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ABSTRACT

Statistical estimation of parameters in a carefully chosen stochastic model given a discrete

dataset is an important requirement in various scientific studies. The available data are

not generated from the stochastic model under investigation, but are typically observed

in nature, or come from the financial markets, or are numerically simulated from complex

dynamics. Therefore, there may be inherent differences between the data and the model.

For instance, they may not agree at different time scales, which renders estimation of

parameters difficult.

The thesis is presented in three parts. In part I (chapters 2, 3) of the thesis we introduce

the parametric estimation set-up by considering a particular example of a stochastic differ-

ential equation, namely, the Ornstein-Uhlenbeck process. The estimators for the drift and

diffusion coefficients are introduced with a detailed study of their convergence properties,

first in the benchmark case, where the direct observations from the underlying Ornstein-

Uhlenbeck process are assumed to be available. Most results pertaining to this direct ob-

servability case are classical, but are introduced as a benchmark for comparison with the

case of estimation under indirect observability. Indirect observability framework refers to the

scenario in which direct observations of the process that is being estimated are unavailable,

and the available observations are sampled from only an approximating process. Indirect

observability framework is, then, introduced with complete characterization of the optimal

subsampling schemes that guarantee asymptotic consistency of the parameter estimators,

in particular, for a specific approximating process named the smoothed Ornstein-Uhlenbeck

process. The results obtained from the study of this specific process forms the backbone of

the subsequent analysis.

In part II (chapters 4, 5), validity of the derived optimal subsampling schemes is verified

numerically in a more complex setting, namely, parametric estimation of a limiting stochas-

tic model given observations from the associated full multiscale system. Estimation of these
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reduced models naturally falls in the indirect observability framework, as defined here. More-

over, the numerical results, along with the theoretical arguments, help to draw similarities

in the asymptotic behavior of estimators based on the relatively complex multiscale dynam-

ics, with those from the simple smoothed Ornstein-Uhlenbeck process. Chapter 5 presents

a novel methodology to estimate parameters under indirect observability in a practical set-

ting, i.e., given large but finite number of discrete observations from an approximating

process. Specifically, using the values of the estimators based on multiple datasets obtained

by subsampling the given single dataset, the methodology introduces bias-corrected esti-

mators, and also computes a precise estimate for the implict degree of approximation (or

scale-separation) of the dataset as compared to the true unobserved process.

Part III (chapter 6) extends indirect observability to a general mathematical framework

to study estimation of parameters associated to an unobserved centered stationary Gaussian

process. The observed approximating process is a centered stationary process with arbitrary

probability distribution.
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Chapter 1

Background and Motivation

A story should have a beginning, a middle, and an end ... but not necessarily in that order.

− Jean-Luc Godard

1.1 Introduction

Elements of randomness have long been introduced, via stochastic modeling, in represent-

ing large-scale deterministic systems by simplified equations, and to study their properties

only probabilistically. Also, in many practical problems it is desirable to model the dy-

namical features of observed datasets by carefully chosen stochastic models. Then, a valid

objective is to estimate the model parameters to best-fit the given observations. This is

the central theme of the thesis. However, the motivation to consider the estimation prob-

lem in this study comes from a common pathological situation, unobservability. Often the

data to be fitted are only an approximation to the model. Moreover, the experimental or

observational datasets in nature (or financial markets) are not explicitly generated by the

underlying stochastic model and are, thus, expected to agree with the model only in coarse

statistical sense. Hence, parametric estimation of stochastic models from such datasets may

not be robust. In such scenarios one must show caution in applying the standard statistical

1



techniques to obtain optimal estimates for the model parameters such as maximum likeli-

hood estimation. Such behavior is well documented and widely studied; for instance, in the

context of market microstructure noise in high frequency financial timeseries [3, 2, 12, 5], in

molecular dynamics [28, 48], and in ocean-atmosphere sciences [15, 27, 34] where the data

exhibit multiscale character.

The multiscale nature of complex dynamics has been a particularly active area of re-

search in the last few decades. It has been recognized that many systems involve multiple

interacting temporal and spatial scales, which cannot be disentangled in a trivial manner.

Behavior of the atmosphere-ocean structures and protein folding fall in this category. In

the last few years, several publications addressed the importance of multiscale effects in

data-driven stochastic modeling [38, 47, 46, 86]. Long-term evolution of high-dimensional

deterministic systems governed by complex PDEs, have often been approximated by low-

dimensional reduced stochastic models focused on larger time scales and with a good sta-

tistical fit to the observed dynamic data. For instance, the stochastic mode-reduction

technique [63, 64, 66, 65] has successfully modeled the dynamics of large-scale structures in

systems with time-scale separation, an optimal prediction setup has enabled coarse-grained

dynamic modeling of statistical descriptors [22, 20, 21]; spin-flip processes have provided

coarse-grained models of traffic flow [53, 54, 55, 4]; reduced Markov chain models have been

applied to prototype atmosphere-ocean interactions [25, 68]; and a generic framework has

been developed for dimension reduction in metastable systems [82, 45]. In most practical

contexts of this type, one seeks to approximate the dynamics of key statistical descrip-

tors of a chaotic high-dimensional deterministic dynamics by a closed form low-dimensional

stochastic process, such as (vector) stochastic differential equations (denoted as SDE). Then

the available data Un = Yn∆ , n = 1, 2, ...N are not generated by the underlying SDE, but

sampled from observations Yt generated by some complex, not completely identifiable, de-

terministic dynamics. At short time scales, the trajectories Yt of the observable physical
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process are quite different from sample paths Xt of a vector SDE (see for instance [27]), but

on longer time scales the behavior of Yt is well emulated by Xt. This situation is typical

for data generated by a numerical dynamic model, such as fluid dynamics PDEs. The Yt

trajectories then decorrelate slower than those of Xt, and good estimators f(Xt1...XtN ) of

the underlying SDE parameters can lose their consistency if one simply substitutes Xt for

Yt in the function f and uses observations (Yt1...YtN ) which are too dense in time.

A typical phenomenon empirically observed in practice is the existence of high-frequency

observational noise in a time series. In various applications, for instance, stochastic modeling

in finance [3, 2, 12, 5, 39, 44] and oceanography [41], the dataset is contaminated by high

frequency observational noise. Estimation studies under high frequency observational noise

assume that the observed discrete datasets are decomposable into an unobservable true

value Xt, and noise term Ei, namely,

Yti = Xti + Ei,

where noise Ei has standard deviation denoted by σe > 0. Under such assumptions the

realized variance (for example, [39, 44]), otherwise well behaved estimator of the integrated

volatility process associated to Xt, is no longer consistent when computed from the con-

taminated observations Yti . Estimation of the underlying model based on datasets with

multiscale character and for data contaminated with high-frequency observational noise

have common features. For instance, in both cases the model is not compatible with the

data at all time scales. Also, in both situations considering discrete observations on a more

coarse time-grid has been a proposed recipe to obtain accurate estimates.

The thesis proposes a formal mathematical framework to undertake parametric estima-

tion of stochastic models with “contaminated” observations. This indirect observability is

mathematically formulated in the following generic manner. Consider discretely sampled

data Un = Y ε
n∆, n = 0, 1, 2, ...N , from an observable process Y ǫ

t such that Y ε
t → Xt, in

3



some adequate sense, as ε → 0. Hence, Y ε
t is an approximation of the underlying process

Xt = Xt(θ), where parameter vector θ ∈ Θ, such that Θ is an open bounded subset of R
p.

In such a scenario the statistical properties of the estimators θ̂ε of θ based on the discrete

observations of the approximating process Y ε
t do not follow naturally. This study provides

explicit conditions on the number of discrete observations N = N(ε), and the uniform time-

step ∆ = ∆(ε) such that, as ε → 0, the estimator θ̂ε based on the observations from the

approximating process Y ε
t converges to the true parameter value θ. This idea will be made

concrete and formal in the ensuing chapters.

1.2 Precursor

The above objective is presented step-by-step in the following manner.

1. Estimation under indirect observability framework is first presented for a specific

model, namely, the Ornstein-Uhlenbeck (OU) process. The OU process is given as an

exact solution of a linear SDE whose dynamics are given by,

dXt = −γXtdt + σdWt,

where γ > 0, σ > 0 are the parameters characterizing the process. It is assumed that

although the parameters γ, σ are to be estimated, the process Xt can not be observed.

2. The parameters are estimated based on observations from an approximating process

Y ε
t , which is defined to be the local average of the OU process over a small moving

window of time, i.e.,

Y ε
t =

1

ε

∫ t

t−ε
Xs ds.

The process Y ε
t is called the Smoothed Ornstein-Uhlenbeck process (denoted as SOU).

3. This specific pair of processes (Xt, Y
ε
t ) provides us with an excellent prototypical

4



model to study indirect observability mainly because of the Gaussianity (See chapters

2, 3) of the processes. In particular, with Gaussian density known in closed-form,

exact computations of asymptotic expressions for the L2-errors in estimators for γ, σ

are possible.

4. Indirect observability framework of the OU/SOU processes provides an exact indica-

tion of how the observations sampled from the approximating process Y ε
t impact the

estimators. These results when extended to estimation of reduced (c.f., homogenized)

equations given observations from large-dimensional complex systems with multiple

time scales, provide remarkable tenacity. In particular, we present detailed numer-

ical study of two multiscale dynamics - the additive triad model [7, 9, 64], and the

truncated Burgers-Hopf model [1, 61, 62].

5. A novel methodology is then presented to estimate parameters under indirect observ-

ability in a practical setting, i.e., given large but finite number of discrete observations

from an approximating process with a fixed unknown value of the small parameter

ε. Specifically, using the values of the estimators based on multiple datasets obtained

by subsampling the given single dataset, the methodology introduces bias-corrected

estimators, and also computes a precise estimate for the implicit degree of approx-

imation, ε, (or scale-separation) of the dataset as compared to the true unobserved

process. This numerical technique is verified in the case of the OU/SOU example,

and with the two multiscale dynamic models.

6. In the last part of the thesis we extend the methodology to a fairly general class of

models. The unobservable process Xt is assumed to be a centered stationary Gaussian

process, and the unobservable process Y ε
t is allowed to have arbitrary distributions, as

opposed to strict Gaussianity case of the OU/SOU process. The observable process Xt

is assumed to have an associated covariance function K(u) = K(u, θ), parametrized

5



by vector θ. An objective, then, is to consistently estimate θ, as ε → 0, by observing

the process Y ε
t , converging to Xt in an adequate sense.

7. With this extension to the general framework, we also present the notion of esti-

mators with non-vanishing lags, which proves to be extremely useful in the indirect

observability scenario. These estimators, characterized by the asymptotic conditions

on N , ∆ and the discrete lags k (precisely defined below); do not see the small scales

thereby rectifying the issue of multiple time scales, and are an improvement to the

naive subsampling of data.

The parametric approach is often utilized for the purpose of stochastic modeling. Param-

eters characterizing the stochastic model need to be identified from the set of observational

or experimental data. In particular, estimating parameters of a system of stochastic dif-

ferential equations (SDEs) from a discrete dataset of observations has been the center of

applied research for many decades [78, 83, 17]. On the other hand, non-parametric esti-

mation of stochastic models do not assume any fixed parametrization, and is used under

various scenarios. Various non-parametric techniques for estimating the drift and diffusion

terms from discrete data (see, for example, [13, 24]) can be used in low-dimensional systems.

Nevertheless, due to the data limitations these techniques are applicable only if the dimen-

sion of the SDE is less than four. Therefore, here we consider the more general parametric

approach for estimating the underlying models given the “contaminated” data.

Some of the notation and terminology used in the thesis is as follows. The process of

identifying the optimal time interval (or, the frequency of sampling) between observations

that leads to asymptotically consistent estimators, is referred to as optimal subsampling

criterion. The framework under which the parametric estimation of the underlying unob-

servable process is based on the data from an observable approximating process, is termed

as indirect observability framework. On the other hand, if the process Xt is observable, then,
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the parametric estimation is said to be under direct observability, which is the benchmark

scenario.

In general, estimation is based on a set of discretely subsampled observations Un =

Un(∆), with uniform time step ∆ > 0, from a given observable continuous-time random

process. The estimators are functions of the discrete observations, the number of obser-

vations N , and the time interval ∆, namely, θ̂ = θ̂(N,∆, {Un;n = 0, . . . , N − 1}). Under

the classical direct observability framework, Un = Xn∆; and under indirect observability

the discrete observations Un = Y ε
n∆. The asymptotic properties of the estimator θ̂ are an

indicator of the efficacy of the estimation procedure and reliability of the estimated model.

Therefore, a minimum requirement is that as N → ∞ the estimator θ̂ → θ, where the

convergence to the true value θ is, at least, in probability, or where possible it must be

convergence in L2. An estimator θ̂ satisfying this property is said to be asymptotically

consistent.

In the asymptotic study of the estimators, under indirect observability, considered for

the parameters in vector θ, or in particular, the estimators for the OU parameters γ, σ2, we

consider the following equivalent design of estimation. Assume that estimation is based on

N = N(ε) discrete observations sampled from the observed process with a uniform time step

∆ = ∆(ε) > 0. Then, as the small parameter ε → 0, one or several adaptive subsampling

schemes are applied to observed process which, specifically under indirect observability is

Y ε
t ; and under direct observability is the true process Xt. These adaptive subsampling

schemes are identified by the following conditions,

ε → 0, ∆ = ∆(ε) → 0, N = N(ε) → ∞ such that N∆ → ∞.

Under indirect observability as N → ∞, with ε and ∆ fixed, the estimators are inconsistent

with a non-vanishing bias. However, the asymptotic behavior of estimators may still provide

important clues to the optimal subsampling criterion. In practice, the estimation is based
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on one large dataset subsampled from a single trajectory generated by complex systems

with a fixed unknown value of ε. Then in such situations to understand the limitations of

the estimation process it is crucial to obtain partial asymptotics with just N → ∞, which

is referred to as fixed-rate subsampling schemes. Under direct observability, the maximum

likelihood estimators, in particular, for the OU parameters are asymptotically consistent

given the fixed-rate subsampling scheme.

Most asymptotic results for the parametric estimation of Gaussian models, in particular,

the OU process, are classical under the direct observability scenario. Nevertheless, these

results are described in chapter 2 with an emphasis on the behavior of the estimators under

the adaptive subsampling scheme. The approach presented in chapter 2 is carried over to

the case of the indirect observability case. It is showed that there is a specific subsampling

criterion for N and ∆ that guarantees asymptotic consistency of the estimators under direct

observability. As expected, these adaptive subsampling conditions are not preserved under

indirect observability, and stronger conditions are required for asymptotic consistency.

The focus of this thesis is on the situation when the underlying true process is unobserved

and the parameters are estimated based on the observed approximating process. In chapter

3, for brevity, indirect observability is first illustrated for estimation of the drift and diffusion

parameters γ, σ2, in the stochastic differential equation corresponding to the Ornstein-

Uhlenbeck (OU) process, namely,

dXt = −γXtdt + σdWt.

OU process is the stochastic model of choice in various applications [50, 42, 60]. In our

study this specific example provides rigorous study of the issue of indirect observabil-

ity and subsampling. It is assumed that the observable approximating process is the

smoothed Ornstein-Uhlenbeck (SOU) process which is obtained from averaging the Ornstein-
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Uhlenbeck process over a small moving window ε of time. These two processes are stationary

and Gaussian with known densities, which makes their study exact. Therefore, in this par-

ticular case the characterization of the optimal subsampling criterion is plausible. As shown

below, the criterion identified for the SOU/OU example holds true for other more complex

examples, for instance, the additive triad system and the truncated Burgers-Hopf system,

as presented in chapter 4. The framework for the parametric estimation of OU process

based on observations from SOU process has been presented in [7].

In chapter 5, a new methodology to accurately estimate parameters is presented which

is applicable in practical situations, that is, when the available discrete observations come

from a single trajectory that corresponds to approximating dynamics with a fixed unknown

ε. In such a setting, the otherwise well characterized adaptive subsampling schemes in

terms of the small parameter ε are no longer useful. Hence, an alternate view of the

problem is considered and estimators derived from multiple datasets, by subsampling the

given dataset, are used to estimate the unknown ε, and infer the critical optimal regime to

accurately estimate the parameters. The results of chapter 5 are based on [9].

Chapter 6 presents an extension of the indirect observability framework to a more gen-

eral class of processes. A centered stationary Gaussian process Xt is considered as the

unobservable process that needs to be identified given discretely sampled observations. A

zero-mean Gaussian process is completely characterized by its second-order moments, or the

covariance function. In this general situation the covariance function K(u) = E[XtXt+u]

associated to the process Xt is assumed to be parametrized by an unknown vector θ of

parameters. With some regularity conditions on the decay rates, and differentiability of the

covariance function, the estimation of the parameter θ is undertaken based on an observable

approximating process Y ε
t . There are few assumptions on the distribution of the observable

approximating process Y ε
t , that it is uniformly bounded in L4−norm, and Y ε

t → Xt, as

ε → 0, in L4, such that ‖Y ε
t −Xt‖L4

≤ ρ(ε) → 0. Then, the adaptive subsampling schemes
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ensuring the asymptotic consistency of the estimators, are well defined and can be charac-

terized by ρ = ρ(ε), number of observations N(ε), and uniform time-step ∆(ε). The results

of chapter 6 are based on [8].

1.3 Estimation of Stochastic Differential Equations

Consider a filtered probability space, i.e., a complete probability space (Ω,F , P ) together with

a filtration {Ft} satisfying the usual hypothesis. This means (Ω,F) is a measurable space,

and P is a probability measure on (Ω,F) such that F contains all subsets of each P−null

set in F . A filtration {Ft} is a family of sub-σ-algebras of F such that Fs ⊂ Ft, for all

positive real numbers s < t. The filtration is said to satisfy the usual hypothesis, if the

following conditions hold,

1. Right continuity : Ft =
∧

s>t Fs, for all t,

2. Completeness : F0 contains all P−null sets in F .

We define all the stochastic processes of interest on this probability space. A one-dimensional

stochastic differential equation (see [70, 79, 23]), denoted by SDE, is given by

dXt = a(t,Xt)dt + b(t,Xt)dWt, for t ≥ 0, (1.1)

where Wt is a standard Brownian motion [49] (see appendix 0.12), and the initial condition

X0 is such that E[|X0|2] < ∞. The terms a(t,Xt), b(t,Xt) are scalar functions, respectively,

from (R+ × R) → R. The variable t is considered to represent the evolution of time and

Xt is the state of the system. The existence and uniqueness of the solution to (1.1) is a

consequence of the regularity conditions (Lipschitz and bounded growth) on the coefficient

functions a(t,Xt) and b(t,Xt). The differential equation in (1.1) is only a notation, the

SDE is interpreted as an integral equation where the second term is an Itô’s integral. The
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term a(t,Xt) is referred to as the drift function, and b(t,Xt) is the diffusion function. The

drift and diffusion coefficient functions, respectively, are interpreted as instantaneous mean

and variance, namely,

a(t,Xt) = lim
h→0

E{h−1(Xt+h − Xt) | Xt(ω) = Xt},

b2(t,Xt) = lim
h→0

E{h−1(Xt+h − Xt)
2 | Xt(ω) = Xt}.

The detailed description of the SDE is given in, for instance, [6, 70, 79, 23].

Continuous-time diffusion processes are often used to model physical systems in nature,

and financial markets, for instance, the stock prices, interest rates, or currency exchange

rates. In practice, however, the diffusions are not observed continuously, but only at discrete

time points. Many applications involve estimation of the drift and diffusion coefficients given

a stream of discrete observations Un.

Broadly, there are two approaches to compute the coefficients a(t,Xt) and b(t,Xt) given

discrete datasets. First, referred to as parametric estimation, is the technique where one

assumes a specific parametrization of the drift and diffusion coefficients, namely, a vector

θ such that a(t,Xt) = a(t,Xt; θ), and b(t,Xt) = b(t,Xt; θ), where the unknown parameter

vector θ ∈ Θ ⊂ R
p for some open bounded parameter space Θ. The second approach is the

non-parametric estimation where no a priori functional form is specified, and the coefficients

are estimated locally in a neighborhood of every spatial point that the process visits (see

for instance [11, 26, 51, 13]).

For brevity, we will focus only on parametric estimation to emphasize on indirect ob-

servability framework, and illustrate the impact of indirect observability on estimation. The

main goal of this study is to present parametric estimation of a stochastic process Xt(θ)

when the available observations are subsampled from an approximating process Y ε
t (θ).
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The method of maximum likelihood estimation is used to obtain estimators for the un-

known vector of parameters θ. However, estimation of generic nonlinear diffusion processes

based on the exact likelihood function is possible only in very special cases, precisely when

the solution, and hence, the transition density; to the SDE is available. Therefore, in general

the transition density (or the probability distribution) is not known in closed form. Various

approaches have been considered in literature to approximate the likelihood function, or to

devise other semi-parametric techniques to obtain estimators(see for instance, [67] for an

overview). We start our presentation with the initial objective of undertaking the estima-

tion study by considering a widely used approach to construct an estimator, and study the

impact of indirect observability on it. However, in the course of our study we also show

that the estimators may be modified to better suit the framework of indirect observability,

as seen in chapter 6, where we present the extended framework, and introduce the generic

notion of estimators with non-vanishing lags.

Next, we outline a particular approach, based on the Euler-Maruyama discretization

of the SDE, to obtain the approximate likelihood function for the diffusion process. Then,

using this approximate likelihood function we obtain the so called quasi-maximum likelihood

estimators for θ.

Parametric Estimation of SDEs

In our study we carry out parametric estimation of the stochastic differential equations. We

assume that we are given a set of discretely subsampled observations Un, n = 0, 1, . . . N ,

such that Un = Xtn , for the time points of observations t0 < t1 < . . . < tN . Conditional on

this set of observations we compute a statistical estimate θ̂ for the parameter θ in

dXt = a(t,Xt; θ)dt + b(t,Xt; θ)dWt. (1.2)

We use the statistically efficient, Maximum Likelihood technique to estimate the un-
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known parameter θ. However, in many cases the transition density of Xt, given by (1.2),

is not known in a closed form. In such situations, one approach [78] may be to compute

an approximation to the likelihood function based on the discretized version of the SDE.

In particular, given initial value X̃t0 = Xt0 , we may use the Euler-Maruyama (denoted as

EM) discretization scheme to approximate the solution Xt of (1.2) over a small interval

[t0, t0 + h] by

X̃t0+h = X̃t0 + a(t0, X̃t0 ; θ)h + b(t0, X̃t0 ; θ)(Wt0+h − Wt0) + O(h1/2). (1.3)

When the exact solution Xt is not known we may assume that the observations Un

satisfy (1.3). Since the increments of the Brownian motion are Gaussian, therefore, (1.3)

provides us with a Gaussian approximation (with first two moments equivalent to those of

the process Xt) to the exact conditional transition density function associated to Xt. The

convergence properties of the discretization schemes for the SDEs are presented in [58]. One

may often use the higher order Milstein scheme but here we utilize the Euler-Maruyama

scheme since the gain in the precision is not commensurate with the increase in complexity.

The likelihood based estimators computed using the stochastic difference equations (1.3)

are in general inconsistent, and biased for a fixed sampling time step. We systematically

consider the adaptive subsampling schemes with time-step h = ∆ → 0, therefore, the

estimators based on the above discretization are justified in our study.

Assume a fixed uniform sampling time step ∆ > 0 for the observations, then, Un = Xn∆,

for n = 0, 1, . . . , N − 1, satisfy

Un+1 ≈ Un + a(tn, Un; θ)∆ + b(tn, Un; θ)(Wtn+1
− Wtn), (1.4)

where the initial value U0 is a constant in R. Therefore, the log likelihood function is
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LN (θ) = −1

2

N−1
∑

n=0

(

log
(

2π∆b2(tn, Un; θ)
)

+
1

∆

(

Un+1 − Un − a(tn, Un; θ)∆

b(tn, Un; θ)

)2
)

. (1.5)

The principle of maximum likelihood is to find an estimate θ̂ in a compact subset

of Θ that maximizes the likelihood of the given trajectory identified by the sample Un.

The first-order necessary condition are such that the score function ∇LN (θ) = 0. This

determines a system of nonlinear equations in θ whose solution provides an expression for

the estimators. We assume that the coefficients are such that the gradient vector ∇LN (θ)

exists in a neighborhood of the true value. It is not always possible to compute a closed-

form solution to the system of equations identified by the necessary conditions ∇LN(θ) = 0,

therefore, numerical optimization techniques will be used, for instance, the gradient method

[16, 69], to obtain the estimates.

Estimation of a Stationary Gaussian Process

In the general framework presented in the chapter 6, indirect observability is studied under

the assumption that the observable process is a centered stationary Gaussian process Xt.

The covariance function associated to the process Xt is given as K(u) = K(u, θ), ∀u ∈ R,

and the unknown parameter vector θ ∈ Θ, where Θ is a bounded open subset of R
p. With

no specific functional form assumed for the covariance function, except that it decays expo-

nentially for |u| → ∞, the application of the likelihood approach is not feasible. However,

we apply a particular version of the method of moments to derive estimator for the vector

θ.

Since centered Gaussian processes with the same covariance functions are probabilisti-

cally equivalent, it is quite natural to assume that the covariance function u → K(u, θ) de-

termines θ uniquely. A slightly stronger hypothesis is to assume the existence of a finite fixed
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set of time lags {u1, ..., up} such that the vector r = (r1, . . . , rp) of covariances rj = K(uj , θ)

determines a unique θ ∈ Θ denoted by θ = F (r). Then, for each j = 1, . . . , p, consider the

covariance estimators r̂j based on discrete observations of the underlying observed process,

then the estimator for the vector θ is given by θ̂ = F (r̂), where r = (r̂1, . . . , r̂p).

Asymptotic Properties of the Estimators

Some of the properties of optimal estimators are defined below.

Definition 1.3.1 (Consistency) A statistical estimator θ̂(N), based on N discrete obser-

vations (Un) is said to be consistent, ⇐⇒ θ̂(N) → θ0 in probability, as N → ∞. In some

situations, for instance Gaussian processes, the convergence may hold in the sense of L2.

Definition 1.3.2 (Gaussianity) A statistical estimator θ̂(N), based on N discrete obser-

vations (Un) is said to be Asymptotically Gaussian ⇐⇒ as N → ∞, the random variable

s(N)(θ̂(N) − θ) → N(0,Σ), where s(N) is the normalizing factor and Σ is the asymptotic

covariance matrix.

Definition 1.3.3 (Efficieny) A statistical estimator θ̂(N), based on N discrete observa-

tions (Un) is said to be efficient ⇐⇒ var(θ̂(N)) attains the Cramér-Rao bound [80], for

all values of the estimator θ. Some estimators may attain this bound only asymptotically

and are said to be asymptotically efficient.

In our study, the optimal estimators are subjected to extended asymptotics, namely, the

systematic conditions under the adaptive subsampling scheme, i.e., as ε → 0, ∆ = ∆(ε) → 0,

N(ε)∆(ε) → ∞. Therefore, the above asymptotic properties are considered under the

adaptive subsampling schemes as ε → 0.
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Lastly, corresponding to a discrete centered stationary process U = {Un}n∈N, define the

standard empirical covariance estimators r̂k(N), for each k ≥ 0, as

r̂k(N) =
1

N

N−1
∑

n=0

Un+kUn. (1.6)

These estimators are asymptotically consistent, efficient, and asymptotically Gaussian (see

[10, Chapter X]) for a centered stationary Gaussian process Un.

The situation that we are interested in studying is when there is a mismatch between the

observations and the underlying stochastic model at small time-scales. It has been shown

[27] that there are limitations to the extent Markov models can replicate the data from

deterministic systems (or multiscale systems). This limitation, as we shall show, is due to

the difference in the curvature of the correlation function close to lag zero.

Therefore, the empirical covariance estimators (1.6) based on the approximating process

will no longer be optimal under the “regular” conditions, and their study will be pivotal to

identifying the good adaptive subsampling schemes.
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Chapter 2

Direct Observability of

Ornstein-Uhlenbeck Process

2.1 Introduction

We introduce parametric estimation of a stochastic model by considering a specific exam-

ple. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space. Consider a time-homogeneous

(drift and diffusion coefficients do not depend on the time variable) one-dimensional diffu-

sion process {Xt, t ∈ [0,∞)} whose dynamics are represented by the following stochastic

differential equation,

dXt = −γXtdt + σdWt, (2.1)

where γ > 0, σ > 0 are unknown parameters such that (γ, σ2) lies in some parameter space

Θ ⊂ R
2, and Wt is the standard Brownian motion adapted to the filtration Ft.

In this study our objective is to present an approach to estimate the parameters γ, σ2

under indirect observability, i.e., when the underlying process Xt is unobserved, and the

observed process Y ε
t is only an approximation of Xt. Before embarking on the case of indirect

observability, we develop the design of estimation and set up the machinery to perform
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asymptotic analysis of the estimators based on discretely sampled direct observations.

Direct observability is our benchmark case and our workhorse to illustrate the asymp-

totic results for parametric estimation. Our objective is to estimate unknown parameters

associated to an underlying process based on discrete observations of this process. The

estimators should be such that under adequate asymptotics they should lie in an arbitrary

small neighborhood of true parameter values. The model thus identified, by the estimates

of the unknown parameters, can then be relied upon for understanding the nature of the

underlying physical process, and be analyzed for trend, periodicity, prediction, and the like.

The linear SDE defined by (2.1) has a strong solution given by,

Xt = X0e
−γt + σe−γt

∫ t

0
eγsdWs, (2.2)

with X0 ∼ N(0, σ2/2γ), which is the known invariant distribution for (2.1). The stochastic

process {Xt : t ≥ 0} is called the Ornstein-Uhlenbeck (OU) process or the Gauss-Markov

process. It is stationary, Gaussian, Markovian, and continuous in probability [85, 87] (see

appendix 0.11 for definitions). The OU process necessarily, [29, 52, 18], satisfies the linear

SDE defined by (2.1).

The properties of the OU process are discussed in the Appendix 0.14. In the next section

we describe the estimation procedure for the OU parameters γ and σ2.

A typical design for estimation is to assume as given a set of discretely sub-sampled

observations Un at equidistant time steps, {0 = t0 < t1 = ∆ < . . . < tN = N∆}, of length

∆ > 0. It may be emphasized that under direct observability discrete observations Un satisfy

the SDE (2.1), i.e, Un = Xn∆. The estimators for γ, σ2 are functions of the observations

Un, and N , ∆. These estimators are obtained by optimizing some criterion CN (γ, σ2) over

the parameter space Θ.
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2.2 Likelihood Approach

Here we utilize the maximum likelihood approach to derive estimators for the drift and

diffusion coefficients γ, σ2. The likelihood (or approximate likelihood) function, based on

the given observations, provides a criterion that is maximized with respect to the unknown

parameters to obtain estimates.

Proposition 2.2.1 (EM discretization) Consider (N + 1) discretely sampled observa-

tions Un = Xn∆ at equidistant time points separated by length ∆ > 0. The optimal

estimators based on the likelihood function constructed from the Euler-Maruyama (EM)

discretization are given by,

γ̂ =
1

∆

[

1 − r̂1

r̂0
+

(σ̂2 − 2γ̂U2
0 )

2γ̂Nr̂0

]

,

(2.3)

σ̂2 =

[

U2
N + U2

0

(N + 1)∆
+ 2γ̂r̂0

(

N (2 − γ̂∆)

2(N + 1)

)]

/

[

1 +
(1 − γ̂∆)

γ̂(N + 1)∆

]

,

where the standard empirical covariance estimators r̂0 = r̂0(N,∆), r̂1 = r̂1(N,∆) are defined

by,

r̂0(N,∆) =
1

N

N−1
∑

n=0

U2
n,

(2.4)

r̂1(N,∆) =
1

N

N−1
∑

n=0

Un+1Un.

Proof. The approximate log likelihood function, as given by (1.5), computed from the EM

discretization, in particular, of the SDE (2.1) is defined as,

LN (θ) = −1

2
log

(

πσ2

γ

)

− γU2
0

σ2
− 1

2

N−1
∑

n=0

[

log
(

2π∆σ2
)

+
(Un+1 − Un + γ∆Un)2

σ2∆

]

. (2.5)
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The first-order necessary conditions ∇LN (θ) = 0 lead to closed form expressions for the

optimal estimators γ̂ = γ̂(N,∆) and σ̂2 = σ̂2(N,∆) given by (2.3)

Alternatively, the transition density of the OU process is known via the exact solution

(2.2), therefore, in this case we do not have to use discretization to approximate the likeli-

hood function. From (2.2), the observations Un sub-sampled from the trajectory of an OU

process satisfy the following equation

Un+1 = e−γ∆Un + σe−γtn+1

∫ tn+1

tn

eγsdWs, (2.6)

where the Itô integral
∫ tn+1

tn
eγsdWs ∼ N

(

0, (e2γtn+1 − e2γtn)/(2γ)
)

, and Un is observation

sampled at time point tn. In general, for each t > 0, the Itô integral
∫ t
0 G(s)dWs is a zero-

mean Gaussian random variable, for some real-valued deterministic continuous function G

on R+. The variance of the Itô integral is computed using the Itô isometry,

E

[

(∫ tn+1

tn

eγsdWs

)2
]

=

∫ tn+1

tn

e2γsds.

Proposition 2.2.2 (Exact likelihood) Consider (N +1) discretely sampled observations

Un = Xn∆ at equidistant time points separated by length ∆ > 0. The process Xt is the

strictly stationary Ornstein-Uhlenbeck process, and the observations Un satisfy the discrete

relation (2.6). Then, the optimal estimators γ̂ = γ̂(N,∆), σ̂2 = σ̂2(N,∆) verify the follow-

ing conditions,

γ̂ = ∆−1 log

(

r̂0 + N−1
((

σ̂2/2γ̂
)

− U2
0

)

r̂1

)

,

(2.7)

σ̂2 =

(

2γ̂

N + 1

)

(

Nr̂0 +
2γ̂
(

U2
Ne2γ̂∆ − U2

0

)

(e2γ̂∆ − 1)

)

.

where r̂0 = r̂0(N,∆), and r̂1 = r̂1(N,∆) are the standard empirical covariance estimators
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given by (2.4).

Proof. Based on the discrete equation (2.6) the log likelihood function is given by

LN,1(θ) = −1

2
log

(

πσ2

γ

)

− γU2
0

σ2
− N

2
log

(

πσ2

γ
(1 − e−2γ∆)

)

. . .

−γ
∑N−1

n=0 (Un+1 − e−γ∆Un)2

σ2 (1 − e−2γ∆)
.

(2.8)

The first-order necessary conditions ∇LN,1(θ) = 0 lead to closed form expressions for the

optimal estimators given by (2.7).

It may be noted that here we have assumed the observations Un are sampled from

a strictly stationary OU process. If X0 = x0 ∈ R then the OU process Xt is only an

asymptotically stationary Gaussian process. The former case of strict stationarity may be

desirable as many results for stationary Gaussian processes [10] are then applicable to our

study. However, it may be noted that if we assume that the observations are sampled from

asymptotically stationary OU process, then, the likelihood function constructed from the

exact solution (2.6) is given as,

LN,1(θ) = −N

2
log

(

πσ2

γ
(1 − e−2γ∆)

)

− γ
∑N−1

n=0 (Un+1 − e−γ∆Un)2

σ2 (1 − e−2γ∆)
. (2.9)

Then, the optimal estimators γ̂, σ̂2, verifying the necessary conditions ∇LN,2(γ, σ2) = 0 are

given as,

γ̂ =
1

∆
log

(

r̂0

r̂1

)

,

(2.10)

σ̂2 = 2 γ̂

(

r̂0 +
e2γ̂∆

(

U2
N − U2

0

)

N (e2γ̂∆ − 1)

)

,

where r̂0, r̂1 are given by (2.4).
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The necessary conditions verified by the estimators γ̂, σ̂2 in (2.10) provide explicit

expressions for the two estimators, as opposed to the implicit conditions in (2.3) and (2.7).

However, the estimators in (2.10), specifically the expression for σ̂2, can be further reduced

to provide asymptotically equivalent estimators, namely,

γ̂ =
1

∆
log

(

r̂0

r̂1

)

,

(2.11)

σ̂2 = 2 γ̂ r̂0.

Comparing σ̂2 in (2.10) and (2.11), we obtain that the additional term

(

2γ̂e2γ̂∆
(

U2
N − U2

0

)

N (e2γ̂∆ − 1)

)

converges to zero in L2 under appropriate asymptotics.

Lemma 2.2.3 The L2 norm of the term

(

2γ̂e2γ̂∆
(

U2
N − U2

0

)

N (e2γ̂∆ − 1)

)

converges to 0, provided

the following conditions hold,

N → ∞, ∆ = ∆(N) → 0, N∆ → ∞.

Proof. We have the following inequality,

∥

∥

∥

∥

∥

(

2γ̂e2γ̂∆
(

U2
N − U2

0

)

N (e2γ̂∆ − 1)

)∥

∥

∥

∥

∥

L2

=
1

N∆

∥

∥

∥

∥

∥

(

2γ̂∆e2γ̂∆
(

U2
N − U2

0

)

(e2γ̂∆ − 1)

)∥

∥

∥

∥

∥

L2

≤ cte

N∆
,

where cte is an arbitrary positive constant. The uniform bound is derived from the Gaus-

sianity of the subsampled process Un, and using similar arguments as presented in lemma

2.6.3.

Similarly, we can show that the estimators in (2.3) and (2.7) are also asymptotically

equivalent to (2.11). The final estimators obtained in (2.11), and the covariance function
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for the stationary OU process, given as,

K(h) = E[XtXt+h] =
σ2

2γ
e−γh, ∀h ≥ 0, (2.12)

inspire the following approach to arrive at the estimators (2.11). This approach will be

extended to more general framework (Section 6), and exploited under the more complex

scenario of indirect observability. An alternative approach to arrive at the estimators (2.11)

is presented in the next section utilizing the second order moment conditions.

2.3 Estimating the Covariance Function

Consider the covariance function (2.12) of the OU process for h = 0, and h = ∆ > 0,

namely,

r0 = K(0) =
σ2

2γ
, r1 = K(∆) = r0e

−γ∆. (2.13)

The relation (2.13) between OU parameters γ, σ2 and the covariances r0 = r0(∆) and

r1 = r1(∆) implies that

γ = g(r0, r1), σ2 = s(r0, r1),

where the smooth functions g, s are given by

g(r0, r1) =
1

∆
log

(

r0

r1

)

, s(r0, r1) =
2r0

∆
log

(

r0

r1

)

.

Consider (N + 1) observations Un = Xn∆, n = 0, . . . , N ; subsampled directly from the OU

process with time step length ∆ > 0. The estimators γ̂ = γ̂(N,∆) and σ̂2 = σ̂2(N,∆) are
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given by

γ̂ = g(r̂0, r̂1) =
1

∆
log

(

r̂0

r̂1

)

,

(2.14)

σ̂2 = s(r̂0, r̂1) =
2r̂0

∆
log

(

r̂0

r̂1

)

,

where r̂0, r̂1 are the standard empirical covariance estimators (2.4), which yields the explicit

estimators given in (2.11). Since, two parameters γ, σ2 characterize the OU process, we

require only two moment conditions (2.13) to arrive at the expressions for the estimators.

Recall that 2 asymptotically Gaussian estimators τ1,N and τ2,N of a parameter τ are

said to be asymptotically equivalent if
√

N(τ1,N − τ) and
√

N(τ2,N − τ) have the same limit

variance as N → ∞.

We showed (lemma 2.2.3) that the estimators for γ and σ2 in (2.11) are asymptotically

equivalent, in particular, to the estimators given by (2.7). Therefore, for our study we fix

the estimators given by (2.14) (or (2.11)) for the drift and diffusion coefficients γ, σ2 in the

OU process. The estimators γ̂, σ̂2 in (2.14) are expressed as differentiable functions of the

standard empirical covariance estimators r̂0, r̂1. This representations is pivotal in our study

of the asymptotic properties of the estimators. This is mainly because some asymptotic

properties, as shown below, are preserved by the smooth functions. It is known [10], for

instance, that the consistency and asymptotic Gaussianity, under direct observability, of the

standard empirical covariance estimators r̂k(N,∆) is preserved under smooth functions.

In chapter 3 we show that asymptotic consistency holds under indirect observability of

the OU process. But, first we present the results on consistency for the benchmark case of

direct observability.
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2.4 Asymptotic Conditions on N and ∆

Assume N → ∞, and that we have (N+1) direct observations Un = Xn∆ with n = 0, . . . , N ,

extracted from the OU-trajectory Xt by subsampling at discrete time steps t = n∆.

The asymptotic properties of estimators γ̂, σ̂2 when the observations Un are sampled

from the true OU process are now presented under the two types of subsampling schemes.

Definition 2.4.1 We say that we have a Fixed-rate Subsampling scheme when the time-

step ∆ > 0 between observations remains fixed as N → ∞.

Definition 2.4.2 We say that we have an Adaptive Subsampling scheme when the time-

step between observations is a function ∆(N) of N tending to 0 as N → ∞, and we then

always impose the condition N∆(N) → ∞.

As shown below, when the global time interval N∆ spanned by the N available ob-

servations remains bounded, the estimators of γ, σ based on these N observations are not

asymptotically consistent. This is due to the O
(

1/
√

N∆
)m

, m ≥ 1, bias terms in the

asymptotic expansions of the estimators about the true values.

Since, OU process is Gaussian, and without loss of generality it is assumed that we are

subsampling from the strictly stationary version of the OU process, therefore, we show that

the estimators converge to the true values in L2 under both the subsampling schemes. We

require the result in proposition 2.4.3 to compute the L2 norm of the empirical covariance

estimators r̂k(N,∆), as defined in (2.20), which will be crucial to further compute the L2

norm of the OU estimators γ̂ and σ̂2 given by (2.14).

These results are easily extended to the situation where the OU process is only asymp-

totically stationary because convergence to its stationary distribution is exponentially fast.

Hence, the OU process observed for t ≥ t0 such that t0 ≫ (γ−1), may essentially be consid-

ered as stationary.
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Proposition 2.4.3 (Finite N) Let (Un)n∈Z be a centered stationary Gaussian process.

Define the covariances rk for each k ∈ Z by

rk = E [UnUn+k] .

Define the empirical covariance estimators r̂k(N) by

r̂k(N) = (1/N)

N−1
∑

n=0

UnUn+k.

By stationarity of the process Un the empirical covariance estimators are unbiased, i.e.,

E[r̂k(N)] = rk, for each k ∈ Z. Then, for each pair of non-negative integers k, q, the

covariance of the estimators is given by

Cov(r̂k(N), r̂q(N)) = (1/N)
N−1
∑

j=−(N−1)

f(j) − (1/N2)
N−1
∑

j=1

j(f(j) + f(−j)), (2.15)

where f(j) = (rjrj+k−q + rj+krj−q).

Proof. The covariance

Cov(r̂k(N), r̂q(N)) = E [r̂k(N)r̂q(N)] − rkrq,

where E [r̂k(N)r̂q(N)] can be explicitly computed from the 4th-order moments of a Gaussian

random vector, and is given by

N2E [r̂k(N)r̂q(N)] =
N−1
∑

m=0

N−1
∑

n=0

E [UmUm+kUnUn+q] . (2.16)

A well known result for the Gaussian random variables gives us the 4th-order moments in
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terms of the 2nd-order moments, precisely

E [UmUm+kUnUn+q] = rkrq + f(m − n), (2.17)

where f(m − n) = (rm−nrm−n+k−q + rm−n−qrm−n+k) . Substituting (2.17) in (2.16) we

obtain,

N2E [r̂k(N)r̂q(N)] =

N−1
∑

m=0

N−1
∑

n=0

[rkrq + f(m − n)] .

Therefore, the covariance is given by,

Cov(r̂k(N), r̂q(N)) = N−2
N−1
∑

m=0

N−1
∑

n=0

f(m − n).

The double sum can be simplified to give,

Cov(r̂k(N), r̂q(N)) = N−1
N−1
∑

j=−(N−1)

f(j) − N−2
N−1
∑

j=1

j(f(j) + f(−j)),

where f(j) = (rjrj+k−q + rj+krj−q), which gives the required expression.

In the next two sections we will study the asymptotic properties of the estimators (2.14)

under fixed-rate, and adaptive subsampling schemes, and the result from proposition 2.4.3

will be crucial.

2.5 Fixed-rate Subsampling

Assume fixed-rate subsampling for the observations Un = Xn∆ subsampled from the OU

process, so that ∆ > 0 is fixed. The stationary covariances rk = rk(∆) are, thus, given by

rk = E[Un+kUn] =
σ2

2γ
e−γk∆, (2.18)
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which implies the relation
∑

k∈Z

|k||rk(∆)| < ∞. (2.19)

Given the discrete observations Un, define the standard empirical covariance estimators

(r̂k)k=0,1 by

r̂0 = r̂0(N,∆) =
1

N

N−1
∑

n=0

U2
n, r̂1 = r̂1(N,∆) =

1

N

N−1
∑

n=0

Un+1Un. (2.20)

Since the covariances rk verify (2.19), known results [10] on discrete-time stationary Gaus-

sian processes show that for each fixed ∆ > 0 as N → ∞, the covariance estimators r̂k(N,∆)

are the best estimators of the rk, they are consistent (i.e., converges almost surely to the

true rk), and asymptotically efficient (i.e., the asymptotic variances of r̂k(N,∆) attain the

Cramér-Rao bound). We also know (see [10, Chapter X]) that as N → ∞, the random

vectors
√

N [r̂0(N,∆) − r0, r̂1(N,∆) − r1]

are asymptotically centered and Gaussian, with limit covariance matrix Γ = (Γst), s, t ∈

{0; 1} given by

Γst =
∑

m∈Z

(rmrm−s+t + rm−srm+t) , (2.21)

with rm given by (2.18), and hence, the covariance matrix Γ is given by

Γ00 = 2r2
0(1 + e−2γ∆)/

(

1 − e−2γ∆
)

, (2.22)

Γ11 = r2
0

(

1 + 4e−2γ∆ − e−4γ∆
)

/
(

1 − e−2γ∆
)

,

Γ01 = Γ10 = 4r2
0e

−γ∆/
(

1 − e−2γ∆
)

,

where r0 = (σ2/2γ).

Alternately, the result for finite N from proposition (2.4.3) can be used to find the L2
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norms of the empirical covariance estimators r̂0, r̂1. Then, we may be able to infer the L2

convergence of the estimators γ̂, σ̂2.

Proposition 2.5.1 (L2-norm for finite N) Consider (N +1) discrete observations Un =

Xn∆ subsampled from the trajectory of an OU process at fixed time step length ∆ > 0. Define

the standard empirical covariance estimators (r̂k)k=0,1 by,

r̂0 = r̂0(N,∆) =
1

N

N−1
∑

n=0

U2
n, r̂1 = r̂1(N,∆) =

1

N

N−1
∑

n=0

Un+1Un.

Then, for each fixed N , ∆ > 0, the L2-norms J0 = ‖r̂0(N,∆)−r0‖2
L2

, and J1 = ‖r̂1(N,∆)−

r1‖2
L2

are given by

J0 = J0(N,∆) =
2r2

0(1 + e2γ∆)

N(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
,

(2.23)

J1 = J1(N,∆) =
r2
0(e

4γ∆ + 4e2γ∆ − 1)

Ne2γ∆(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
.

Proof. Let Jk(N,∆) = E
[

(r̂k(N,∆) − rk(∆))2
]

, for each non-negative integer k. The

empirical covariance estimator r̂k, and covariance rk(∆) are defined as

r̂k = r̂k(N,∆) =
1

N

N−1
∑

n=0

UnUn+k, rk(∆) = (σ2/2γ)e−γk∆.

Then, using the expression (2.15) in proposition 2.4.3, such that Jk = Ckk, and f(j) =
(

r2
j + rj−krj+k

)

, we obtain,

Jk(N,∆) =
r2
0

[

1 + e−2γ∆ + (2k + 1)e−2γk∆ − (2k − 1)e−2γ(k+1)∆
]

N(1 − e−2γ∆)
. . .

−2r2
0

N2

[

e−2γ∆(1 + e−2γk∆ − 2e−2γN∆)

(1 − e−2γ∆)2
+

ke−2γk∆

(1 − e−2γ∆)
+

k(k − 1)e−2γk∆

2

]

.

(2.24)
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Substituting k = 0, 1 in (2.24) gives us the required expressions.

From the L2 norms J0, J1 (2.23), we obtain that, as N → ∞, the empirical covariance

estimators r̂0(N,∆), r̂1(N,∆) converge in L2, respectively, to r0(∆) and r1(∆). We now

study the estimators γ̂ and σ̂2 given by,

γ̂ = g(r̂0(N,∆), r̂1(N,∆)), σ̂2 = s(r̂0(N,∆), r̂1(N,∆)),

which have the explicit expressions

γ̂ = − 1

∆
log

(

r̂1(N,∆)

r̂0(N,∆)

)

, σ̂2 = 2γ̂ r̂0(N,∆). (2.25)

Proposition 2.5.2 (Fixed-rate asymptotics for γ̂ and σ̂2) Consider an OU-process Xt

directly observed at times t = n∆, n = 0, . . . , N , subsampling at fixed rate ∆ > 0. Then

as N → ∞, the estimators γ̂ and σ̂2 of γ and σ2 are consistent (almost surely). Moreover
√

N(γ̂ − γ) and
√

N(σ̂2 − σ2) are asymptotically Gaussian with limit variances vγ and vσ2

given by

vγ =

(

e−2γ∆ + e2γ∆ − 2

∆2(1 − e−2γ∆)

)

,

(2.26)

vσ2 = 4r2
0

(

2(1 + γ∆)2(1 + e−2γ∆) − 8γ∆ + e2γ∆ − e−2γ∆ − 4

∆2(1 − e−2γ∆)

)

.

Proof. Define the function F : R
2 → R

2 by

F (r0, r1) = [g(r0, r1), s(r0, r1)] .

Since F is twice continuously differentiable in the neighborhood of (r0, r1) for each ∆ > 0,

it follows from [10, Chapter X] that the estimator ν̂ = F (r̂0(N,∆), r̂1(N,∆)) is a consistent

estimator of ν = F (r0, r1). Also, the distribution of
√

N (ν̂ − ν) converges, as N → ∞,
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towards the 2-dimensional centered Gaussian distribution with covariance matrix

ΣF = AΓAT

where, for each fixed ∆ > 0, the (2 × 2) matrix A = ∇F (r0, r1) is the differential of F

at true covariances (r0, r1), AT denotes the transpose of A, and the covariance matrix Γ is

given by (2.22). This says exactly that γ̂ and σ̂2 are consistent and asymptotically Gaussian

estimators of γ and σ2, and that ΣF is the limit covariance matrix of the random vector

√
N
[

(γ̂ − γ) ,
(

σ̂2 − σ2
)]

.

We have seen that under fixed-rate subsampling scheme the covariance estimators r̂k(N,∆)

and the OU estimators γ̂, σ̂2 are consistent (in L2) and asymptotically Gaussian. The L2-

speed of convergence for the OU estimators γ̂, σ̂2 are proportional to 1/
√

N , for each fixed

value of ∆ > 0.

In many practical situations the observations are sampled on a fixed global time span

T = N∆, therefore, taking N → ∞ imposes ∆ → 0. The small time step length ∆ leads to

blowing up of the asymptotic variance of, for instance,
√

N(γ̂ − γ) given by (2.26), namely,

vγ =

(

e−2γ∆ + e2γ∆ − 2

∆2(1 − e−2γ∆)

)

=
2γ

∆
(1 + O(∆)) ,

and the L2-errors do not converge to 0 for T = N∆ bounded. Therefore, the correct scaling

to study the asymptotic properties of the estimators will be T = N∆, and so adaptive

subsampling schemes (see definition 2.4.2) are a natural progression from here.
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2.6 Adaptive Subsampling

We now study the consistency of the estimators γ̂ = γ̂(N,∆) and σ̂2 = σ̂2(N,∆) under

adaptive subsampling scheme (see definition 2.4.2).

Proposition 2.6.1 (Asymptotics of the Covariances) Consider an adaptive subsam-

pling scheme where we have N observations Un = Xn∆ of the stationary OU process Xt at

time intervals of length ∆ = ∆(N) depending on N . We assume (see definition 2.4.2)

∆ → 0, N∆ → ∞. (2.27)

The true covariances rk = rk(∆) of the process Un are now functions of N still given by

(2.18). Hence as N → ∞, and for each k ≥ 0, rk(∆(N)) → (σ2/2γ).

Then, under condition (2.27), and for each k ≥ 0, the empirical covariances r̂k(N,∆)

converge in L2 to (σ2/2γ). Moreover, for each k ≥ 0 the L2−norms of the variables
√

N∆ (r̂k(N,∆) − rk) converge to
(

σ2/γ
√

2γ
)

.

Proof. The associated speed of convergence to zero in L2 for the difference (r̂k(N,∆) − rk)

under adaptive subsampling scheme can be computed directly, as outlined here for k = 0

and k = 1. Let Jk = E
[

(r̂k − rk)
2
]

, then, using the expression for Jk given by (2.24) in

proposition 2.5.1 we obtain for k = 0, 1,

J0 = J0(N,∆) =
2r2

0(1 + e2γ∆)

N(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
,

J1 = J1(N,∆) =
r2
0(e

4γ∆ + 4e2γ∆ − 1)

Ne2γ∆(e2γ∆ − 1)
+

4r2
0e

2γ∆
(

e−2γN∆ − 1
)

N2(e2γ∆ − 1)2
.
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Under the conditions (2.27), since, γ > 0, the expressions
(

∆/(e2γ∆ − 1)
)

→ (2γ)−1, and

N(e2γ∆ − 1) → ∞, which proves the following convergence,

(N∆)J0 → σ4

2γ3
, (N∆)J1 → σ4

2γ3
.

This concludes the proof.

Proposition 2.6.2 For each N,∆, the random variables Z0 = Z0(N,∆) and Z1 = Z1(N,∆)

defined by,

Z0 =
(r̂0 − r0)√

J0
, Z1 =

(r̂1 − r1)√
J1

, (2.28)

have mean 0, variance 1, and covariance E[Z0Z1] = J01/(
√

J0J1), where J0, J1, J01 are given

by (2.23), (2.30). Then, under conditions (2.27) the following first-order L2 approximations

for the empirical covariances r̂k hold,

r̂0 = r0 +
r0√
N∆

√

2

γ
Z0 +

Z0√
N∆

× O

(

∆2 +
1

N∆

)

,

(2.29)

r̂1 = r1 +
r0√
N∆

√

2

γ
Z1 +

Z1√
N∆

× O

(

∆2 +
1

N∆

)

,

where the notation O(h) represents deterministic functions of h bounded by a constant

multiple of h.

Proof. The exact expression for J01 = J01(N,∆) derived using proposition 2.4.3, is given

by

J01 =
4r2

0e
γ∆

N(e2γ∆ − 1)
− 2r2

0e
γ∆(e2γ∆ + 1)(1 − e−2γN∆))

N2(e2γ∆ − 1)2
. (2.30)
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Applying Taylor expansions to Jk as given by (2.23) and J01 given by (2.30), we obtain

J0 =
2r2

0

γN∆

(

1 +
γ2∆2

3
− 1 + O(∆2)

2γN∆
+ O(∆4)

)

,

J1 =
2r2

0

γN∆

(

1 − 2γ2∆2

3
+ γ3∆3 − 1 + O(∆2)

2γN∆
+ O(∆4)

)

, (2.31)

J01 =
2r2

0

γN∆

(

1 − γ2∆2

6
− 1 + O(∆2)

2γN∆
+ O(∆4)

)

.

Substituting in (2.28) the above expressions for J0, J1 gives the required L2-approximations

as expressed in (2.29).

Define the random variable Zk, for any integer k ≥ 0, as Zk = (r̂k − rk)/
√

Jk, where

Jk = Ckk is given by (2.24). The next lemma will be needed to prove the consistency of γ̂

and σ̂2.

Lemma 2.6.3 For each integer k ≥ 0, consider a random variable Vk = Vk(θ) given by,

Vk =

(

akZk

1 + akθZk

)2

, (2.32)

where Zk = (r̂k − rk)/
√

Jk, θ ∈ (0, 1) and ak = eγk∆
√

Jk/r0, such that Jk ∼ O(1/N∆).

Then, under the condition (2.27), ‖Vk‖L2
→ 0 with a speed proportional to 1/N∆.

Proof. The L2−norm is given by ‖Vk‖2
L2

= E
[

(akZk/(1 + akθZk))
4
]

. Since, the tails of the

density for Zk decay exponentially fast, we have for any M ≫ 1, P
{

(1 + akθZk)
−1 > M

}

<

e−(C1

√
N∆/θ), where C1 is a positive constant. Also,

P
{

(1 + akθZk)
−1 < 0

}

= P
{

Zk < −(C2

√
N∆/θ)

}

< e−(C2/θ)
√

N∆,
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where C2 is a positive constant. Therefore, using Cauchy-Schwarz inequality we obtain,

‖Vk‖2
L2 ≤ a4

k‖Z4
k‖L2

‖(1 + akθZk)
−4‖L2

≤ C3

N2∆2
,

where ‖Z4
k‖L2

is uniformly bounded in N,∆ for each k, and C3 is some positive constant.

This proves the required result.

Proposition 2.6.4 (Consistency of γ̂ and σ̂2) Consider the adaptive sub-sampling scheme

providing N observations Un = Xn∆ of the stationary OU process Xt at time intervals of

length ∆ = ∆(N). Define the estimators γ̂ and σ̂2 by formula (2.25).

Then, under the conditions

∆ → 0, N∆ → ∞, (2.33)

the estimators γ̂, σ̂2 are asymptotically consistent estimators of γ, σ2, i.e., γ̂ → γ, and

σ̂2 → σ2 in L2.

Moreover, given (2.33), the L2 norms of the variables
√

N∆(γ̂ − γ), and
√

N∆
(

σ̂2 − σ2
)

converge, respectively, to
√

2γ and 0. Therefore, the estimators converge to the true val-

ues with an L2-speed of convergence proportional to 1/
√

N∆. In particular, under stronger

conditions,

∆ → 0, N∆2 → ∞, (2.34)

the L2-speed of convergence of σ̂2 to σ2 is proportional to 1/
√

N , such that ‖
√

N
(

σ̂2 − σ2
)

‖L2
→

σ2
√

2.

Proof. From (2.28) we obtain, r̂0 = r0 +
√

J0Z0, and r̂1 = r1(∆) +
√

J1Z1, which we

substitute in

γ̂ =
−1

∆
log

(

r̂1

r̂0

)

.
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First, we rewrite the ratio R̂ = (r̂1/r̂0) as follows,

R̂ = e−γ∆

(

1 +
eγ∆

√
J1

r0
Z1

)(

1 +

√
J0

r0
Z0

)−1

.

Then taking logarithms of the ratio R̂, we obtain,

γ̂ = γ − 1

∆
log

(

1 +
eγ∆

√
J1

r0
Z1

)

+
1

∆
log

(

1 +

√
J0

r0
Z0

)

.

Using lemma 2.6.3, under the conditions (2.33), and using Taylor expansion we obtain that

the following holds in L2,

log

(

1 +

√
J0

r0
Z0

)

=

√
J0

r0
Z0 − (V0/2),

log

(

1 +
eγ∆

√
J1

r0
Z1

)

=
eγ∆

√
J1

r0
Z1 − (V1/2),

where the random remainder terms V0, V1 are given by (2.32) such that the L2 norms

‖V1 − V0‖L2
∼ O(1/N), ‖V0‖L2

∼ O(1/N∆), and ‖V1‖L2
∼ O(1/N∆).

Let the random variable Zγ be defined as

Zγ =
(

eγ∆
√

J1Z1 −
√

J0Z0

)

/(∆r0).

The L2 norm of Zγ is given by,

‖Zγ‖2
L2 =

(

e2γ∆J1 + J0 − 2eγ∆J01

)

(∆r0)2
=

2γ

N∆
(1 + O(∆)) .

Then, the first-order L2 approximation for γ̂ is given by,

γ̂ = γ − Zγ + Rγ × O

(

1

N∆

)

, (2.35)
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where the random remainder term Rγ = Rγ(N,∆) is uniformly bounded in L2 norm.

Therefore, under the conditions (2.33), the estimator γ̂ → γ in L2 with an L2-speed of

convergence proportional to 1/
√

N∆ such that,

‖
√

N∆ (γ̂ − γ) ‖L2 →
√

2γ.

The diffusion estimator σ̂2 = 2γ̂r̂0 by (2.25). Let the random variable Zσ2 be defined as

follows,

Zσ2 = (2/∆)
(

eγ∆
√

J1Z1 − (1 + γ∆)
√

J0Z0

)

,

then its L2 norm is given by,

‖Zσ2‖2
L2

=
2σ4

N
(1 + O(∆)) .

Hence, using (2.28) and (2.35) we obtain,

σ̂2 = σ2 − Zσ2 + Rσ2 × O

(

1

N∆

)

, (2.36)

where the random remainder term Rσ2 = Rσ2(N,∆) is uniformly bounded in L2 norm.

Therefore, under the conditions (2.33), σ̂2 → σ2 in L2. Moreover, under the conditions

(2.34), the following convergence holds,

‖
√

N
(

σ̂2 − σ2
)

‖L2 → σ2
√

2.

To summarize, when the observations are directly extracted from a stationary OU pro-

cess then, under the fixed rate sub-sampling scheme the approximate MLEs (2.25) for the

parameters of the OU process are consistent and asymptotically Gaussian. The L2-speed
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of convergence for the estimators γ̂ and σ̂2 as N → ∞ is proportional to 1/
√

N for each

fixed ∆ > 0.

Under the adaptive sub-sampling scheme (2.33), the estimators γ̂ and σ̂2 are asymp-

totically consistent estimators of γ, σ2. The usual L2-speed of convergence to true values,

proportional to 1/
√

N∆, is achievable for the estimators γ̂, σ̂2. In fact for the diffusion

estimator σ̂2, under stronger conditions on N , ∆, one can achieve a faster L2-speed of

convergence proportional to 1/
√

N .

In the next chapter we introduce a more common and more complex scenario in which

only indirect observations of the underlying OU process Xt are available, and are generated

by another process Y ε
t which is not identical to Xt, but is simply close to Xt in L2. In

this case subsampling will become an essential tool to generate consistent estimators of the

underlying parameters. The objective will be to characterize the asymptotic conditions on

the number of observations N = N(ε) → ∞, and the time step length ∆ = ∆(ε) → 0, such

that N∆ → ∞, as the small parameter ε → 0.
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Chapter 3

Indirect Observability of

Ornstein-Uhlenbeck Process

3.1 Introduction

Estimation of parameters in an underlying stochastic process by observing only an approx-

imating process is the main focus of the thesis. In this chapter we illustrate the indi-

rect observability framework for parametric estimation of Ornstein-Uhlenbeck process. The

study provides explicit subsampling criteria which guarantee asymptotic consistency of the

estimators based on the approximate process.

The indirect observability framework refers to the parametric estimation of an underlying

unobservable stochastic process Xt = Xt(θ) by observing a process Y ε
t , which approximates

Xt. Consider the Ornstein-Uhlenbeck process Xt identified by the following stochastic

differential equation,

dXt = −γXtdt + σdWt, (3.1)

where γ, σ > 0 are unknown parameters, such that (γ, σ2) lies in some parameter space

Θ ⊂ R. Assume that the process Xt is unobservable. The observable approximating process
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Y ε
t is obtained by averaging the process Xt given by (3.1) over a small moving window of

length ε > 0, namely,

Y ε
t =

1

ε

∫ t

t−ε
Xsds.

This chapter introduces the above pair (Xt, Y
ε
t ) in detail, and presents the asymptotic

results thus obtained for the estimators under this specific example of indirect observability

framework. As seen below, this example provides us with a rigorous formulation of the

subsampling issue in terms of exact mathematical relations.

First candidate for the approximating process Y ε
t is obtained by averaging the OU

process over a small moving window of length ε > 0. The averaging parameter ε is not only

crucial in describing the approximating process, but also for the complete characterization

of the subsampling schemes for consistent estimation of parameters γ and σ2. The process

Y ε
t computed by averaging the OU process Xt is called the Smoothed Ornstein-Uhlenbeck

process, denoted by SOU process.

The subsampling schemes presented in this chapter are extended to more general stochas-

tic models in chapter 6. More complex examples are considered in chapter 4 where the

results obtained in this chapter, in particular, by studying the impact of SOU process on

the estimators, are used to infer the optimal subsampling schemes.

3.2 Smoothed Ornstein-Uhlenbeck Process

Definition 3.2.1 The process Y ǫ
t called the Smoothed Ornstein-Uhlenbeck process, also de-

noted as SOU process, is obtained by averaging the process Xt over a sliding window of fixed

length ǫ > 0, so that

Y ǫ
t =

1

ǫ

∫ t

t−ǫ
Xsds, (3.2)

where Xt is the centered stationary Gaussian OU process given by (3.1).

Y ǫ
t is a centered stationary Gaussian process with a.s. differentiable trajectories. Due
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to locally integrating the process Xt, the process Y ε
t is no longer Markovian. Since, the

conditional probability P [Y ε
t ∈ A/Fs] 6= P [Y ε

t ∈ A/Xs] for all s ∈ (t − ε, t).

Proposition 3.2.2 (Stationary Moments) The covariance function of Y ǫ
t (3.2) at time

lag h is given by,

Kǫ(h) = E[Y ǫ
t Y ǫ

t+h] =
1

ǫ

(∫ t+h

t+h−ǫ
E[XsY

ǫ
t ]ds

)

. (3.3)

Then, the explicit expressions for Kǫ(h), for h ≥ 0, are given by,

Kǫ(h) =































σ2

2γ3ǫ2
e−γh (e−γǫ + eγǫ − 2) . h ≥ ǫ,

σ2

2γ3ǫ2
e−γh

(

2γ(ǫ − h)eγh + e−γǫ(e2γh + 1) − 2
)

. h < ǫ.

(3.4)

In particular, we have

Kǫ(0) =
σ2

γ3ǫ2
(e−γǫ − 1 + γǫ). (3.5)

Proof. As is well known, we may in this Gaussian context freely commute expectation

signs and integral signs, so that the computation of Kǫ(h) boils down to computing simple

deterministic integrals of the explicit stationary covariance function of Xt. Since, E[Xs] = 0;

therefore, the mean of Y ǫ
t is given by

E [Y ǫ
t ] =

1

ε

∫ t

t−ε
E[Xs]ds = 0.

The covariance function of Y ǫ
t at time lag h is defined to be

Kǫ(h) = E[Y ε
t+hY ǫ

t ] =
1

ǫ

(
∫ t+h

t+h−ǫ
E[XsY

ǫ
t ]ds

)

. (3.6)
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The stationary covariance of Xt is given by

E[XsXu] = (σ2/2γ)e−γ(s−u),

therefore, for each s ∈ [t + h − ǫ, t + h] such that h ≥ ǫ, we get

E[XsY
ǫ
t ] =

σ2

2γ

e−γs

γǫ

(

eγt − eγ(t−ǫ)
)

. (3.7)

Using (3.6) and (3.7) the covariance function Kǫ(h), for h ≥ ǫ is given by,

Kǫ(h) =
σ2

2γ
e−γh

(

e−γǫ + eγǫ − 2

γ2ǫ2

)

.

For the case when 0 ≤ h < ǫ we re-write (3.6) as

Kǫ(h) =
1

ǫ

(
∫ t

t+h−ǫ
E[XsY

ǫ
t ]ds +

∫ t+h

t
E[XsY

ǫ
t ]ds

)

. (3.8)

Using the definition of Y ε
t and the stationary covariances of Xt, for each s ∈ [t+h− ǫ, t]

such that 0 ≤ h < ǫ, we get

E[XsY
ǫ
t ] =

σ2

2γ

1

γǫ

(

2 − eγ(t−ǫ)e−γs − e−γte−γs
)

. (3.9)

Using (3.7), (3.8) and (3.9) we get the required covariance when 0 ≤ h < ǫ, namely

Kǫ(h) =
σ2

2γ
e−γh

(

2γ(ǫ − h)eγ∆ + e−γǫ(e2γh + 1) − 2

γ2ǫ2

)

.
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Therefore, the correlation function CFsou of Y ǫ is defined as,

CFsou(h) =



































1

2
e−γh

(

e−γǫ + eγǫ − 2

e−γǫ − 1 + γǫ

)

, h ≥ ǫ,

1

2
e−γh

(

2γ(ǫ − h)eγh + e−γǫ(e2γh + 1) − 2

e−γǫ − 1 + γǫ

)

, 0 ≤ h < ǫ.

(3.10)

Now, we analyze the correlation function (3.10) that reveals the fundamental differ-

ences between the SOU process and the OU process which make estimation under indirect

observability a difficult problem.

The correlation function obtained for the SOU process has a typical feature, which

arises in many other complex models, for instance, the multiscale dynamics introduced in

chapter 4, and dynamical systems (see [27] and references therein). This typical feature

is the differentiability of the correlation function, in particular, at time lag h = 0. The

derivative of the correlation function is given by,

d (CFsou(h))

dh
=



































−γ

2
e−γh

(

e−γǫ + eγǫ − 2

e−γǫ − 1 + γǫ

)

, h ≥ ǫ,

γ

2

(

2e−γh + e−γǫ(eγh − e−γh) − 2

e−γǫ − 1 + γǫ

)

, 0 ≤ h < ǫ.

(3.11)

The derivative at lag zero is equal to zero, this is in contrast with the correlation function

of the OU process CFou(h) = e−γ|h|, which is non-differentiable at lag zero.

Definition 3.2.3 A stochastic process Zt is differentiable in the mean square sense, with

derivative given by a unique process Żt, if E

[

(

(Zt+h − Zt)/h − Żt

)2
]

vanishes in the limit

as h → 0. The derivative in the classical sense is a special case of this definition.

Result 3.2.4 It can be shown [88] that a stationary random process is differentiable in the

mean square sense if and only if its associated correlation function is twice differentiable at
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lag zero.

The second derivative of the correlation function (3.10) is given by,

d2 (CFsou(h))

dh2
=



































γ2

2
e−γh

(

e−γǫ + eγǫ − 2

e−γǫ − 1 + γǫ

)

, h ≥ ǫ,

γ2

2

(−2e−γh + e−γǫ(eγh + e−γh)

e−γǫ − 1 + γǫ

)

, 0 ≤ h < ǫ.

(3.12)

The correlation function for the stationary process is even; therefore, using the classical

result 3.2.4 it may be inferred that the SOU process is differentiable in the mean square

sense. Hence, the SOU process is systematically different from the OU process, and only in

the limit coincides with it.

Also, close to lag zero the correlation function of the OU process is concave upward

(positive curvature) whereas the correlation of the SOU process is concave downward (neg-

ative curvature). This difference in curvature makes estimation of OU parameters γ, σ2,

based on observations from the SOU process a challenging task, which is addressed using

an explicit subsampling scheme dictating an optimal choice of time lag.

More specifically, for a fixed positive ε ≪ 1 the correlation function (3.10) of the SOU

process for small lags 0 < h < ε may be approximated by CFsou ≈ (1 − cte h2), where

the positive constant cte depends on γ and ε. More specifically, we obtain that the leading

order terms for small h < ε ≪ 1 are given by

CFSOU(h) = 1 −
(

1

γε
− 1

6
+ O(ε)

)

γ2 h2 + O(h3). (3.13)

If we attempt to fit the exponentially decaying function CFou = e−γh to (1 − cte h2) at a

fixed lag τ < ε, then this is achieved for γ ≈ cte τ . Since γ depends on τ , this implies that

there may not be a unique value of the parameter γ which may reproduce the correlation
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function of the SOU process at every lag close to zero. Moreover, γ vanishes as the time

lag τ → 0. Hence, the OU process does not reproduce the behavior of the SOU process

at small lags. Our objective is to estimate γ and σ2 by observing only the approximating

SOU process Y ε
t at discrete points, which may be realized by considering larger time lags.

The correlation function (3.10) associated to the SOU process for lags h ≥ ε verifies,

|CFsou(h) − CFou(h)| ≈ O(ε).

Therefore, it is expected that estimation of γ based on correlations of the SOU process at

some lag τ > ε will have an error of the order (ε/τ). This intuitive explanation will be

made rigorous in the ensuing sections in this chapter.

It is important to point out these features associated to the SOU process which distin-

guish the SOU process from the OU process. The behavior of the correlation function close

to lag zero will play a major role in the estimation of the parameters of the OU process,

and more general classes of random processes.

In our study, we are going to systematically address the optimality of covariance lags

chosen for parametric estimation of the unobserved OU process based on the discrete data

from the observed SOU process.

3.3 Fixed-rate Subsampling

Recall that now the only available information are (N + 1) indirect observations U ε
n = Y ε

n∆

extracted from the SOU process Y ε
t by subsampling with a fixed time-step ∆ > 0.

The goal, nevertheless, is to estimate the parameters γ and σ2 of the underlying OU

process. We will study the estimators given by formulas (2.25) where we replace Un by U ε
n.
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These approximate MLEs of γ and σ2 are given by

γ̂ε = − 1

∆
ln

(

r̂ǫ
1

r̂ǫ
0

)

, σ̂2
ε = 2γ̂εr̂

ǫ
0, (3.14)

where

r̂ǫ
k = r̂ǫ

k(N,∆) = (1/N)

N−1
∑

n=0

U ε
nU ε

n+k, for k = 0, 1, (3.15)

are the standard empirical estimators of the covariances rε
0 = Kε(0), rε

1 = Kε(∆) given by

(3.4).

Consider the asymptotics of the estimators (3.14) under the fixed-rate subsampling, i.e.,

when ε > 0 is fixed, the time step length ∆ > 0 is fixed, and the number of observations

N → ∞. We will show that under fixed-rate subsampling the estimators are asymptotically

biased. In the case of direct observability (ε = 0), the estimators of γ, σ2 given by (3.14) are

asymptotically consistent, and converge in L2 to the corresponding true values with speeds

of convergence proportional to 1/
√

N .

First we compute the L2-norms of the random variables (r̂ǫ
k − rε

k), where r̂ǫ
k are given

by (3.15) and rε
k = Kε(k∆) given by (3.4). Since, the SOU process is a centered stationary

Gaussian processs we may apply the result from proposition 2.4.3.

Proposition 3.3.1 (Asymptotics for “subsampled” covariance estimators) Let 0 <

ε ≪ 1 be fixed. Consider N discrete observations Un = Y ε
n∆ subsampled from the trajectory

of an SOU process Y ε
t at fixed uniform time step ∆ > 0. For k = 0, 1, and fixed ε,∆,

consider the “subsampled” empirical covariance estimators r̂ǫ
k,

r̂ǫ
k = r̂ǫ

k(N,∆) = (1/N)

N−1
∑

n=0

U ε
nU ε

n+k.

Let, for any non-negative integer k, rε
k(∆) = Kε(k∆) = E[UnUn+k], given by (3.4), denote

the “true” covariances for the subsampled process Un.
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Then, as N → ∞, the empirical covariance estimators r̂ǫ
k converge in L2 to the covari-

ances rε
k(∆) associated to the “subsampled” SOU process Un = Y ε

n∆. Moreover, the L2-speed

of convergence of r̂ǫ
k to rε

k(∆) is proportional to 1/
√

N .

Proof. There are two possible scenarios, (i) ∆ ≥ ε, and (ii) 0 < ∆ < ε. Define the

following scalars,

C0 =
σ2(e−γε + γε − 1)

γ3ε2
, C1 =

σ2(eγε + e−γε − 2)

2γ3ε2
, and b = e−γ∆.

(i) For ∆ ≥ ε, using (2.15) from proposition 2.4.3, we obtain, for each non-negative

integer k,

Jǫ
k = Cov(r̂ǫ

k, r̂
ǫ
k) =

1

N



f(0) + 2
N−1
∑

j=1

f(j)



− 2

N2

N−1
∑

j=1

jf(j), (3.16)

where f(j) = fk,ε,∆(j) =
(

(rε
k)

2 + rε
j+kr

ε
j−k

)

= f(−j).

Then, the standard empirical covariance estimators (r̂ǫ
k)k=0,1 given by (3.15), are such

that the L2-norms Jǫ
0 = ‖r̂ǫ

0 − rε
0‖2

L2
, and Jǫ

1 = ‖r̂ǫ
1 − rε

1‖2
L2

are given by,

Jǫ
0 =

2C2
1

N

(

C2
0

C2
1

+
2b2

1 − b2
− 2b2

(

1 − b2N
)

N(1 − b2)2

)

,

(3.17)

Jǫ
1 =

C2
1

N

(

C2
0

C2
1

+
2C0b

2

C1
+

b2(3 + b2)

1 − b2
− 2b2B1

N

)

.

where B1 =
[

(C0/C1) +
(

1 + 2b2 − b4 − 2b2N
)

/
(

1 − b2
)2
]

.

From (3.17) it may be inferred that Jǫ
0 → 0, and Jǫ

1 → 0, which is the required result.

(ii) Similarly, for 0 < ∆ < ε, we use the expression (2.15) from proposition 2.4.3, and
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arrive at the (3.16), i.e.,

Jǫ
k = Cov(r̂ǫ

k, r̂
ǫ
k) =

1

N



f(0) + 2
N−1
∑

j=1

f(j)



− 2

N2

N−1
∑

j=1

jf(j),

where f(j) = fk,ε,∆(j) =
(

(rε
k)

2 + rε
j+kr

ε
j−k

)

= f(−j). For each k = 0, 1, since,

∆ < ε, the sums in Jǫ
k can be decomposed into two parts, namely

N−1
∑

j=1

f(j) =

M
∑

j=1

f(j) +

N−1
∑

j=M+1

f(j), and

N−1
∑

j=1

jf(j) =

M
∑

j=1

jf(j) +

N−1
∑

j=M+1

jf(j),

where M is a positive integer such that M∆ ≤ ε < (M + 1)∆, and N ≫ M . Then,

for j between 1 and M , the value of f(j) is determined by the covariances Kε(h),

h ≤ ε, given by (3.4). On the other hand, for j > M , f(j) is determined by Kε(h),

h > ε. By evaluating the sums with the appropriate expressions for the covariances

rε
j = Kε(j∆), we get the required convergence for fixed ε, ∆ and as N → ∞.

As a result of the previous proposition we are able to conclude the following result

concerning the asymptotics of the estimators γ̂ε and σ̂2
ε .

Proposition 3.3.2 (Asymptotic Bias of γ̂ε and σ̂2
ε) For fixed ε and ∆ the following

convergence holds in L2 as N → ∞, namely,

γ̂ε → G = G(ε,∆), σ̂2
ε → S = S(ε,∆),

where

G = −(1/∆) ln (Kε(∆)/Kε(0)) and S = 2GKε(0), (3.18)

and where the covariances Kε(0) and Kε(∆) are given by (3.4).
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Hence, as N → ∞, γ̂ε and σ̂2
ε have a non-zero asymptotic bias given by,

Biasγ = G − γ, Biasσ2 = S − σ2. (3.19)

The explicit expressions of these asymptotic biases are given below in (3.20) and (3.21).

Proof. Since, the SOU process Y ε is, for a fixed ε, a stationary Gaussian process from

which we subsample the observations U ε
n with a fixed time-step ∆, therefore, the proof

applies the exactly same generic principles as the proof of proposition 2.5.2 above, and we

may directly apply the results from section 2.5 to the covariance estimators r̂ǫ
k for k = 0, 1

and to γ̂ε = g (r̂ǫ
0, r̂

ǫ
1) and σ̂2

ε = s (r̂ǫ
0, r̂

ǫ
1), given by (3.14).

As expected, indirect estimation of the OU process is less favorable than estimation

based on direct OU observations, so that γ̂ε, σ̂2
ε are not asymptotically consistent estimators,

respectively, of the true OU parameters γ, σ2, as N → ∞, for a fixed value of ε and ∆.

Instead, these estimators have non-zero asymptotic biases (G − γ) and (S − σ2) given by

(3.18), (3.19), that are functions of ∆, ε.

The asymptotic biases do not remain bounded for all values of ε → 0, ∆ → 0. In the

following proposition we derive the exact regime where it is possible to achieve asymptotic

consistency of the estimators γ̂ε, σ̂2
ε in the limit of ε → 0, ∆ → 0.

Proposition 3.3.3 (Favorable Regime for Consistency) As seen in proposition 3.3.2,

for fixed ε and ∆, the estimators γ̂ε and σ̂2
ε both have non-zero asymptotic biases Biasγ and

Biasσ2 as N → ∞, which depend only on ε,∆, γ, σ. Assume now that ε → 0, and for each ε

select a number N = N(ε) of indirect observations of Y ε
t and a subsampling rate ∆ = ∆(ε)

such that ∆ → 0 and N∆ → ∞.

Then, as ε → 0, Biasγ and Biasσ2 tend to 0 if and only if (∆/ε) → ∞.

Proof. From formula (3.5), we see that as ε → 0, we have Kε(0) → σ2/2γ; then the

expression of S given by (3.18) shows that whenever G → γ as ε → 0, we must also have
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S → σ2. Hence we only need to study the asymptotic behavior of Biasγ . Note first that

whenever ∆ = ∆(ε) ≥ ε and ε → 0, we have in view of (3.10) and (3.19),

Biasγ = −(1/∆) ln

(

e−γε + eγε − 2

2 (e−γε − 1 + γε)

)

= − γε

3∆

(

1 +
γε

6
+ O(ε2)

)

. (3.20)

We have several cases to consider.

1. Assume that (∆/ε) → ∞ as ε → 0. Then, for ε small enough, we have ∆ ≥ ε, and

(3.20) proves that Biasγ → 0, as ε → 0, and, hence, Biasσ2 → 0.

2. Let ∆/ε remain bounded as ε → 0. Then, there exist a subsequence ε → 0 such that

∆/ε → L for some non-negative L.

(a) If L ≥ 1 then for ε small enough we have ∆ ≥ ε and hence, in view of (3.20),

we have Biasγ ≈ (−γε/(3∆)) so that Biasγ of the subsequence tends to the

non-zero limit (−γ/(3L)).

(b) Assume that L < 1. Then for ε small enough we have ∆ < ε and hence, in view

of (3.10) and (3.19), we have

Biasγ = −(1/∆) ln

(

2γ(ε − ∆)eγ∆ + e−γε(e2γ∆ + 1) − 2

2 (e−γε − 1 + γε)

)

. (3.21)

Successive Taylor expansions with respect to ∆, and ε in (3.21), leads to the

following limit, namely,

Biasγ → (−γ)
(

1 − L + L2/3
)

, when ε → 0. (3.22)

But the quadratic polynomial
(

1 − L + L2/3
)

remains strictly positive for 0 ≤

L < 1. Hence, Biasγ tends to a non-zero limit in case 2.(b).
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Proposition 3.3.3 clearly defines a favorable regime for adaptive subsampling. We

have seen that the asymptotic biases of γ̂ε and σ̂2
ε , namely, Biasγ and Biasσ2 , tend to 0 as

ε → 0 if and only if (∆/ε) → ∞. This strongly indicates that optimal adaptive subsampling

schemes from indirect observations based on Y ε should provide N = N(ε) observations

U ε
n = Y ε

n∆ subsampled from Y ε
t at time interval ∆ = ∆(ε), under the following set of

simultaneous conditions,

ε → 0, ∆ → 0, ∆/ε → ∞, N∆ → ∞. (3.23)

These results highlight the necessity, as ε → 0, to subsample the approximating process Y ε

with a vanishing but coarse time step ∆(ε) ≫ ε to hope to obtain asymptotically consistent

estimators of the underlying parameters.

Under fixed rate subsampling, applying the general results on the asymptotic properties

of empirical covariance estimators based on the observations from a stationary Gaussian

processes as described in [10, Chapter X], the estimators γ̂ε, σ̂2
ε are asymptotically Gaussian,

i.e., the random vector
√

N
(

γ̂ε − G, σ̂2
ε − S

)

converges to a Gaussian distribution with mean

zero, and covariance matrix dependent on the true parameters γ, σ2, ε and ∆.

Since, in particular, for each fixed ε, ∆ > 0, as N → ∞, the empirical covariance

estimators r̂ε
0, r̂ε

1 are asymptotically Gaussian [10]. The estimators, using (3.14), are given

by γ̂ε = g (r̂ε
0, r̂

ε
1) and σ̂2

ε = s (r̂ε
0, r̂

ε
1), such that g, s have continuous second-order partial

derivatives in a neighborhood of the true values r0, r1. Therefore, as N → ∞, for each fixed

ε, ∆ > 0, the estimators γ̂ε = g (r̂ε
0, r̂

ε
1) and σ̂2

ε = s (r̂ε
0, r̂

ε
1) are asymptotically Gaussian [10].

We now study these estimators under the conditions (3.23) in detail.
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3.4 Adaptive Subsampling

Here we are able to show that the drift and diffusion estimators γ̂ε, σ̂2
ε are asymptotically

consistent in the limit of ε → 0 under the conditions given by (3.23). These conditions

identify explicit numerical schemes which we present below.

Proposition 3.4.1 (Asymptotics of the Covariances) Consider an adaptive subsam-

pling scheme, based on N = N(ε) indirect observations extracted from Y ε
t by subsampling

with time steps ∆ = ∆(ε). Then, under the conditions (3.23), the L2 norms of the variables

(r̂ǫ
0 − rε

0), and (r̂ǫ
1 − rε

1) converge to 0 with speeds of convergence proportional to 1/
√

N∆.

Moreover, for each k = 0, 1, the L2 norm of
√

N∆ (r̂ǫ
k − rε

k) converges to (σ2/(γ
√

2γ)),

which is identical to the asymptotic limit obtained when direct observations of the underlying

OU process are available.

Proof. Define Jǫ
k = E

[

(r̂ǫ
k − rε

k)
2
]

for k = 0, 1 computed explicitly for ∆ > ε, by using

proposition 2.4.3. Let

C0 =
σ2(e−γε + γε − 1)

γ3ε2
, C1 =

σ2(eγε + e−γε − 2)

2γ3ε2
, and b = e−γ∆.

Then, we have

Jǫ
0 =

2C2
1

N

(

C2
0

C2
1

+
2b2

1 − b2
− 2b2

(

1 − b2N
)

N(1 − b2)2

)

,

(3.24)

Jǫ
1 =

C2
1

N

(

C2
0

C2
1

+
2C0b

2

C1
+

b2(3 + b2)

1 − b2
− 2b2B1

N

)

,

where B1 =
[

(C0/C1) +
(

1 + 2b2 − b4 − 2b2N
)

/
(

1 − b2
)2
]

. From (3.24) we obtain bounds

for Jǫ
0 and Jǫ

1 given, for γ∆ ≪ 1, by

Jǫ
0 ≤ 2C2

0

N
+

2C2
1

γN∆
, and Jǫ

1 ≤ C2
0

N
+

2C0C1e
−γ∆

N
+

2C2
1

γN∆
.
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These inequalities show that Jǫ
k → 0 under the adaptive subsampling scheme defined in

(3.23). The exact expressions in (3.24) gives, as ε → 0,

(N∆)Jǫ
k → σ4

2γ3
.

Therefore, the L2-speeds of convergence for the empirical covariance estimators, as ε → 0,

are proportional to 1/
√

N∆.

Proposition 3.4.2 For each N,∆, ε, the random variables Z0 = Z0(N,∆, ε) and Z1 =

Z1(N,∆, ε) defined by,

Z0 =
(r̂ǫ

0 − rε
0)

√

Jǫ
0

, Z1 =
(r̂ǫ

1 − rε
1)

√

Jǫ
1

, (3.25)

have mean 0, variance 1, and covariance E[Z0Z1] = Jǫ
01/
√

Jǫ
0J

ǫ
1, where Jǫ

0, J
ǫ
1, J

ǫ
01 are given

by (3.24), (3.27).

Then, under the conditions,

ε → 0, ∆ → 0, N∆ → ∞, ∆ > ε,

the following first-order L2 approximations for the empirical covariances r̂ǫ
k hold, namely,

r̂ǫ
0 = rε

0 +

√
2r0√

γN∆
Z0 +

Z0√
N∆

(

O(ε2) + O(∆2) + O

(

1

N∆

))

,

(3.26)

r̂ǫ
1 = rε

1(∆) +

√
2r0√

γN∆
Z1 +

Z1√
N∆

(

O(ε2) + O(∆2) + O

(

1

N∆

))

,

where O(h) is a deterministic function of h, bounded by a constant multiple of h.

Proof. Let b = e−γ∆ and,

C0 =
σ2(e−γε + γε − 1)

γ3ε2
, C1 =

σ2(eγε + e−γε − 2)

2γ3ε2
,
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then, the exact expression for the covariance Jǫ
01 = E [(r̂ǫ

0 − rε
0) (r̂ǫ

1 − rε
1)] , is given by

Jǫ
01 =

2C2
1

N

(

2C0b

C1
+

2b3

1 − b2
− B2

N

)

, (3.27)

where

B2 =

(

C0b

C1

)

+

(

3b3 − b5 − b2N+1(1 + b2)

(1 − b2)2

)

.

Using Taylor expansions we obtain the following approximations,

Jǫ
0 =

2r2
0

γN∆

(

1 +
γ2∆2

3
− 1

2γN∆
+ O(∆4) +

O(∆2)

N∆
+ O(ε2)

)

,

Jǫ
1 =

2r2
0

γN∆

(

1 − 2γ2∆2

3
+ γ3∆3 − 1

2γN∆
+ O(∆4) +

O(∆2)

N∆
+ O(ε2)

)

,

Jǫ
01 =

2r2
0

γN∆

(

1 − γ2∆2

6
− 1

2γN∆
+ O(∆4) +

O(∆)

N∆
+ O(ε2)

)

,

from which we can deduce (3.26).

The following theorem presents the key results of our study.

Theorem 1 (Asymptotic Consistency of γ̂ε and σ̂2
ε) Consider an adaptive subsampling

scheme, based on N = N(ε) indirect observations extracted from Y ε
t by subsampling with

time steps ∆ = ∆(ε). Let the estimators γ̂ε and σ̂2
ε of γ, σ2, be given by (3.14). Then,

under the following conditions,

ε → 0, ∆ → 0, N∆ → ∞, ∆/ε → ∞, (3.28)

the estimators γ̂ε and σ̂2
ε are asymptotically consistent, i.e., γ̂ε → γ, σ̂2

ε → σ2 in L2.

Moreover, the expected L2-speed of convergence, proportional to 1/
√

N∆, is achievable
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under the following conditions which are stronger than (3.28),

ε → 0, ∆ → 0, N∆ → ∞, Nε2/∆ < cte. (3.29)

In particular, under stronger conditions than (3.29), (3.28), namely,

ε → 0, ∆ → 0, N∆2 → ∞, Nε2/∆2 → 0, (3.30)

the estimators are asymptotically efficient, and the asymptotic limit of the L2-norms of

the random variables
√

N∆ (γ̂ε − γ),
√

N
(

σ̂2
ε − σ2

)

converge, respectively, to
√

2γ, σ2
√

2,

exactly as in the case of direct observations.

Proof. Substitute the expressions for empirical covariance estimators r̂ǫ
k, given by (3.25),

in the expressions for the estimators γ̂ε and σ̂2
ε defined in (3.14). In particular, the drift

estimator γ̂ε is given by,

γ̂ε =
−1

∆
ln

(

e−γ∆C1 +
√

Jǫ
1Z1

C0 +
√

Jǫ
0Z0

)

.

Then, using Taylor expansions as ε → 0 and using arguments similar to those given in the

proof of proposition 2.6.4, we obtain the following first-order L2-approximation for γ̂ε given

by,

γ̂ε = γ − γε

3∆
− Zγ + Rγ × O

(

1

N∆

)

+
ε

∆
× O(ε), (3.31)

where the zero mean random variable Zγ is given by,

Zγ =
eγ∆

√

Jǫ
1Z1

∆C1
−
√

Jǫ
0Z0

∆C0
.
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The L2 norm of random variable Zγ using Taylor expansion for ε → 0, ∆ → 0, N∆ → ∞

is approximated by,

‖Zγ‖2
L2 =

2γ

N∆

(

1 + 3γ∆ − 1 + O(∆)

2γN∆
+ O

( ε

∆

)

+ O(∆2) + O(ε)

)

. (3.32)

The remainder term Rγ = Rγ(∆, ε,N) is uniformly bounded in L2 norm. Therefore, using

(3.31) and (3.32), under the conditions (3.28) the estimator γ̂ε converges in L2 to γ.

To compute the L2−speed of convergence we study

√
N∆ (γ̂ε − γ) = −

√
N∆Zγ − γε

√
N

3
√

∆
+ Rγ × O

(

1√
N∆

)

. (3.33)

Using (3.32), (3.33) we see that the L2−norm of
√

N∆ (γ̂ε − γ) converges to a constant un-

der conditions (3.29). Under the adaptive subsampling scheme (3.29), we assume Nε2/∆ →

0 to deduce that the asymptotic variance of estimation errors converge to the same constant

as in the case of direct estimation (see proposition 2.6.4), i.e.,

‖
√

N∆ (γ̂ε − γ) ‖2
L2 → 2γ.

Similarly, given the conditions (3.28), the diffusion estimator σ̂2
ε = 2γ̂εr̂

ǫ
0 converges in L2 to

the true value σ2, and, hence, is asymptotically consistent. Furthermore, under conditions

(3.30) we obtain,

‖
√

N
(

σ̂2
ε − σ2

)

‖2
L2 → 2σ4.

The main conclusion of theorem 1 is that under conditions (3.29) the estimators γ̂ε,

σ̂2
ε , based on indirect estimation, are asymptotically consistent estimators of γ, σ2, with an

L2-speed of convergence proportional to 1/
√

N∆.
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A natural objective is to optimally select ∆ = ∆(ε) and N = N(ε), verifying the condi-

tions (3.29), in order to achieve the fastest speed of convergence. A pragmatic interpretation

of the conditions (3.29) is that, as ε → 0, one selects ∆ = ∆(ε) such that

∆ → 0, ∆ ≫ ε, and N verifies, (1/∆) ≪ N < cte(∆/ε2). (3.34)

The L2-speed of convergence (1/
√

N∆) of our estimators γ̂ε, σ̂2
ε then verifies,

cte
( ε

∆

)

<
1√
N∆

≪ 1. (3.35)

Clearly, the lower bound (ε/∆) in (3.35) is the best L2-speed of convergence achievable under

the conditions (3.29). This speed is attained when N ∼ ∆/ε2 → ∞, which corresponds to

a global time interval of observations T ∗ = N∆ = cte(∆2/ε2).

Choosing a global time interval of observations T ≫ T ∗ → ∞ will not improve the

accuracy, since, the L2 errors will then be dominated by (ε/∆) ≫ (1/
√

N∆). This, indeed,

provides evidence that under indirect estimation, observing the data on an increasing time

interval N∆ will not improve by itself the accuracy of the estimators, and coarse graining

(i.e.,∆ ≫ ε) of the data is necessary to reduce the estimation errors.

In the following corollary we provide a particular example of the optimal criterion iden-

tified by the pragmatic interpretation (3.34).

Corollary 3.4.3 (Power Law Criterion for Optimal Subsampling) As ε → 0, as-

sume that N(ε) and ∆(ε) are given by powers of ε, namely, N(ε) = ε−η, ∆(ε) = εα.

Then,

1. as ε → 0, for any α, η such that α ∈ (0, 1), η > α, the estimators γ̂ε, σ̂2
ε are

asymptotically consistent in L2 norm.

2. Moreover, as ε → 0, under stronger conditions, namely, for any α, η such that
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α ∈ (0, 1), α < η ≤ 2 − α, the estimators converge with an L2-speed of convergence

proportional to 1/
√

N∆ = ε(η−α)/2.

3. The best speeds of convergence are reached when α > 0 is close to 0, and η = 2 − α.

Then, we obtain ∆ = εα, N = ε−(2−α), and the global time of observations N∆ =

ε−2(1−α).

3.5 Numerical Results

We now study numerically a few typical examples of adaptive subsampling schemes ensuring

asymptotic consistency of estimators γ̂ε, σ̂2
ε . In view of the corollary 3.4.3, we let ∆(ε) = εα

where α ∈ (0, 1), and the number of observations N ≫ (∆/ε2). The following numerical

results show that as ε → 0, Biasγ(∆, ε) and Biasσ2(∆, ε) converge to 0 if and only if

(∆(ε)/ε) → ∞ (See proposition 3.3.3). As evident in the following numerical study and

from corollary 3.4.3 for smaller values of α ∈ (0, 1), the convergence of the Biasγ and Biasσ2

to zero is faster.

We generate numerical discrete simulations for the trajectory Xt of the OU process with

fixed parameters γ = 3.2625 and σ = 6.7500. Each associated SOU process trajectory Y ε
t

is computed by direct integration of the discretized trajectory Xt on a sliding time window

of duration ε . The N observed data are then obtained by subsampling the discretized SOU

trajectory Y ε
t with step size ∆. The goal was to verify the analytical results derived above

on indirect subsampling estimation of the underlying parameters.

The underlying discretized trajectory of Xt is generated using a hybrid of Euler-Maruyama

and second-order Runge-Kutta discretization schemes for the SDE (3.1), with a time-step

length of d = 10−4 and total time interval T = 900, thus providing 9 × 106 points of OU-

trajectory. To generate SOU observations, we average the simulated OU observations over
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a sliding window of length ε, for the following values of ε,

ε = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3.

We consider 3 examples of adaptive subsampling schemes, namely, when observations are

subsampled with time-step ∆(ε) = ε0.5, ∆(ε) = ε, and ∆(ε) = ε2. In each one of these

3 cases, for each simulated trajectory of the SOU process, we compute the subsampled

estimators γ̂N and σ̂2
N given by (3.14). Figure 3.1 shows numerical verification of the

consistency results obtained in corollary 3.4.3. Errors (in %) in the figure is defined to be

the absolute value of the relative bias in the estimates. For instance, for the error in the

estimation of γ, we have

Error =

∣

∣

∣

∣

γ̂ε(N,∆) − γ

γ

∣

∣

∣

∣

.

1. Case ∆(ε) = ε0.5 : Results are displayed in the top part of Figure 3.1. The empirical

relative bias (errors) of subsampled estimators tend to zero as ε → 0, as expected,

since ∆(ε)/ε → ∞ in this case.

2. Case ∆(ε) = ε : Results are displayed in the middle part of Figure 3.1. The empirical

relative bias (errors) of the subsampled estimators converge to a non-zero value, as

ε → 0, as expected, since ∆(ε)/ε, is bounded in this case.

Formula (3.20) for the asymptotic bias give Biasγ ≈ −γ/3 and Biasσ2 ≈ −σ2/3,

which fit very well with the numerical results.

3. Case ∆(ε) = ε2 : Results are displayed in the bottom part of Figure 3.1. The

empirical relative bias (errors) of the subsampled estimators increase as ε → 0, as

expected, since ∆(ε)/ε → 0 in this case.
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Figure 3.1: Relative (%) errors in γ̂ε and σ̂2
ε based on observations from the SOU process

subsampled with three different strategies. Left part - Errors in γ̂ε, Right part - Errors in

σ̂2
ε . Top part - Subsampling with ∆ = ε0.5 : errors converge to 0 with speed of convergence

proportional to ε0.5. Middle part - Subsampling with ∆ = ε : errors converge to a constant

(≈ 33%) with speeds of convergence proportional to ε. Bottom part - Subsampling with

∆ = ε2 : errors increase to 100%.
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3.6 Concluding Remarks

Our objective, aforementioned, is to consistently estimate parameters of an underlying pro-

cess, assumed to be unobservable, based on observations subsampled from an observable

approximating process. This objective has been explicitly illustrated with the above pro-

totypical example, where the unobservable process is taken to be the stationary Ornstein-

Uhlenbeck (denoted as OU) process (3.1) characterized by unknown parameters, drift γ > 0

and diffusion σ2. These parameters are estimated given discrete set of observations from

an observable process, taken to be the Smoothed Ornstein-Uhlenbeck (denoted by SOU)

process defined in (3.2). The SOU process, in particular, is obtained by locally averaging

the OU process over a moving window of length ε > 0. This local averaging makes the OU

SDE (3.1) a misfit to the data sampled from the SOU process with very high frequency.

Estimation of parameters under such mismatch (which we refer to as indirect observability

of the unobserved process) is the central focus of this thesis, and this particular example

(OU/SOU) effectively presents the main idea, along with the exact conditions under which

the estimation is not only possible, but consistent.

In this first part of the thesis, by considering the SOU process, we have restricted our-

selves to the Gaussian framework, where exact computations of the errors in the estimation

were possible. The expressions for the errors derived, thus, lead to characterization of ex-

plicit conditions to guarantee consistency of the parameter estimators. For instance, given

N = N(ε) discrete observations subsampled from the SOU process Y ε
t with uniform time

step ∆ = ∆(ε), then, under the conditions,

ε → 0, ∆ → 0, N∆ → ∞, ∆/ε → ∞,

the estimators γ̂ε and σ̂2
ε converge in L2 to the true unknown values γ, σ2 corresponding to

the OU process. The numerical study (figure 3.1) presented above, verifies these results.
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Although the example of the SOU process is specific, it throws light on how indirect

observability manifests itself in estimation problems. This gives us strong pointers for

estimation under indirect observability in more generic examples.

In the second part of the thesis we apply some of the results to more complex examples,

particularly, to data obtained from multiscale dynamics.
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Chapter 4

Application to Multiscale

Dynamics

4.1 Introduction

In chapter 3 we presented a favorable situation, where the unobserved OU process Xt is

approximated by observed Gaussian SOU processes Y ε
t , to characterize explicitly the family

of optimal subsampling regimes leading to consistent estimators having the best L2-speeds

of convergence under indirect observability. This specific framework replicates the scenario

observed in several applications where a mismatch between the data and the stochastic

model impedes the estimation procedure, so that appropriate adaptive subsampling schemes

become necessary to obtain consistent estimates, and good L2-speeds of convergence.

In many applications, it is desirable to capture the stylized statistical features of high-

dimensional multiscale dynamics by fitting a reduced (single-scale) system of SDEs to the

observed dataset. Although the reduced (or limiting) equation may capture the important

statistical features of the full system at large scales, there may be a mismatch between the

reduced system and full system at small scales. Mathematically this is explained as follows.
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Consider multiscale dynamics of ~wε(t) = (~uε(t), ~vε(t)), where ~uε(t) form the slow variables

(resolved part), i.e., they evolve on a longer time scale, say, of O(1) or O(ε−1); and ~vε(t) are

the fast variables (unresolved part), i.e., as compared to ~uε they evolve on a shorter time

scale, say, of order O(ε), for ε ≪ 1. Then, for specific dynamics under some conditions,

in the limit of infinite scale separation, i.e., as ε → 0, the slow variables ~uε converge to

a process ~U = {U(t)} in an appropriate sense. The single-scale reduced model U , then,

reproduces the behavior of the slow variables ~uε, for each ε > 0, only on larger time-scales.

Multiscale systems with the limiting model given by a Markov process have been studied

extensively in the past [14, 33, 35, 56, 57, 71, 75, 77, 36].

In an attempt to identify the limiting process ~U , given the high frequency observations

from the resolved part ~uε of the full system, one fails to infer accurately the values of

parameters associated to ~U , precisely, due to the mismatch at small time scales. Subsam-

pling the given observations from the full system leads to improvement in the accuracy of

the estimates. Nevertheless, questions pertaining to optimal subsampling frequency, and

asymptotic properties of the estimators (maximum likelihood estimators, etc.) are subtle,

and have become the focus of research. This estimation problem has been discussed in

the context of averaging and homogenization of multiscale diffusions in [72, 73, 76] (such

that limiting model is a system of SDEs). In [73, 76] the estimation of homogenized mul-

tiscale diffusions is studied using likelihood methods, where as [72] presents an “equation

free” modeling procedure. Non-parametric estimation of diffusions from the multiscale time

series using spectral properties of the generator is presented in [26].

In particular, we consider two examples where the objective is to estimate parameters

of the limiting equations corresponding to multiscale dynamics. The limiting equation is

obtained using the method of homogenization (see appendix 0.15 for an example).

In many situations the dynamics of the full multiscale system - and consequentially those

of the limiting reduced system - is not known. For instance, in the case of multiscale diffu-
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sions, the drift and diffusion coefficients of the full system and thus the reduced system may

depend upon unknown parameters, or the fast variables may be too complicated. Therefore,

it is critical to develop statistical techniques to estimate parameters of the limiting reduced

equation given only the observations from the slow variables.

Estimation of the limiting equation associated to a multiscale system naturally falls

in the framework of indirect observability, which refers to estimation of an underlying un-

observed process Xt based on observations from an approximating process Y ε
t . The slow

variables ~uε in the full system correspond to the observed approximating process Y ε
t , and

the limiting model U naturally takes the role of the unobserved process Xt.

The example of OU/SOU process presented in chapter 3 was suited for explicit compu-

tations of the errors in the estimation, which were then utilized to characterize the exact

optimal subsampling schemes, i.e., ensuring asymptotic consistency of the estimators, c.f.,

(3.34). On the contrary, explicit computations are difficult for the multiscale models con-

sidered here. Therefore, we work with the intuition gained from the exact study of the

OU/SOU example and conjecture our results for the multiscale diffusions. We support

our conjecture with convincing numerical results and present arguments to demystify the

observed behavior of the estimators.

In generic cases, the adequate convergence speed of good adaptive subsampling schemes

can be identified by expanding the correlation function of Y ε
t for small lags, or alternatively

by the Lp-speed of convergence of the approximating process Y ε
t to Xt, as ε → 0. This

approach, used in chapter 3, is extended in chapter 6 to more general class of stochastic

models under indirect observability. The optimal subsampling schemes, for instance, for the

Additive triad model presented below are characterized by, the scaling of the correlation

function around lag zero, and the local behavior of the correlations as presented above in

section 3.2.
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4.2 Additive Triad

The first model which we consider is the additive triad model [64]

dxt =
1

ε
A1ytztdt,

dyt =
1

ε
A2xtztdt − 1

ε2
g2ytdt +

1

ε
s2dW1(t), (4.1)

dzt =
1

ε
A3xtytdt − 1

ε2
g3ztdt +

1

ε
s3dW2(t),

where A1 + A2 + A3 = 0, gi, si are known positive parameters, W1, W2 are standard

Brownian motions, and ε > 0 is the scale separation parameter. The stationary covariance

of xt can be computed explicitly for small lags and is given by

E[xtxt+h]

E[x2
t ]

≈ 1 − C
h2

ε2
, (4.2)

where C = γ(g2 + g3)/2 with γ in (4.4). Details of the derivation are provided in section

4.3.

It has been shown that xt converges weakly to the OU process Xt as ε → 0 [64]. The

limiting equations are obtained by homogenization (see appendix 0.15) and are given by

dXt = −γXtdt + σdWt, (4.3)

where Wt is Brownian motion, and γ and σ can be computed explicitly as

γ =
−A1

2(g2 + g3)

(

A2s
2
3

g3
+

A3s
2
2

g2

)

, σ2 =
(A1s2s3)

2

2g2g3(g2 + g3)
. (4.4)

The convergence of x(t) in (4.1) to the OU process can be proved using the homogenization
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procedure [64, 77]. The derivation utilizes the asymptotic expansion of the backward Kol-

mogorov equation. The weak convergence implies convergence of expectations of bounded

functions. Nevertheless, we conjecture that moments of xt converge to the moments of the

Ornstein-Uhlenbeck process Xt in (4.3) as ε → 0. Numerical results confirming the con-

vergence of the correlation function and the (generalized) kurtosis (fourth-order moment

measuring departures from Gaussianity) given as,

Kurt(τ) =
〈x2(t)x2(t + τ)〉t

〈x2(t)〉2 + 2〈x(t)x(t + τ)〉2t
, (4.5)

as ε → 0 are depicted in Figure 4.1. Here < . >t denotes time averaging, which due to

ergodicity [59] of the process, is equivalent to taking average with respect to the invari-

ant density computed below in proposition 4.3.1. Note that in the benchmark case of a

stationary Gaussian process x(t), the value of Kurt(τ) = 1.

Thus, we expect that for small enough ε the data generated by xt in the triad model

is close to the OU process in statistical sense. In particular, the correlation function of xt

converges to the exponential with the exponent γ in (4.4). Therefore, the estimation proce-

dure should yield parameter values which are close to the analytical asymptotic expressions

in (4.4). So, we use expressions (4.4) to test the performance of the parametric estimation

under indirect observability when the data are generated by xt in the triad in (4.1).

Subsampling for the Additive Triad Model

Now we test various subsampling strategies for adaptive parametric estimation of the un-

derlying OU- process Xt, when the estimators are computed from indirect observations,

namely the xt data generated by the triad model. For multiple values of ε, we focus on the

natural OU-process parameter estimators (3.14), but computed with datasets Un = xn∆(ε)
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Figure 4.1: Left part - Convergence, as ε → 0, of stationary correlation function E[xtxt+τ ]
in the Triad model (4.1) to correlation function e−γτ of the effective equation. Note that the
graphs for ε = 0.1 and ε = 0.2 nearly overlap, and thus, are not distinctively visible in the
figure. Right part - Stationary kurtosis (4.5) in the triad model (4.1) measuring departure,
as ε → 0, from Gaussianity (Kurt(τ) = 1).

generated by numerical simulations of the triad model. As ε → 0, we then compare the

behavior of these estimators with the desired true parameter values , given by the explicit

expressions (4.4). The triad model parameters in (4.1) are chosen to be

A1 = 0.9, A2 = −0.4, A3 = −0.5,

g2 = g3 = 1,

s2 = 3, s3 = 5,

and we consider four values of ε

ε = 0.1, 0.2, 0.3, 0.4.
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With this choice of triad parameters values, the drift and diffusion coefficients of the unob-

servable limit process Xt are computed by formula (4.4), which yields the values

γ = 3.2625, σ = 6.75. (4.6)

To determine the appropriate subsampling strategy for the dataset generated by the triad

equations we compare the correlation functions of the SOU Process Y ε
t given by (3.13) and

of xt in (4.2), in order to adequately match the scaling of these two correlation functions

with respect to the scale parameter ε. In particular, for small time lags h, the respective

correlations arr given by

CF{Y ε
t }(h) ∼ 1 − cte h2/ε, CF{xt}(h) ∼ 1 − cte h2/ε2,

where the generic notation “cte” denotes various numerical constants. Therefore, ε2 in the

triad model plays the role of ε in the SOU process, and when N , ∆ are powers of ε the

necessary condition for the consistency of the subsampling strategy for the triad model

should be given by

∆ = ε2α, α ∈ (0, 1), N = ε−2β, α < β.

Moreover, since we conjectured that ε2 plays the role of ε in the SOU process, then when

N is large enough (i.e. N ≫ ∆/ε4) the bias for the adaptive indirect parametric estimation

from the triad data is proportional to γε2/∆, i.e.

γ̂ε − γ ∼ cte
γε2

∆
for N ≫ ∆

ε4
. (4.7)

The size of datasets is chosen to be N = 500, 000 and is kept constant in all simulations;

N ≫ ∆/ε4 holds for the smallest ε = 0.1 and largest ∆ = 0.1 considered here. Therefore,
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the term on the right-hand side of (4.7) is the dominant term in the bias.

To support the above conjecture we compare three subsampling strategies. In partic-

ular, behavior of estimators (3.14) computed from the triad data with three subsampling

strategies ∆ = ε, ∆ = 4ε2, and ∆ = ε3 is presented in Figure 4.2.
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Figure 4.2: Relative (%) errors in γ̂ε and σ̂2
ε based on observations from the triad model

(4.1) subsampled with three different strategies. Left part - Errors in γ̂ε, Right part -

Errors in σ̂2
ε . Top part - Subsampling with ∆ = ε0.5 : errors vanish as ε → 0. Middle

part - Subsampling with ∆ = 4ε2 : errors converge to a constant as ε → 0. Bottom part -

Subsampling with ∆ = ε3 : errors increase to 100% as ε → 0.
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The top part of the Figure 4.2 demonstrates that when
(

∆(ε)/ε2
)

→ ∞ estimates for γ and

σ2 are consistent with respect to the theoretical results in (4.4). On the other hand, errors

remain bounded away from zero for the adaptive subsampling strategy such that
(

∆(ε)/ε2
)

is bounded. This is depicted in the middle part of Figure 4.2 where
(

∆(ε)/ε2
)

tends to

a non-zero value, and hence, the errors converge to a constant strictly greater than zero.

The bottom part of Figure 4.2 is based on subsampling scheme such that
(

∆(ε)/ε2
)

→ 0,

and the corresponding estimation errors increase to 100%. This provides strong evidence

to support our conjecture, that the optimal subsampling strategy ∆ ≫ ε2 is the favorable

subsampling regime for the estimation of the OU parameters from the triad data. The

nature of the results is similar to the ones obtained for the SOU process.

The next section presents, in detail, the derivation of the approximation to the corre-

lation function associated to the slow variable in the triad system (4.1). The scaling of

the correlation function for lags close to zero is used to present the conjectured optimal

adaptive subsampling scheme for consistent estimators.

4.3 Local Correlations to Identify Subsampling Schemes

The correlation function for the slow variable xt in the additive triad system is derived as

follows.

Proposition 4.3.1 (Invariant Density) The Additive triad system (4.1) is asymptoti-

cally stationary with an invariant density given by,

Π(x, y, z) = K exp
(

−C1x
2 − C2y

2 − C3z
2
)

, (4.8)

where

C1 = −A−1
1

(

A2g2

s2
2

+
A3g3

s2
3

)

, C2 =
g2

s2
2

, C2 =
g3

s2
3

, (4.9)
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and K is a normalizing constant.

Proof. The Fokker-Planck equation (see appendix 0.13) associated to the system of SDEs

(4.1) is given as,

∂tP = −1

ε
(A1∂x(yzP ) + A2∂y(xzP ) + A3∂z(xyP ))

+
1

ε2

(

g2∂y(yP ) +
1

2
s2
2∂

2
yy(P ) + g3∂z(zP ) +

1

2
s2
3∂

2
zz(P )

)

.

(4.10)

where the probability density P = P (t, x, y, z | x0, y0, z0). The expression in (4.10) may be

represented by,

∂tP =

(

1

ε
Lnl +

1

ε2
Lou

)

P,

where Lnl is the differential operator corresponding to the nonlinear terms and Lou corre-

sponds to the OU terms. The invariant density Π = Π(x, y, z) = limt→∞ P (t, x, y, z | x0, y0, z0),

is characterized by,
(

1

ε
Lnl +

1

ε2
Lou

)

Π = 0.

The differential operator Lou annihilates the bivariate Gaussian density function given by

Πou(y, z) = K1 exp
(

−(g2y
2/s2

2) − (g3z
2/s2

3)
)

.

Under the energy conservation assumption (A1 + A2 + A3 = 0) we have that Lnl annihilates

Πnl(x, y, z) = K2 exp
(

−C1x
2 − C2y

2 − C3z
2
)

,
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where C1, C2, and C3 are any arbitrary non-negative constants. After substituting the

product of the two densities we obtain,

Π(x, y, z) = K exp
(

−C1x
2 − C2y

2 − C3z
2
)

,

where C1, C2, and C3 are as given by (4.9).

Therefore, the vector process (xt, yt, zt) is asymptotically multivariate Gaussian with

zero mean, and the covariance given by a (3 × 3) diagonal matrix with diagonal entries

determined by (1/2C1), (1/2C2), and (1/2C3) (4.9).

Proposition 4.3.2 (Stationary Correlation Function) The correlation function CFatd(h)

associated to the slow variable xt in the additive triad system (4.1), is given by

CFatd(h) = 1 −
(

γ(g2 + g3)

2ε2

)

h2 + O(h3), (4.11)

where γ is the drift coefficient given by (4.4), and h < ε2 ≪ 1 such that ε2 is the time scale

of the fast variables.

Proof. The dynamics of slow variable xt is given by,

dxt = A1ytzt
dt

ε
.

Then, integrating above equation over a small interval [t, t + h] gives

xt+h − xt =

∫ t+h

t
A1yszs

ds

ε
. (4.12)
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Now by the Itô formula, the product process (yt zt), for s > t is given by,

ys zs = yt zt +

∫ s

t
xu

(

A2z
2
u + A3y

2
u

) du

ε
−
∫ s

t
(g2 + g3)yuzu

du

ε2
. . .

+

∫ s

t
s2zu

dW1(u)

ε
+

∫ s

t
s3yu

dW2(u)

ε
.

(4.13)

Substitute (4.13) in (4.12), and retain O(h) terms to obtain the Euler-Maruyama discretiza-

tion for the x-dynamics given by

xt+h = xt + A1ytzt
h

ε
, for h < ε2 ≪ 1. (4.14)

Multiplying both sides of (4.14) by xt and taking expectations with respect to the invariant

density P (4.8), we obtain

E[xt+hxt] = E[x2
t ] + A1E[xtytzt]

h

ε
= E[x2

t ].

This shows that the correlation function of x is close to 1, for h < ε2 ≪ 1, which is a

redundant approximation.

Hence, using Itô-Taylor expansion [58] we derive a higher-order discretization scheme

for the x-dynamics, namely,

xt+h = xt +
A1ytzt

ε
h +

A1

2ε2
xt(y

2
t A3 + z2

t A2)h
2 . . .

−A1ytzt

2ε2
(g2 + g3)h

2.

(4.15)
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Multiplying (4.15) by xt and taking expectations with respect to the invariant density (4.8)

gives

E[xt+hxt] = E[x2
t ]

(

1 +
h2A1

4ε2

(

A2s
2
3

g3
+

A3s
2
2

g2

))

,

where E[x2
t ] = (2C1)

−1, with C1 given by (4.9).

Hence, the stationary correlation function CFatd(h) associated to the slow variable xt

in the additive triad system is given by,

CFatd(h) = 1 −
(

γ(g2 + g3)

2ε2

)

h2 + O(h3), for h < ε2 ≪ 1,

where γ is the drift coefficient (4.4) of the limiting process Xt (4.3). Note that as ε → 0,

for h = h(ε) and h ≤ ε2, the correlation function CFatd(h(ε)) → CFatd(0) = 1.

Comparing the stationary correlation function CFatd(h) (4.11) to the correlation func-

tion CFsou(h) (3.13) associated to the SOU process, we conjecture that for estimation of

unknown parameters in (4.3), ∆ ≫ ε2 is the correct critical subsampling when observations

come from the triad model in (4.1). Moreover, the analogous adaptive subsampling scheme

to ensure consistency of estimators γ̂ε, σ̂2
ε based on the data from the triad is determined

by,

ε → 0, ∆ → 0, N∆ → ∞, (Nε4/∆) < cte.

4.4 Truncated Burgers-Hopf Model

In this section we consider the subsampling problem for the Truncated Burgers-Hopf (TBH)

model

∂tUΛ(x, t) +
1

2
∂xPΛU2

Λ(x, t) = 0, (4.16)
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where x ∈ [0, 2π] and PΛ is the projection operator in Fourier space

PΛu(x, t) =
∑

|k|≤Λ

uk(t)e
ikx, (4.17)

and UΛ is a finite dimensional projection

UΛ(x, t) =
∑

|k|≤Λ

uk(t)e
ikx = PΛu(x, t). (4.18)

Equation (4.18) is supplemented with the reality condition u−k(t) = u∗
k(t), where u∗ denotes

complex conjugation. Equation in (4.16) can be recast as a 2Λ-dimensional system of

ordinary differential equations

d

dt
uk = − ik

2

∑

k+p+q=0

|p|,|q|≤Λ

u∗
pu

∗
q , |k| ≤ Λ. (4.19)

Equations in (4.19) conserve energy

E =
1

4π

2π
∫

0

PΛU2
Λdx =

Λ
∑

k=1

|uk|2, (4.20)

and Hamiltonian

H =
1

12π

2π
∫

0

PΛU3
Λdx.

This model was introduced in [61, 62] and statistical properties of this model were further

studied in [1].

Since the equation for u0 is trivial, we can assume u0(0) = 0 without the loss of general-

ity. In particular, it was demonstrated that generic initial conditions correspond to H ≈ 0.

Moreover, for generic initial conditions Fourier coefficients achieve equipartition and equi-
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librium statistical properties of Fourier coefficients follow a joint Gaussian distribution

π(u1, u2, . . . uΛ) = Ce−βE , (4.21)

where C is a normalization constant, E is the energy defined in (4.20), and β is the inverse

of the temperature determined by the energy of the initial condition. According to the

distribution in (4.21) modes uk achieve equipartition of energy with

V ar{Re uk} = V ar{Im uk} =
1

2β
.

In [66] it is demonstrated that homogenization can be applied to the TBH model. In

particular, equations in (4.19) can be modified by introducing a small parameter ε into

the model, and the limit as ε → 0 of the modified equations can be computed explicitly.

Particular approach of introducing the small parameter ε depends on the number of the

essential variables in the equation, i.e., the number of modes to be retained in the limit.

For a detailed discussion on homogenization for the TBH model see [66]. Here we only

consider the case where u1 is the essential variable. The rest of the variables k = 2 . . . Λ are

considered to be fast, and are eliminated by the homogenization procedure.

Effective Equations for u1

When u1 is the only essential variable, the TBH equations are modified as following

u̇1 = − i

2ε

∑

p+q+1=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q , (4.22)

u̇k = − ik

2ε
(uk+1u

∗
1 + uk−1u1) −

ik

2ε2

∑

k+p+q=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q , (k ≥ 2) ,
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where we used the reality condition u−k = u∗
k to simplify the right-hand side of the second

equation.

The limiting behavior of u1 is given by the SDE

dak = B(a)akdt + H(a)akdt +
√

2σ(a)dWk(t), (k = 1, 2) (4.23)

where a = (a1, a2) ≡ (Re u1, Im u1) and


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
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





















B(a) = −(1 − 2N−1)E−1(a)
(

E1/2(a)I2|a|2 + E3/2(a)If

)

,

H(a) = −N−1E−1/2(a)|a|2I2 + 2E1/2(a)I2 − 3N−1E1/2(a)If ,

σ2(a) = E1/2(a)|a|2I2 + E3/2(a)If ,

E(a) = N−1(E − |a|2).

(4.24)

Details of the derivation are provided in [66]. We point out that the proof of convergence

requires assumptions of ergodicity and mixing on the deterministic system in (4.22). Ex-

pressions in (4.24) depend on the following parameters; N = 2Λ − 2 is the number of

fast degrees of freedom, E is the total energy of the full TBH model, I2 and If are two

parameters related to the averaged behavior of the fast variables. In particular,

I2 = I [Re u2,Re u2] = I [Im u2, Im u2] ,

(4.25)

If = I
[

fRe, fRe
]

= I
[

f Im, f Im
]

,
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where I[·, ·] is a short-hand notation for the area under the graph of a correlation function

(i.e., the correlation time)

I [g, h] =

∫ ∞

0
〈g(t)h(t + τ)〉tdτ, (4.26)

where 〈·〉t denotes the temporal average, and















































fRe(t) = Re
(

− i
2

∑

p+q+1=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q

)

,

f Im(t) = Im
(

− i
2

∑

p+q+1=0

2≤|p|,|q|≤Λ

u∗
pu

∗
q

)

(4.27)

are the terms on the right-hand side of u1. Parameters I2 and If are estimated from a

single microcanonical simulation of the full equations on energy surface E = 2Λ, so that

〈(Re uk)
2〉t = 〈(Im uk)

2〉t = 1. Therefore, I2 and If depend only on the truncation size and

can be computed a priori for all initial conditions for a given truncation.

Convergence of the stationary correlation function and the kurtosis in (4.5) for a1 =

Re u1 is depicted in Figure 4.3.
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Figure 4.3: Left part - Convergence, as ε → 0, of correlation function 〈ure
1 (t)ure

1 (t + τ)〉t in

the modified TBH model (4.22) to the stationary correlation function of a1 in the effective

equation (4.23). Note that the graphs for ε = 0.1 and ε = 0.25 nearly overlap, and thus, are

not distinctively visible in the figure. Right part - Convergence, as ε → 0, of the stationary

kurtosis (4.5) for ure
1 (t) in (4.22) to stationary kurtosis of a1 in the effective equation (4.23).

Equations in (4.23) are highly nonlinear, but can be simplified by considering the limit

of infinitely many fast variables. In particular, in the limit N → ∞ equations in (4.23)

become

dak = b(a)ak +
√

2s(a)dWk, k = 1, 2, (4.28)

where the drift and the diffusion simplify to

b(a) = −
(

√

2β|a|2I2 + (2β)−1/2If −
√

2/βI2

)

,

(4.29)

s2(a) = (2β)−1/2|a|2I2 + (2β)−3/2If .
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It is straightforward to verify that the joint Gaussian density

ρ(a) =
1

2πβ
e−β|a|2 (4.30)

is a stationary density for the equations in (4.28). We would like to point out that the limits

ε → 0 and N → ∞ do not commute; in particular, values of I2 and If depend on N , but

are treated as fixed in the limit of (4.23) as N → ∞. Equation in (4.28) have cubic and

linear damping and multiplicative and additive noises. In [66] equations in (4.22) and (4.23)

were considered in the weak energy regime β = 50 (V ar{a1} = V ar{a2} = 0.01). Here we

consider the truncation size Λ = 20, so that the total energy is E = 0.4 and number of fast

variables is N = 2Λ − 2 = 38. Parameters I2 and If become

I2 = 0.14, If = 4.3. (4.31)

Although the reduced equations in (4.23) and (4.28) are valid for any energy level

(arbitrary β), they are close to a linear OU system (I2 ≪ If ) for β = 50. Moreover,

numerical simulations indicate that higher moments are approximately Gaussian; this also

indicates that for β ≫ 1, the cubic terms and multiplicative noises become weak. Therefore,

in the regime I2 ≪ 1 modes (a1, a2) = (Re u1, Im u1) become approximately uncorrelated

and the two-point correlation function is well-approximated by an exponential function.

Correlation functions of a1 in the simulations of the effective SDE in (4.23) and (4.28) and

an exponential function e−(2β)−1/2If t are presented in left part of Figure 4.4. Kurtosis in

(4.5) for a1 = Re u1 in the simulations of reduced models in (4.23) and (4.28) is presented

in the right part of Figure 4.4. Kurtosis in (4.5) is a measure on non-Gaussianity since

Kurt(τ) = 1 for Gaussian processes. Behavior of the kurtosis indicates that the non-

Gaussian features of both reduced models in (4.23) and (4.28) are extremely weak.
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Figure 4.4: Left part - Stationary Correlation function of a1 = Re u1 in the effective model

(4.23) (black dashed line), limiting equations in (4.28) (solid line), and the exponential

function e−(2β)−1/2If t (red dashed line) which nearly overlaps with the correlation function

of the limiting equation. Right part - Stationary kurtosis for a1 = Re u1 in the effective

model (4.23) (dashed line), and kurtosis for limiting equations in (4.28) (solid line).

Therefore, in the weak energy regime β ≫ 1 system in (4.28) and is well-approximated by

the reduced system with I2 = 0. Therefore, in this regime the reduced equation becomes a

system of two independent linear Ornstein-Uhlenbeck processes

dak = −γak +
√

2sdWk, k = 1, 2, (4.32)

with γ = (2β)−1/2If and s2 = (2β)−3/2If . It is easy to verify that linear system in (4.32)

has stationary distribution in (4.30).

Therefore, for the purposes of evaluating the performance of estimators in (3.14) we

consider that the limiting “true” value of the drift and diffusion coefficients in the OU
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approximation of the modified TBH model are

γ = (2β)−1/2If , σ2 = 2s2 = 2(2β)−3/2If . (4.33)

For parameter in (4.31) and β = 50, coefficients γ and σ2 become

γ = 0.43, σ2 = 0.0086. (4.34)

In particular, we expect that in the correct subsampling regime estimates for r0 and

r1 would converge to the values which correspond to the drift and diffusion parameters in

(4.33). Nevertheless, we would like to point out that additional assumptions have been

made in the derivation of the equation in (4.23). The main simplifying assumption is that

the cross-correlation is zero between a1 = Re u1 and a2 = Im u1. It can be shown numer-

ically that the cross-correlation is extremely weak and very close to zero, but there is no

analytical justification for this assumption. This assumption, hence, leads to small discrep-

ancies between the modified model in (4.22) and the reduced model in (4.23). Nevertheless,

parametric estimation of the linear OU model from the TBH data represents a more real-

istic case when the proposed parametric model is not perfect even in the limit ε → 0. We

demonstrate that our conclusions about subsampling rates and unbiased estimators are still

valid in this case.

Sub-sampling Strategy for the Truncated Burgers-Hopf Model

Similar to the triad model considered in the previous section, we test the performance of

the estimators in (3.14) for different subsampling strategies by considering several datasets

generated by equations in (4.22) with four values of ε. Since the linear effective equations

in (4.32) for (a1, a2) decouple we consider only parameter estimation in the equation for

a1. Parametric estimation from the data of a2 follows identical trend. To test the subsam-
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pling strategy we consider the dataset Un = Re u1(n∆) and compare the behavior of the

estimators in (3.14) with the analytical values given by (4.33).

Since the same homogenization procedure is applied to derive the reduce equation in

the triad model and the modified TBH model, the time-scale of the fast variables in both

models is O(ε2). Therefore, behavior of the estimators γ̂ε and σ̂2
ε should be similar to the

triad case.

Thus, we consider four subsampling strategies ∆ = ε, ∆ = ε2, ∆ = 4ε2, and ∆ = ε3.

Results of parameter estimation for these subsampling strategies are presented in Figure 4.5.

Relative errors in the estimator γ̂ε follow the trend which is identical to the computations

from the triad data (c.f., Figures 4.5 and 4.2). In particular, the critical scaling is ∆ = ε2

and relative errors in the estimation of parameters decay to zero only for the subsampling

with ∆ = ε2α, α ∈ (0, 1).
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Figure 4.5: Convergence, as ε → 0, of relative (%) errors in γ̂ε (3.14) based on observations,

from Re u1(t) in the modified TBH model (4.22), subsampled with four different strategies

: solid line - subsampling with ∆ = ε : errors converge to 0, dashed line - subsampling with

∆ = ε2 : errors remain constant, dash-dot line - subsampling with ∆ = ε3 : errors increase

to 100%, dotted line - subsampling with ∆ = 4ε2 : errors remain constant.
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4.5 Concluding Remarks

Two multiscale dynamic models are presented as prototypical examples for parametric es-

timation under indirect observability. The corresponding reduced equations (OU process)

in the limit of infinite scale-separation (ε → 0) are known by applying the homogenization

method. The objective of consistently estimating the parameters of the reduced equations

given the data from the full system is considered. It has been successfully demonstrated that

given an increasing number of discretely sampled observations N(ε) ≫ ∆/ε4, and selecting

∆(ε) = ε2α, for α ∈ (0, 1), ensures L2-consistency of the (OU) estimators, as ε → 0.

These results highlight the necessity, as ε → 0, to subsample the observations from

the full multiscale system with a vanishing but coarse time-step ∆(ε) ≫ ε2 to obtain

accurate estimates of the underlying parameters. Precisely, the bias, in particular, in drift

estimator γ̂ε, due to the indirect observations is conjectured, with numerical and analytical

verification, to be of the form,

γ̂ε − γ ∼ cte
γε2

∆
for N ≫ ∆

ε4
.

However, in a practical situation, e.g., when the data has been observed from dynamics

with fixed and unknown ε (for instance, when the scale separation is not identifiable), then

clearly the bias will be proportional to ∼ (ε2/∆). But no inference regarding the optimality

of time-step ∆ can be made from the above analytical expression, since the regime ∆ ≫ ε2

is not identifiable. Therefore, with no knowledge of the scale-separation parameter ε the

optimal subsampling criterion, verified in this chapter, is not directly indicative of the

accuracy of the estimates or the optimal frequency of subsampling. Hence, an alternate

approach is required to compute the estimators from a “black box” dynamic model with

only indication of the reduced equation. This is addressed next in the chapter.
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Chapter 5

Pragmatic Estimation Based on

Multiple Subsamples

5.1 Introduction and Motivation

So far we have determined the theoretical limits, as ε → 0, of the L2-errors for the estimators

γ̂ε, σ̂2
ε , based on the observations from approximating processes Y ε

t , in particular, the SOU

process. To obtain meaningful asymptotics the number of discrete observations N and the

time step length ∆ were assumed to be dependent on the small parameter ε > 0. As ε → 0,

provided N = N(ε), ∆ = ∆(ε) verify certain conditions, the estimators are asymptotically

consistent with the best L2-speeds of convergence. The favorable conditions, or the optimal

adaptive subsampling schemes, are particularly characterised by the small parameter ε > 0.

For instance, for estimation based on SOU process, we recall the following specific optimal

characterization (corollary 3.4.3). As ε → 0, assume that N(ε) and ∆(ε) are given by

powers of ε, namely, N(ε) = ε−η, ∆(ε) = εα. Then, as ε → 0, for any α, η such that

α ∈ (0, 1), η > α, the OU estimators γ̂ε, σ̂2
ε are asymptotically consistent in L2 norm. We

also show, in chapter 4, that these adequate sub-sampling rates retain their validity in much
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wider contexts such as the additive triad system, and the homogenized TBH dynamics.

The above characterization assumes that the exact value of ε is known, which may not

be the case in practice. Hence, we consider a different view point under which we assume,

that the value of ε is unknown, and moreover, that ε remains fixed. This is relevant to

practical situations in which there is only one dataset generated from a numerical simulation

of an underlying complex model, for instance, a high dimensional multiscale system, with

an unknown fixed parameter ε. Therefore, an important practical task is to develop an

approach for analyzing accuracy of the estimators for a particular dataset with a fixed

unknown value of ε.

Based on the insights gained from the specific example of the OU/SOU estimation

of chapter 3, we will present a straightforward way of estimating the value of the small

parameter ε, and in turn identifying the critical scaling ∆ = ∆(ε) which minimizes the

L2-error in the estimation.

We illustrate the approach using again the example of the parametric estimation of the

OU process under indirect observability framework. The approach involves analysing the

estimators γ̂ε, σ̂2
ε as functions of the time step ∆, when N is assumed to be large enough,

and the dataset of observations from the approximating process is generated with fixed ε. As

shown above (chapter 3), asymptotic consistency of the estimators require sub-sampling on

a coarse grid, i.e., ∆ ≫ ε; therefore, we expect that the errors would increase substantially

for ∆ → 0 with ε fixed. This indeed identifies with the condition ∆/ε → 0 which is not

favorable for consistency, and also under this condition the asymptotic biases (3.19) increase

to relative error of 100%.

This is quite often the case when a simplified coarse-grained model, for instance, the

OU process, is used to describe the essential features of a large system under investigation,

for instance, the additive triad system. Clearly, the mismatch between the observed SOU

process and the unobserved OU process is also of the same nature, as data subsampled with
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a high frequency from SOU does not fit the OU process. Such behavior is also common in

many applications such as econometric [84, 19] and oceanography [41] when the observed

data are contaminated by high frequency observation error. In particular the main difficulty

is that the model (OU process) is not compatible with the data at all scales. Therefore,

the crucial question is how should the available high frequency data be used for consistent

statistical estimation.

In the case of indirect observability estimation based on the SOU process, we will prove

that the graph of limN→∞ (γ̂ε(N,h) × h) is a straight line as a function of the time step

length variable h, for h ≥ ε. More specfically, the slope of this straight line is precisely

equal to the true γ, and the intercept is used to derive an estimate for the unknown value

of ε. This important property provides us with a biased-corrected estimator γ̃slope, and an

estimate for the unknown parameter ε.

We will show that this is a useful universal approach to address the issue of finding the

critical subsampling required for precise estimates, especially, when the small parameter ε

is fixed and unknown.

5.2 Parametric Estimation under Indirect Observability with

a Fixed Unknown ε

We recall the definition and a few properties of SOU process Y ε
t from chapter 3. The process

Y ε
t is obtained by averaging the OU process Xt over a sliding window of fixed length ε > 0,

so that

Y ε
t =

1

ε

∫ t

t−ε
Xsds.

89



The associated covariance function Kε(h) for h ≥ 0, given by (3.4), takes the following

form,

Kε(h) =































σ2

2γ3ε2
e−γh (e−γε + eγε − 2) , h ≥ ε,

σ2

2γ3ε2
e−γh

(

2γ(ε − h)eγh + e−γε(e2γh + 1) − 2
)

, h < ε.

From proposition 3.3.2, the estimators γ̂ε and σ̂2
ε (3.14) based on discrete observations

subsampled from SOU process verify the following convergence in L2, for fixed values of ε

and ∆ (fixed rate subsampling), and as N → ∞,

γ̂ε → G = G(ε,∆), σ̂2
ε → S = S(ε,∆), (5.1)

where

G = (1/∆) log (Kε(0)/Kε(∆)) and S = 2GKε(0),

and where the covariances Kε(0) and Kε(∆) are given by (3.4).

Now, for fixed small value of ε, we define a function Γ(h) = G(ε, h) × h, for h ≥ 0, such

that,

Γ(h) = log (Kε(0)/Kε(h)) . (5.2)

Then, Γ(h) is differentiable with respect to h, and its derivative is given by,

dΓ(h)

d h
=































γ +
2γeγh

(

1 − γ(ε − h) − eγ(h−ε)
)

2γ(ε − h)eγh + e−γε(e2γh + 1) − 2
, 0 ≤ h < ε,

γ, h ≥ ε.

(5.3)
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Similarly, we define Σ(h) = S(ε, h) × h = 2 Kε(0)Γ(h), to obtain,

dΣ(h)

d h
=



































σ2C0

(

1 +
2eγh

(

1 − γ(ε − h) − eγ(h−ε)
)

2γ(ε − h)eγh + e−γε(e2γh + 1) − 2

)

, 0 ≤ h < ε,

σ2C0, h ≥ ε,

(5.4)

where C0 = 2(γε+e−γε −1)/(γ2ε2). The derivative, in particular, of Γ(h) remains constant

with respect to h for h ≥ ε. Therefore, for h ≥ ε, using (5.3) we obtain

Γ(h) = Γ(ε) + γ(h − ε) = γ h + C, (5.5)

where the intercept C = Γ(ε) − γε.

Result 5.2.1 Given N observations from SOU process subsampled with time step h, we

consider the erstwhile OU estimator γ̂ε = γ̂ε(N,h), given by (3.14) with ∆ = h. Then,

(5.1), (5.2) and (5.5) prove that the estimator (γ̂ε × h) converges in L2 to (γ h + C) as

N → ∞, for each fixed h ≥ ε. The intercept C = −(γε/3)(1 + O(ε)), as ε → 0. Hence, for

the fixed small value of ε, we have, C ≈ −γε/3.

Based on the result 5.2.1 we develop a numerical methodology to estimate OU parame-

ters γ, σ2 given observations from an approximating process with a fixed unknown value of

ε. We verify the approach in the numerical computations presented below for the smoothed

Ornstein-Uhlenbeck process. The approach proves fruitful in the estimation of parameters

based on the observations from the Additive Triad system, and the TBH model as well.

5.2.1 Bias-corrected Estimators and Estimate for Unknown ε

The observations made in previous section are used to develop the following methodology to

compute estimators for γ, σ2. For brevity, we will consider that estimation is based on dis-
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crete observations from the SOU process. However, we conjecture that the methodology is

replicable in more general situations. As mentioned above, we will show numerical verifica-

tions in the two examples, namely, the homogenized multiscale systems, for the applicability

of our approach.

Given N observations subsampled from the approximating SOU process Un = Y ε
n h at

uniform time step h > 0. Assume that the value of ε is fixed, and is to be estimated.

Consider the OU estimators γ̂ε = γ̂ε(N,h) and σ̂2
ε = σ̂2

ε(N,h), given by (3.14) for ∆ = h.

Since σ̂2
ε = 2Kε(0)γ̂ε; therefore, we focus only on the estimation of the drift coefficient γ.

Define Γ̂(h) = Γ̂(h;N, ε) = γ̂ε × h, then, by (5.1) (5.2), Γ̂(h) → Γ(h) as N → ∞ in L2,

for each h. Using result 5.2.1, it is inferred that a portion of the curve limN→∞ Γ̂(h) is of

constant slope, namely, for h ≥ ε. Since ε is assumed to be unknown, and we only have

finitely many but large N , the constant slope portion of the curve is not known apriori.

Therefore, for large values of N , the objective is to fit a straight line to a part of the curve

Γ̂(h) sampled at discrete h values which minimizes the least square errors, i.e., assuming

we have values of Γ̂(h) at finitely many time steps h = h1 < h2 < . . . < hM , then,

Γ̂(hj) = γ̂ε(N,hj) hj = a hj + b + ej , (5.6)

where ej = e(N,hj) are the residuals and a, b are to be estimated. Then, ordinary least

square estimation provides us with estimates â, b̂ for a and b. To select the “optimal” portion

of the discrete curve {Γ̂(h1), . . . , Γ̂(hM )}, we select some number m from the M time step

values, say {hi+1 < hi+2 < . . . < hi+m}, such that i = 0, 1, . . . ,M − m. Then, estimate the

model (5.6) with (M − m) datasets {hi+j , Γ̂(hi+j)}j=1,m. The value of estimates â, b̂ that

minimize the residual sum of squares will be thus selected. Let us say we denote by â, b̂

the final estimates that are selected using the approach described here. Then in view of the
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result 5.2.1, we define the following estimator for the parameter γ,

γ̂slope = â, (5.7)

and an estimate for the unknown ε by, ε̂ = −3b̂/γ̂slope. At this step, one may initialize

the step of identifying the parameters a, b in (5.6), by considering only those hj which are

greater than ε̂. Then, we would define σ̂2
slope = 2K̂ε(0)γ̂slope.

Complementing the above approach, we derive another methodology in the same spirit

as above, and define an estimator for drift parameter γ. Let h1, h2 > 0 be two distinct

values of the sampling time step, then consider the estimators γ̂ε(N,h1) and γ̂ε(N,h2),

given by (3.14) for ∆ = h1, h2, and the associated values of Γ̂(h1) and Γ̂(h2). Then, define

a two-scale estimator γ̃ε = γ̃ε(h1, h2, N) as,

γ̃ε =
Γ̂(h1) − Γ̂(h2)

h1 − h2
→ Γ(h1) − Γ(h2)

h1 − h2
= γ, provided h1, h2 ≥ ε, (5.8)

here the convergence (by proposition 3.3.2) is in the sense of L2 under the fixed rate sub-

sampling, i.e., N → ∞, such that time steps h1, h2 remain fixed. For large number of

observations N , and for h1 close to h2, clearly, estimator γ̃ε is the finite difference approxi-

mation to the derivative of Γ̂(h) at h1. Therefore, given values of Γ̂(h) at finitely many time

steps h = h1 < h2 < . . . < hM , compute the two-scale estimators γ̃ε(hi, hi+1) (dependence

on N is supressed) for every consecutive pair of time steps hi < hi+1, then, for values of

hi larger than the unknown ε, the estimators γ̃ε(hi, hi+1) converge in L2 to γ as N → ∞.

Also, for values of hi ≪ ε, γ̃ε will be close to zero, since, the derivative Γ(h) for h ≪ ε

is close zero. Therefore, the maximal hi such that the estimators γ̃ε stabilize around a

constant value for all h ≥ hi, is a viable estimate for the unknown value of ε. This notion

will be exploited in the numerical simulations presented below to analyze the estimators

and compute precise estimates for γ, and hence, σ2.
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Note that if the value of the small parameter ε is known, then the bias-corrected esti-

mators, for instance, γ̂slope based on multiple time steps hi > ε will be our best estimator.

5.3 Numerical Results for the SOU Process

The conventional technique to deal with situations when one fits a coarse-grained model

to high frequency data is to subsample the data with a larger time step, i.e., sample on a

coarse grid. This reduces the bias in the estimation. In particular, recall the expressions

for the biases in γ̂ε given in (3.20), (3.21), namely,

Biasγ = −(1/∆) ln

(

e−γε + eγε − 2

2 (e−γε − 1 + γε)

)

= − γε

3∆

(

1 +
γε

6
+ O(ε2)

)

, ∆ ≥ ε,

Biasγ = −(1/∆) ln

(

2γ(ε − ∆)eγ∆ + e−γε(e2γ∆ + 1) − 2

2 (e−γε − 1 + γε)

)

, ∆ < ε.

From these expressions, we infer that as ∆ increases then the bias does reduce, but it is not

clear which value of ∆ is optimal. Neither can we infer the value of the small parameter ε

from the graph of the Biasγ plotted against the time step ∆.

Consider the figure 5.1 that has been generated by taking the following values,

ε = 0.01, γ = 3.2625, σ = 6.7500.
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Figure 5.1: Estimation based on SOU dataset with ε = 0.01. Top Plot: Solid line - γ̂ε given

by (3.14) as a function of ∆, dashed line - true value of γ = 3.2625. Bottom Plot: Solid

line - σ̂ε given by (3.14) as a function of ∆, dashed line - true value of σ = 6.75.

The figure plots the estimator γ̂ε and σ̂2
ε as a function of ∆. The estimators increase

to the corresponding true values of the parameters, but the optimal subsampling time step

value is not evident from Figure 5.1.
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Figure 5.2: Estimation based on SOU dataset with ε = 0.01. Solid line - Γ̂(∆) given by

(5.6) as function of ∆, dashed line - straight line through origin with slope γ = 3.2625.

Figure 5.2 plots Γ̂(∆) for different values of ∆. As shown above, for large N the curve

Γ̂(∆) is a straight line for ∆ ≥ ε. This is clearly evident from Figure 5.2. Also, we obtain

that the estimator γ̂slope = 3.1831, when we fit (5.6) to the appropriate data. The estimate

for the small parameter is ε̂ = 0.0101.

The two-scale estimators γ̃ε (5.8) are plotted in Figure 5.3 against different values of

∆ by considering forward finite differences. As shown above, for large value of N , the

estimator γ̃ε should stabilize around a constant value for ∆ > ε = 0.01, which can be easily

deduced from the Figure 5.3.
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Figure 5.3: Two-scale estimator (5.8) based on SOU dataset with ε = 0.01. Solid line - γ̃ε

as a function of ∆, dashed line - true value γ = 3.2625.

5.4 Numerical Results for the Additive Triad System

In chapter 4 we utilized datasets generated from numerical simulations of the multiscale

additive triad system in (4.1) with known values of ε to test the behavior of the bias and to

elucidate the correct sub-sampling strategy which guarantees that the bias converges to zero.

We verified that the critical optimal subsampling regime is characterized by ∆ ≫ ε2, and

that in the optimal subsampling regime the errors in the estimation (4.7) are proportional

to (ε2/∆) (Figure 4.2). Therefore, our conjecture that ε2 plays the role of ε in the SOU

process gained evidence.

As discussed above, in practice, there is only one dataset which is generated from a
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numerical simulation of a complex model without an explicit parameter ε. Thus value of ε

is, typically, not known, nevertheless it is desirable to model the dataset with a particular

reduced stochastic model. Therefore, an important practical task is to develop an approach

for analyzing estimators’ accuracy for a particular dataset with a fixed finite value of ε.

Now we apply the approach developed in section 5.2.1, to estimation of OU parameters

under indirect observability with data subsampled from the triad system.

In particular, we conjecture that given data from the triad system (4.1) for a fixed value

of ε, if we consider the drift estimator (3.14) as functions of time step h > 0, i.e. γ̂ε = γ̂ε(h),

then the following relationship holds, as N → ∞

Γ̂(h) = γ̂ε(h)h → γh + C1(ε), for h > ε2, (5.9)

where C1 is a constant depending on the unknown fixed value of ε. Similar asymptotic

relation will hold for the diffusion estimator σ̂2
ε .

We utilize the triad data with ε = 0.3 to elucidate the behavior of the estimators for a

small, but finite, value of ε. In particular, behavior of γ̂ε(∆) and Γ̂(∆) = (γ̂(∆) × ∆) for

varying ∆ is depicted in Figure 5.4. Numerical results depicted in left part of Figure 5.4

show a typical hyperbolic profile consistent with the expression in (4.7). The critical scaling

in this case is ε2 = 0.09, but we would like to point out that the estimator γ̂ε is biased, with

an order O(ε2/∆), for any value of ∆, including ∆ > 0.09, i.e., in the optimal subsampling

regime. Moreover, considering the graph (∆, γ̂ε) for a given dataset with fixed ε (left part

of Figure 5.5) does not, by itself, provide any significant information about the value of ε.
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Figure 5.4: Left part - estimator γ̂(∆) for different values of ∆ computed from the TRIAD

dataset with ε = 0.3. Solid line - Estimator γ̂ε(∆) given by (3.14), dashed line - analytical

asymptotic true value γ = 3.2625 computed from (4.4). Right part - Γ̂(∆) = (γ̂ε(∆)×∆) as

a function of ∆ estimated from the TRIAD dataset with ε = 0.3. Solid line - Γ̂(∆), dashed

line - straight line with the slope γ = 3.2625 given by the analytical formula (4.4).

As conjectured, Γ̂(∆) becomes approximately a straight line for ∆ > ε2, such that ε2 = 0.09

in this example. The region where Γ(∆) does not follow a linear relationship (5.9) is clearly

identifiable from the Figure 5.4. Therefore, this simple diagnostics allows to estimate the

critical value of the small-scale parameter ε2. Now we consider the first approach of fitting

a straight line (5.9) to Γ̂(∆) in the region ∆ > ε2 for the triad, where the value of ε2 is

clear from the Figure 5.4. The slope of this straight line yields the estimator γ̂slope for the

drift parameter γ. To use the linear regression approach we neglect first few data points

for small values of ∆ (in particular, we neglect data for ∆ = 0.02, 0.06) and compute the
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estimator γ̂slope given by the coefficient of the linear regression,

γ̂slope = 3.23.

The relative error for the regression estimator is approximately 1%. This is a remarkable

improvement compared to the standard estimator γ̂ε. Note that the regression estimator is

much more accurate compared with the estimator γ̂ε even for large values of ∆, for instance,

for ∆ = 0.58 > ε2 the corresponding value for γ̂ε ≈ 3.

The second complementary estimator that we consider is the two-scale estimator γ̃ε given

by (5.8), which is the numerical approximation of the slope (synonymously, the derivative)

of Γ̂(∆) = (γ̂ε(∆) × ∆). For this reason we denote it, by a slight abuse of notation, as

γ̃ε =
d

d∆

(

Γ̂(∆)
)

. (5.10)

According to the linear relationship (5.9) the estimators γ̃ε and, with similar definition,

σ̃2
ε are unbiased estimators for ∆ > ε2. We expect γ̃ε ≈ γ and σ̃2

ε ≈ σ2 for values of

∆ in the consistent sub-sampling regime, i.e. where the discrete data from the triad well-

approximates a discrete sample from the effective Ornstein-Uhlenbeck process. We compute

the two-scale estimator γ̃ε at each discrete value of ∆ by taking the central difference

numerical approximation for the derivative in (5.10).

Numerical estimates for (5.10) are depicted in Figure (5.5). Results presented in Figure

5.5 demonstrate that numerical approximation for γ̃ε in (5.10) stabilizes in the correct

regime, i.e. ∆ ≥ 0.2 while for this dataset the critical scaling is ε2 = 0.09.
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Figure 5.5: Estimator γ̃ε in (5.10) as a function of ∆, computed from the TRIAD dataset

with ε = 0.3. Solid line - γ̃ε in (5.10), dash-dot line - analytical asymptotic true value

γ = 3.2625 computed from (4.4).

The central finite-difference approximation for the γ̃ε in (5.10) yield accurate estimation

of γ up to a very high precision for intermediate values of ∆. Higher numerical errors for

larger values of ∆ ≈ 0.45 . . . 0.6 are due to the poor finite-difference approximation of the

derivative. Therefore, expression in (5.10) provides a practical expression for determining a

precise estimate for the parameter under investigation, and for estimating the value of the

critical subsampling time step ∆ > ε2.
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5.5 Numerical Results for the Truncated Burgers-Hopf Equa-

tions

Similar to the discussion in previous section, we also analyze dependence of the estimator

γ̂ε on ∆ for a particular dataset with a fixed unknown value of ε. In particular, γ̂ε(∆)

and Γ̂(∆) = ∆ × γ̂(∆), as functions of ∆, computed from the dataset subsampled from

the simulations of the modified TBH with ε = 0.3 are depicted in Figure 5.6. Similar

to the triad case presented in the previous section, considering the graph of γ̂ε(∆) as a

function of ∆ provides only limited information about the correct sub-sampling strategy.

Estimator γ̂(∆) as a function of the sub-sampling step, ∆, is presented in the left part of

Figure 5.6. Considering γ̂(∆) vs ∆ illustrates that the estimator γ̂ε is sensitive to changes

in ∆ even for very large ∆ ≈ 0.5. On the other hand, plot of Γ̂(∆) vs ∆ presented in

the right part of Figure 5.6 provides a much better estimate for the value of the small

parameter in the problem. The curve Γ̂(∆) becomes approximately a straight line for

∆ > 0.15. Therefore, ∆ ≈ 0.15 is correctly identified as the time-scale of fast variables in

this problem. Considering ∆γ̂(∆) as a function of ∆ also allows to construct an unbiased

estimator as a linear regression fit. In particular, plot ∆γ̂(∆) vs ∆ suggests that four points

for small values of ∆ should be neglected in considering a regression fit. After neglecting

the first four poins the regression coefficient for the straight line in the right part of Figure

5.6, for the fixed value of ε = 0.3, becomes

γ̂slope ≈ 0.45.

The relative error for the regression estimator is approximately 5% since the “true” value of

the drift coefficient γ ≈ 0.43. Regression estimator performs much better thatn the biased

estimator γ̂ε, since the relative errors for the biased estimator are bigger than 10% for all

values of ∆ considered.
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We also test the performance of the two-scale estimators γ̃ε introduced in (5.10) and

(5.8). In this case behavior of the estimator γ̃ε is slightly different compared with the triad

case. The estimator γ̃ε does not stabilize to a constant in the range ∆ ≫ ε2; instead it varies

slightly and even decays for ∆ > 0.3. Nevertheless, it is beneficial to consider estimators

γ̂ε, γ̂slope, and γ̃ε simultaneously. Together with Γ̂(∆) they provide crucial insight into the

fast time-scale in the problem and estimating precise value of the parameters.

As a second test case, we also illustrate the behavior of γ̂ε(∆) and σ̂2
ε(∆) as functions of

∆, for fixed ε = 0.1. In particular, Γ̂(∆) = (∆× γ̂(∆)) and Σ̂(∆) = (∆× σ̂2(∆)) are plotted

in Figure (5.8). There is a noticable change in the curvature of both lines at ∆ ≈ 0.01.

This value of ∆ corresponds to the critical scaling ∆ = ε2. Therefore, the fast time-scale

is clearly identifiable from both graphs. Moreover, linear regression provides the following

values for the slopes of two lines

γ̂slope(ε = 0.1) ≈ 0.415, σ̂2
slope(ε = 0.1) ≈ 0.009, (5.11)

such that the true values are given by (4.34), namely, γ = 0.43, σ2 = 0.0086. We plot the

three estimators (biased estimator in (3.14), linear regression estimator, and the two-scale

estimator in (5.10)) computed from the TBH dataset with ε = 0.1 on the same graph in

Figure (5.9). Figure 5.9 demonstrates that the consistent sub-sampling regime is clearly

identifiable in Figure 5.9 from the behavior of γ̃ and σ̃2. Moreover, numerical values of

parameters can be estimated within 5% relative errors by comparing the behavior of the

biased estimators in (3.14), regression fitting, and two-scale estimators in (5.10).
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Figure 5.6: Left part - estimator γ̂ε vs ∆ computed from the TBH dataset with ε = 0.3.

Solid line - γ̂ε(∆) in (3.14), dash-dot line - analytical asymptotic value in (4.33). Right part

- Γ̂(∆) = (∆ × γ̂ε) in (5.6) computed from the TBH dataset with ε = 0.3, dashed line -

(∆ × γ) where γ is the analytical asymptotic value in (4.33).
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Figure 5.7: Estimator γ̃ε in (5.10) computed from the TBH dataset with ε = 0.3, dash-dot

line - analytical asymptotic value in (4.33).

105



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
∆γ̂(∆)

∆
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4 ∆σ̂2(∆)

∆

Figure 5.8: Behavior of γ̂ε and σ̂2
ε as functions of ∆ for data computed from the TBH

dataset with ε = 0.1. Left part: solid line - (∆ × γ̂ε(∆)) vs ∆, dashed line - straight line

with the slope γ in (4.33). Right part: solid line - (∆× σ̂2
ε(∆)) vs ∆, dashed line - straight

line with the slope σ2 in (4.33). Values for ∆ > 0.1 are not shown to emphasize the behavior

near ∆ = ε2 = 0.01.
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Figure 5.9: Estimators as functions of ∆ computed from the TBH dataset with ε = 0.1.

Left part: solid line - γ̂ε(∆) in (3.14), dashed line - estimator γ̃ε in (5.10), dotted line -

γ̂slope in (5.11), dash-dot line - analytical asymptotic value in (4.33). Right part: solid line

- σ̂2
ε(∆) in (2.25), dashed line - σ̃2

ε in (5.10), dotted line - σ̂2
slope in (5.11), dash-dot line -

analytical asymptotic value in (4.33).

5.6 Concluding Remarks

A methodology to accurately estimate parameters from a given dataset sampled from an

approximating process, for instance, the SOU process, or the slow variables in a multiscale

system, is presented. The observed dataset is assumed to be sampled from a trajectory

generated with a fixed, and unknown value of small parameter ε.

The optimal subsampling regimes identified by conditions such as ∆ ≫ ε (in case of
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SOU process) are not useful for obtaining accurate estimates when ε is fixed and unknown.

Assuming N is large enough so that its contribution to the bias is negligible, the graph of the

estimators γ̂ε = γ̂ε(∆) and σ̂2
ε = σ̂2

ε(∆) do not indicate the optimal regime for subsampling.

It is evident from these graphs that the bias is inversely proportional to the time-step ∆,

but no cut-offs or critical values can be inferred.

However, using the estimators evaluated at multiple values of h = ∆1, . . . ,∆M (by

subsampling the dataset), and then, estimating the slope of the best-fit straight line to

Γ(h) = h× γ̂ε(h) gives a more accurate estimate of the parameter γ (hence, σ2). The value

h at which there is a curvature change in the curve Γ(h) for h close to zero, provides an

estimate for the unknown small parameter ε, and identifies the optimal subsampling regime.

This methodology is numerically verified for the additive triad model, and the truncated

Burgers-Hopf model. It is conjectured that this methodolgy is generic and can be used for

estimation under indirect observability in more complex settings, with no knowledge of the

small parameter ε, and will also help identify the degree of approximation of the observed

dataset, as compared to the underlying unobservable process.
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Chapter 6

Generic Indirect Observability

Framework

6.1 Introduction

A general framework of indirect observability is introduced in this chapter. In the preced-

ing chapters we have successfully demonstrated the validity of various optimal subsampling

schemes to achieve asymptotic consistency of the estimators in particular for the OU param-

eters γ, σ2. The discrete observations for estimation were subsampled from an approximat-

ing process; the Smoothed OU process as one example, and the multiscale dynamics given by

the additive triad model, truncated Burgers-Hopf model, as a second example. The asymp-

totic study of the parameters is carried in two major steps. First, the asymptotic properties

of the empirical covariance estimators r̂ǫ
k is understood through the computations of their

L2-norms. Secondly, the relation between the OU parameters and the empirical covariance

estimators is exploited to transfer the asymptotic results obtained for the estimators r̂ǫ
k to

the OU estimators. This straightforward two-step analysis is extended to a more general

class of processes.
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Formally, consider a continuous-time centered stationary random process X = {Xt} in

L2, with covariance function K(u) = E[XtXt+u] defined by a parametric model K(u) =

K(u, θ), where θ ∈ Θ is an unknown vector of parameters, and Θ is a bounded open subset

of R
p. We focus here on situations where the stationary process X = {Xt} is not directly

observable, and where the only available observations are generated by centered stationary

processes Y ǫ = {Y ǫ
t } indexed by ε > 0, such that Y ǫ tends to X in some adequate sense

as ε → 0. The concrete target is to efficiently use these approximate data to generate

consistent estimators of the unknown “underlying” parameter vector θ.

In chapters 3 and 4, we presented several such cases where it is essential to first imple-

ment an adequate subsampling {Y ǫ
n∆, 1 ≤ n} of the approximate process Y ǫ

t , using a small

time interval ∆ = ∆(ǫ) → 0, and a number of observations N(ε) → ∞, as ǫ → 0. For

instance, in chapter 3, this high density subsampling scheme is applied to purely Gaus-

sian processes Y ǫ and X. Specifically in these cases, the associated adaptive subsampling

schemes enabling asymptotically consistent estimation of θ on the basis of indirect obser-

vations, are explicitly characterized.

Now, we analyze here a much more general situation covering a wide range of ap-

plications, namely, the approximating stationary processes Y ǫ
t have arbitrary probability

distributions with uniformly bounded fourth-order moments, and the limiting process Xt

is Gaussian. We characterize the efficient pairings of subsampling rates ∆ = ∆(ǫ) and

number of observations N = N(ǫ) which generate consistent estimators of the unknown

parameters θ. As seen below, a key technical point is to obtain consistent estimators of

covariances, which in turn generate consistent estimators θ̂ε of θ. For instance, representa-

tion of the OU estimators γ̂ε, σ̂2
ε in terms of the standard empirical covariance estimators

r̂ε
0 = r̂ε

0(N(ε),∆(ε)), and r̂ε
1 = r̂ε

1(N(ε),∆(ε)), namely,

γ̂ε = (1/∆) ln(r̂ε
0/r̂

ε
1), σ̂2

ε = 2γ̂εr̂
ε
0, (6.1)
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has been crucial in deducing their asymptotic consistency under indirect observability.

An important notion used in the general framework is that of defining the empirical

covariance estimators with non-vanishing lags, defined below. Its equivalence in the specific

case of the OU process is that the estimators (6.1) are defined with ∆ replaced with a

continuous time lag u > 0, which remains bounded away from zero under the asymptotic

conditions.

The specific example of the smoothed Ornstein-Uhlenbeck process presented in chapter 3

is revisited with the results from the general setting. Given discrete observations subsampled

from the smoothed Ornstein-Uhlenbeck process, the estimators with non-vanishing lags,

introduced in the general framework, provide higher order of accuracy for the estimation of

OU parameters.

6.2 Indirect Observability Context

Let us describe the precise mathematical framework studied in this chapter, which we will

call the Indirect Observability Context for the centered stationary continuous time processes

Y ε and X.

Hypotheses on the unobservable process X

We call G the set of all continuous-time centered stationary Gaussian processes X = {Xt}

with covariance function K(u, θ) parametrized by the vector θ ∈ Θ where Θ is an open

bounded subset of R
p. The covariance function K(u, θ) is assumed to be piecewise C1 in

the time lag u and C1 in θ, and to decay exponentially fast for large time lags, i.e.,

|K(u, θ)| < c exp(−|u|/a), ∀u ∈ R, ∀θ ∈ Θ,
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where the decay coefficients c and a are arbitrary but fixed positive constants. The under-

lying process X = {Xt} is not directly observable, and will always be assumed to belong to

the preceding class G of stationary Gaussian processes.

Hypotheses on the observable approximating processes Y
ε

For each fixed ǫ > 0, the only observations available are the approximate data Y ǫ
t . The

observable process Y ε = {Y ε
t } is assumed to be centered stationary, but may have arbitrary

probability distributions. We assume that the random variables Y ε
t converge in L4 to Xt as

ε → 0. More precisely we assume that there is a fixed continuous function ρ(ε) > 0 tending

to 0 as ε → 0 and a fixed positive constant C such that

‖Y ε
t ‖L4

< C, and ‖Y ε
t − Xt‖L4

< ρ(ε), ∀t ∈ R, ∀ε > 0, ∀θ ∈ Θ.

Our goal is to use the approximate data Y ǫ to compute consistent estimators of the unknown

parameter θ. The uniform L4 - speed of convergence ρ(ε) of Y ε
t to Xt will naturally become

below a critical characteristic of the subsampling rates enabling asymptotic consistency of

parameter estimators.

As proved below in proposition 6.5.1, the L2-norm of the difference between the empirical

covariance estimators associated to two distinct processes is bounded above by the L4-norm

of the difference between the processes, which justifies the above hypotheses.

Adaptive Subsampling schemes

Under these Indirect Observability hypotheses, we systematically apply to the observed

process Y ε one or several adaptive subsampling schemes defined by ∆ = ∆(ε), and N = N(ε)

such that

∆(ε) → 0, and N(ε)∆(ε) → ∞ as ε → 0. (6.2)
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Namely each such sampling scheme will focus on the observed subsamples Y ε
n∆ with n =

1 . . . N(ε)+k(ε), where the discrete time lags k(ε) are integer valued functions of ε such that

k(ε)∆(ε) tend to some finite limit as ε → 0. The main goal of such subsampling schemes is

to enable consistent estimation of the covariances K(u, θ).

6.3 Parameter Estimators and Covariance Estimators

Since centered Gaussian processes with the same covariance functions are probabilistically

equivalent, it is quite natural to assume that the covariance function u → K(u, θ) determines

θ uniquely. A slightly stronger hypothesis is to assume the existence of a finite fixed set

of time lags {u1, ..., up} such that the vector r = (r1, . . . , rp) of covariances rj = K(uj , θ)

determines a unique θ ∈ Θ denoted by θ = F (r). In this case, a few mild hypotheses

imply that consistent estimation for parameters or for covariances are equivalent tasks, as

indicated by the following proposition.

Proposition 6.3.1 Let X = {Xt} be a centered stationary random process with covariance

function K(u) = K(u, θ) parametrized by θ ∈ Θ ⊂ R
p. Assume that the function K(u, θ)

is continuously differentiable with respect to θ and piecewise C1 with respect to u. Select

and fix a set of p time lag values {u1, ..., up}, and consider the system of p equations with p

unknowns

K(uj, θ) = rj , j = 1...p. (6.3)

Assume that the Jacobian determinant J(θ) is non-zero for all θ ∈ Θ, where

J(θ) = det

[

(

∂K(uj , θ)

∂θk

)

1≤j,k≤p

]

.

The set D ⊂ R
p of all vectors r = (r1, . . . , rp) of the form (6.3) for some θ ∈ Θ is then

open. Assume that for all r ∈ D the solution of system (6.3) is unique in Θ, and denote this
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solution by θ = F (r). Consider an arbitrary family of observed processes Y ε = {Y ε
t } indexed

by ε > 0. Then as ε → 0, there exists a family of asymptotically consistent estimators θ̂(ε)

of θ based on Y ε if and only if there exists a family of asymptotically consistent estimators

r̂(ε) of r based on Y ε. One may for instance link these two families of estimators by

θ̂(N) = F (r̂(N)) and K(uj , θ̂(ε)) = r̂j(ε). Moreover, the estimators r̂(ε) are asymptotically

Gaussian if and only if the estimators θ̂(ε) are also asymptotically Gaussian.

Proof. By the implicit function theorem [40], the function F (r) is continuously differen-

tiable in r, for r ∈ D. Then the proof is quite classical, see for instance [10].

In our context this proposition will be systematically applied to empirical covariance es-

timators based on processes Y ε approximating X and subsampled by adaptive subsampling

schemes (6.2).

6.4 Subsampled Empirical Covariances

We now present empirical covariance estimators based on observations subsampled from

the approximating process Y ε. The subsampling time interval ∆ = ∆(ε), and number of

observations N = N(ε) will be functions of ε verifying (6.2). We select integer valued

covariance lags k = k(ε) depending on ε, and we define the associated approximate subsam-

pled empirical covariances Kε
Y = r̂k(N,∆) computed from N + k subsampled observations

Vn = Y ε
n∆(ε) by the formula

Kε
Y = r̂k(N,∆) =

1

N

N
∑

n=1

VnVn+k =
1

N

N
∑

n=1

Y ε
n∆Y ε

(n+k)∆. (6.4)

Similarly, we define the true subsampled empirical covariances Kε
X based on the process X

by

Kε
X =

1

N

N
∑

n=1

UnUn+k =
1

N

N
∑

n=1

Xn∆X(n+k)∆, (6.5)

114



where Un = Xn∆ is the subsampled unobserved process Xt. Note that for the true subsam-

pled empirical covariances Kε
X the indexing parameter ε is only a mute variable. The direct

observations from the unobserved process Xt are considered on the same time grid defined

by ε,N,∆ for comparison with the approximate subsampled empirical covariances Kε
Y . For

each fixed time lag u > 0, we want to estimate the covariance K(u, θ) by the approximate

subsampled empirical covariance Kε
Y . It is then natural to select integer valued covariance

lags k(ε) such that k(ε)∆(ε) → u as ε → 0. It turns out (see below in section 6.7) that

the optimal adaptive schemes are obtained when k(ε)∆(ε) = u, for all ε > 0. To be in

this optimal situation, we first select the numbers of observations N(ε) and integer valued

covariance lags k(ε) such that as ε → 0,

N(ε) → ∞, k(ε) → ∞, k(ε)/N(ε) → 0, (6.6)

and we then define the subsampling time interval by

∆(ε) = u/k(ε) for each fixed time lag u > 0. (6.7)

For the particular time lag u = 0, where we want to estimate the variance K(0, θ), we of

course impose k(ε) = 0 for all ε > 0, but no other restriction on ∆(ε); the only requirements

on N(ε),∆(ε) are that they must verify (6.2). To estimate p parameters we need typically

to estimate p distinct correlations K(uj, θ), including the variance of Xt corresponding

to u1 = 0. Therefore, an optimized approach will require the selection of p − 1 distinct

subsampling time intervals ∆2, . . . ,∆p. When some of the ratios ui/uj are integers, with

ui > 0, uj > 0, it is clearly possible to select the same time intervals ∆i = ∆j provided one

picks adequate distinct covariance lags k(ε) to estimate K(ui) and K(uj). We will say that

the Kε
Y are empirical covariance estimators with non-vanishing lags, since the integers k(ε)

tend to ∞.
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The vanishing lags asymptotics (see section 6.9) correspond to time lags of the form

u = u(ε) = k∆(ε) where the discrete lag k is any fixed integer such that u(ε) → 0 as ε → 0.

The vanishing lags asymptotics for the general framework will be studied elsewhere.

In the following sections it is proved that for adequate choices of the adaptive sub-

sampling schemes ∆(ε), N(ε) the approximate subsampled empirical covariances Kε
Y with

non-vanishing lags converge in L2 to K(u, θ) as ε → 0. We will often omit the argument θ

in the covariances K(u) = K(u, θ). But we point out that all bounds and constants derived

below are uniform when θ remains in any fixed compact subset of Θ.

6.5 Impact of Approximate Data on Empirical Covariances

First we derive an upper bound for the L2 distance between the “approximate” empirical

covariances Kε
Y based on Y ε defined in (6.4) and the “true” empirical covariances Kε

X

defined in (6.5). Denote the Lp-norm of a random variable Z by ‖Z‖Lp .

Proposition 6.5.1 Consider two discrete centered stationary processes U = {Un}, and

V = {Vn} in L4. Assume that for some positive constants M and d > 0, the following

inequalities hold in L4 for all integers n,

‖Vn − Un‖L4
≤ M, ‖Un‖L4

≤ d , and ‖Vn‖L4
≤ d. (6.8)

Consider the usual empirical covariance estimators of processes U and V at discrete time

lags k defined by,

r̂U (k,N) = (1/N)
N
∑

n=1

UnUn+k, r̂V (k,N) = (1/N)
N
∑

n=1

VnVn+k.
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We then have the uniform majoration in L2-norm

‖r̂V (k,N) − r̂U (k,N)‖L2
≤ 2dM, for all N and k.

Proof. We first prove a key lemma.

Lemma 6.5.2 Consider 4 random variables A,A′, B,B′ in L4. Then, we have

‖AB − A′B′‖L2
≤ ‖A − A′‖L4

‖B‖L4
+ ‖A′‖L4

‖B − B′‖L4
,

Proof. For any pair of random variables Q,R in L4, we have by Cauchy-Schwarz inequality,

‖QR‖L2
=
√

E(Q2R2) ≤
√

[E(Q4)]1/2[E(R4)]1/2 = ‖Q‖L4
‖R‖L4

. (6.9)

The elementary bound,

‖AB − A′B′‖L2
= ‖(A − A′)Y + A′(B − B′)‖L2

≤ ‖(A − A′)B‖L2
+ ‖A′(B − B′)‖L2

,

combined with inequality (6.9) proves the lemma.

We now prove proposition 6.5.1. The hypotheses of this proposition and the preceding

lemma imply

‖VnVn+k − UnUn+k‖L2
≤ ‖Vn − Un‖L4

‖Vn+k‖L4
+ ‖Un‖L4

‖Vn+k − Un+k‖L4
≤ 2dM.

From this inequality we derive for all N and k

‖r̂k,V (N) − r̂k,U(N)‖L2
≤ (1/N)

N
∑

n=1

‖VnVn+k − UnUn+k‖L2
≤ 2dM.
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We now derive a crucial consequence for the indirect observability context.

Theorem 2 Consider processes Y ε and X verifying the Indirect Observability hypotheses

of section 6.2. Call C the uniform bound of the ‖Y ε
t ‖L4

and ρ(ε) the uniform L4-speed of

convergence of the Y ε
t to Xt. Let σ2 be a fixed upper bound for the variance K(0) of Xt.

For arbitrary ε > 0, subsampling rate ∆(ε), number of observations N(ε), and discrete

covariance lags k(ε), consider the approximate covariance estimators Kε
Y based on Y ε and

the true covariance estimators Kε
X based on X, respectively given by (6.4) and (6.5).

Then, for all ε we have the following uniform L2 -bound for the difference between true

and approximate covariance estimators

‖Kε
Y − Kε

X‖L2
≤ 2d ρ(ε), (6.10)

where d = max{C, (3σ/2)}.

Proof. Since X is Gaussian, the subsampled process Un = Xn∆ satisfies,

‖Un‖L4
= ‖Xn∆‖L4

= 31/4σ <
3

2
σ.

The Indirect Observability hypotheses on Y ǫ
t imply that the process Vn = Y ε

n∆ satisfies

‖Vn‖L4
≤ C, and ‖Vn − Un‖L4

≤ ρ(ε).

Then, proposition 6.5.1 implies the announced inequality (6.10).

The preceding theorem shows that the asymptotic behavior in L2 of the approximate

empirical covariances Kε
Y as ε → 0 will be determined by the comparison of the function

ρ(ε) with the asymptotic behavior of the true empirical covariances Kε
X . Hence, we focus

on the precise asymptotics of subsampled empirical covariances Kε
X for Gaussian processes

X.
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6.6 Gaussian Processes : Accuracy Bounds for Covariance

Estimators

We first consider discrete Gaussian processes with no subsampling, and compute accuracy

bounds in L2 for empirical covariance estimators. Recall a known result ([10] for instance).

Proposition 6.6.1 Let U = {Un} be a centered stationary Gaussian process with covari-

ances rk = E [UnUn+k]. Denote the empirical covariance estimators based on N + k obser-

vations by

r̂k = r̂k(N) = (1/N)
N
∑

n=1

UnUn+k.

Call Γ = Γ(N) the covariance matrix of these estimators, given by

Γk,q = E [(r̂k − rk)(r̂q − rq)] , ∀k ≥ 0, q ≥ 0.

Then, for all pairs k, q of non-negative integers one has

Γk,q = (1/N)





N−1
∑

j=−(N−1)

f(j)



 − (1/N2)





N−1
∑

j=1

j(f(j) + f(−j))



 ,

where the f(j) = fk,q(j) are defined by the covariances of U as follows,

f(j) = (rjrj+q−k + rj+qrj−k) . (6.11)

Proof. Fix arbitrary non-negative integers k, q. The 2nd moments of empirical covariance

estimators are given by,

N2E[r̂k r̂q] =

N
∑

n=1

N
∑

p=1

E[UnUn+kUpUp+q].
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U is Gaussian, therefore, the fourth-moments can be expressed in terms of second-moments,

and we obtain,

E[UnUn+kUpUp+q] = rkrq + f(p − n),

where we define the numbers f(j) as above in (6.11). Hence, the covariances of the empirical

estimators are given by

Γk,q(N) = E[r̂k r̂q] − rkrq = (1/N2)
N
∑

n=1

N
∑

p=1

f(p − n).

For any function f defined on the the set of integers, we have the identity

1

N2

N
∑

n=1

N
∑

p=1

f(p − n) =
1

N





N−1
∑

j=−(N−1)

f(j)



 − 1

N2





N−1
∑

j=1

j(f(j) + f(−j))



 . (6.12)

This identity achieves the proof.

We now evaluate the L2-accuracies ‖r̂k − rk‖L2
of empirical covariance operators.

Proposition 6.6.2 Consider a centered stationary Gaussian process U = {Un}, with co-

variances rj. Define τ and ζ by

τ =
∑

j≥1

jr2
j , ζ =

∑

j∈Z

r2
j , (6.13)

and assume that τ is finite, which clearly implies that ζ is finite. Then the L2 accuracy of

the empirical covariances is uniformly bounded by

‖r̂k(N) − rk‖L2
≤

√
2ζ√
N

+

(

2τ1/2 + (4τζk)1/4
)

N
, ∀N, k ≥ 0. (6.14)

In particular, for each k ≥ 0, as N → ∞, the real-valued empirical covariance estimator

r̂k = r̂k(N), converges in L2 towards the true covariance rk with an L2-speed of convergence
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given by,

lim
N→∞

N‖r̂k(N) − rk‖2
L2

=
∑

j∈Z

(

r2
j + rj+krj−k

)

. (6.15)

Proof. Since, rk = r−k, we may assume k ≥ 0. Proposition 6.6.1 shows that the variance

of r̂k is given by Γk,k = S/N + R(N), where

S = S(k) =
∑

j∈Z

f(j), (6.16)

and

R = −(2/N)





∑

j≥N

f(j)



 − (2/N2)





N−1
∑

j=1

jf(j)



 ,

with f(j) = f(−j) = r2
j +(rj−krj+k). By Cauchy-Schwarz inequality we then have |S| ≤ 2ζ.

Since N |f(j)| ≤ j|f(j)| when j ≥ N , we obtain

|R| ≤
(

2

N2

)

∑

j≥1

j|r2
j + rj−krj+k| ≤

(

2

N2

)



τ +
∑

j≥1

j |rj−krj+k|



 .

By Cauchy-Schwarz inequality, we have





∑

j≥1

j|rj+k||rj−k|



 ≤





∑

j≥1

jr2
j+k





1/2



∑

j≥1

jr2
j−k





1/2

.

To bound the first factor in the last inequality, note that

∑

j≥1

jr2
j+k ≤

∑

j≥1

(j + k)r2
j+k ≤ τ,

where τ is given by (6.13). To bound the second factor, we write

∑

j≥1

jr2
j−k =

∑

j≥k

(j − k)r2
j−k + k

∑

j≥k

r2
j−k +

k−1
∑

j=1

jr2
j−k ≤ τ + ζk.
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We, thus, obtain the bound

|R| ≤
2
(

τ +
√

τ2 + τζk
)

N2
≤
(

4τ + 2
√

τζk
)

N2
,

and hence,
√

|R| ≤
(

2τ1/2 + (4τζk)1/4
)

N
.

We, then, have

‖r̂k − rk‖L2
= Γ

1/2
k,k = (S/N + |R|)1/2 ≤ (S/N)1/2 + |R|1/2,

and therefore,

‖r̂k − rk‖L2
≤

√
2ζ√
N

+

(

2τ1/2 + (4τζk)1/4
)

N
.

This proves the announced accuracy bound (6.14), and as an obvious consequence, the

asymptotic result (6.15).

We now extend the preceding accuracy bounds to the subsampled empirical covariances

of Gaussian processes X ∈ G.

Theorem 3 Consider a centered stationary Gaussian process X belonging to G (see (6.2)).

To estimate the covariance K(u) by subsampled empirical covariances Kε
X , we distinguish

two cases (a) and (b):

Case (a) : For any fixed strictly positive time lag u, we select the numbers of observations

N(ε) → ∞ and integer valued covariance lags k(ε) → ∞ such that k(ε)/N(ε) → 0, and

then we define the associated subsampling time intervals by ∆(ε) = u/k(ε). One has then

∆(ε) → 0 and N(ε)∆(ε) → ∞.

Case (b) : For the particular time lag u = 0, we select numbers of observations N(ε) →

∞ and subsampling time intervals ∆(ε) → 0 such that N(ε)∆(ε) → ∞, but we impose

k(ε) = 0 for all ε > 0.
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In both of these cases we thus impose k(ε)∆(ε) identically equal to u, and we consider

the associated subsampled empirical covariances Kε
X , given by (6.5), based on (N(ε)+k(ε))

observations Un = Xn∆(ε).

Then, the subsampled empirical covariances Kε
X converge in L2 to the true covariance

K(u) as ε → 0. For u in any fixed interval [0, J ], the L2-speed of convergence is given by

the uniform bound

‖Kε
X − K(u)‖L2

≤ cte/
√

N(ε)∆(ε), ∀ε < 1/cte. (6.17)

Moreover, the precise L2-speed of convergence is given by,

lim
ε→0

N(ε)∆(ε)‖Kε
X − K(u)‖2

L2
=

∫ +∞

−∞
ds
(

K(s)2 + K(s + u)K(s − u)
)

. (6.18)

In this accuracy estimate, “cte” denotes a positive constant depending only on J and on the

exponential decay coefficients c, a associated to the covariance function K(u) of X. Note

also that for u > 0 this speed of convergence is inversely proportional to u, since ∆ is

proportional to u.

Proof. For brevity, we omit the ε argument in N, k,∆. Since, X is in G, call c and a the

coefficients of exponential decay of its covariances. The discrete Gaussian process Un =

Xn∆(ε) has, then, covariances rj bounded, namely, rj = K(j∆(ε)) ≤ c exp(−j∆/a), ∀j ≥

0. The coefficients τ, ζ introduced by (6.13) verify the following bounds valid for ∆(ε) < a/4,

τ ≤ c
∑

j≤1

j exp(−2j∆/a) ≤ 4ca2/∆2,

(6.19)

ζ ≤ 2c2
∑

j≥0

exp(−2j∆/a) ≤ 2c2a/∆.
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We first study the case of a fixed positive time lag u > 0, where ∆ = u/k. The preceding

inequalities imply, for 4u/a < k(ε),

τ ≤ 4ca2k2/u2,

ζ ≤ 2c2ak/u.

Then, the covariance estimator Kε
X generated by subsampling X coincides with the empir-

ical covariance estimator r̂k(ε) based on N +k observations of the discrete Gaussian process

U . The corresponding exact covariance of U is rk = K(k∆) = K(u). Applying inequal-

ity (6.14) for the process U and the integer valued covariance lag k = k(ε), we have the

inequality

‖Kε
X − K(u)‖L2

≤
√

2ζ√
N

+

(

2τ1/2 + (4τζk)1/4
)

N
. (6.20)

Injecting the bounds just computed for τ and ζ, we obtain

‖Kε
X − K(u)‖L2

≤ 2c
√

a
√

k/uN +
(

4c1/2a + 25/4(ca)3/4u1/4
)

(k/uN). (6.21)

This obviously implies the desired bound

‖Kε
X − K(u)‖L2

≤ cte
√

k/uN = cte/
√

N∆,

where the constant “cte” depends only on c, a, and ε is small enough to force k/N < u and

k > 4u/a. In particular, this restriction on ε can be handled uniformly for 0 < α ≤ u ≤ β

with fixed α, β. We now study the particular case u = 0, where one seeks to estimate the

variance K(0). We impose k = k(ε) = 0, and the subsampling scheme N,∆ verifies (6.2)

as stated in the theorem. Then, (6.20) for u = 0 is specifically given as,

‖Kε
X − K(0)‖L2

≤
√

2ζ√
N

+

(

2τ1/2
)

N
.
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Using (6.19) we obtain for ∆ < a/4,

τ ≤ 4ca2/∆2, ζ ≤ 2c2a/∆,

and we conclude,

‖Kε
X − K(0)‖L2

≤ 2c
√

a√
N∆

+
4a

√
c

N∆
,

which implies, as soon as ε is small enough to force N∆ > 1 and ∆ < a/4,

‖Kε
X − K(0)‖L2

≤ cte/
√

N∆.

To compute the precise speed, given by (6.18), of convergence for ‖Kε
X − K(0)‖L2

to zero,

one simply needs to implement a variant of the result (6.15), proved above, for discrete

processes.

Conclusions for directly observable Gaussian processes

It can be shown that, under the Gaussian hypotheses of the preceding result, the speed

of convergence 1/
√

N∆ obtained above is optimal (up to a proportionality constant) for

subsampled covariance estimators based on adaptive subsampling schemes N(ε), ∆(ε) ver-

ifying (6.2). Hence, when a Gaussian process Xt with exponentially decaying covariances is

directly observable, basic adaptive subsampling schemes ∆(ε), N(ε) verifying (6.2) actually

generate subsampled empirical covariances Kε
X which are L2-consistent estimators of true

covariances K(u). Moreover, as ε → 0, provided the integer time lags k(ε) and subsam-

pling time intervals ∆(ε) are selected such that k∆ = u, the estimators achieve the optimal

L2-speed of convergence 1/
√

N∆ up to a proportionality constant.

The (N + k) subsampled observations used to estimate K(u) cover a global observation

time span Span(ε) = (N + k)∆ for the process Xt, and clearly, limε→0(Span/N∆) =

1. Hence, the L2-accuracy of the subsampled covariance estimators is proportional to
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1/
√

Span, as could be expected.

We also remark that, for u > 0, one could have proposed a slightly different strategy

to generate subsampled covariance estimators, specifically, first selecting an adaptive sub-

sampling scheme N(ε), ∆(ε) verifying (6.2), and then, defining a covariance estimator Kε
X

based on integers k(ε) = [u/∆(ε)], where [x] is the integer closest to x. For this strategy,

a proof similar to the preceding one yields a slightly less good L2-speed of convergence

estimate. It involves a local bound χ(u) = supw∈[0,u]|K ′(w)| on the first derivative of the

covariance function, namely,

‖Kε
X − K(u)‖L2

≤ χ(u)∆ +
cte√
N∆

, (6.22)

where the constant “cte” depends only on c, a, χ(u), u, and remains bounded when u is

bounded. This alternative strategy is less favorable than the strategy outlined in the pre-

ceding theorem. Indeed, for a given N(ε), the best reachable L2-speed of convergence is

obtained by minimizing the right hand side of (6.22); this obviously occurs when ∆3 is pro-

portional to 1/N , and the optimal accuracy reachable by this strategy is, then, proportional

to ∆ = cte/
√

N∆ = cte/N1/3. We now come back to the generic Indirect Observability

context.

6.7 Accuracy of Subsampled Approximate Empirical Covari-

ance Estimators

Theorem 4 Consider centered stationary observable processes Y ε
t with arbitrary probability

distributions. We assume that as ε → 0, the Y ε
t converge in L4 to an unobservable stationary

Gaussian process Xt, and verify all the Indirect Observability hypotheses of section 6.2. Call

C a constant bound for the L4-norms of all the Y ε
t . Let ρ(ε) > 0 tending to 0 as ε → 0 be a

bound (uniform in t) for all the L4-norms ‖Y ε
t − Xt‖L4

. Let σ2 be an upper bound for the
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variance of Xt for all θ in some fixed compact subset Γ of Θ.

To estimate the covariance K(u) of X by subsampled empirical covariances Kε
Y based

on the observable approximate data Y ε we distinguish two cases :

Case (a) (positive covariance lags) : Select the numbers of observations N(ε) → ∞

and the integer valued covariance lags k(ε) → ∞ such that k(ε)/N(ε) → 0. Then for each

fixed strictly positive covariance time lag u, define associated subsampling time intervals by

∆(ε) = u/k(ε). One has then ∆(ε) → 0 and N(ε)∆(ε) → ∞.

Case (b) (zero covariance lag) : For the particular covariance time lag u = 0, we select

numbers of observations N(ε) → ∞, and subsampling time intervals ∆(ε) → 0 such that

N(ε)∆(ε) → ∞, but we naturally impose k(ε) = 0 for all ε > 0.

In both of these cases, we thus impose k(ε)∆(ε) identically equal to u and we consider

the corresponding approximate subsampled empirical covariances Kε
Y , given by (6.4), based

on (N(ε) + k(ε)) observations Vn = Yn∆(ε).

Then, as ε → 0, the approximate subsampled empirical covariances Kε
Y converge in L2

to the true covariance K(u) of the process X. For 0 ≤ u < J with J fixed, the L2-speed of

convergence is given by the uniform bound

‖Kε
Y − K(u)‖L2

≤ 2dρ(ε) + cte /
√

N(ε)∆(ε), ∀ε < 1/cte, (6.23)

where the constant d = max{C, (3σ/2)}.

Here and below, “cte” denotes a positive constant depending only on the time interval J

and on the exponential decay coefficients c, a associated to the covariance function K of X.

The optimal L2-speed of convergence for ‖Kε
Y −K(u)‖L2

to zero is of the form (cteρ(ε)).

This optimal speed of convergence is reached if and only if one selects N(ε)∆(ε) ≥ cte/ρ2(ε).

The (N + k) subsampled observations Y ε
n∆(ε) used to estimate K(u) cover a global ob-

servation time span Span(ε) = (N + k)∆. For the preceding optimal subsampling schemes,

we have limε→0(Span/N∆) = 1. The minimal observation time span necessary and suffi-
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cient to achieve optimal speed of convergence is given by Span(ε) = cte/ρ2(ε). For each

covariance lag u > 0, this optimal subsampling scheme is realized as follows: first select

N(ε) such that N(ε)ρ2(ε) → +∞, then, define covariance lags k(ε) as the closest integers

to cte × N(ε)ρ2(ε), and finally, set the subsampling time interval ∆(ε) = u/k(ε).

Proof. By theorem 2, the difference between approximate and true empirical covariance

estimators Kε
Y and Kε

X is bounded in L2-norm by

‖Kε
Y − Kε

X‖2 ≤ 2dρ(ε).

Applying, to the Gaussian process X, the key result (6.17), we have

‖Kε
X − K(u)‖L2

≤ cte/
√

N(ε)∆(ε), ∀ε < 1/cte,

where “cte” denotes a positive constant depending only on J , and on the exponential decay

coefficients c, a associated to the covariance function K of X. The two last equations imply,

‖Kε
Y − K(u)‖L2

≤ 2dρ(ε) + cte/
√

N(ε)∆(ε), ∀ε < 1/cte.

Since ρ(ε) is given, the best value achievable for this last upper bound is clearly proportional

to ρ(ε). This optimal upper bound for the L2-speed of convergence of Kε
Y to K(u) is reached

as soon as N(ε)∆(ε) > (cte/ρ2(ε)).

We show that the L2-speed of convergence of the form (cte × ρ(ε)) cannot be improved

in the general Indirect Observability context. To show this, it is sufficient to exhibit at least

one specific example of processes Y ε and X, verifying hypotheses given in section 6.2, such

that ‖Kε
Y − K(u)‖L2

is precisely equivalent to (cte × ρ(ε)), as ε → 0.

The example is constructed as follows. Consider a 2-dimensional centered stationary
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Gaussian process (Xt, Zt) ∈ R
2 with exponentially decaying covariances,

K(u) = E(XtXt+u), L(u) = E(ZtZt+u), M(u) = E(ZtXt+u).

Since Xt, Zt are assumed to be jointly Gaussian, for each 0 < ε < 1, define the centered

stationary Gaussian process Y ε
t = Xt + εZt. Clearly, the L4-norms of the processes Y ε

t , Xt,

and Zt, are bounded. Moreover,

ρ(ε) = ‖Y ε
t − Xt‖L4

= ε‖Zt‖L4
= 31/4L(0)1/2ε.

Hence, all the hypotheses 6.2 are satisfied by the processes Y ε
t and Xt. Select N = N(ε),

k = k(ε) verifying (6.6), (6.7), and set ∆ = ∆(ε) = u/k(ε). By definition of the subsampled

covariance estimators Kε
Y (6.4), we have

Kε
Y =

1

N

N−1
∑

n=0

(Xn∆ + εZn∆)(Xn∆+u + εZn∆+u) = Kε
X + aε + bε2,

where

a =
1

N

N−1
∑

n=0

[Zn∆Xn∆+u + Xn∆Zn∆+u],

b =
1

N

N−1
∑

n=0

[Zn∆Zn∆+u],

and, therefore, E(b2) =
1

N2

N−1
∑

m=0

N−1
∑

n=0

E[Zm∆Zm∆+uZn∆Zn∆+u].

For Gaussian processes, fourth-order moments are expressible in terms of the sum of second-
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order moments as follows,

E[Zm∆Zm∆+uZn∆Zn∆+u] = L2(u) + f(n − m),

where for each integers j the function f(j) is defined by

f(j) = L2(j∆) + L2(j∆ + u).

Applying the algebraic identity (6.12)

(1/N2)
N
∑

m=1

N
∑

n=1

f(n − m) = (1/N)





N−1
∑

j=−(N−1)

f(j)



 − (1/N2)





N−1
∑

j=1

j(f(j) + f(−j))



 ,

we obtain

E(b2) = M2(u) + (1/N)





N−1
∑

j=−(N−1)

f(j)



 − (1/N2)





N−1
∑

j=1

j(f(j) + f(−j))



 .

The exponential decay assumptions on the covariances K, L, M ensure |f(j)| < exp(−cte|j|∆).

Due to the conditions (6.6), (6.7) on N(ε), ∆(ε), we conclude, just as in section 6.6, that

E(b2) remains uniformly bounded as ε → 0.

Similar argument shows that E(a2) is also uniformly bounded as ε → 0. Moreover,

analogous computations prove that as ε → 0 the coefficient a converges in L2 to the limit

(M(u)+M(−u)). Thus, in the limit of ε → 0, we have the precise asymptotic equivalences,

‖Kε
Y − Kε

X‖L2
= ε × (M(u) + M(−u)) + O(ε2) ≈ cte ρ(ε).

On the other hand, the result (6.15) shows that, as ε → 0,

‖Kε
X − K(u)‖L2

≈ cte /
√

N(ε)∆(ε).
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Therefore, for this class of examples the precise L2-speeds of convergence are as follows.

1. N(ε)∆(ε) ≈ cte/ρ(ε)2 =⇒ ‖Kε
Y − K(u)‖L2

≈ cte ρ(ε),

2. N(ε)∆(ε) ≫ cte/ρ(ε)2 =⇒ ‖Kε
Y − K(u)‖L2

≈ cte ρ(ε), and

3. N(ε)∆(ε) ≪ cte/ρ(ε)2 =⇒ ‖Kε
Y − K(u)‖L2

≫ cte ρ(ε).

Under the conditions (6.6), (6.7) on N(ε), ∆(ε), the global observation time span, Span =

(N + k)∆, satisfies the limit (Span/N∆) → 1, as ε → 0. Indeed, the validity of (6.23)

proved above ensures that the minimal observation time span Span = cte/ρ2(ε) is sufficient

to achieve optimal speed of convergence. Moreover, condition (3) in the above paragraph

establishes the necessity of the result. The remaining concluding statements of the theorem

are easily deduced.

6.8 Conclusions on Efficient Subsampling Schemes for Indi-

rect Observability

In the Indirect Observability context described in section 6.2, we have shown in section 6.7

that, provided the adaptive subsampling schemes N(ε), ∆(ε) verify (6.2), and k(ε)∆(ε) is

identically equal to u, as ε → 0; empirical covariances Kε
Y based on indirect data Y ε

t are,

indeed, L2-consistent estimators of true covariances K(u).

The optimal L2-speed of convergence, proportional to ρ(ε), of these covariance estima-

tors is achieved when N(ε)∆(ε) = (cte/ρ2(ε)). The optimal global observation time span

Span(ε) = (N +k)∆ for the process Y ε
t is then proportional to 1/ρ2(ε). For each u > 0, the

optimal speed of convergence is inversely proportional to u, since ∆(ε) is proportional to

u. Moreover, in this case the subsampled covariance estimators Kε
Y involve non-vanishing

integer valued covariance lags k(ε) → ∞.
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Based on the results obtained so far, we derive the main corollary concerning the es-

timation of parameter θ ∈ Rp. As pointed out above, an estimator for θ is obtained by

considering estimation of p covariances K(uj) of the process Xt, where u1 = 0 and the

remaining distinct time lags u2, . . . , up are all positive.

Theorem 5 Consider centered stationary observable processes Y ε
t with arbitrary probability

distributions. We assume that as ε → 0, the Y ε
t converge in L4 to an unobservable stationary

Gaussian process X = {Xt}, and verify all the Indirect Observability context of section 6.2.

Let K(u) = K(u, θ) be the covariance function of Xt parametrized by θ ∈ Θ ⊂ R
p. To

estimate θ, consider the system (6.3) associated to the vector r = (K(uj, θ)) , j = 1 . . . p of p

unknown covariances of X, where the time lags u1 = 0, and u2, . . . , up are distinct positive

real numbers. As above, this system is assumed to have a unique solution θ = F (r) for all

θ ∈ Θ. Consider positive integers N(ε), k(ε) verifying, as ε → 0,

N(ε) → ∞, k(ε) → ∞, and k(ε)/N(ε) → 0. (6.24)

Define the time steps,

∆j(ε) = uj/k(ε) , for j = 2, . . . , p.

For j ≥ 2, each covariance K(uj) is then estimated by the approximate subsampled empirical

covariance Kε
Y (uj) based on the N(ε) observable data Y ε

n∆j(ε)
. For j = 1, the variance

K(u1) = K(0) is estimated by the approximate subsampled empirical variance Kε
Y (0) based

on the N = N(ε) observable data Y ε
n∆(ε), where the time interval ∆ = ∆(ε) is chosen

such that N,∆ satisfy the adaptive subsampling scheme (6.2). Define the vector r̂(ε) =

(Kε
Y (u0), . . . ,K

ε
Y (up)). Then, as ε → 0, under the conditions (6.24), the estimator θ̂ε =

F (r̂(ε)) converges in probability to the true value θ.

Proof. The result of theorem 4 implies that, for each j = 1, . . . , p, the subsampled empirical
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covariance Kε
Y (uj) converges in L2 to K(uj). This combined with the proposition 6.3.1

proves the required convergence.

6.9 OU Process as a Special Case under Indirect Observabil-

ity Context

In chapter 3 we study a special benchmark case of the indirect observability context (see

section 6.2), specifically, where Xt is considered to be the stationary Ornstein-Uhlenbeck

(OU) process, and the approximating process Y ε
t is the smoothed OU process obtained by

local smoothing of Xt, namely

Y ε
t =

1

ε

∫ t

t−ε
Xsds. (6.25)

Hence, in this special case, both X and Y ε are centered stationary Gaussian processes. The

dynamics of X is given by

dXt = −γXtdt + σdWt, (6.26)

and parametrized by

θ = [γ, σ] ∈ Θ = R
+ × R

+.

All the hypotheses of the indirect observability context (section 6.2, 6.2) are clearly satisfied

for our benchmark case : the Xt have the same Gaussian distribution with mean 0 and

variance (σ2/2γ), and the covariance function K(u) of X is given by,

K(u) = E[XtXu+t] =
σ2

2γ
exp(−γ|u|), (6.27)

which proves the exponential decay of covariances. We then have E(X4
t ) = 3K(0)2, and

hence the L4-norms of all the variables Xt and Y ε
t are bounded as ε → 0. We finally evaluate

the L4 speed of convergence ρ(ε). Since in this benchmark case Xt − Y ε
t is Gaussian, we
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have

ρ(ε)4 = E[(Xt − Y ε
t )4] = 3(E[(Xt − Y ε

t )2])2. (6.28)

From (6.25), we derive

E[(Xt − Y ε
t )2] =

1

ε2
E

[

(
∫ t

t−ε
(Xt − Xs)ds

)2
]

=
1

ε2

∫ t

t−ε

∫ t

t−ε
dhdsE[(Xt − Xh)(Xt − Xs)],

=
3

ε2

∫ ε

0

∫ ε

0
dhds[K(0) − K(h) − K(s) + K(h − s)].

Using the explicit expression (6.27) of covariances, this double integral easily yields

E[(Xt − Y ε
t )2] =

σ2

2γ

[

1 − 2
1

γε
(1 − eγε) +

1

γ2ε2
(1 − e−γε)(eγε − 1)

]

≈ σ2

2
ε,

so that in view of (6.28),

ρ(ε) = ‖Xt − Y ε
t ‖L4

≈ (3/4)1/4σε1/2. (6.29)

Non-vanishing lags estimation of parameters for approximate OU process

Fix the two covariance lags u1 = 0, u2 = u > 0. By (6.27), the OU parameter vector

θ = [γ, σ2] is a function F (r) of r = [K(0),K(u)], explicitly given by

γ = (1/u) ln (K(0)/K(u)) , σ2 = 2γK(0),

Select the numbers of observations N(ε) and integer valued covariance lags k(ε) such that,

as ε → 0,

N(ε) → ∞, k(ε) → ∞, k(ε)/N(ε) → 0. (6.30)
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Note that we are here in a subsampling scheme involving non-vanishing discrete time lags

k(ε) → ∞, where we define the subsampling time interval by

∆(ε) = u/k(ε), for u > 0. (6.31)

In particular, the hypotheses (6.30) and (6.31) are then equivalent to

ε → 0, ∆(ε) → 0, N(ε)∆(ε) → +∞. (6.32)

The observable SOU process Y ε
t generates then subsampled empirical covariance estimators

K̂ε
Y (u) and K̂ε

Y (0) both defined by

K̂ε
Y (u) = (1/N)

N−1
∑

n=0

Y ε
n∆Y ε

(n∆+u), for u > 0, and for u = 0.

The estimator θ̂ = (γ̂ε, σ̂
2
ε) of θ is then defined by θ̂ = F (K̂ε

Y (0), K̂ε
Y (u)), so that

γ̂ε = (1/u) ln
(

K̂ε
Y (0)/K̂ε

Y (u)
)

, and σ̂2
ε = 2γ̂εK̂

ε
Y (0). (6.33)

We are considering only the subsampling regime defined by conditions (6.30) and (6.31),

which taken together are equivalent to (6.32). In this situation, our generic theorem 5

applies to this benchmark purely Gaussian case X and Y ε, and shows that the estimators

γ̂ε, σ̂2
ε converge in probability to the correct values γ, and σ2 as ε → 0.

Moreover the same generic theorem implies that the approximate subsampled covariance

estimators converge in L2 to K(0) and K(u) as ε → 0, at L2-speeds of convergence bounded

by cte × ρ(ε) + 1/
√

N(ε)∆(ε), where we recall that note ρ(ε) = cte ε1/2.

Also, specifically for this benchmark example, through an exact computation of the L2-

norms we can deduce a higher order of accuracy and establish convergence in L2 for the

estimators γ̂ε, σ̂2
ε , in particular, ‖γ̂ε − γ‖L2

∼ cte ε + cte (1/
√

N∆).
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Vanishing Lags estimators for a purely Gaussian benchmark case

In chapter 3, in the same Gaussian benchmark case just presented, we had studied other

estimators of θ, based on indirect estimators of covariances K(0) and K(∆(ε)) computed

from process Y ε by

K̂ε
Y (0) = (1/N)

N−1
∑

n=0

(Y ε
n∆)2, and K̂ε

Y (∆) = (1/N)

N−1
∑

n=0

Y ε
n∆Y ε

(n+1)∆.

The associated parameter estimators were defined in (3.14) by,

γ̂ε = −
(

1

∆

)

ln

(

K̂ε
Y (∆)

K̂ε
Y (0)

)

, σ̂2
ε = −

(

2K̂ε
Y (0)

∆

)

ln

(

K̂ε
Y (∆)

K̂ε
Y (0)

)

. (6.34)

These formulas would be formally identical to those of (6.33) if one could legitimately set

u = ∆(ε) in the preceding non-vanishing lags section, and hence define vanishing lags

estimators . The asymptotic consistency requirements are however quite distinct. Indeed,

in chapter 3, we have shown that if the adaptive subsampling scheme [N(ε),∆(ε)] verifies,

ε → 0, ∆(ε) → 0, (∆(ε)/ε) → ∞, N(ε)∆(ε) → ∞, (6.35)

then, the vanishing lags estimators γ̂ε and σ̂2
ε defined in (6.34) converge in L2 to the un-

derlying parameters γ, σ2.

Comparison between vanishing lags and non-vanishing lags estimators

The good subsampling schemes (6.30), (6.31), enabling the existence of consistent indirect

parameter estimators of θ based on non-vanishing lags, are obviously more general than the

subsampling schemes (6.35) warranting, for our specific purely Gaussian benchmark, the

existence of consistent indirect estimators based on vanishing lags. Considering subsampling

schemes verifying the stronger conditions (6.35), we can then actually use either the non-
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vanishing lags estimators or the vanishing lags estimators for the benchmark case of the

OU and SOU processes Xt, Y
ε
t .

For our specific benchmark Gaussian case, a comparison of L2-speeds of convergence

for the two types of subsampled parameter estimators shows that non-vanishing lags es-

timators converge faster than vanishing lags estimators. Namely, considering observation

time spans N∆ ≈ 1/ε2, the best L2-speeds of convergence of γ̂ε, σ̂2
ε , respectively, to γ and

σ2 are proportional to ε for non-vanishing lags estimators, and to (ε/∆) for vanishing lags

estimators.

Due to the specificity of our purely Gaussian benchmark case, further study is still

needed to analyze vanishing lags asymptotics in our generic indirect observability context,

and to then complete an asymptotic comparison between vanishing lags and non-vanishing

lags covariance estimators.

6.10 Concluding Remarks and Future Work

We have presented a generic framework to estimate the parameters θ associated to an

underlying stationary Gaussian process Xt, based only on indirect observations generated

by an arbitrary stationary approximating process Y ε
t → Xt in L4, as ε → 0. Note that Y ε

t

is not assumed to be Gaussian.

The vector θ of unknown parameters characterizes the exponentially decaying covariance

function K(u, θ) = E[XtXt+u]. Asymptotically consistent estimation of θ is directly related

to the estimation of the covariance function K(u) = K(u, θ) at finitely many, predetermined

and fixed lags u1, . . . , up, where p is the dimension of θ. For a fixed lag u > 0, the covariance

K(u) is estimated, using discrete observations Un = Y ε
n∆(ε), by the approximate empirical
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covariance estimators Kε
Y defined as

Kε
Y =

1

N(ε)

N−1
∑

n=0

UnUn+k(ε).

The discrete covariance lag k(ε) → ∞ with k(ε)/N(ε) → 0, and the subsampling time step

length ∆ = ∆(ε) is defined by

∆(ε) = (u/k(ε)) → 0.

Since k(ε)∆(ε) = u, and the discrete lags k(ε) → ∞, we refer to these estimators as non-

vanishing lags estimators. We have derived a precise sufficient condition on N = N(ε) → ∞,

∆ = ∆(ε) → 0, namely N(ε)∆(ε) → ∞, under which the approximate empirical covariance

estimators Kε
Y converge in L2 to the true covariances K(u).

In this generic indirect observability context, the best bound we obtain for the L2-

speed of convergence of these subsampled covariance estimators is proportional to ρ(ε) =

‖Y ε
t − Xt‖L4

, which is assumed to tend to 0 as ε → 0. This is achieved by choosing the

global time span of observations Span(ε) ≈ N(ε)∆(ε) ≈ 1/ρ(ε)2. Since there is generally a

linear cost attached to the number of observations N(ε) → ∞, it will be advantageous to

choose ∆(ε) vanishing as slowly as possible to zero. Precisely, for a fixed Span = N∆, the

choice of a larger N and hence of a smaller ∆, does not improve the accuracy of estimation.

Chapter 3 presented similar questions for a specific purely Gaussian benchmark case,

where Xt is the unobserved Ornstein-Uhlenbeck (OU) process and Y ε
t is a locally smoothed

OU process. In this purely Gaussian benchmark case, we obtained very precise equiv-

alents for the L2-speed of convergence of the vanishing lags estimators (6.34), but under

stronger conditions (6.35) than those studied in the general indirect observability framework

to enforce the consistency of non-vanishing lags estimators. For this generic non-Gaussian

framework, we intend to develop adequate asymptotics for vanishing lags covariance esti-
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mators.

In chapter 5, we study the issue of parameters estimation from indirect approximate

data in practical situations, where the actual values of ε and of ρ(ε) are unknown, since

the data are generated by highly intensive simulations of multiscale but high-dimensional

ODEs. For prototype examples (the Triad and the Burgers-Hopf equation) we outline

multiscale procedures deriving optimal subsampling schemes from one single set of data

when ε is unknown. We intend to extend this pragmatic approach to our generic indirect

observability context.
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APPENDICES

0.11 Special Classes of Stochastic Processes

Consider a filtered probability space, i.e., a complete probability space (Ω,F , P ) together with

a filtration {Ft} satisfying the usual hypotheses. A family of real-valued random variables

{Xt} defined on (Ω,F , P ), where the index t ∈ I could be discrete (I = N) or continuous-

time parameter (I = R+), is called a stochastic process. A stochastic process is said to be

adapted to a filtration F, if for each t ∈ I, Xt is Ft measurable (i.e., {Xt < x} ∈ Ft, for all

x ∈ R). We define a few special classes of stochastic processes.

1. A process Xt is said to be strictly stationary if the joint distribution of any arbitrary

finite subset of random variables {Xt1 ,Xt2 , . . . ,Xtk} is equivalent to the distribution

of {Xt1+h,Xt2+h, . . . ,Xtk+h}, for every h such that ti + h ∈ I, i = 1, . . . k, and for

every k ∈ N.

2. A process Xt is called Markov if the conditional probability P [Xt ∈ A/Fs] = P [Xt ∈ A/Xs]

for all t > s and for every A ∈ Ft, i.e., the conditional probability distribution of the

process is independent of the past, and only depends on the current value.

3. A process Xt is said to be Gaussian if the distribution of any arbitrary finite subset

of random variables {Xt1 ,Xt2 , . . . ,Xtk} admits a multivariate Gaussian density, for

every k ∈ N.

0.12 Brownian Motion

Consider a probability space (Ω,F , P ) with a filtration F = (Ft)t≥0 satisfying the usual

hypotheses. A stochastic process {W (t); t ≥ 0} is said to be a Brownian motion (or

Wiener process) if it satisfies the following conditions,



• W (0) = 0 almost surely.

• W (t) has independent increments, i.e., for 0 ≤ t1 < t2 < . . . < tk < ∞, the random

variables W (t1), W (t2) − W (t1),. . . ,W (tk) − W (tk−1) are independent.

• The increments of W (t) are stationary and Gaussian, i.e., W (t)−W (s) ∼ N(0, t− s),

for all t > s.

• W (t) has a version with continuous trajectories.

We consider the natural filtration of the Brownian motion i.e. Ft = σ(W (s); 0 ≤ s ≤

t)
∨N , where N contains the P−null sets of F . The Brownian motion W (t) is adapted to

the filtration F, i.e., W (t) is Ft-measurable for each t.

There are important properties of the Brownian motion that makes it an attractive tool

for modeling uncertainty. For instance, Brownian motion satisfies the martingale property,

i.e., E[W (t)|Fs] = W (s), ∀t ≥ s. A Brownian motion is square-integrable (i.e., ‖Wt‖L2
<

∞), Markovian, Gaussian and by definition has independent, stationary increments.

0.13 Kolmogorov Backward and Forward Equations

Consider a one-dimensional diffusion process whose dynamics are given by the following

(homogeneous) stochastic differential equation,

dX(t) = b(X(t))dt + a(X(t))dW (t). (36)

The transition probabilities Qt defined as,

P [X(t) ∈ A | X(0) = x] =

∫

A
Qt(x, dy), ∀ A ∈ Ft,
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satisfy the following conditions for every δ > 0,

lim
h→0

∫

|y−x|≥δ

Qh(x, dy)

h
= 0,

lim
h→0

∫

|y−x|≥δ

(y − x)Qh(x, dy)

h
= b(x), (instantaneous drift),

(37)

lim
h→0

∫

|y−x|≥δ

(y − x)2Qh(x, dy)

h
= a2(x), (instantaneous variance).

Define the following transformation,

u(t, x) =

∫

R

Qt(x, dy)u0(y), (38)

that changes, for each fixed t > 0, the “initial function” u0(x) to the function u(t, x). The

function u(t, x) may also be expressed as,

u(t, x) = E[u0(X(t))|X(0) = x],

which is the conditional expectation with respect to probability measure Qt. Then, under

certain regularity conditions the function u(t, x) satisfies the following PDE [32],

∂

∂t
u(t, x) = b(x)

∂

∂x
u(t, x) +

1

2
a2(x)

∂2

∂x2
u(t, x), (39)

with the initial condition u(0, x) = u0(x). PDE in (39) is known as the Kolmogorov backward

equation, and it characterizes the diffusion process X(t) given by (36). The second-order

elliptic differential operator L, given by

L = b(x)
∂

∂x
+

1

2
a2(x)

∂2

∂x2
,
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is the infinitesimal generator of the diffusion process X(t) (See details in [32, 30, 31]), and

the backward equation may be expressed as,

∂

∂t
u(t, x) = Lu(t, x).

The solution of the backward equation (39) can be written in the semi-group notation

[43, 89] as,

u(t, x) = eLtu0(x). (40)

The Kolmogorov forward equation (also known as the Fokker-Plank equation [81, 37]) may

be derived using the general theory of adjoint partial differential equations. Assume for

simplicity that the transition probabilities Qt have probability densities qt given by a kernel

function qt(x, y). Then, the transformation in (38) is replaced by,

v(s, y) =

∫

R

v0(x)qs(x, y)dx, (41)

such that under appropriate regularity conditions v(s, y) satisfies the following PDE,

∂

∂s
v(s, y) = L∗v(s, y), (42)

where the adjoint operator L∗ is given by,

L∗v(s, y) = −∂ [b(y)v(s, y)]

∂y
+

1

2

∂2 [a2(y)v(s, y)]

∂y2
. (43)

Here v0 is an arbitrary probability density, and by definition of qt, the transform v is again

a probability density. Using (41) and (42), we can deduce that,

∫

R

v0(x)

[

∂qs(x, y)

∂s
− L∗ qs(x, y)

]

dx = 0. (44)

152



For (44) to hold true for arbitrary v0, the expression within the brackets must vanish,

therefore, it is concluded that the transition probability density qt satisfies the forward

equation, namely,

∂qs(x, y)

∂s
− L∗ qs(x, y) = 0, (45)

where L∗ is given by (43). Again, the semi-group notation may be used to express the

solution of forward equation (45) as,

qs(x, y) = eL
∗sv0(x).

If the diffusion process X(t) is ergodic, then, the invariant density defined as q∞(y) =

lims→∞ qs(x, y), is characterized by [L∗ q∞(y)] = 0.

0.14 Ornstein-Uhlenbeck Process

Ornstein-Uhlenbeck process (denoted here as OU-process) is defined as the solution for t ≥ 0

of the linear SDE

dXt = −γXtdt + σdWt, (46)

where Wt is the standard Brownian motion and the unknown parameters γ, σ are strictly

positive. This linear SDE can be solved by multiplying both sides of the equation by the

integrating factor given by (eγt), which gives

d
(

eγtXt

)

= σeγtdWt. (47)

The solution Xt of SDE (46), obtained by integrating both sides of (47), is an asymptotically

stationary Gaussian process given by

Xt = X0e
−γt + σe−γt

∫ t

0
eγsdWs. (48)
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The Itô integral Mt =
∫ t
0 eγsdWs is a centered Gaussian random variable with variance

given by the Itô isometry,

E
[

(Mt)
2
]

=

∫ t

0
e2γsds =

(

e2γt − 1

2γ

)

. (49)

Therefore, when X0 = x0 ∈ R, for each t > 0, the random variable Xt is Gaussian, namely,

Xt ∼ N

(

x0e
−γt,

σ2

2γ

(

1 − e−2γt
)

)

. (50)

Using (48) it may be deduced that, for t > s,

E[XtXs] = σ2e−γ(t+s) E [MtMs] + x2
0e

−γ(t+s),

where Mt =
∫ t
0 eγudWu is a zero mean martingale. Hence, using the Tower property (double

expectations) we obtain,

E [MtMs] = E [E [MtMs] |Fs] = E
[

(Ms)
2
]

.

Thus, the covariance function K(s, t) of Xt, for t > s, is given as

K(s, t) = E[XtXs] − E[Xt]E[Xs] =
σ2

2γ
e−γ(t−s)

(

1 − e−2γ t
)

.

For more detailed presentation of the properties of Itô integral see for instance, [23, 79, 70, 6].

Stationary Moments

The Fokker-Plank equation associated to the OU process (46) is given as,

∂p

∂t
= γ

∂(xp)

∂x
+

σ2

2

∂2p

∂x2
, (51)
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with initial distribution given by Dirac point mass δx0
. The invariant density ρ(x) satisfies,

γ
∂(xρ)

∂x
+

σ2

2

∂2ρ

∂x2
= 0,

and is explicitly given by the Gaussian density, for γ > 0, with mean 0, and variance

a = σ2/2γ,

ρ(x) =
1√
2πa

exp−x2/2a.

Therefore, for γ > 0, OU process Xt is asymptotically stationary, and converges al-

most surely, as t → ∞, to an invariant Gaussian distribution N
(

0,
(

σ2/2γ
))

. Under the

stationary density the covariance function K(h), for h ∈ R is given by

K(h) = lim
t→∞

E[XtXt+h] =
σ2

2γ
e−γ|h|.

Also, when X0 ∼ N
(

0, σ2/2γ
)

and is independent of the filtration {Ft}, then Xt is a centered

strictly stationary Gaussian process, which is evident from the expression in (48). Taking

expectations on both sides of (48) shows that the mean of Xt will be zero. Similarly, the

variance of Xt will be equal to
(

σ2/2γ
)

. Since, the second-order moments of the Gaussian

process Xt are independent of the time t, therefore, Xt will be strictly stationary.
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0.15 Homogenization Method Applied to the Additive Triad

Model

Consider the additive triad model [64], namely,

dxt = A1ytzt
dt

ε
,

dyt = A2xtzt
dt

ε
− g2yt

dt

ε2
+ s2

dW1(t)

ε
, (52)

dzt = A3xtyt
dt

ε
− g3zt

dt

ε2
+ s3

dW2(t)

ε
,

where A1 + A2 + A3 = 0 (energy conservation condition), gi, si are known nonnegative

parameters, W1, W2 are independent Brownian motions, and ε > 0 is the scale separation

parameter. Here xt is the “slow” variable and yt, zt are the “fast” variables.

Derivation of the reduced equation corresponding to the triad (52) in the limit of infinite

scale separation (i.e., ε → 0) is as follows. The Kolmogorov backward equation associated

to (52) for a scalar function u = u(t, x, y, z) is given as,

∂

∂t
u =

1

ε2
L0 u +

1

ε
L1 u, (53)

where the differential operators Li are given by,

L0 = −g2y
∂

∂y
+

1

2
s2
2

∂2

∂y2
− g3z

∂

∂z
+

1

2
s2
3

∂2

∂z2
, (54)

L1 = A1yz
∂

∂x
+ A2xz

∂

∂y
+ A3xy

∂

∂z
. (55)

For brevity (see [77]), assume that the initial condition u(0, x, y, z) = φ(x), where φ is a
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scalar function independent of y, z. The differential operator L0 is the infinitesimal generator

for the two dimensional OU process, and admits a bivariate Gaussian invariant density q

given by

q(y, z) =

√
g2g3

π s2s3
exp

(

−g2

s2
2

y2 − g3

s2
3

z2

)

,

such that L∗
0 q = 0. Assume that the null space of L0 is characterized by L0I(y, z), where

I(y, z) denotes constants in y, z.

The multiscale expansion of u is considered, u = u0+εu1 +ε2u2 + . . ., and substituted in

(53). Then, comparing the coefficients of powers of ε in (53), gives the following relations,

1

ε2
: L0u0 = 0, (56)

1

ε
: L0u1 + L1u0 = 0, (57)

ε0 : L0u2 + L1u1 =
∂u0

∂t
. (58)

The first relation (56) implies that u0 = u0(x), and is constant with respect to the fast

variables y, z. The second relation (57) gives rise to the following Poisson equation [77, 74,

75],

−L0 u1 = (L1u0) ,

such that
∫

R2 L1u0 q(y, z) dy dz = 0, therefore, the solution u1 can be formally expressed

as,

u1 = −L−1
0 (L1u0) , (59)

where the operator L−1
0 is given as,

L−1
0 = −

∫ ∞

0
eL0 tdt. (60)
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Now, let P denote the expectation with respect to the invariant density q(y, z), then using

the Feynman-Kaĉ technique and applying the expectation operator P to both sides of the

relation (58) gives,

P(L0u2) + P(L1u1) = P

(

∂u0

∂t

)

,

which, since, u0 = u0(x), L∗
0 q = 0, and using (59); reduces to the following,

−P
(

L1L−1
0 (L1u0)

)

=
∂u0

∂t
. (61)

The right hand side of (61) may be computed as follows,

−P
(

L1L−1
0 (L1u0)

)

= −P

(

A1L1

(

∂u0

∂x
L−1

0 (yz)

))

= −A2
1

∂2u0

∂x2
P
(

yzL−1
0 (yz)

)

− A1A2x
∂u0

∂x
P

(

z
∂
(

L−1
0 (yz)

)

∂y

)

+ . . .

− A1A3x
∂u0

∂x
P

(

y
∂
(

L−1
0 (yz)

)

∂z

)

. (62)

Using (40) (60), the term P
(

yzL−1
0 (yz)

)

is equal to,

P
(

yzL−1
0 (yz)

)

= −
∫ ∞

0
P(y(t)y(0))P(z(t)z(0))dt

= − s2
2s

2
3

4g2g3

∫ ∞

0
e−(g2+g3)t dt

= − s2
2s

2
3

4g2g3(g2 + g3)
. (63)

Using the fact that the Gaussian density q(y, z) vanishes exponentially as |y|, |z| → ∞, and
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applying integration by parts, we obtain,

P

(

z
∂
(

L−1
0 (yz)

)

∂y

)

=
2g2

s2
2

P
(

yz
(

L−1
0 (yz)

))

= − s2
3

2g3(g2 + g3)
,

(64)

P

(

y
∂
(

L−1
0 (yz)

)

∂z

)

=
2g3

s2
3

P
(

yz
(

L−1
0 (yz)

))

= − s2
2

2g2(g2 + g3)
.

Finally, substituting (64), (63) in (62), we obtain the following backward equation verified

by u0,

∂u0

∂t
=

[

A2
1 s2

2s
2
3

4g2g3 (g2 + g3)

]

∂2u0

∂x2
+

[

A1x

2(g2 + g3)

(

A2s
2
3

g3
+

A3s
2
2

g2

)]

∂u0

∂x
,

which characterizes the OU process,

dXt = γXtdt + σdWt,

where the parameters γ, σ are given by,

γ = − A1

2(g2 + g3)

(

A2s
2
3

g3
+

A3s
2
2

g2

)

, σ =
|A1|s2s3

√

2g2g3 (g2 + g3)
.

The limiting OU process is asymptotically stationary provided γ > 0, which is a restriction

on the choice of parameters in the full triad model. Hence, we finally deduce that the slow

variable xt in the triad weakly converges to the OU process Xt, as ε → 0. See [77] for a

detailed discussion of the method of homogenization for a generic multiscale system.
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