ is very

small for the reasonable range of N values considered above. We can then approximate the

L2-norm estimation errors for P̂ by the diagonal terms of the matrix
√

L(P )/
√

N .

For the Heston model HSP, we have obtained the following numerical expression of the

matrix L(P ) (5.6):



















8.12 −1.02 .05 2.61

−1.02 .001 .001 −.002

.054 .001 .041 −.075

2.61 −.002 −.075 .9



















. (5.6)

We will use this approximation of parameter estimation errors in chapter 8 to study their

impact on option pricing for the realistic value of N = 252 .

The asymptotic covariance matrix corresponding to N = 252 for the parameter esti-

mators of the Heston model HSP is then approximated by the matrix
√

L(P )/
√

N given

by,



















5.67 −0.001 0.000 0.002

−0.001 0.002 0.000 0.000

0.000 0.000 0.012 −0.004

0.002 0.000 −0.004 0.06



















. (5.7)
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We observe that all the off-diagonal elements of this covariance matrix are negligible.

5.9 Asymptotic prevalence of Case 1 for the estimation al-

gorithms

We now construct a synthetic Heston model where the parameters u, v,w are close to the

boundary situation u = w. We then show numerically, that even in this near boundary

situation, and for a fixed small T = 1/1000, then as S becomes large the probability of ΩS

tends to 1. Recall that ΩS is the set of random trajectories for which the Case 1 estimation

algorithmics is applicable.

We thus consider the Heston model HBD parametrized by,

κ = 2, θ = .2, γ = .85, ρ = −.54, µ = .10.

Then 2κθ = .8 and γ2 = .72, so that the condition 2κθ − γ2 > 0 is narrowly satisfied.

We simulate 1000 trajectories of the heston model HBD with simulation step δ = 1/20, 000.

We fix T = 1/1000 and study Pr(ΩS) when S increases from 0.5 to 30 by increments of

0.5. These probabilities are estimated by empirical frequencies over our random sample of

1000 trajectories.

Fig. 5.18 displays these numerical results and validates empirically the fast convergence to 1

of Pr(ΩS) when S becomes large.In particular for S ≥ 13, we practically have Pr(ΩS) = 1.
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Figure 5.18: As S becomes large Pr(ΩS) → 1
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Chapter 6

Option pricing : Introduction and

survey of previous approaches

6.1 Introduction

The price of an option when the underlying asset price satisfies a stochastic differential

equation can be obtained, under certain assumptions on the market and the functional

form of the price (see chapter 7), by solving an associated parabolic partial differential

equation (PDE). The underlying model parameters appear as coefficients in the option

pricing partial differential equation. The true values of the model parameters are never

known. To evaluate option prices through robust model based inference from asset dynamics

data, it is therefore crucial that the underlying stochastic dynamics of the asset price be

calibrated correctly. We described an efficient approximate maximum likelihood approach to

estimate the parameters of Heston’s stochastic volatility model in chapter 3. The empirical

evaluation of the estimation errors was presented in chapter 5 for a large set of benchmark

Heston models. We will now study the impact of estimation errors on the price of options

when the underlying asset price satisfies the Heston SDEs. We will give a formal definition
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of the option pricing errors in chapter 7. To compute the impact of estimation errors on

option price we will obtain and solve the partial differential equations that the derivatives

of the option price with respect to the model parameters satisfy.

The option pricing PDE for the case, when the underlying asset price follows a geometric

Brownian motion was derived by Black and Scholes [15]. For this case the pricing PDE is

derived by constructing a portfolio with the option to be priced and the underlying asset.

The idea is to determine a portfolio that is locally deterministic or riskless. Under no

arbitrage principles [13], the rate of return on this portfolio has to equal the risk free rate

of return. This leads to the option pricing PDE. In the stochastic volatility model, such as

Heston’s model, there are two sources of randomness driving respectively the asset price and

volatility, and only one underlying tradable asset. It is not possible then to eliminate the

risk completely by considering a portfolio consisting only of the asset price and the option to

be priced. Therefore a second option written on the same underlying asset is added to the

portfolio. The no arbitrage principle introduces a new parameter, called the market price

of volatility risk, on which the option pricing PDE then depends. The articles [69] and [36]

derive the option pricing PDE under the Heston model by constructing a locally riskless

portfolio. A first attempt to estimate the market price of volatility risk from observed

options data for the S&P 500 options is presented in chapter 6. We study the sensitivity of

the option price with respect to this new parameter also and present numerical results on

its estimation and sensitivity in chapter 8.

For the price of an European option, Heston [44] gives a semi-closed form in terms of

the inverse characteristic function of the underlying probability distributions (section 7.4).

Carr and Madan [17] propose a Fast Fourier Transform method to solve for the European

option price in this form. Quadrature methods for numerical integration of the inverse

characteristic function are discussed in [61]. Alternatively, the option pricing PDE can be
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directly solved using numerical methods for partial differential equations (PDEs) [1]. We

use a finite difference scheme in space and the backward difference formula in time to solve

the PDEs satisfied by the option price and its derivatives with respect to the parameters

(chapter 8). The finite difference scheme we use follows closely the discretization method

proposed by Ikonen and Toivanen [49]. At the boundary where volatility equals zero we use

an upwind scheme [41].

We will illustrate by detailed numerical examples in chapter 8 the option pricing errors

for four options with actively traded strike prices in the first quarter of 2007 under four

benchmark Heston models. We estimated the Heston model for the 2006 S&P 500 data

in chapter 5 using our decoupled estimation method. We now observe the SPX and VIX

values for the first quarter of 2007 and present results for this realistic range of the asset

price and volatility.

6.2 Option Pricing

6.2.1 Market model

In our context we define the financial market to comprise of a risk-free asset price process

{Rt} and a risky asset price process {Xt}. The dynamics of the risk-free asset price is

deterministic and given by,

dRt = r(t)Rtdt, (6.1)

where r(t) is a deterministic function of time called the risk-free rate of return. In our study

r(t) = r will be a constant. Therefore,

dRt = rRtdt, Rt = ertR0. (6.2)
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Let Yt be the square of the instantaneous volatility of {Xt}. We assume that the pair

{Xt, Yt} satisfies the stochastic volatility model of Heston. We will continue to use the

notations for asset price and volatility from our earlier chapters. We recall below the

Heston model SDEs,

dXt = µXtdt +
√

YtXtdZt, (6.3)

dYt = κ(θ − Yt)dt + γ
√

YtdBt, (6.4)

where the processes Z and B are standard Brownian motions with E[dZtdBt] = ρdt. Recall,

that the natural domain for the parameters is given by,

κ > 0, θ > 0, γ > 0, 0 < θ < 1, −1 ≤ ρ ≤ 1, 2κθ > γ2. (6.5)

In our numerical computation of the option price we will perform a change of variables

to consider the option price as a function of the logarithm of the stock price, denoted

by, LSt = log(Xt). We state the Ito’s lemma [48] below as applicable to our SDEs and

then use it to compute the dynamics of LSt. Let C2,2,1 denote the space of functions

h(x, y, t) : R
+ × R

+ × R
+ → R such that h is continuously differentiable in t and twice

continuously differentiable in x and y.

Lemma 6.2.1. Ito’s lemma : For any C2,2,1 function h the stochastic differential equation

of h(Xt, Yt, t) where (Xt, Yt) satisfy (6.3)-(6.4) is given by

dh(Xt, Yt, t) =

[

∂h

∂t
dt + µx

∂h

∂x
+ κ(θ − y)

∂h

∂y
+

1

2
x2y

∂2h

∂x2
+

1

2
γ2y

∂2h

∂y2
+ . . .

ργxy
∂2h

∂x∂y

]

dt + µx
∂h

∂x
dW1(t) + κ(θ − y)

∂h

∂y
dW2(t).

(6.6)

Proposition 6.2.1. Let Xt satisfy the SDE (6.3). The dynamics of LSt = log(Xt) is given
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by,

dLSt = (µ − 1

2
Yt)dt +

√

YtdBt. (6.7)

The proof follows from a direct application of Ito’s lemma (6.6).

6.2.2 Option pricing PDE

Definition 6.2.2. A European call option with strike (exercise) price K and time to matu-

rity (exercise date) TM on an underlying asset with price process {Xt} is a contract defined

by the following clauses,

• The holder of the option has at time TM , the right, but not an obligation, to buy one

share of the underlying stock at the price K units from the underwriter of the option.

• The right to buy the underlying stock at the price K can only be exercised at the precise

time TM .

The exercise price K and the time to maturity TM are determined at the time when the

contract is created which we will assume to be t = 0. While the contract can be exercised

only at maturity, it can be traded at any time from t = 0 to t = TM .

The European call option contract with strike price K and maturity TM written on the

underlying asset with price process {Xt} is characterized by its pay-off function Φ : R
+ →

R
+ ∪ {0},

Φ(XTM
) = (XTM

− K)+ = max(XTM
− K, 0),

where XTM
is the price of the asset at time TM . We will study the pricing of this option

contract under the following standard assumptions on the market:
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(1) The market is free of arbitrage, i.e., there is no possibility of making a profit out of

nothing without any risk.

(2) The market is frictionless, i.e., there are no transaction costs.

(3) There is unlimited liquidity in the market, i.e., the option can be bought and sold at

any time.

Let {Zt, 0 ≤ t ≤ TM} be the price of an European call option with maturity TM written on

an underlying asset whose price process satisfies the Heston model (6.3)-(6.4). It is standard

to assume that under stochastic volatility the price Zt is a function of Xt and Yt [44],

Zt = f(Xt, Yt, t).

Standard arbitrage arguments [15, 58, 44] demonstrate that the value of the option f(Xt, Yt, t)

under sufficient regularity assumptions, must satisfy the following partial differential equa-

tion (PDE) on the domain R
+ × R

+ × [0, TM ],

∂f

∂t
(x, y, t) + rx

∂f

∂x
(x, y, t) + [κ(θ − y) − λt

√
yγ]

∂f

∂y
(x, y, t) + . . .

1

2
x2y

∂2f

∂x2
(x, y, t) +

1

2
γ2y

∂2f

∂y2
(x, y, t) + ργxy

∂2f

∂x∂y
(x, y, t) − rf(x, y, t) = 0. (6.8)

f(x, y, TM ) = Φ(x). (6.9)

where r is the risk free rate of return from (6.2). Note that the pricing PDE does not

depend on the parameter µ. The terminal condition f(x, y, TM ) = Φ(x) is explained by the

following simple argument. If at time TM , XT ≥ K, we can make a profit of (XTM
− K)

by exercising the option. If XTM
< K the option has no value whatsoever. Therefore, the

only reasonable price of the option at time TM is max(XTM
− K, 0) = Φ(XTM

).
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The unspecified term λt that appears in (6.8) is a random variable called the market price

of volatility risk and arises due to the non tradability of the volatility [13]. We will assume

λt to be a constant denoted by λ similarly to [33] and [44]. We will sketch in section 6.2.3

a method to estimate λ and study in subsequent chapters the sensitivity of option price to

this new parameter.

The option pricing PDE (6.8)-(6.9) is a final value problem. By a transformation of time

t → TM − t we formulate the problem as an initial value problem. Define

g(x, y, t) = f(x, y, TM − t), 0 ≤ t ≤ TM .

This immediately implies from (6.8)-(6.9)

∂g

∂t
− Lg = 0 on (0,∞) × (0,∞) × (0, TM ], (6.10)

with initial condition,

g(x, y, 0) = (x − K)+ on (0,∞) × (0,∞) × {t = 0}, (6.11)

where L is the linear operator,

L = rx
∂

∂x
+ [κ(θ − y) − λ

√
yγ]

∂

∂y
+

1

2
x2y

∂2

∂x2
+ . . .

1

2
γ2y

∂2

∂y2
+ ργxy

∂2

∂x∂y
− r.

Note that we are now assuming a constant market price of volatility risk. We now describe

the boundary conditions satisfied by the option price [44]. The boundary conditions remain

unchanged after the transformation in the time variable. When the asset price is zero there
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is no rational interest in buying the call option and therefore the option is worthless,

g(0, y, t) = 0 on {x = 0} × (0,∞) × (0, TM ]. (6.12)

For large values of the asset the option price grows linearly with the asset price,

lim
x→∞

∂g(x, y, t)

∂x
= 1,∀y, t. (6.13)

For large values of Yt the option price tends to be constant as a function of the square of

volatility,

lim
y→∞

∂g(x, y, t)

∂y
= 0,∀x, t. (6.14)

The boundary condition at y = 0 is obtained by setting y to be zero in the PDE (6.10),

∂g

∂t
− rx

∂g

∂x
− κθ

∂g

∂y
+ rg = 0, (6.15)

on (0,∞) × {y = 0} × (0, TM ]. For all practical applications we can consider the problem

on the bounded domain,

UTM
= UB × (0, TM ],

where

UB = (0,Xmax) × (0, Ymax).

The option pricing problem is a two-dimensional second-order parabolic partial differential

equation where the operator L is elliptic for each t in x and y [34]. More precisely it

is a convection-diffusion type equation with Dirichlet boundary at x = 0 and Neumann
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boundary as x and y approach Xmax and Ymax respectively. The boundary condition at

y = 0 is not of a standard type [40]. We refer to Equation(6.10) together with the initial and

boundary conditions (6.11)-(6.15) as an initial/boundary-value problem [30]. The classical

conditions under which the initial/boundary value problem has a unique solution are given

in [34]. These conditions are not satisfied by the PDE (6.10) on the unbounded spatial

domain, in particular uniform ellipticity fails.

Recall that we had imposed the condition 2κθ > γ2 on the model parameters. This

imposes that the boundary y = 0 in not hit. The paper [43] gives sufficient conditions on

the coefficients of the underlying SDEs under which the probabilistic solution of the option

price is the unique classical solution of the option pricing PDE with an initial condition of

type (6.11). For the Heston model they show that under the condition 2κθ > γ2 (so that

the process Yt stays away from zero with probability one) their sufficiency conditions are

satisfied and there is a unique classical solution of the initial/boundary (6.10)-(6.15) value

problem given after a transformation of time by

f(x, y, t) = e−r(TM−t)Et,x,y[Φ(XTM
)], (6.16)

where Et,x,y[ . ] = E[ . |Xt = x, Yt = y] and the expectation is with respect to the following

dynamics of (Xt, Yt)

dXt = rXtdt +
√

YtXtdW1(t), Xt = x, (6.17)

dYt = κ((θ − Yt) − λγ
√

Yt)dt + γ
√

YtdW2(t), Yt = y, (6.18)

where W1, W2 are standard Brownian motions with E[dW1(t)dW2(t)] = ρdt. The formula

(6.16) is called the risk neutral valuation of the option price (see [42] for the theory of

risk neutral option pricing). Since the joint density of (Xt, Yt) under the new dynamics
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(6.17)-(6.18) is not known we do not have a closed form solution of the option price from

its probabilistic representation. Therefore we will compute the option price by solving the

initial/boundary value problem numerically.

We note that the SDE satisfied by LSt = log(Xt) when Xt satisfies (6.17) is obtained by

an application of Ito’s lemma (6.6),

dLSt = (r − 1

2
Yt)dt +

√

YtdW1(t). (6.19)

6.2.3 Estimation of the market price of volatility risk λ

We need an estimate of λ in order to solve the pricing PDE (6.10). In order to avoid

arbitrage possibilities in the market, the value of λ is determined from one benchmark asset

and used to price all other assets [13]. The value of λ depends in a non-trivial way on

various economic factors prevalent in the market such as liquidity concerns, risk aversion

and the utility preferences of investors [13]. Therefore, the problem of determining λ is not

a theoretical one but an empirical one. For equity options [54] presents evidence of non-zero

market price of volatility risk. Among the existing literature on this subject, [33] uses and

estimates a constant λ computed from observed option prices.

We give below a methodology to estimate the market price of volatility risk from options

data. Our objective is to get a reasonable estimate of λ such that the theoretical option

price computed from the pricing PDE (6.10) is close to the true option price. We use a

Black-Scholes approximation of the option price to compute λ.

Definition 6.2.3. The value of an option, F = F (St, t) in the Black-Scholes model satisfies

the PDE

∂F

∂t
+ rs

∂F

∂x
+

1

2
s2σ2 ∂2F

∂s2
− rF = 0, (6.20)
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where the dynamics of the underlying asset price St is given by,

dSt = µF Stdt + σStdWt. (6.21)

Definition 6.2.4. Let σBS be the Black-Scholes Implied Volatility corresponding to the

observed price OPT of an option on the asset S at time t (with expiration T1 and strike

price K1) in the market. Then by definition for σ = σBS the theoretical solution of the

Black-Scholes PDE (6.20) is equal to OPT . Note that the implied volatility σBS is unique

by the inverse function theorem because the Black-Scholes option price is a strictly increasing

function of volatility [15].

We describe below as an algorithm the estimation of λ at any time t < TM .

(i) Let F = F (Xt, t, σ) be the observed price of an option at a fixed time t in the market

with strike K and maturity time TM . Let σBS denote the Black-Scholes implied

volatility of this option at time t. Then by definition F satisfies:

∂F

∂t
+ rx

∂F

∂x
+

1

2
x2σ2

BS

∂2F

∂x2
− rF = 0, (6.22)

together with the boundary condition F (XTM
, TM , σ) = (XTM

− K)+. The solution

for the PDE (6.22) is given by [13],

F (t, x, σBS) = xN(d1(t, x, σBS)) − e−r(TM−t)KN(d2(t, x, σBS)). (6.23)

where N is the cumulative distribution of a standard Gaussian random variable and

d1(t, x, σBS) =
1

σBS

√
TM − t

{

log(
x

K
) + (r +

1

2
σ2

BS)(TM − t)

}

,

d2(t, x, σBS) = d1(t, x, σBS) − σBS

√

TM − t.
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(ii) We want to estimate λt so that the solution of the option pricing PDE (6.8)-(6.9) is

close to Ft. Using (6.22), this implies that we need to determine λt so that F satisfies

the following PDE,

[κ(θ − y)− λt
√

yγ]
∂F

∂y
+

1

2
x2(y − σ2

BS)
∂2F

∂x2
+

1

2
γ2y

∂2F

∂y2
+ ργxy

∂2F

∂x∂y
= 0, (6.24)

We assume that in a neighborhood of σBS , the price of the option F is well approxi-

mated by the Black-Scholes formula, i.e.,

F (x, y, t) = xN(d1(x, y, t)) − e−r(TM−t)KN(d2(x, y, t)). (6.25)

for y in a small neighborhood of σBS .

(iii) We compute now the partial derivatives of F in this neighborhood and then set σBS =

y. We solve the resulting equation to get

λt =

[

κ(θ − σ2
BS) + γ2

4 (d2
1 − d1σBS

√

(TM − t) − 1) + ργσ2
BS(1 − d1/σBS

√

(TM − t))
]

γσBS
.

(6.26)

Therefore, our choice of λt is such that, given an option, and its Black-Scholes implied

volatility, σBS , the solution of the option price under the SV model is equal to the price

of the option under the Black-Scholes model at y = σBS . We have applied this method to

estimate λ using options written on the S&P 500 index. We report results for this method

and compare it to a best fit method in chapter 8.
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Chapter 7

Option price sensitivity to errors in

stochastic modeling

7.1 Impact of model estimation errors on option price

We compute a bound on the error in the option price generated by random errors on

the parameters κ, θ, γ and ρ of the joint Heston SDEs. These random errors are due to

the estimation of the model parameters from observed data on asset price and volatility.

In chapter 3 we described the estimation of parameters using a constrained approximate

maximum likelihood approach. The estimation error for a parameter will be defined as the

L2 norm of the difference between the estimator and the true parameter value.

The option price g(x, y, t) as a solution of the PDE (6.10), depends on all the model

parameters except µ. We will use both an extended and a shorthand notation for g, defined

by

g(x, y, t;H,λ) = g(H) = g(x, y, t),
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where H = (Hi)
4
i=1 is the vector,

H1 = κ, H2 = θ, H3 = γ, H4 = ρ.

It can be proved that g(H) is a smooth function of the parameter vector H in the domain

CH defined above by Equation (6.5). We will sketch a proof for this in section 7.4.

7.2 Confidence neighborhood of estimators

Let P be the true but unknown value of the parameter vector H. We expect P to be in

a neighborhood of the parameter estimator Q = P̂N , where N is a fixed number of daily

observations of the pair (asset price, volatility) used to compute Q = P̂N . Recall that

the estimators κ̂, θ̂, γ̂ and ρ̂ also depend on the value of the time T between consecutive

observations. For the sensitivity study presented, T will be a fixed suitably small value.

For all i = 1, 2, 3, 4 define the partial derivatives of the option price g(P ) at P by

Di,P = Di(g)(x, y, t;H,λ) =
∂g

∂Hi
(x, y, t;H,λ)

and denote by DP the corresponding gradient of g(P ), viewed as a column vector in R
4,

DP =



















D1(g)

D2(g)

D3(g)

D4(g)



















=



















∂g
∂H1

∂g
∂H2

∂g
∂H3

∂g
∂H4



















,

where we have suppressed the dependence of the partial derivatives on (x, y, t;H,λ). A

first-order Taylor expansion of g(H) at H = P under the assumption that the second-order
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partial derivatives of g(H) with respect to the parameters κ, θ, γ and ρ are continuous yields

g(Q) ≃ g(P ) +

4
∑

i=1

Di,P .(Qi − Pi). (7.1)

The covariance matrix of the estimator Q denoted by CovQ,P = ΣN = (σi,j)
4
i,j=1 is defined

as follows

σ2
i,i = E[(Qi − Pi)

2], i = 1, 2, 3, 4, (7.2)

σi,j = E[(Qi − Pi)(Qj − Pj)], i, j = 1, 2, 3, 4; i 6= j. (7.3)

Note that each element of the matrix CovQ,P depends on N , but we suppress this de-

pendence for brevity. We verified numerically in chapter 5, that (for fixed small T ), the

covariance matrix NCovQ,P can be approximated for a reasonable range of N values by

L(P ), where L(P ) is a deterministic symmetric non negative matrix that does not depend

on N but only on the true parameter values P . We estimated empirically by intensive

simulations the matrix L(P ) for the parameter vector P corresponding to the 2006 S&P

500 model HSP (5.6).

The option price error induced by errors in parameter estimation has a mean quadratic

error which depends on P and is defined by

δ(P )2 = E[(g(Q) − g(P ))2]. (7.4)

Squaring both sides of (7.1) and taking expected values we get,

E[(g(Q)− g(P ))2 ] ≃
4

∑

i=1

D2
i,P .E[(Qi −Pi)

2]+
∑

i6=j

Di,P Dj,P .E[(Qi −Pi)(Qj −Pj)]. (7.5)
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The expected values in the preceding equations are taken with respect to the underlying

probability measure Pr. We observed in chapter 5, that for our estimators the empirical

covariance terms were negligible for the N values considered there. The numerical results

in chapter 5 showed that even for small values of N the covariance between that parameters

κ̂, θ̂, γ̂ and ρ̂ were negligible. Therefore the option price error due to estimation errors is

simply the sum of the squared L2 errors of each of the four parameters. For large N , the

option price error is approximated by the following formula,

δ(P )2 ≃ 1

N
D∗

P L(P )DP . (7.6)

The true P is unknown, but given the estimated Q, we expect that with high probability,

the unknown P will belong to a “confidence neighborhood” of Q, denoted B(Q) ⊂ CH ⊂ R
4.

This was illustrated in details, for large N , and very small values of T , for eight different

Heston models in chapter (5). For instance, we observed from the numerical examples that

the estimators, θ̂, γ̂ and ρ̂ of the 2006 S&P model were within 5% of the true parameter

value with probability greater that 90% at T = 1/1000 and N ≥ 20000.

When P varies within B(Q), the correct option price g(P ) and the option price g(Q)

computed from the estimated Heston model differ by a random error of size |g(Q) − g(P )|,

which has a deterministic L2 error size δ(P ) computed by (7.6). To evaluate the sensitivity

of the computed option price to errors in the estimated parameter values Q, we need to

compute the maximum of δ(P ) which we denote by ε(Q) for arbitrary P ∈ B(Q). A typical

“best” choice of B(Q) would be the ellipsoid centered at Q and defined by the covariance

matrix ΣN . For large N , ΣN is equivalent to (1/N)L(P ), and the off diagonal entries of the

covariance matrix (1/N)L(P ) are negligible. This was show for the model HSP in chapter

89



5. Hence, for practical applications, we define the confidence neighborhood B(Q) by

B(Q) = B1 × B2 × B3 × B4,

with

Bi = [Qi −
1√
N

√

L(P )i,i, Qi +
1√
N

√

L(P )i,i],

where 1√
N

√

L(P )i,i is an estimate of the standard deviation σi,i of Qi for i = 1, 2, 3, 4.

To improve the level of confidence for the neighborhood B(Q) one may clearly double the

length of the intervals Bi.

7.3 Sensitivity of option price to parametric estimation er-

rors

We then define the sensitivity of the option price g(H) with respect to each parameter Hi

at the estimated value Qi naturally as the product |Di,P |
√

E[(Qi − Pi)2] of the absolute

value of the partial derivative Di,P of g(H) at P with the L2 error of Hi. With this more

explicit notation, the following 4 sensitivities for the option price can be expressed as

Senκ = |D1,P |σ1,1, Senθ = |D2,P |σ2,2,

Senγ = |D3,P |σ3,3, Senρ = |D4,P |σ4,4,

(7.7)

where σi,i ≈ 1√
N

√

L(P )i,i, i = 1, 2, 3, 4. We then proceed to compute the partial derivatives

of the option price with respect to the model parameters.

90



7.4 Differentiability of the option price with respect to model

parameters

Before computing sensitivities of the option price to parameter estimation errors, we review

the question of existence, uniqueness, and differentiability (with respect to parameters) for

the solution of the parabolic PDE and boundary value problem defining the option price.

The extensive literature on parabolic PDEs does not seem to cover explicitly the spe-

cific initial/boundary value problem that we have here; see for instance the semi-group

method [76] or the weak sense solutions approach [68]. So we sketch here a proof for the

differentiability of the option price with respect to its parameters.

The option price is a function of the logarithm lsp of the stock price, denoted by

h(lsp, y, t) = f(exp(lsp), y, t),

where t ∈ (0, TM ), lsp ∈ (−∞,∞), y ∈ (0,∞).

Let Zt = (LSt, Yt). We will also use the shorthand notations z = (lsp, y) and h(lsp, y, t) =

h(z, t). The equivalent probabilistic expression for the option price at time t from (6.16)

can be written in terms of the logarithm of the stock price,

h(z, t) = e−r(TM−t)E(Φ(ZTM
)|Zt = z), (7.8)

where z = (lsp, y). Recall the definition of the payoff function in terms of lsp,

Φ(z) = Φ(lsp, y) = max(elsp − K, 0).
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The conditional expectation of the random variable Φ(ZTM
) given Zt = z in (7.8) is com-

puted with respect to the dynamics of asset price and volatility given in (6.17)-(6.18). Let

u(t) = e−r(TM−t).

Then,

h(z, t) = u(t)E(Φ(ZTM
)|Zt = z) and

h(z, t) = u(t)

∫

Ω
q(t, z;TM , LS)Φ(Z)dZ, (7.9)

where q(t, z;TM , LS) is the conditional density of the random variable LSTM
given Zt = z.

Define the set D to be the spatial domain,

D = R × R
+.

The transition density function q(t, z;TM , LS) is known to satisfy the Kolmogorov forward

equation as a function of TM and LS [39],

(
∂

∂T
− ∆)q = 0 on (t,∞) ×D, (7.10)

with

lim
T→t

q(t, z;T,LS) = δz,

and

∆ = − < b,∇ > +
1

2
tr(Hσσ∗),
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where b is the column vector of drift coefficients and σ is the column vector of diffusion

coefficients of (6.19) and (6.18). The gradient vector is denoted by ∇ and the trace of the

matrix Hσσ∗ is given by tr(Hσσ∗) where H is the Hessian matrix. In Equation(7.10) above

we have omitted the dependence of q on the state and time variables.

It is well known that the solution q of the forward equation is a smooth function of the

parameters in (7.10)([34],[46]). To compute the derivative of the option price with respect

to the model parameters we need to differentiate with respect to the parameters under the

integral sign on the right hand side of equation (7.9). Since the function Φ does not depend

explicitly on the parameters, one only needs to verify that the derivatives of q with respect

to the parameters are integrable in the domain D. This requires deriving good upper bounds

on the derivatives at (lsp, y, t) when y tends to zero, which can be done by applications of

the maximum principle (see [30]).

7.5 Analytical solution of option pricing for Heston model

In the context of differentiability we give below the expression of the option price h in a

semi-closed form from Heston’s paper [44],

h(lsp, y, t) = elspP1 + Ke−r(TM−t)P2,

where P1 and P2 are probabilities that are expressed as the inverse of their characteristic

functions,

Pj(lsp, y, TM ; log(K)) =
1

2
+

1

π

∫ ∞

0
Re

[

e−iϕ log(K)cj(lsp, y, TM ;ϕ)

iϕ

]

dϕ. (7.11)
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The characteristic functions cj are of the following form

cj(lsp, y, t;ϕ) = eCj(TM−t;ϕ)+Dj(TM−t,ϕ)y+i lspϕ,

where

Cj(τ, ϕ) = rϕiτ +
a

γ2

{

(bj − ργϕi + dj)τ − 2 log

[

1 − gje
djτ

1 − gj

]}

,

Dj(τ, ϕ) =
bj − ργϕi + dj

γ2

[

1 − edjτ

1 − gjedjτ

]

,

gj =
bj − ργϕi + dj

bj − ργϕi − dj
,

dj =
√

(ργϕi − bj)2 − γ2(2ujϕi − ϕ2),

b1 = κ + λ − ργ, b2 = κ + λ, a = κθ, u1 = .5, u2 = −.5.

The derivatives of the characteristic functions cj with respect to the parameters κ, θ, γ

and ρ exists on the natural domain of the parameters CH . It can be shown that the

resulting integrand in (7.11) decays fast enough for the integrals corresponding to the partial

derivatives to exist [51].

7.6 Sensitivity equations

We now include in our study the sensitivity of the option price with respect to λ also. Define

the vector p ∈ R
5 by pi = Hi for i = 1, 2, . . . , 4 and p5 = λ. For all i = 1, 2, . . . , 5 define,

Di(g)(x, y, t;p) =
∂g

∂pi
(x, y, t;p).

94



Differentiating equation (6.10) with respect to each of the parameters pi the sensitivity

PDEs take the following form,

(
∂

∂t
− L)Di = Gi(x, y, t;p) on UT , (7.12)

with initial condition

Di(x, y, 0;p) = 0 on UB × {t = 0}. (7.13)

We see that the sensitivity equations are two-dimensional non-homogeneous parabolic par-

tial differential equations where the right-hand side is given by,

G1(x, y, t;p) = (θ − y)
∂g

∂y
,

G2(x, y, t;p) = κ
∂g

∂y
,

G3(x, y, t;p) = γy
∂2g

∂y2
+ ρxy

∂2g

∂x∂y
− λ

√
y
∂g

∂y
,

G4(t, x, y;p) = γxy
∂2g

∂x∂y
,

G5(t, x, y;p) = −γ
√

y
∂g

∂y
.

The boundary conditions for the sensitivity PDEs are,

Di = 0, on {x = 0} × (0, Ymax) × (0, TM ], with

lim
x→Xmax

∂Di

∂x
= 0,∀y, t, and

lim
y→Ymax

∂Di

∂y
= 0,∀x, t
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for all i = 1, 2, . . . , 5. For the boundary y = 0 we differentiate Equation(6.15) with respect

to each of the parameters to obtain,

(
∂

∂t
− rx

∂

∂x
− κθ

∂

∂y
+ r)Di = Fi(x, y, t;p), (7.14)

where

F1 = θ
∂g

∂y
, F2 = κ

∂g

∂y

and Fi = 0 for i = 3, 4, 5. We do not have a sensitivity equation corresponding to the data r

because r is a known deterministic constant for our purpose and which we do not estimate

from the asset price data.

In the next chapter we present the numerical method that is employed to solve the 6 PDEs

for the option price and its derivatives with respect to the five parameters.We then present

detailed numerical results to evaluate option pricing errors and sensitivity to parameters.

96



Chapter 8

Option price sensitivity :

Numerical study

8.1 Numerical implementation

We solve the option pricing partial differential equations numerically by discretizing the

operator L in (6.12). We use standard schemes for discretization of the option pricing

equations for which stability of option price solutions has been shown. We apply a uniform

space-time finite difference grid on the computational domain UTM
where

UTM
= UB × (0, TM ],

and

UB = (0,Xmax) × (0, Ymax).
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Let the number of grid steps be m,n, and s in the x, y, and t directions respectively. The

grid steps in each direction are denoted

∆x =
Xmax

m
; ∆y =

Ymax

n
; ∆t =

TM

s
.

We use superscripts to denote the time variable and subscripts to denote the spatial variable

at the grid point values,

gk
ij = g(xi, yj , tk) = g(i∆x, j∆y, k∆t),

where i = 0, 1, 2, . . . ,m; j = 0, 1, 2, . . . , n and k = 0, 1, 2, . . . , s.

8.1.1 Space discretization

All partial derivatives in the Heston PDE have variable coefficients. In some parts of

the domain the first-order spatial derivative terms dominate the second-order terms. The

discretization of these spatial derivatives has been considered in [62, 49]. Let A denote

the resulting discretization matrix. If the matrix A is strictly diagonally dominant with

positive diagonal elements and non-positive off diagonal elements (M-matrix) it is known

to have good stability properties [71]. We apply the space discretization scheme used in

[49] for American options to our European option pricing. We observe that for American

options the pricing equation (6.10) is replaced by an inequality but the differential operator

L remains unchanged. The properties of the resulting discretization matrix A are studied

in [49]. In general the matrix A is not an M-matrix but as remarked in [49], with sufficiently

small time steps, the resulting matrix is diagonally dominant. The paper [49] proposes a

modified seven point discretization scheme where they artificially increase the size of the

second order derivative terms so as to obtain an M-matrix. The discretization scheme with

added terms is no longer second-order accurate.
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We use a second-order accurate finite difference scheme for the space derivatives. We use

the classical central difference scheme for the first-order derivatives and the usual three point

scheme for the second-order derivatives. The finite difference operators for the first-order

derivatives are,

δxgk
i,j =

gk
i+1,j − gk

i−1,j

2∆x
, δyg

k
i,j =

gk
i,j+1 − gk

i,j−1

2∆y
.

The finite difference operators for the second-order derivatives are,

δ2
xgk

i,j =
gk
i+1,j − 2gk

i,j + gk
i−1,j

∆x2
, δ2

yg
k
i,j =

gk
i,j+1 − 2gk

i,j + gk
i,j−1

∆y2
.

At the boundary j = 0 an upwind discretization scheme is used [41] for the derivative in

the y direction in (6.15) which reads,

δyg
k
i0 =

−3gk
i0 + 4gk

i1 − gk
i2

2∆y
.

The mixed derivatives are discretized using the seven point stencil described in [49],

δxyg
k
ij =

1

2∆x∆y
[gk

i+1,j+1 − 2gk
ij + gk

i−1,j−1] −
∆x

2∆y
[
gk
i+1,j − 2gk

i,j + gk
i−1,j

∆x2
] − . . .

∆y

2∆x
[
gk
i,j+1 − 2gk

i,j + gk
i,j−1

∆y2
].

We handle the Neumann boundary conditions (6.13) and (6.14) in the same way as described

in [49]. The space discretization leads to a semi-discrete equation,

dg

dt
+ Ag = b,

where A is an m(n + 1) × m(n + 1) matrix and b is a column vector of length m(n + 1).

The vector g of length m(n+1) is the option price at the grid points. The vector b consists

99



of terms due to the Neumann boundary condition in the x direction and does not depend

on t.

8.1.2 Time discretization

For time discretization we model similar to [62], the so called Backward Difference Formula,

BDF2 scheme. This is an implicit scheme with second-order accuracy [62]. The stability of

time discretization schemes is considered in [49] and [62] among others. At time k∆t the

BDF2 scheme reads,

3gk+1 − 4gk + gk−1

2∆t
+ Agk+1 = b,

for k = 1, 2, . . . , l − 1. The favorable properties of the BDF2 scheme are considered in [62].

At each iterate of the BDF2 scheme we require the value of the last two iterates. As is

typical, we obtain the first iterate using an Implicit Euler scheme [41]. That is, given g0

(the initial value), we obtain g1 using an implicit Euler scheme,

g1 − g0

∆t
+ Ag1 = b.

We have verified numerically that this choice of space-time discretization of the initial/boundary-

value problem gives us stable solutions for the option price at moderate grid sizes. At each

time step we solve the following system of linear equation,

(I +
2

3
∆tA)gk+1 =

4

3
gk − 1

3
gk−1 + ∆tb, (8.1)

where I is an m(n + 1)×m(n + 1) identity matrix. We solve this system of equations using

an LU decomposition.

After we obtain the option price at the discrete grid points, we solve the sensitivity

100



equations (7.12). The right-hand side of the sensitivity equations (7.12) is approximated

using the central difference scheme for the first derivatives, the 3-point stencil for the second

derivatives and the 7 point stencil for the mixed derivatives. We solve the sensitivity

equations on the same grid that we used for the option price and use the same space-time

discretization to discretize the sensitivity equations. We verify empirically that the scheme

for the solution of the sensitivity equations converges.

8.2 Numerical study

8.2.1 Benchmark models

We present numerical results to study the impact of estimation error on option price for

the following four Heston models from the 8 benchmark models presented in chapter 5.

Note that Model1 is the estimated Heston model corresponding to the 2006 S&P 500 data.

κ θ γ ρ

Model1 16.6 .017 .28 -.54

Model2 16.6 .017 .1 -.54

Model3 25 .017 .28 -.54

Model4 25 .017 .1 -.54

Table 8.1: Benchmark Heston models

For our study we will fix these four models as the true unknown models. We will fix the

number of observations from which the estimators are observed to N = 252. We will obtain

estimates for these four models using the estimation method described in chapter 3 given a

set of N = 252 observations. The estimation error will be approximated by the square root

of the diagonal terms of the matrix L(P )/252, where the asymptotic variance covariance

matrix L(P ) for the 2006 S&P 500 parameters was obtained in chapter 5. We will then
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obtain the matrix L(P ) corresponding to each model empirically by extensively simulating

large number of trajectories each for reasonably large observation time. The estimation

error for parameter Pi will then be approximated by

√

L(P )i,i

252 . To provide examples of

practically usable sensitivity values, all displayed sensitivities are computed for N = 252.

For each of the four models in Table 8.1, we will study the impact of estimation errors

on four distinct options. We pick options on the S&P 500 index for strike prices that were

actively traded in the financial market during the first quarter of 2007.

Strike Price : K Time to maturity (days)

O1 1380 63

O2 1380 126

O3 1440 63

O4 1440 126

Table 8.2: Benchmark Option models

We have assumed in order to be consistent with practice, that the time step between

daily observations is T = 1/252 so that the time to maturity TM is equal to TM = .25 for

63 days and TM = .5 for 126 days.

8.2.2 The ranges of (SPX,VIX) data

To present our sensitivity results within a realistic range, we observe the SPX and VIX daily

values for the first quarter of 2007. The SPX index values during this period are between

1370 and 1460. The corresponding VIX values are between 10 % and 20 %. We display

the dependence of option price sensitivities on asset price and volatility within these two

realistic ranges. In this period, the median SPX index value is 1426, and the median VIX

index value is 11%. In order to facilitate a comparative study of the different options we
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plot the option price for fixed volatility as a function of the ratio s = log(x/K) where x is

the asset price and K is the strike price of the option.

8.2.3 Model identification

The unknown parameter vector P for each model in Table 8.1 is estimated using the con-

strained approximate maximum likelihood method described in chapter 3 from N = 252

observations. We present in Table 8.3 the estimated value Q for each of the four models

estimated from N = 252 observations with time T = 1/252 between consecutive observa-

tions.

κ̂ θ̂ γ̂ ρ̂

Model1 19 .02 .28 -.55

Model2 14 .016 .09 -.44

Model3 18.74 .018 .25 -.55

Model4 25 .017 .09 -.53

Table 8.3: Estimated Heston models for N = 252 observations

The error in the estimator Qi is computed by

√

L(P )i,i

N for N = 252 where L(P ) is the

asymptotic variance-covariance matrix of the estimators and depends on the true parameter

value P . The numerical implementation to obtain L(P ) was discussed in chapter 5. We

simulate 1000 trajectories of the observations for the model associated to P , with N ranging

from 500 to 15246. We compute the empirical variance-covariance matrix ΣN over the 1000

trajectories. We observe from the numerical results of chapter 5 that for reasonably large

N , NΣN converges to a deterministic matrix. We take this limit as our estimate of the

matrix L(P ). We observe that the off-diagonal entries of the matrix L(P ) are negligible.

We report the value of the estimation error
√

L(P )i,i/252 for each of the four models below

in Table 8.4,
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κ̂ θ̂ γ̂ ρ̂

Model1 5.68 .002 .012 .06
Model2 6 .001 .005 .06
Model3 7 .002 .012 .06
Model4 7 .001 .004 .06

Table 8.4: Estimation error,
√

L(P )i,i/252

8.2.4 Estimation of λ

We obtain an estimate of λ using the method described in section 6.2.3. We pick an option

traded actively between the 22 days trading period of Jan 03 2007 to Feb 02 2007 with

strike price K = 1425 and maturity date Feb 17 2007. We observe the prices at which

this option was traded during the period from Jan 03 2007 to Feb 02 2007 and compute

the Black-Scholes implied volatility using the inbuilt Matlab function impvbybls for each

day on which the trade occurred. In order to use simultaneous asset price and option price

data we consider the closing asset price for each day, and the average of the closing option

bid and ask price for each day. We then use the estimation formula (6.26) with parameter

values estimated from the 2006 S&P 500 data to get a value of λt for each day during the

observation period. We set the value of the risk free rate of return at r = .01 in (6.26). We

compute the average of λt during this period of 22 days as our estimate of λ.

We validate this value by simultaneously comparing the mean squared error in time

between predicted and actual option prices for a range of different λ values. We report

concrete results here in Fig. 8.1 for one specific European option EOPt with strike price

1430 and maturity date Feb 17 2007, observed daily from Jan 03 2007 to Feb 02 2007 .

To compute the theoretical option price we used the estimated parameter values for the

2006 S&P 500 data set given in the first row of Table 8.1. Using the estimated λ = 2, we
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Figure 8.1: Predicted and observed option price of an European call option with strike
price 1430 for λ = 2

solved the option price PDE (6.10) to compute dynamic estimates ˆEOPt of the option price

EOPt, and we derived the mean value 0.66 and standard deviation 0.96 of the prediction

error ˆEOPt−EOPt for the option price, which had a mean value of 15.63 during this period.

Fig.8.1 represents the computed and market price of this European option EOPt.

The results on the sensitivity of the option price with respect to λ are presented in section

8.2.7 for λ = 2. We conclude that for options with strike price close to the asset price (near

the money options) the relative change in option price due to small changes in λ is less than

5% (see Table 8.6). Hence we chose and estimated a constant λ for this study. To study,

in the next sections, how sensitive the option price is to the model parameters H and the

impact of model estimation errors on the option price, we fix the value λ = 2 just estimated

from market data.
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8.2.5 Computational domain

Numerically we solve for the option price viewed at each time t as a function h(lsp, y, t)

of t, the log of the stock price (lsp = log(x)), and of the squared volatility y of the stock

price x. This change of variable gives a transformed initial/boundary value problem that

we solve on the following computational domain for [lsp, y, t], where

[lsp, y, t] ∈ (7, 8) × (0, 1) × (0, 0.25),

for O1 and O3 and

[lsp, y, t] ∈ (7, 8) × (0, 1) × (0, 0.5),

for O2 and O4. This domain was chosen after verifying carefully the robustness of the

solution when the domain boundary lsp = 7 is reduced to lsp = 5. Since the time increment

between two consecutive daily observations is set to 1/252 (by convention), the maturity

date TM = .25 indicates that we study an option with three months to maturity and TM = .5

indicates that we study an option with six months to maturity. We set the risk free rate

of return at value r = .01 and the market price of volatility risk λ at the estimated value

λ = 2. We use the following grid size for our computation,

∆lsp = .016, ∆y = .006, ∆t = .004,

where ∆lsp is the grid size for the space variable lsp computed as the “lsp” interval length

(equal to 1 here) divided by the number of grid meshes in the lsp direction. Table 8.5 displays

the CPU-times in seconds on a standard PC required for solving the partial differential

equations for the option price PDE and all 5 sensitivity PDEs. The LU decomposition is

performed only once for each solution. The key computational cost is the LU decomposition
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Grid size
∆l ∆y ∆t CPU-time (secs)

(m × n × s)

226800 1/60 1/60 1/252 95
308700 1/70 1/70 1/252 240

Table 8.5: CPU time for option price & derivatives

and backward substitution for a matrix of size m(n + 1) × m(n + 1) where m and n are

the grid sizes in the lsp and the y direction. The CPU-times increase more rapidly as we

increase the spatial grid size m(n + 1) than when we increase the grid size in time. For

coarser grids the CPU-times are much lower but the solution is not accurate. We performed

extensive numerical simulations to verify that the solutions converge and that the boundary

conditions are satisfied.

8.2.6 Impact of parameter estimation errors on option pricing

Using the method described in section 7.2 we compute the impact of parameter estimation

errors on the option price through the formula,

ε(Q) = max
P∈B(Q)

δ(P ),

for each Q in Table 8.3 where the L2-error δ(P ) is computed by Equation(7.6). The neigh-

borhood B(Q) is the product of the 4 intervals Bi = [Qi − σi(P ), Qi + σi(P )], i = 1, 2, 3, 4

where

σ1(P ) =

√

L(P )1,1

252
, σ2(P ) =

√

L(P )2,2

252
, σ3(P ) =

√

L(P )3,3

252
, σ4(P ) =

√

L(P )4,4

252

are the estimates for standard deviation of κ, θ, γ and ρ corresponding to the model with

true parameters P .

We discretize the set B(Q) using three grid points for each parameter, which gives us a
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grid of 34 = 81 vectors. At each one of these 81 grid vectors P we compute the four partial

derivatives of the option price with respect to the four key model parameters, in order to

compute the L2-error δ(P ). We then take the maximum of these 81 values of δ(P ) to obtain

the option pricing error ε(Q).

We first plot the price of the four benchmark options under the four estimated models in

Table 8.3. The graphs in Fig. 8.2 show the price of the options O1, O2 and the graphs in

Fig. 8.3 show the price of the options O3 and O4 respectively. In each graph we plot the

option price as a function of the asset price for volatility fixed at 11%. The abscissa is the

ratio s = log(x/K) where x is the asset price and K the strike price of the option. The

option price is displayed for s between −.05 to .05, which corresponds to x between 1310

to 1450 for O1 and O2 and x between 1360 and 1510 for O3 and O4.
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Figure 8.2: Price of O1(top) and O2(bottom) for the four
Heston models for volatility = 11%
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Figure 8.3: Price of O3(top) and O4(bottom) for the four
Heston models for volatility = 11%
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In Fig. 8.4 and 8.5 we illustrate the impact of parameter estimation errors on the pricing

of the four options respectively from Table 8.2. In each figure we plot the option pricing

errors for the four underlying Heston models in Table 8.1. We plot for each case the error

in the option price due to estimation error defined by the bound ε(Q). In Fig. 8.4 and

Fig. 8.5 the errors are plotted as a function of the asset price. The abscissa is the ratio

s = log(x/K) where x is the asset price and K is the strike price of the option. We present

the results on an extended domain in order to see the impact of estimation errors on deep-

out-of-the money options (when strike price is much larger than the trading price of the

underlying asset) and deep-in-the money options (when strike price is much smaller than

the trading price of the underlying asset). The volatility value is fixed at 11%. The value of

s for which the estimation error results are displayed are between s = −.11 to s = .11 which

corresponds to asset price value x between 1230 and 1540 for O1 and O2 and x between

1280 and 1600 for O3 and O4.

We observe that the sensitivity is highest when the asset price is close to the strike price of

the option and decreases as the asset price goes away from the option strike. In other words

options that are close to the money are more sensitive to estimation errors than options

that are far from the money. We note here that for the Black-Scholes model, the derivative

of the option price with respect to the volatility parameter is indeed highest when the asset

price is equal to the strike price and decreases as the asset price goes away from the strike

price.

We also see by comparing the results between the four option models that options which

are farther from maturity are more sensitive to estimation errors as compared to options

which are closer to maturity. We observe that estimation impact is larger on Model1 and

Model3 with values between 2 to 5 for Model1 and 1.5 to 3 for Model3. We note that the

volatility γ of the squared volatility process is .28 for these two models and .1 for Model2

111



and Model4.

In Fig. 8.6 and Fig. 8.7 we display the option price together with the error ε(Q) added

to and subtracted from it. We display the option price for realistic values of asset price

for all four options for Model1 with volatility fixed at 11%. The solid blue line displays

the option price, while the two dotted red lines are the option price plus/minus the error

bound ε(Q). The abscissa is the ratio s = log(x/K) where x is the asset price and K the

strike price of the option. The option price is displayed for s between −.05 to .05, which

corresponds to x between 1310 to 1450 for O1 and O2 and x between 1360 and 1510 for O3

and O4.
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Figure 8.4: Estimation error impact on O1(top) and O2(bottom)
for the four Heston models for volatility = 11%
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Figure 8.5: Estimation error impact on O3(top) and O4(bottom)
for the four Heston models for volatility = 11%
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Figure 8.6: Option price +/- ε(Q) under Model1 for O1(top) and
O2(bottom) at volatility = 11%
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Figure 8.7: Option price +/- ε(Q) under Model1 for O3(top) and
O4(bottom) for volatility = 11%
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We next plot the individual sensitivity of the option price to each model parameter

namely κ, θ, γ and ρ. Let H = (κ, θ, γ, ρ). Recall that the sensitivity with respect to

parameter Hi, i = 1, 2, 3, 4, corresponding to a model with true parameter vector P is

estimated by |Di,Q|
√

σi,i(Q)/g(Q) where Q is an estimate of P , Di,Q is the partial derivative

of the option price g(Q) with respect to parameter Hi, and
√

σi,i(Q) is
√

L(P )i,i/252.

In Fig. 8.8, 8.9, 8.10, and 8.11 we illustrate the option price sensitivity with respect to

parameters κ, θ, γ and ρ respectively. In each figure we plot four subfigures for the four

benchmark option models. Each subfigure displays for a fixed option the sensitivity with

respect to a fixed parameter for the four Heston models. We plot the sensitivities as a

function of the asset price with volatility fixed at 11%. The abscissa is s = log(x/K) where

x is the asset price and K is the strike price of the option. The value of s for which the

estimation error results are displayed are between s = −.11 to s = .11 which corresponds

to asset price value x between 1230 and 1540 for O1 and O2 and x between 1280 and 1600

for O3 and O4. We observe that the sensitivities with respect to κ and θ are higher as

compared to γ and ρ.
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Figure 8.8: Sensitivity of the option price with respect to κ for volatility = 11%
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Figure 8.9: Sensitivity of the option price with respect to θ for volatility = 11%
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Figure 8.10: Sensitivity of the option price with respect to γ for volatility = 11%
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(b) O2
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(c) O3
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Figure 8.11: Sensitivity of the option price with respect to ρ for volatility = 11%
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We now plot for each case the relative pricing error ε(Q)/g(Q), where the bound ε(Q)

on the option pricing error is divided by the option price g(Q). In Fig. 8.12 and Fig. 8.13

the relative errors are plotted as a function of the asset price where the abscissa is the ratio

s = log(x/K) where x is the asset price. The volatility value is fixed at 11%. The value of s

for which the estimation error results are displayed are between s = −.11 to s = .11 which

corresponds to asset price value x between 1230 and 1540 for O1 and O2 and x between 1280

and 1600 for O3 and O4. The individual relative sensitivities are plotted in Fig.8.14, Fig.

8.15, Fig. 8.16 and 8.17. Since the call option price increases with s, the decrease in relative

errors as s increases does not say much. However we see that for at the money options, i.e,

when the the ratio s = x/K is close to zero, the relative sensitivity of the option price to

θ (Fig. 8.15) is between 5% to 10% while the sensitivity to κ (Fig. 8.14) is between 1% to

5%. The overall impact of estimation errors for close to the money options is between 8%

to 12% for the four benchmark options under the four models (Fig. 8.12-8.13).
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Figure 8.12: Relative estimation error impact on O1(top) and O2(bottom)
for the four Heston models for volatility = 11%
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Figure 8.13: Relative estimation error impact on O3(top) and O4(bottom)
for the four Heston models for volatility = 11%
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Figure 8.14: Relative sensitivity of option price with respect to κ for volatility = 11%
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Figure 8.15: Relative sensitivity of option price with respect to θ for volatility = 11%
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Figure 8.16: Relative sensitivity of option price with respect to γ for volatility = 11%
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Figure 8.17: Relative sensitivity of option price with respect to ρ for volatility = 11%
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Finally in Fig. 8.18, 8.19, 8.20, and 8.21 we plot the option price as a function of the

volatility variable with asset price fixed at 1360 for O1 and O2 and asset price fixed at 1420

for O3 and O4. The volatility range are for which the results are displayed is from 11%

to 22%. We plot the option price and impact of estimation error for the four options and

the four underlying models. The left graph in each figure is the option price and the graph

on the right is a display of the option price error as a function of volatility. Clearly, the

option price increases as a function of volatility. The option price errors seem to decrease

and then increase as the volatility increases. We see that the option price under Model1

has the highest impact of estimation errors as a function of volatility.
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Figure 8.18: Price (left) and impact of estimation error (right) on O1 as a function of
volatility for asset price = 1360
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Figure 8.19: Price (left) and impact of estimation error (right) on O2 as a function of
volatility for asset price = 1360
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Figure 8.20: Price (left) and impact of estimation error (right) on O3 as a function of
volatility for asset price = 1420
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Figure 8.21: Price (top) and impact of estimation error (bottom) on O4 as a function of
volatility for asset price = 1420
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Asset price Volatility Derivative Option price

1422 11% 1.55 29.90
1422 19% 1.64 35.74
1357 11% .96 5.65
1357 19% 1.07 9.29
1480 11% 1.30 67.43
1480 19% 1.45 72.35

Table 8.6: Absolute value of partial derivative of the option price with respect to λ
computed at λ = 2 for an SPX option with strike price 1430 and 3 months to maturity

8.2.7 Option price sensitivity to market price of volatility risk

We compute the derivative D5(g(Q)) = ∂λg(Q) of the option price with respect to the

market price of risk, to evaluate the option price sensitivity to errors on this unknown

market price λ. Table 8.6 presents |∂λg(Q)| at realistic levels of asset price and volatility

values. These derivatives are computed at the estimated model Q for an option with strike

price equal to 1430 and 3 months to maturity.

8.3 Conclusion

We have developed a method which combines consistent estimation of the underlying Heston

model parameters and of their variances and covariances, with the numerical solution of

six parabolic partial differential equations in R
2, in order to compute the impact of the

unavoidable estimation errors on the price of options.

We have shown that the estimators from our approximate maximum likelihood approach

are consistent and all available in closed forms. We have validated numerically the consis-

tency of the estimators and studied the small sample properties of the estimators for the

2006 S&P 500 daily data. For the computation of option price under the Heston model we

have developed and applied an optimal method to estimate the market price of volatility

risk from concrete options data.
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We have applied our approach to model the 2006 S&P 500 daily data by a Heston pair of

coupled SDEs, and to study the option price sensitivities of several European call options

based on this index. We have further applied our method to do a comparative study of a

group of eight benchmark Heston models and four option models each time for practical

values of N , the number of observations and T , the time between observations. The results

are coherent from a pragmatic point of view.
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Chapter 9

Technical annex - Joint parameter

estimation for Heston model

We compute the estimators κ, θ, γ, and ρ of the Heston model parameters from the approxi-

mate joint density of the two processes driving the Heston model and compare the accuracy

of these four estimators obtained from joint estimation to the accuracy of estimators from

the decoupled estimation method discussed in the chapter 3. The joint estimation requires

numerical optimization because the estimators obtained from solving first-order optimality

conditions cannot all be expressed explicitly in terms of the data only. We compare the

computation times of the two estimation procedures in section 9.2.
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9.1 Approximate log-likelihood based on Euler discretization

of joint model

We recall the joint dynamics under the Heston model of the asset price, Xt and the square

of asset price volatility, Yt,

dXt = µXtdt +
√

YtXtdZt (9.1)

dYt = κ(θ − Yt)dt + γ
√

YtdBt (9.2)

where the processes Z and B are standard Brownian motions with E[dZtdBt] = ρdt. The

joint density of the coupled SDEs for asset price and volatility is not known in closed form.

Similarly to our approach for the decoupled estimation method we discretize the Heston

model using the classical Euler [52] and then compute maximum likelihood estimators of

the discretized model. The convergence of the Euler discretization scheme for the Heston

model was discussed in chapter 3.

Let H = (κ, θ, γ, ρ, µ) denote the vector of model parameters. For the joint estimation we

will study only Case 1 described in the previous chapter because If Case 1 is not applicable

to our data, then we do not accept the estimated parameters, since a priori the model

parameters satisfy the strict constraints described below,

κ > 0, θ > 0, γ > 0, 0 < θ < 1, −1 ≤ ρ ≤ 1, 2κθ > γ2.

Define the feasible domain CH ⊂ R
5 by,

CH = {(κ, θ, γ, ρ, µ) | κ > 0, θ > 0, γ > 0, 0 < θ < 1, −1 ≤ ρ ≤ 1, 2κθ > γ2}.
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Define Us = XsT and Vs = YsT . Then from Proposition 3.3.1 we have,

dUs = TµUsds +
√

T
√

VsUsdZ1(s) (9.3)

dVs = Tκ(θ − Vs)ds + γ
√

TVsdB1(s) (9.4)

where Z1 and B1 are standard Brownian motions with correlation ρ.

9.1.1 Approximate log-likelihood function

Let Un = XnT and Vn = YnT , n = 0, 1, 2, . . . , N be the given discrete observations of

the asset price and square volatility respectively, where T is the time between consecutive

observations. The Euler Maruyama discretization of the SDEs (9.3) and (9.4) leads to the

following approximation,

Un+1 ≈ Un + TµUn +
√

T
√

Vn∆Z1(n), n = 0, 1, 2, . . . , N − 1, U0 = X0 = x0 (9.5)

Vn+1 ≈ Vn +Tκ(θ−Vn)+γ
√

T
√

Vn∆B1(n), n = 0, 1, 2, . . . , N −1, V0 = Y0 = y0 > 0

(9.6)

where

∆Z1(n) = Z1(n+1)−Z1(n), ∆B1(n) = B1(n+1)−B1(n), E[∆Z1(n)∆B1(n)] = ρT

and y0 > 0 is a given fixed constant. We will obtain an estimate of H such that the

discrete approximation (9.5)-(9.6) of the Heston model best fits the given data in a maximum

likelihood sense.
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Define,

Q(n) =







Q1(n)

Q2(n)






=







∆Z1(n)

γ∆B1(n)






≈









∆U(n) − TµUn√
T
√

VnUn
∆V (n) − Tκ(θ − V (n))√

T
√

Vn









,

Then for n = 0, 1, 2, . . . , N − 1, Q(n) is a bi-variate normal random variable with mean M

and variance-covariance matrix Σ given by,

M =







0

0






, Σ =







1 ργ

ργ γ2






.

The density function of Q(i) is given by

(2π)−1|Σ|−1/2e−
1

2
Q(i)′Σ−1Q(i),

where Q(i)′ denotes the transpose of Q(i) and |Σ| denotes the determinant of the matrix Σ.

The value of |Σ| is γ2(1− ρ2). From the Markov property of Un and Vn, it follows that the

approximate log-likelihood function L̃J with respect to the discrete dynamics (9.5)-(9.6) is

given up to a constant by

L̃J = − N ln(2π) − N

2
ln(γ2(1 − ρ2)) − 1

2

N−1
∑

n=0

(Q(i)′Σ−1Q(i)),

1

N
L̃J = − ln(2π) − 1

2
ln(γ2(1 − ρ2)) − 1

2Nγ2(1 − ρ2)

N−1
∑

n=0

(γ2Q2
1(n) − 2ργQ1(n)z2(n) + Q2

2(n)).

(9.7)

We equivalently minimize LJ = −L̃J to obtain the maximum likelihood estimators. The

log-likelihood L̃J is a differentiable function of the parameters. If the parameter estimators

are inside the open set CH the gradient of the log-likelihood function must be zero at the
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maximizer. This leads to the following first order conditions

∂LJ

∂µ
=

1

N

N−1
∑

n=0

((γ2Q1(n) − ργQ2(n))
∂Q1(n)

∂µ
) = 0, (9.8)

∂LJ

∂θ
=

1

N

N−1
∑

n=0

((Q2(n) − ργQ1(n))
∂Q2(n)

∂θ
) = 0, (9.9)

∂LJ

∂κ
=

1

N

N−1
∑

n=0

((Q2(n) − ργQ1(n))
∂Q2(n)

∂κ
) = 0, (9.10)

∂LJ

∂γ
= γ2(1 − ρ2) + ργ

1

N

N−1
∑

n=0

Q1(n)Q2(n) − 1

N

N−1
∑

n=0

Q2
2(n) = 0, (9.11)

∂LJ

∂ρ
= ρ(1 − ρ2)γ2 + γ(1 + ρ2)

1

N

N−1
∑

n=0

Q1(n)Q2(n) − ρ
N−1
∑

n=0

(γ2Q2
1 + Q2

2) = 0. (9.12)

9.1.2 Maximum likelihood estimators

The first-order conditions lead to non-linear algebraic equations in the 5 model parameters.

Closed form solutions in terms of the observations only cannot be obtained for all parameters

by solving simultaneously the first-order conditions. We will solve first for the estimator of

µ using approximate log-likelihood based on (9.1) only. The estimator of µ based on (9.1)

only was obtained in chapter 3. We recall µ̂ below,

µ̂ =
2

NTd

N−1
∑

n=0

∆Un

UnVn
. (9.13)

We solve the first order conditions (9.9)-(9.10) to obtain

κ̂ =
2
√

Tργζ − 2
N (VN − V0) + 2g

T (f − 4
d )

,

θ̂ =
g

κT
+

2

d
, where g =

−b − 2ργζ̃

d
,

(9.14)

138



where

ζ =
1

N

N−1
∑

n=0

Q1(n)
√

Vn, ζ̃ =
1

N

N−1
∑

n=0

Q1(n)√
Vn

,

and we recall the statistics b, d and f from chapter 3,

b = − 2

N

N−1
∑

n=0

∆Vn

Vn
, d =

2

N

N−1
∑

n=0

1

Vn
, f =

2

N

N−1
∑

n=0

Vn.

We see that the estimators for both κ and θ depend on µ through Q1(n). We replace µ by

µ̂ in Q1(n) to obtain Q̂1(n) and use it in (9.14) to obtain κ̂ and θ̂.

The first-order condition for ρ is cubic in ρ and depends on the parameters κ, θ and γ.

After replacing κ and θ by κ̂ and θ̂ respectively in the first-order condition for ρ we get a

non-linear expression in ρ and γ. Similarly we get a non-linear expression in ρ and γ from

the first order condition for γ. These two equations cannot be solved explicitly to obtain

γ̂ and ρ̂ in terms of the observations only. We therefore using numerical optimization to

obtain these two estimators. After obtaining γ̂ and ρ̂ numerically we use 9.14 to obtain

the estimators for κ and θ. In our numerical implementation we use the inbuilt Matlab

function fminsearch to minimize the log-likelihood as a function of ρ and γ. The fminsearch

algorithm uses the Nelder-Mead simplex algorithm as described in [53].

9.2 Numerical comparison of the two estimation methods

We compare the joint parameter estimation method described in this chapter to the de-

coupled estimation described in chapter 3. We compare the two estimation methods for

estimation accuracy and for the computation times. We fix the parameters of the Heston

model corresponding to the 2006 S&P 500 data as the target parameter values that we are
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trying to estimate. We recall below the value of the model parameters,

κ = 16.6, θ = .017, γ = .28, ρ = −.54. (9.15)

Since the parameter µ is estimated using the same likelihood function in both cases we do

not compare the results for µ.

To compare the accuracy between the two estimation methods we report the empirical

bias and error in the parameter estimates from a sample of 1000 trajectories. The estimation

error was defined in (5.3). We obtain an estimate of the error (5.3) by replacing the bias of

the estimator by the empirical bias and standard deviation of the estimator by the empirical

standard deviation computed over the 1000 trajectories. The empirical bias is computed as

the difference of the sample mean of the estimators and the target value in (9.15). We give

results for N = 252, N = 504 and N = 1008 with T = 1/252 in Table 9.1 and Table 9.2.

Joint Estimation Decoupled Estimation
N=252 N=504 N=1008 N=252 N=504 N=1008

κ̂ .39 .62 .9 3.6 1.3 .55

θ̂ .0004 .0001 .0001 .00002 .00004 0

γ̂ .01 .01 .01 .01 .01 . 01

ρ̂ .0023 .0007 .0009 .0023 .0001 .0006

Table 9.1: Comparison of absolute bias between the estimators from joint estimation and
decoupled estimation. Parameter values - κ = 16.6, θ = .017,

γ = .28, ρ = −.54, µ = .102, T = .004.

In Table 9.3 we report the CPU time in seconds to generate a sample of 1000 estimators

of the five Heston model parameters from N = 252, 504 and N = 1008 observations from
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Joint Estimation Decoupled Estimation
N=252 N=504 N=1008 N=252 N=504 N=1008

κ̂ 1.30 1.4 1.62 7.6 4.6 3.2

θ̂ .003 .002 .001 .002 .002 .001

γ̂ .012 .012 .010 .015 .012 . 010

ρ̂ .042 .023 .021 .058 .040 .030

Table 9.2: Comparison of standard deviation between the estimators from joint estimation
and decoupled estimation. Parameter values - κ = 16.6, θ = .017,

γ = .28, ρ = −.54, µ = .102, T = .004.

the two estimation methods. We conclude from these results that while the estimation

from joint density is numerically tenuous there is no real advantage in terms of estimation

accuracy.

Joint Estimation Decoupled Estimation

N = 252 22 .3

N = 504 83 .4

N = 1008 114 .4

Table 9.3: CPU-time (in seconds) for estimation of parameters from joint estimation and
decoupled estimation
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