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ABSTRACT

The present work is motivated by the study of blood flow in arteries.

This dissertation is divided into two parts. The first part is devoted to the proof of

existence of a mild solution to a nonlinear moving boundary problem which approx-

imates the flow of a viscous, incompressible, Newtonian fluid in a long and slender

viscoelastic tube with small aspect ratio. The resulting problem is of Biot type and

it has been used to model blood flow in large-to-medium arteries. The second part

of the dissertation presents a numerical study of the qualitative properties of the

solution of Bingham fluid flows in cylinders. The Bingham model has been used to

describe the blood flow in small vessels, such as arterioles and capillaries, where the

size of the vessel diameter is comparable to the size of blood cells.

The problem considered in the first part of the dissertation consists of a hyperbolic-

parabolic system of partial differential equations with degenerate diffusion. The de-

generate diffusion is a consequence of the fact that the effects of the fluid viscosity

in the axial direction of a long and slender tube are small in comparison with the

effects of the fluid viscosity in the radial direction. Degenerate fluid diffusion and

hyperbolicity induce lower regularity of a weak solution and are a source of the main

difficulties associated with the existence proof.

The viscoelasticity of vessel wall plays a crucial role in the proof of existence

of solutions for both the linearized and the nonlinear problems. Wall viscoelastic-

ity provides the main smoothing mechanisms in the energy estimates which, via the

compactness arguments, leads to the proof of the existence of a solution. This has

interesting consequences for the understanding of the underlying hemodynamics ap-

plication. Our analysis shows that the viscoelasticity of the vessel walls is crucial in

smoothing sharp wave fronts that might be generated by the steep pressure pulses

emanating from the heart, which are known to occur in, for example, patients with

aortic insufficiency.
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In the second part of the dissertation we present some numerical results related to

Bingham flow in a cylinder, which is modeled by a nonlinear parabolic equation. Our

results showed that the solution has a finite extinction time, which means that the

fluid axial velocity drops to zero in a finite time if there are no external forces, e.g.

pressure drop acting on the system. We also found that the extinction time increases

as the fluid viscosity decreases.
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Chapter I

An Effective Model for

Fluid-Structure Interaction in

Blood Flow

1 Introduction

This work was motivated by the study of blood flow in pulsatile arteries. In medium-

to-large arteries, blood can be modeled as an incompressible, viscous fluid utilizing

the incompressible Navier-Stokes equations. To model the mechanical properties of

arterial walls, we follow the bioengineering literature indicating that vessel walls are

viscoelastic. In particular, experimental measurements of the viscoelastic proper-

ties of the human femoral artery and of the canine abdominal aorta presented in

[6, 7, 8], indicate that the viscoelasticity of the vessel walls is of the Kelvin-Voight

type. In [12] Canic et al. derived two models for the vessel wall behavior assuming

Kelvin-Voight viscoelasticity: the cylindrical linearly viscoelastic membrane and the

cylindrical linearly viscoelastic Koiter shell. Both models were coupled to the fluid

equations describing fluid flow driven by the time-dependent pressure drop between
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R

z

L

radial displacement

viscous, Newtonian fluid

Linear viscoelastic membrane

Figure I.1: Domain Ω(t)

the inlet and the outlet of a cylindrical domain of length L and reference radius R.

Assuming axially symmetric flow and small aspect ratio ǫ = R/L, a set of closed,

reduced, effective equations in two-space dimensions was obtained in [12]. It was

proved in [12] that this reduced, effective problem approximates the original problem

to the ǫ2 accuracy. The leading-order effective equations are in the form of a nonlin-

ear, moving-boundary problem for a system of partial differential equations of mixed

hyperbolic-parabolic type in two-space dimensions. They are given in terms of the

unknown functions vz and η where vz is the axial component of the fluid velocity, and

η is the radial displacement of the tube wall.

The leading-order nonlinear moving-boundary problem holds in the cylindrical

domain Ω(t), shown in Figure I-1.1:

Ω(t) =
{
x ∈ IR3; x = (r cos ϑ, r sin ϑ, z), 0 < r < R + η(z, t), ϑ ∈ [0, 2π), 0 < z < L

}
,

(I-1.1)

for 0 < t < T , with T > 0. The lateral boundary of Ω(t) is denoted by Σ(t):

Σ(t) =
{
(R(z) + η(t, z)) cos ϑ, (R(z) + η(t, z)) sin ϑ, z) ∈ R

3 : ϑ ∈ [0, 2π), z ∈ (0, L)
}

.

The reference configuration corresponds to that of a straight cylinder with radius R

and length L. The effective reduced problem reads

∂(R + η)2

∂t
+

∂

∂z

∫ R+η

0

2rvzdr = 0, 0 < z < L, 0 < t < T, (I-1.2)

̺F

∂vz

∂t
− µF

1

r

∂

∂r

(

r
∂vz

∂r

)

= −∂p

∂z
, (z, r, t) ∈ Ω(t), 0 < t < T, (I-1.3)
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with

p − pref =

(
hE

R(1 − σ2)
K + pref

)
η

R
+

hCv

R2

∂η

∂t
, 0 < z < L, 0 < t < T, (I-1.4)

where

K =







1 + h2

12R2 for Koiter shell

1 for membrane.
(I-1.5)

As we shall see later, equation (I-1.4) is the leading-order approximation of a cylin-

drical viscoelastic membrane/Koiter shell model. Problem (I-1.2)-(I-1.4) is supple-

mented by the following initial and boundary conditions

vz(0, z, t) − bounded, vz(R + η(z, t), z, t) = 0, vz(r, z, 0) = v0
z(r, z), (I-1.6)

η(z, 0) = η0(z), p(0, t) = P0(t), p(L, t) = PL(t). (I-1.7)

Here ̺F is the fluid density, µF is the fluid dynamic viscosity coefficient, and p is

the fluid pressure with pref denoting the pressure at which the reference configura-

tion is assumed. The constants describing the structure properties are the Young’s

modulus of elasticity E, the Poisson ratio σ, the wall thickness h, and the structure

viscoelasticity constant Cv. The first equation (I-1.2), derived from the conserva-

tion of mass, describes the transport of (R + η)2 with the averaged fluid velocity

U :=
1

(R + η)2

∫ R+η

0

vzrdr, while the second equation (I-1.3), describing the balance

of momentum, incorporates diffusion due to the fluid viscosity which is dominant in

the radial direction. The diffusion in the axial direction z is of order ǫ2 and thus drops

out from the leading-order effective equations. Furthermore, the nonlinear fluid ad-

vection term turns out to be of order ǫ, thereby appearing only in the ǫ-correction of

the leading-order equations, which are easy to calculate. Thus, this models shows that

the nonlinearity due to the fluid-structure coupling is dominant over the nonlinearity

due to fluid advection. Equation (I-1.4) is the ǫ2 approximation of the viscoelastic

membrane equation and the viscoelastic shell equation (with different constant K),

presented below in equations (I-2.5) and (I-2.4), respectively.

3



The hyperbolic waves described by the first equation might develop shock wave

solutions since there is no smoothing in the second equation by the fluid viscosity

in the axial direction. Nevertheless, the viscoelasticity of the structure given by the

time-differentiated term in equation (I-1.4), which appears under the z-derivative in

equation (I-1.3), will suffice to prevent shock formation in the vessel walls. As we shall

see in this paper, we prove the existence of a weak solution to this moving-boundary

problem near a configuration that corresponds to a straight vessel with radius R and

fluid velocity vz = 0. The spaces definding a weak solution reflect the parabolic

degeneracy in the second equation and the mixed, hyperbolic-parabolic nature of the

coupled problem.

This reduced problem has many interesting features. It captures the main prop-

erties of the fluid-structure interaction in blood flow with physiologically reasonable

equations and data, while at the same time the problem is simple enough to allow fast

computations and analysis related to its well-posedness. The design of a numerical

method for this reduced problem is much simpler than for the full three-dimensional

problem. The numerical algorithm, constructucted in [13], has the complexity of

one-dimensional solvers, enabling fast and stable computation of a numerical solution

to this fluid-structure interaction problem. Additionally, a comparison between the

numerical results and the experimental measurements showed excellent agreement

between the two [14].

We focus in this work on the proof of the existence of a solution to this effective

fluid-structure interaction problem.

Within the past ten years there has been considerable progress in the analysis

of fluid-structure interaction problems between an incompressible, viscous fluid and

an elastic or viscoelastic structure. All the results that are related to an elastic

structure interacting with a viscous fluid have been obtained under the assumption

that the structure is entirely immersed in the fluid, see e.g., [17, 18, 21]. To our

4



knowledge, there have been no results showing existence of a solution to a fluid-

structure interaction problem where an elastic structure is a part of the fluid boundary,

which is the case, for example, in modeling blood flow through elastic arteries. Often

times additional ad hoc terms of viscoelastic nature are added to the vessel wall model

to provide stability and convergence of the underlying numerical algorithm [32, 34],

or to provide enough regularity in the proof of the existence of a solution as in [16, 18,

28, 37]. Similarly, in [16, 17] terms describing bending (flexion) rigidity were added

to provide smoothing mechanisms for the evolution of the structure displacement.

From the literature in which interaction between a viscoelastic structure and a

viscous fluid is studied, the following two are the most closely related to our present

work: the local in time existence of a strong, two-dimensional solution by da Vega

in [37] and the existence of a weak solution for a viscoelastic plate interacting with a

three-dimensional viscous incompressible fluid by Chambolle et al. in [16].

In [37] a two-dimensional problem was considered. The viscoelastic structure was

a one-dimensional curve, satisfying the so called generalized string model, used by

Quarteroni et al. in [34] to model the mechanical properties of vessel walls. This

model involves the fourth-order derivative of the displacement with respect to the

axial variable ∂4η/∂z4 and the viscoelastic term of the form ∂3η/∂t∂z2. It was crucial

for the existence proof that the coefficient in front of the viscoelastic term be strictly

positive. Additional restriction in the existence proof was the requirement that the

ratio of the density of the fluid over the density of the structure be sufficiently small,

which is not the case in the blood flow application. (In the blood flow application

the ratio is around 1.) Periodic boundary conditions in the axial direction were

considered and the main forcing came from the initial displacement from the reference

configuration.

In [16] the three-dimensional incompressible, viscous Navier-Stokes equations were

coupled to the motion of a two-dimensional viscoelastic plate. The viscoelastic term
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was in the form of the fifth-order derivative ∂5η/∂t∂z4. Again, it was crucial for the

existence proof that the coefficient in front of the viscoelastic term be strictly positive.

Additional assumption was used in this work requiring that the displacement from

the structure never touches the bottom (fixed) surface of the domain. The main

contribution from this work was in providing the existence of a weak solution with

less regularity than those obtained in previous studies.

Both of these studies make use, in a crucial way, of the higher-order derivative

terms describing the viscoelastic smoothing to prove the existence of a solution. These

kinds of terms typically appear when modeling bending rigidity in ”thin” structures.

They provide better control in the energy estimates and give rise to higher regularity

of solutions, provided that the data are smooth enough.

In the present work, we consider the structure equation (I-1.4) containing only the

lowest-order derivative with respect to time of the displacement η. A model of this

form was also considered by Pontrelli [33] and Armetano et al. [6, 7, 8] to discribe the

viscoelasticity of vessel walls. In particular, the work of Armetano et al. provides the

measurement data for the value of the viscoelastic coefficient appearing in this model.

Thus, the viscoelastic model we consider here has additional importance related to

the applicability of the model to the blood flow simulations. In [12] we showed that in

cylindrical geometry, with axially symmetric flows, equation (I-1.4) is the model that

arises in the limit, as ǫ → 0, of the coupling between the fluid and structure in the

case of the viscoelastic membrane and the viscoelastic Koiter shell, when the fluid and

the structure density are of the same order of magnitude (the physiologically relevant

regime). More precisely, we showed that the bending rigidity terms of the (Koiter)

shell and the acceleration of the shell and membrane are of order ǫ2 or smaller, giving

rise to (I-1.4) in both the membrane and the shell problem with a different coefficient

K, corresponding to the two different cases. From the analysis point of view, dealing

with only the lowest-order derivative terms in the structure model is more involving.
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Nontrivial energy estimates are required to obtain enough control over the solution

in order to prove its existence. Additional difficulty exists in this reduced model

due to the lack of the fluid viscous regularization in the axial direction. Although

this presents some problems in the analysis, it was this property that allowed us to

use essentially one-dimensional arguments in the derivation of the energy estimates,

substantially simplifying our arguments. Our main result states, in a nut shell, that if

the initial displacement from the reference cylinder of radius R is small enough, and

if the initial fluid velocity is small, and, furthermore, if the inlet and outlet pressure

data are close to the reference pressure, then there exists a unique (mild) solution to

the nonlinear moving boundary problem describing the leading-order fluid-structure

interaction between an incompressible, viscous fluid and a viscoelastic structure of

Kelvin-Voight type.

The main novelty of this work is in considering a problem with the viscoelastic

smoothing in the structure equation described by the lowest possible time derivative

appearing in the physiologically relevant equations allowing the use of measurements

data to describe the viscoelastic arterial wall properties.

In the next section we show how the reduced, effective problem is related to the full

three-dimensional axially symmetric problem, and present the details of the model(s)

describing the viscoelastic structure.
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2 Derivation of the Model Problem

We consider the Navier-Stokes equations for a viscous, incompressible fluid. Assum-

ing cylindrical geometry and axially symmetric flow, the fluid velocity v(r, z, t) =

(vr(r, z, t), vz(r, z, t)) and pressure p(r, z, t) satisfy

ρF

{∂vr

∂t
+ vr

∂vr

∂r
+ vz

∂vr

∂z

}

− µF

(
∂2vr

∂r2
+

∂2vr

∂z2
+

1

r

∂vr

∂r
− vr

r2

)

+
∂p

∂r
= 0, (I-2.1)

ρF

{∂vz

∂t
+ vr

∂vz

∂r
+ vz

∂vz

∂z

}

− µF

(
∂2vz

∂r2
+

∂2vz

∂z2
+

1

r

∂vz

∂r

)

+
∂p

∂z
= 0, (I-2.2)

∂vr

∂r
+

∂vz

∂z
+

vr

r
= 0. (I-2.3)

The Navier-Stokes equations hold in the cylindrical domain Ω(t).

To model the behavior of vessel walls we consider the cylindrical, linearly vis-

coelastic Koiter shell, and the cylindrical linearly viscoelastic membrane model under

the assumption that the longitudinal displacement of the shell/membrane is negli-

gible. A discussion showing why this is a reasonable assumption for the underlying

application can be found in [31]. Denoting by η the radial displacement of the wall

with respect to the reference configuration assumed for r = R, the equations for a

linearly viscoelastic cylindrical Koiter shell read, [12]:

−fr = ρwh
∂2η

∂t2
+ E0η − E1

∂2η

∂z2
+ E2

∂4η

∂z4
+ V0

∂η

∂t
− V1

∂3η

∂t∂z2
+ V2

∂5η

∂t∂z4
(I-2.4)

where fr is the radial component of the loading force, ρw denotes the shell (wall)

density, h is the shell thickness, and

E0 =
h

R2

E

1 − σ2

(

1 +
h2

12R2

)

+
pref

R
, E1 = 2

h3

12R2

Eσ

1 − σ2
, E2 =

h3

12

E

1 − σ2
,

V0 =
h

R2
Cv

(

1 +
h2

12R2

)

, V1 = 2
h3

12R2
Dv, V2 =

h3

12
Cv.

The constants Cv and Dv (the subscript v stands for “viscoelastic”) correspond to

the viscous counterparts of the Lamé constants of elasticity, see [12].

The equation for the dynamics of the pre-stressed, linearly viscoelastic cylindrical
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membrane is given by:

−fr = ρwh
∂2η

∂t2
+

(
hE

R2(1 − σ2)
+ pref

)

η +
hCv

R2

∂η

∂t
. (I-2.5)

Notice that the difference between the two models is in the terms involving h3/R2

accounting for the bending rigidity of the Koiter shell. See [12] for details.

We consider the time-dependent flow driven by the pressure drop between the

inlet (z = 0) and the outlet boundary (z = L) and with the flow entering the tube

parallel with the axis of symmetry. Equivalently, at the inlet and outlet of the tube

we can prescribe the inlet and outlet dynamic pressure, with the radial component of

the velocity equal to zero.

Inlet and Outlet Boundary Conditions (Fluid):

p + ρ(vz)
2/2 = P0,L(t) + pref and vr = 0at z = 0, L. (I-2.6)

At the inlet and outlet, we consider the structure diplacement fixed and equal to

zero. In addition, for the Koiter shell model we need to prescribe one more condition.

We consider the Koiter shell to be clamped.

Inlet and Outlet Boundary Conditions (Structure):

η(0, t) = η0(t), and η(L, t) = ηL(t), (I-2.7)

∂η

∂z
= 0, at z = 0, L (Koiter shell only). (I-2.8)

Initially, we will be assuming “small” displacement from the reference configura-

tion and the fluid and structure velocity “close” to zero.

Initial Conditions:

v(r, z, 0) = v0(r, z), η(z, 0) = η0(z),
∂η

∂t
(z, 0) = η0

t (z). (I-2.9)

The coupling between the fluid and the structure is described by the lateral bound-

ary conditions. We will be assuming the no-slip boundary condition requiring the
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velocity of the fluid to be equal to the velocity of the structure, and the dynamic

boundary condition requiring balance of the contact force at Σ(t).

Lateral Boundary Conditions (Fluid-Structure Coupling):

vr(R + η(z, t), z, t) =
∂η(z, t)

∂t
, vz(R + η(z, t), z, t) = 0. (I-2.10)

fr = [(p − pref)I − 2µFD(v)] n · er

(

1 +
η

R

)√

1 + (∂zη)2, (I-2.11)

where fr is given either by the viscoelastic shell model (I-2.4) or by the viscoelastic

membrane model (I-2.5). The right-hand side of (I-2.11) describes the contact force

of the fluid, n is the vector normal to the deformed boundary Σ(t), and er is the

radial unit vector. Tensor D(v) is the symmetrized gradient of velocity, defined for

an axially symmetric vector valued function ϕ = ϕrer + ϕzez as follows

D(ϕ) =









∂ϕr

∂r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)

0
ϕr

r
0

1

2

(∂ϕr

∂z
+

∂ϕz

∂r

)

0
∂ϕz

∂z









. (I-2.12)

See [13] for more details.

Assuming that the aspect ratio ǫ is small, using asymptotic analysis and homog-

enization theory for porous media flows, this three-dimensional, axially symmetric

problem was reduced in [12] to an effective, closed problem with the leading-order

approximation that is a nonlinear, moving-boundary problem of mixed, hyperbolic-

parabolic type in two-space dimensions. The unknown functions are the leading-order

approximations of the axial component of the velocity vz, the pressure p and the ra-

dial displacement η. It was shown in [12] that the leading-order radial component of

the velocity equals zero. Additionally, the pressure is hydrostatic to ǫ2-order, and so

p is independent of the radial variable.

Thus, we are looking for vz = vz(r, z, t) defined on Ω(t), and η = η(z, t) and

p = p(z, t), defined for z ∈ (0, L), 0 < t < T , such that

∂(R + η)2

∂t
+

∂

∂z

∫ R+η

0

2rvzdr = 0, (I-2.13)
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̺F

∂vz

∂t
− µF

1

r

∂

∂r

(

r
∂vz

∂r

)

= −∂p

∂z
, (I-2.14)

with

p − pref =

(
hE

R(1 − σ2)
K + pref

)
η

R
+

hCv

R2
K

∂η

∂t
, (I-2.15)

where

K =







1 + h2

12R2 for Koiter shell

1 for membrane

and the following initial and boundary conditions

vz(0, z, t) − bounded, vz(R + η(z, t), z, t) = 0, vz(r, z, 0) = v0
z(r, z), (I-2.16)

η(z, 0) = η0(z), p(0, t) = P0(t), p(L, t) = PL(t). (I-2.17)

Equation (I-2.13) is the averaged conservation of mass equation, with the kinematic

boundary condition (I-2.10) taken into account. Equation (I-2.14) is the leading-

order balance of axial momentum. The dynamic lateral boundary condition (I-2.11)

to the leading order is given by equation (I-2.15). Notice that the only difference

between the leading-order fluid-structure interaction problem for the Koiter shell

and the leading-order fluid-structure interaction problem for the membrane is in the

coefficient K appearing in equation (I-2.15). This was proved in [12, 13]. The value

of the viscoelastic constant Cv can be obtained from the measurements presented in

[6, 7, 8], see [12].

Problem (I-2.13)-(I-2.17) is nonlinear in the first equation, and in the lateral

boundary condition for vz which is evaluated at the moving-boundary r = R+η(z, t).

Although this problem is still a problem in two spatial variables z and r plus time,

with a singularity at r = 0 associated with the three-dimensional axially symmet-

ric flows, system (I-2.13), (I-2.14) is still simpler than the original three-dimensional

problem. In particular, the nonlinear term due to fluid advection does not appear

in these equations, since, it was shown in [12] that it is of ǫ-order. The ǫ correction
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of the reduced problem can be easily calculated once the zero-th order problem is

solved, see [12].

This reduced problem reveals the main features of this fluid-structure interaction

problem. It shows that the primary difficulties associated with the nonlinearities in

the problem are due to the fluid-structure coupling, and not due to the nonlinear

advection by the fluid.

In the next several section we will prove the existence of a unique (mild) solution

to the reduced problem (I-2.13)-(I-2.17), denoted in the Introduction as (I-1.2)-(I-1.7).
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3 Formulation of the Nonlinear Problem

We begin studying the existence of a weak solution to the nonliear moving-boundary

problem (I-1.2)-(I-1.7) by first transforing the problem into a problem defined on a

fixed domain. At the same time we will be introducing the non-dimensional variables

to derive the corresponding nonlinear problem defined on a fixed domain in non-

dimensional form.

To simplify notation we introduce

γ(z, t) := R + η(z, t).

Introduce the mapping

r 7→ r

γ
=: r̃

which maps Ω(t) onto the fixed domain (r̃, z, t) ∈ (0, 1)× (0, L)× (0, T ). In addition,

let us introduce the following scaling of the independent and dependent variables that

will transform the problem to its non-dimensional form:

z = Lz̃, t = τ t̃, vz = V ṽz, η = Nη̃, V =
L

τ
.

Also, denote

γ̃ = 1 +
N

R
η̃, so that γ = Rγ̃,

and T̃ = T/τ . With these transformations, the problem is now defined on the scaled

fixed domain

Ω̃ = {(r̃ cos ϑ, r̃ sin ϑ, z̃)|r̃ ∈ (0, 1), z̃ ∈ (0, 1), ϑ ∈ [0, 2π))} (I-3.1)

for the functions

ṽz = ṽz(r̃, z̃, t̃), γ̃ = γ̃(z̃, t̃),

that satisfy the following nonlinear, fixed-boundary problem (in non-dimensional

form) for 0 < t̃ < T̃ :

γ̃
∂γ̃

∂t̃
+

∂

∂z̃

∫ 1

0

γ̃2ṽz r̃ dr̃ = 0, 0 < z̃ < 1, (I-3.2)
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∂ṽz

∂t̃
− C1

1

γ̃2

1

r̃

∂

∂r̃

(

r̃
∂ṽz

∂r̃

)

− r̃

γ̃

∂γ̃

∂t̃

∂ṽz

∂r̃
= −C2

∂γ̃

∂z̃
− C3

∂2γ̃

∂z̃∂t̃
, (z̃, r̃) ∈ Ω̃, (I-3.3)

with






γ̃(0, t̃) = γ̃0(t̃), γ̃(1, t̃) = γ̃L(t̃), γ̃(z̃, 0) = γ̃0(z̃)

ṽz(1, z̃, t̃) = 0, ṽz(r̃, z̃, t̃ = 0) = ṽ0
z(r̃, z̃),

∣
∣ṽz(0, z̃, t̃)

∣
∣ < +∞.

(I-3.4)

where

C1 =
µ

F
τ

ρ
F
R2

, C2 =

(
Eh

(1 − σ2)R
K + pref

)
1

V 2ρ
F

, C3 =
hCvK

RLV ρ
F

. (I-3.5)

The inlet and outlet data γ̃0 and γ̃L are obtained from the pressure data P0(t) and

PL(t) given in (I-1.7), by integrating the pressure-displacement relationship (I-1.4)

with respect to t, and then transforming the result into the non-dimensional form.

Thus, γ̃0 and γ̃L are scaled by R. They describe the inlet and outlet deformation

around the reference domain with radius r̃ = 1. It is easy to see that one solution of

this problem is given by the following:

Proposition I-3.1 Functions γ̃ = R = 1, vz = 0 satisfy problem (I-3.2)-(I-3.5) with

the initial data γ̃0 = R = 1, v0
z = 0, and with boundary data γ̃0 = γ̃L = R = 1.

We will show below, by using the Implicit Function Theorem, that problem (I-3.2)-

(I-3.5) has a unique “mild” solution whenever the initial and boundary data are

“close” to those listed in Proposition I-3.1, namely, whenever the inital and boundary

displacement from the reference radius r = R = 1 is small and wheven the inital

velocity v0
z is close to zero.

In the rest of this work (Chapters I and II), we will be working with the non-

dimensional form of the problem. To simplify notation, the superscript “wiggle” that

denotes the non-dimensional variables, will now be dropped, and this nomenclature

will continue throughout the rest of the manuscript. Also, whenever R is used in the

remainder of the paper, it refers to R = 1.
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Mild Solution of the Nonlinear Problem

We will consider solutions of problem (I-3.2)-(I-3.5) with the initial and boundary

data corresponding to the following spaces:

γ0 ∈ H1(0, 1), v0
z ∈ H1

0,0(Ω, r), γ0, γL ∈ H2(0, T ), (I-3.6)

where

H1
0,0(Ω, r) =

{
w ∈ L2(Ω, r) :

∂w

∂r
∈ L2(Ω, r),

∫ 1

0

w rdr ∈ H1(0, 1),

w|r=1 = 0, | w|r=0 | < +∞
}
.

The norm on H1
0,0(Ω, r) is given by:

‖w‖2
H1

0,0(Ω,r) =

∫

Ω

(

|w|2 +

∣
∣
∣
∣

∂w

∂r

∣
∣
∣
∣

2
)

rdrdz +

∫ 1

0

∣
∣
∣
∣

∂

∂z

∫ 1

0

w rdr

∣
∣
∣
∣

2

dz.

Thus, we define the space of data Λ to be

Λ = H1(0, 1) × H1
0,0(Ω, r) × (H2(0, T ))2. (I-3.7)

In order to define a mild solution of problem (I-3.2)-(I-3.5) we introduce the solution

space

X = X1 × X2, (I-3.8)

where X1 is the space of the displacements

X1 :=
{
γ ∈ H1(0, T ; H1(0, 1)) | ∂tγ ∈ L∞(0, T ; L2(0, 1))

}
,

and X2 is the space of velocities

X2 :=
{
v ∈ L2(0, T ; H1

0,0(Ω, r)) ∩ L∞(0, T ; L2(Ω, r)) | ∂tv ∈ L2(0, T ; L2(Ω, r)),

∆rv ∈ L2(0, T ; L2(Ω, r)), ∂2
z,z < v >∈ L2(0, T ; L2(0, 1))

}
.

Here

< v >:=

∫ 1

0

vrdr.
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Definition I-3.2 Suppose that the initial data γ0 ∈ H1(0, 1), v0
z ∈ H1

0,0(Ω, r) and that

boundary data (γ0, γL) ∈ (H2(0, T ))2. Function (γ, vz) ∈ X1 × X2 is called a mild

solution of problem (I-3.2)-(I-3.5) if (I-3.2)-(I-3.5) holds for a.a z ∈ (0, 1), r ∈ [0, 1)

and t ∈ (0, T ), namely, if

1

2

∂(γ2)

∂t
+

∂

∂z

∫ 1

0

γ2vzrdr = 0, a.e. z ∈ (0, 1), t ∈ (0, T ), (I-3.9)

∂vz

∂t
− C1

1

γ2
∆rvz −

r

γ

∂γ

∂t

∂vz

∂r
+ C2

∂γ

∂z
+ C3

∂2γ

∂z∂t
= 0, a.e. (r, z) ∈ Ω, t ∈ (0, T )

(I-3.10)

with






γ(0, t) = γ0(t), γ(1, t) = γL(t), γ(z, 0) = γ0(z)

vz(1, z, t) = 0, vz(r, z, 0) = v0
z(r, z), vz(0, z, t) − bounded.

(I-3.11)
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Chapter II

Existence of a Unique Solution to

the Nonlinear Problem

1 The Framework

We aim at using the the Implicit Function Theorem of Hildebrandt and Graves [40]

to prove the (local) existence of a mild solution in a neighborhood of the solution

stated in Proposition I-3.1.

Theorem II-1.1 (Implicit Function Theorem [40]) Suppose that:

• F : U(λ0, x0) ⊂ Λ × X → Z is defined on an open neighborhood U(λ0, x0) and

F (λ0, x0) = 0, where Λ, X, Z are Banach spaces.

• Fx exists as a Frechét partial derivative on U(λ0, x0) and

Fx(λ0, x0) : X → Z

is bijective,

• F and Fx are continuous at (λ0, x0).

Then the following are true:
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• Existence and uniqueness: There exist positive numbers δ0 and δ such that for

every λ ∈ Λ satisfying ‖λ − λ0‖ ≤ δ0 there is exactly one x ∈ X for which

‖x − x0‖ ≤ δ and F (λ, x(λ)) = 0.

• Continuity: If F is continuous in a neighborghood of (λ0, x0), than x is contin-

uous in a neighborhood of λ0.

2 The Mapping F

In order to use this theorem to prove the existence of a mild solution we first need to

define the mapping F . To define F we first remark that we will consider the conser-

vation of mass equation (I-3.9) as a condition which will be satisfied for all possible

candidates for a solution (γ, vz). More precisely, when considering the continuity of

F and Fx and when showing the bijective property of Fx we will be “perturbing”

our function F by a small source term f only in the balance of momentum equation,

and not in the conservation of mass equation, preserving the conservation of mass

property identically for all possible solutions, which is physically reasonable.

To define the mapping F we first notice that the conservation of mass equation

(I-3.9) can be rewritten, by dividing equation (I-3.9) by γ, as a linear operator in γ

L<vz>(γ0, γ0, γL), which to each given < vz > and initial and boundary data γ0, γ0

and γL associates the (unique) solution γ of the following linear transport problem:

∂γ

∂t
+ 2 < vz >

∂γ

∂z
+ γ

∂ < vz >

∂z
= 0, (II-2.1)

with γ(0, t) = γ0(t) whenever < vz > is positive, γ(1, t) = γL(t) whenever < vz > is

negative, and γ(z, 0) = γ0(z).

We will then define mapping F via the momentum equation (I-3.10) where γ in

equation (I-3.10) is obtained from the conservation of mass “condition” (II-2.1).
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Definition II-2.1 (Mapping F) Let

Z := L2(0, T ; L2(Ω, r)).

Define mapping

F : U((R, 0, R, R), ((R, 0)) ⊂ Λ × X → Z,

which to each ((γ0, v0
z , γ0, γL), (γ, vz)) ∈ U((R, 0, R, R), (R, 0)) associates an f ∈ Z

F : ((γ0, v0
z , γ0, γL), (γ, vz)) 7→ f (II-2.2)

where

F : ((γ0, v0
z , γ0, γL), (γ, vz)) :=

∂vz

∂t
−C1

1

γ2
∆rvz−

r

γ

∂γ

∂t

∂vz

∂r
+C2

∂γ

∂z
+C3

∂2γ

∂z∂t
, (II-2.3)

with γ in (II-2.3) satisfying

∂γ

∂t
+ 2 < vz >

∂γ

∂z
+ γ

∂ < vz >

∂z
= 0, (II-2.4)

and with the initial and boundary conditions for γ and vz given by (I-3.11).

Denote by (λ0, x0) = ((R, 0, R, R), (R, 0)). Then we see, by Proposition I-3.1, that

F (λ0, x0) = 0.

We will be using the Implicit Function Theorem to show the existence of a unique

mild solution (γ, vz) ∈ X for each set of data λ = (γ0, v0
z , γ0, γL) in a neighborhood

of λ0 = (R, 0, R, R), by considering the small perturbations of our solution (λ0, x0)

in the class of all the functions (γ, vz) ∈ X for which the incompressibility condition

(I-3.2) is satisfied.

Proposition II-2.2 Mapping F is continuous at (λ0, x0) = ((R, 0, R, R), (R, 0)).

The proof is a direct consequence of the form of the left-hand side of (I-3.10) and of

the continuous dependence of the solution γ of (I-3.9) on the coefficients depending

19



on < vz > and on the initial and boundary data. This implies that ∀ε > 0 there

exists a δ > 0 such that

‖((γ0, v0
z , γ0, γL), (γ, vz)) − ((R, 0, R, R), (R, 0))‖Λ×X < δ ⇒

‖(F ((γ0, v0
z , γ0, γL), (γ, vz)) − (F ((R, 0, R, R), (R, 0))‖Z < ε.

3 The Frechét Derivative of F

With a slight obuse of notation, let us introduce the perturbations of γ and vz around

γ̂ and v̂z, respectively, as follows:

γ = γ̂ + δη, vz = v̂z + δwz, δ > 0.

Then the Frechét derivative of F with respect to x = (γ, vz) is a mapping

Fx((γ̂
0, v̂0

z , γ̂0, γ̂L), (γ̂, v̂z)) : X → Z

defined by

Fx((γ̂
0, v̂0

z , γ̂0, γ̂L), (γ̂, v̂z))(η, wz) :=
∂wz

∂t
− C1

1

γ̂2
∆rwz + C1

2

γ̂3
η∆rv̂z (II-3.1)

− r

γ̂

∂η

∂t

∂v̂z

∂r
− r

γ̂

∂γ̂

∂t

∂wz

∂r
+

r

γ̂2
η
∂γ̂

∂t

∂v̂z

∂r
+ C2

∂η

∂z
+ C3

∂2η

∂z∂t
,

where η satisfies the linearized conservation of mass equation

∂η

∂t
+ 2 < v̂z >

∂η

∂z
+ 2 < wz >

∂γ̂

∂z
+ γ̂

∂ < wz >

∂z
+ η

∂ < v̂z >

∂z
= 0, (II-3.2)

with






η(0, t) = 0, η(1, t) = 0, η(z, 0) = 0,

wz(1, z, t) = 0, wz(r, z, 0) = 0, wz(0, z, t) − bounded.

(II-3.3)

By similar arguments as those used for continuity of the mapping F one can see

that the following is true.

Theorem II-3.1 The Frechét derivative Fx is a continuous mapping from X to Z.
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4 Bijection of the Frechét Derivative

Next we show that the Frechét derivative, evaluated at (λ0, x0), is a bijection. From

(II-3.2)-(II-3.3) we see that the Frechét derivative evaluated at (λ0, x0) = ((R, 0, R, R), (R, 0))

is given by the following

Fx((R, 0, R, R), (R, 0))(η, wz) :=
∂wz

∂t
− C1

1

R2
∆rwz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
, (II-4.1)

where η satisfies

2
∂η

∂t
+ R

∂

∂z
< wz >= 0, (II-4.2)

with






η(0, t) = 0, η(1, t) = 0, η(z, 0) = 0,

wz(1, z, t) = 0, wz(r, z, 0) = 0, wz(0, z, t) − bounded.

(II-4.3)

Theorem II-4.1 The Frechét derivative defined by (II-4.2)-(II-4.3) is a bijection

from X to Z.

To prove Theorem II-4.1 we will show that for every f ∈ L2(0, T ; L2(Ω, r)) and

(η, w0
z , η0, ηL) ∈ Λ there exists a unique solution (η, wz) ∈ X1 × X2 satisfying for a.e.

0 < z < 1, 0 ≤ r < 1, 0 ≤ t ≤ T

∂η

∂t
+ R

∂

∂z
< wz >= 0, (II-4.4)

∂wz

∂t
− C1

R2
△r wz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
= f(r, z, t), (II-4.5)

with






η(0, t) = 0, η(1, t) = 0, η(z, 0) = 0

wz(1, z, t) = 0, wz(0, z, t) − bounded, wz(r, z, 0) = 0,

(II-4.6)

This implies that the Frechét derivative defined by (II-3.1)-(II-4.3) is a bijection on

X.

We will, in fact, show an even more general result:
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Theorem II-4.2 Let f ∈ L2(0, T ; L2(Ω, r)) and η0, ηL ∈ H2(0, T ), η0 ∈ H1(0, 1)

and w0
z ∈ H1

0,0(Ω, r). Then, there exists a unique (mild) solution (η, wz) ∈ X1 × X2

satisfying for a.e. 0 < z < 1, 0 ≤ r < 1, 0 < t ≤ T

∂η

∂t
+ R

∂

∂z
< wz >= 0, (II-4.7)

∂wz

∂t
− C1

R2
△r wz + C2

∂η

∂z
+ C3

∂2η

∂z∂t
= f(r, z, t), (II-4.8)

with






η(0, t) = η0(t), η(1, t) = ηL(t), η(z, 0) = η0(z)

wz(1, z, t) = 0, wz(0, z, t) − bounded, wz(r, z, 0) = w0
z(r, z).

(II-4.9)

This result motivated the choice of the parameter space Λ, given in (I-3.7).

To prove this result we proceed in two steps:

1. Show the existence of a unique weak solution to (II-4.7), (II-4.8) and (II-4.9).

2. Obtain energy estimates which provide higher regularily of the weak solution,

giving rise to the mild solution (η, wz) ∈ X1 × X2 satisfying (II-4.7), (II-4.8)

and (II-4.9) for almost all 0 < z < 1, 0 ≤ r < 1, 0 < t ≤ T .

4.1 Existence of a Unique Weak Solution to the Linearized

Problem.

Introduce the function η̄ which satisfies the homogeneous boundary data at z = 0

and z = 1:

η̄ = η(z, t) − ((ηL(t) − η0(t))z + η0(t)). (II-4.10)

Problem (II-4.4)-(II-4.9) can then be rewritten in terms of η̄ as follows

∂η̄

∂t
+ R

∂

∂z
< wz >= −g1, (II-4.11)
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∂wz

∂t
− C1

R2
△r wz + C2

∂η̄

∂z
+ C3

∂2η̄

∂z∂t
= f − g2. (II-4.12)

with






η̄(0, t) = 0, η̄(1, t) = 0, η̄(z, 0) = (ηL(0) − η0(0))z + η0(0) = η̄0(z),

wz(1, z, t) = 0, wz(0, z, t) − bounded, wz(r, z, 0) = w0(r, z),

(II-4.13)

where






g1(z, t) = ((η′
L(t) − η′

0(t))z + η′
0(t)),

g2(r, z, t) = C2(ηL(t) − η0(t)) + C3(η
′
L(t) − η′

0(t)).

(II-4.14)

To define a weak solution introduce the following function spaces

Γ = H1(0, T : L2(0, 1)), (II-4.15)

V = {w ∈ L2(0, T : H1
0,0(Ω, r)) :

∂w

∂t
∈ L2(0, T : H−1

0,0 (Ω, r))}. (II-4.16)

Definition II-4.3 We say that (η̄, wz) ∈ Γ × V is a weak solution of (II-4.11)-

(II-4.14) provided that for all ϕ ∈ H1
0 (0, 1) and ξ ∈ H1

0,0(Ω, r) the following holds

∫ 1

0

∂η̄

∂t
ϕ dz − R

∫ 1

0

< wz >
∂ϕ

∂z
dz = −

∫ 1

0

g1ϕ dz (II-4.17)

∫

Ω

∂wz

∂t
ξ rdrdz +

C1

R2

∫

Ω

∂wz

∂r

∂ξ

∂r
rdrdz − C2

∫ 1

0

η̄
∂

∂z
< ξ > dz,

− C3

∫ 1

0

∂η̄

∂t

∂

∂z
< ξ > dz =

∫ 1

0

fϕ dz −
∫ 1

0

g2ϕ dz, a.e. 0 ≤ t ≤ T, (II-4.18)

with

η̄(z, 0) = η̄0(z), wz(r, z, 0) = w0
z(r, z). (II-4.19)

We first show that for the boundary data η0 and ηL in H1(0, T ) and for the initial

data η0 ∈ L2(0, 1), w0
z ∈ L2(Ω, r), there exists a unique weak solution of (II-4.11)-

(II-4.14).
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Notice that the weak formulation of the problem reflects lack of regularity in

the z-direction due to the parabolic degeneracy in the z-direction in the momentum

equation (II-4.18) and due to the hyperbolic nature of the averaged conservation of

mass equation (II-4.17). This will introduce various difficulties in the proof of the

existence of a unique weak solution which we state next.

Theorem II-4.4 Assume that the initial data η̄0 and w0
z satisfy η̄0 ∈ L2(0, 1) and

w0
z ∈ L2(Ω, r) and that the boundary data η0(t) and ηL(t) satisfy η0, η1 ∈ H1(0, T ).

Then there exists a unique weak solution (η̄, wz) ∈ Γ × V of (II-4.11)-(II-4.14).

Proof. The proof is an application of the Galerkin method combined with the non-

trivial energy estimates to deal with the lack of regularity in the z-direction. We

present the proof in the following four steps:

1. Construction of the Galerking approximations.

2. Uniform energy estimates.

3. Weak convergence of a sub-sequence of Galerking approximations to a solution

using compactness arguments.

4. Uniqueness of the weak solution.

Construction of the Galerkin Approximations: Let {φk}∞k=1 be the smooth

functions which are orthogonal in H1
0 (0, 1), orthonormal in L2(0, 1) and span the

solution space for η̄. Furthermore, let {wk}∞k=1 be the smooth functions which satisfy

wk|r=1 = 0, and are orthonormal in L2(Ω, r) and span the solution space for the

velocity wz. Introduce the function space

Ck
0,0(Ω) =

{
v ∈ Ck(Ω) : v|r=1 = 0

}
,

for any k = 0, 1, ...,∞.
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Fix positive integers m and n. We look for the functions η̄m : [0, T ] → C∞
0 (0, 1)

and wzn
: [0, T ] → C∞

0,0(Ω) of the form

η̄m (t) =

m∑

i=1

dm
i (t) φi, (II-4.20)

wzn
(t) =

n∑

j=1

lnj (t)wj , (II-4.21)

where the coefficient functions dm
h and lnk are chosen so that the functions η̄m and

wzn
satisfy the weak formulation (II-4.17)-(II-4.19) of the linear problem (II-4.11)-

(II-4.14), projected onto the finite dimensional subspaces spanned by {φi} and {wj}

respectively:

∫ 1

0

∂η̄m

∂t
φh dz − R

∫ 1

0

< wzn
>

∂φh

∂z
dz = −

∫ 1

0

g1φh dz (II-4.22)

∫

Ω

∂wzn

∂t
wk rdrdz +

C1

R2

∫

Ω

∂wzn

∂r

∂wk

∂r
rdrdz − C2

∫ 1

0

η̄m

∂

∂z
< wk > dz (II-4.23)

− C3

∫ 1

0

∂η̄m

∂t

∂

∂z
< wk > dz =

∫

Ω

fξk dz −
∫

Ω

g2wk rdrdz

for a.e 0 ≤ t ≤ T , h = 1, · · · , m and k = 1, · · · , n, and







dm
h (0) =

∫ 1

0
η̄0(z)φh(z)dz,

lnk (0) =
∫

Ω
w0

zwkrdrdz.

(II-4.24)

The existence of the coefficient functions satisfying these requirements is guaranteed

by the following Lemma.

Lemma II-4.5 Assume that f ∈ L2(0, T ; L2(Ω, r)). For each m = 1, 2, ... and n =

1, 2, ... there exist unique functions η̄m and wzn
of the form (II-4.20) and (II-4.21),

respectively, satisfying (II-4.22)-(II-4.24). Moreover

(η̄m, vwn
) ∈ C1(0, T : C∞

0 (0, 1)) × C1(0, T : C∞
0,0(Ω)).
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Proof. To simplify notation, let us first introduce the following vector functions:

dm(t) =








dm
1 (t)

...

dm
m(t)








, ln(t) =








ln1 (t)

...

lnn(t)








, Y (t) =




dm(t)

ln(t))



 . (II-4.25)

Then, equation (II-4.22) written in matrix form reads:

A1d
m′

(t) + A2l
n(t) = S1(t), (II-4.26)

where A1 is an m × m matrix, A2 an m × n matrix and S1 an m × 1 matrix defined

by the following:

[A1]h,i = (φi, φh)L2(0,1) = δh,i, [A2]h,i = −R

(

< wj >,
∂φh

∂z

)

L2(0,1)

[S1(t)]h,1 = (g1, φh)L2(0,1)

where h, i = 1, ..., m and j = 1, ..., n. Similarly, equation (II-4.23) written in matrix

form reads:

B1l
n′

(t) + B2l
n(t) − B3d

m(t) − B4d
m′

(t) = S2(t), (II-4.27)

where B1 and B2 are n × n matrices, B3 and B4 are n × m matrices, and S2(t) is an

n × 1 matrix defined by the following:

[B1]k,j = (wj, wk)L2(Ω,r) = δk,j, [B2]k,j =
C1

R2

(
∂wj

∂r
,
∂wk

∂r

)

L2(Ω,r)

,

[B3]k,i = C2

(
∂

∂z
< wk >, φi

)

L2(0,1)

, [B4]k,i = C3

(
∂

∂z
< wk >, φi

)

L2(0,1)

,

[S2(t)]k,1 = (f2 − g2, wk)L2(Ω,r) ,

where k, j = 1, ..., n and i = 1, ..., m.

Equations (II-4.26) and (II-4.27) can be written together as the following system






AY ′(t) + BY (t) = S(t),

Y (0) =







dm(0)

lnk (0)







,
(II-4.28)
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where Y is defined in (II-4.25) and

A =




Am×m

1 0m×n

−Bn×m
4 Bn×n

1





(m+n)×(m+n)

,

B =




0m×m Am×n

2

−Bn×m
3 Bn×n

2





(m+n)×(m+n)

,

S(t) =




−S1(t)

−S2(t)





(m+n)×1

.

Function S incorporates the initial and boundary data obtained from the right hand-

sides of equations (II-4.26) and (II-4.27).

To guarantee the existence of a solution Y (t) of appropriate regularity first notice

that linear independence of the sets {φ1, · · · , φm} and {w1, · · · , wn} guarantees that

the matrix A(t) is nonsingular for all t ∈ [0, T ]. Additionally, since the coefficient ma-

trices are constant, there exists a unique C1 function Y (t) = (dm(t), ln(t)) satisfying

(II-4.28). Moreover (η̄m, wzn
), defined via dm(t) and ln(t) in (II-4.20) and (II-4.21)

respectively, solves (II-4.22)-(II-4.24) for all 0 ≤ t ≤ T , thus

(η̄m, wzn
) ∈ C1(0, T : C∞

0 (0, 1)) × C1(0, T : C∞
0,0(Ω)).

This completes the proof of Lemma II-4.5.

Energy Estimate: We continue our proof of the existence of a weak solution to

(II-4.11)-(II-4.14) by obtaining an energy estimate for η̄m and wzn
which is uniform

in m and n. The estimate will bound the L2-norms of η̄m and wzn
, the L2-norms of

∂wzn

∂r
and ∂η̄m

∂t
, and the L2(0, T ; H−1

0,0(Ω, r))-norm of ∂wzn

∂t
, in terms of the initial and

boundary data and the coefficients of (II-4.11)-(II-4.13). Notice again the lack of

information about the smoothness in z of the functions η̄ and wz.
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Theorem II-4.6 There exists a constant C depending on 1/R, T, C2, and C3, such

that

sup
0≤t≤T

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
2C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(0,T ;L2(Ω,r))

(II-4.29)

+
C3

R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,T ;L2(0,1))

+

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

L2(0,T ;H−1

0,0(Ω,r))

≤ C
[

‖η̄0‖2
L2(0,1)

+
∥
∥w0

z

∥
∥

2

L2(0,T ;L2(Ω,r))
+ ‖f‖2

L2(0,T ;L2(Ω,r)) + ‖ηL − η0‖2
H1(0,T ) + ‖η0‖2

H1(0,T )

]

.

Furthermore,

∂

∂z

∫ 1

0

wzn
rdr ∈ L2(0, T ; L2(0, 1)), (II-4.30)

and its L2(0, T ; L2(0, 1))-norm is bounded by the right-hand side of the energy estimate

(II-4.29).

Proof. We aim at using the Gronwall’s inequality. However, due to the lack of

smoothness in z, it is impossible to control the terms with the z-derivative of η̄m.

To deal with this problem, we manipulate the conservation of mass and balance of

momentum equations in order to cancel the unwanted terms. The remaining terms,

which we will estimate in terms of the data, will be those appearing in the estimate

above.

We begin by first multiplying (II-4.23) by lnk and summing k = 1, · · · , n to find

1

2

d

dt

∫

Ω

|wzn
|2 rdrdz +

C1

R2

∫

Ω

∣
∣
∣
∣

∂wzn

∂r

∣
∣
∣
∣

2

rdrdz − C2

∫ 1

0

η̄m

∂

∂z
< wzn

> dz

︸ ︷︷ ︸

(i)

(II-4.31)

− C3

∫ 1

0

∂η̄m

∂t

∂

∂z
< wzn

> dz

︸ ︷︷ ︸

(ii)

=

∫

Ω

fwzn
rdrdz −

∫

Ω

g2wzn
rdrdz.

Multiply (II-4.22) by dm
h and sum h = 1, · · · , m to find

1

2

d

dt

∫ 1

0

|η̄m|2 dz − R

∫ 1

0

< wzn
>

∂η̄m

∂z
dz

︸ ︷︷ ︸

(i)

= −
∫ 1

0

g1η̄m dz. (II-4.32)
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Multiply (II-4.22) by ḋm
h and sum h = 1, · · · , m to find

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂t

∣
∣
∣
∣

2

dz − R

∫ 1

0

< wzn
>

∂2η̄m

∂t∂z
dz

︸ ︷︷ ︸

(ii)

= −
∫ 1

0

g1
∂η̄m

∂t
dz. (II-4.33)

Multiply equation (II-4.32) by C2

R
and (II-4.33) by C3

R
and add those two resulting

equations to equation (II-4.31) to obtain

1

2

d

dt

[∫

Ω

|wzn
|2 rdrdz +

C2

R

∫ 1

0

|η̄m|2 dz

]

+
C1

R2

∫

Ω

∣
∣
∣
∣

∂wzn

∂r

∣
∣
∣
∣

2

rdrdz (II-4.34)

+
C3

R

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂t

∣
∣
∣
∣

2

dz =

∫

Ω

fwzn
rdrdz −

∫

Ω

g2wzn
rdrdz

− C2

R

∫ 1

0

g1η̄m dz − C3

R

∫ 1

0

g1
∂η̄m

∂t
dz.

We can see that the terms denoted by (i) and (ii), which we cannot control, cancelled

out. By using the Cauchy inequality to estimate the right-hand side of (II-4.34) we

obtain

1

2

d

dt

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
C3

2R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

≤ ‖f2‖2
L2(Ω,r) +

1

4
‖g2‖2

L2(0,1) +
C2 + C3

2R
‖g1‖2

L2(0,1) +
1

2
‖wzn

‖2
L2(Ω,r) +

C2

2R
‖η̄m‖2

L2(0,1) .

We are now in a position to apply the differential form of the Gronwall’s inequality

to obtain

sup
0≤t≤T

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
2C1

R2

∫ T

0

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

dt

+
C3

2R

∫ T

0

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

dt ≤
[
C2

R
‖η̄0‖2

L2(0,1) +
∥
∥w0

z

∥
∥2

L2(Ω,r)
+ 2 ‖f‖2

L2(0,T :L2(Ω,r))

+
1

2
‖g2‖2

L2(0,T :L2(0,1)) +
C2 + C3

R
‖g1‖2

L2(0,T :L2(0,1))

]

e(1+
C2

R
)T .

Thus there exists a constant C > 0 depending on T, C2, C3 and 1/R such that

sup
0≤t≤T

[

‖wzn
‖2

L2(Ω,r) +
C2

R
‖η̄m‖2

L2(0,1)

]

+
2C1

R2

∫ T

0

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

dt
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+
C3

2R

∫ T

0

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

dt ≤ C
[

‖η̄0‖2
L2(0,1) +

∥
∥w0

z

∥
∥2

L2(Ω,r)

+ ‖f‖2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖2

H1(0,T ) + ‖η0‖H1

0
(0,T )

]

. (II-4.35)

We conclude the proof of the theorem stating the energy estimate by showing that

∂wzn

∂t
∈ L2(0, T ; H−1

0,0(Ω, r)),

and that ∂vzn
/∂t satisfies the estimate (II-4.29).

Fix ν ∈ H1
0,0(Ω, r) such that ‖ν‖H1

0,0(Ω,r) ≤ 1. Since C∞
0,0(Ω) is dense in H1

0,0(Ω, r),

we can write ν = ν1 + ν2, where ν1 ∈ span {wj}n

j=1 and (ν2, wj)L2(Ω,r) = 0 for

j = 1, · · · , n. Then (II-4.21) and (II-4.23) imply that for a.e. 0 ≤ t ≤ T

∣
∣
∣
∣

∫

Ω

∂wzn

∂t
ν rdrdz

∣
∣
∣
∣
≤
[

C1

R

∥
∥
∥
∥

∂wn

∂r

∥
∥
∥
∥

L2(Ω,r)

+ C2 ‖η̄m‖L2

+ C3

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

L2

+ ‖f‖L2 + ‖g2‖L2

]

‖ν‖H1

0,0(Ω,r) .

Thus, since ‖ν1‖H1

0,0(Ω,r) ≤ 1, by using the energy estimate (II-4.35), we obtain that

there exists a constant C̃ depending on T, 1/R, C2, C3 such that

∫ T

0

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

H−1

0,0(Ω,r)

dt ≤ C̃
[

‖η̄0‖2
L2(0,1) +

∥
∥w0

z

∥
∥

2

L2(Ω,r)
(II-4.36)

+ ‖f‖2
L2(0,T ;L2(Ω,r)) + ‖η1 − η0‖2

H1(0,T ) + ‖η0‖2
H1

0
(0,T )

]

.

This concludes the proof of Theorem II-4.6.

It is interesting to notice that the coefficient of the vessel wall viscosity, C3, governs

the estimate for the time-derivative of the structure displacement, which is to be

expected. Thus, our estimate shows how the structure viscoelasticity regularizes the

time evolution of the structure.

Also, notice that the right-hand side of the energy estimate incorporates the initial

data for both the structure displacement and the structure velocity, but the boundary

data for only the structure displacement. This is a consequence of the parabolic
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denegeracy in the balance of momentum equation and is an interesting feature of this

reduced, effective model.

To obtain the third step the proof of Theorem II-4.4 we use compactness arguments

to pass to the weak limit of Galerkin approximations and show that the limiting

functions satisfy (II-4.11)-(II-4.14) in the weak sense.

Weak convergence to a solution: We use the uniform energy estimate, pre-

sented in Theorem II-4.6, to conclude that there exist convergent subsequences that

converge weakly to the functions which satisfy (II-4.11)-(II-4.14) in the weak sense.

This is a standard approach except for the fact that we need to deal with the weighted

L2-norms in Ω, with the weight r that is present due to the axial symmetry of the

problem. We deal with this technical obstacle by using the following Lemma, [1],

with p = 2 and ν = 1.

Lemma II-4.7 [1] If ν > 0, p ≥ 1, and u ∈ C1(0, R) then

∫ R

0

|u(r)|p rν−1dr ≤ ν + 1

νT

∫ R

0

|u(r)|p rνdr +
p

ν

∫ R

0

|u(r)|p−1 |u′(r)| rνdr.

By the energy estimate (II-4.29) we see that the sequence {η̄m}∞m=1 is bounded

in H1(0, T ; L2(0, 1)). Similarly, {wzn
}∞n=1 is bounded in L2(0, T ; H1

0,0(Ω, r)) and that

∂wzn
/∂t is bounded in L2(0, T ; H−1

0,0(Ω, r).

Therefore, there exist convergent subsequences
{
η̄mj

}∞

mj=1
and

{

wznj

}∞

nj=1
such

that 





ηmj
⇀ η weakly in H1(0, T ; L2(0, 1)),

wznj
⇀ wz weakly in L2(0, T ; L2(Ω, r)),

∂wznj

∂r
⇀

∂wz

∂r
weakly in L2(0, T ; L2(Ω, r)),

∂wznj

∂t
⇀

∂wz

∂t
weakly in L2(0, T ; H−1

0,0(Ω, r)).

(II-4.37)

We need to show that the limiting functions satisfy (II-4.11)-(II-4.14) in the weak

sense. To show this, fix two integers M and N and consider the functions Φ ∈
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C1([0, T ] : H1
0 (0, 1)) and w ∈ C1([0, T ] : H1

0,0(Ω, r)) of the form

Φ(t) =

M∑

k=1

dk(t)φk, w(t) =

N∑

p=1

lp(t)wp,

where {dk}M
k=1 and {lp}N

p=1 are smooth functions. Let n ≥ N and m ≥ M . Multiply

(II-4.22) and (II-4.23), written in terms of the subsequences of η̄m and wzn
, by dk(t),

lp(t), sum over k and p for k = 1, · · · , N and p = 1, · · · , M and then integrate over

(0, T ) with respect to t to obtain

∫ T

0

∫ 1

0

∂η̄mj

∂t
Φ dzdt − R

∫ T

0

∫ 1

0

< wzni
>

∂Φ

∂z
dzdt = −

∫ T

0

∫ 1

0

g1Φ dzdt, (II-4.38)

and

∫ T

0

∫

Ω

∂wzni

∂t
w rdrdzdt +

C1

R2

∫ T

0

∫

Ω

∂wzni

∂r

∂w

∂r
rdrdzdt (II-4.39)

− C2

∫ T

0

∫ 1

0

η̄mj

∂

∂z
< w > dzdt − C3

∫ T

0

∫ 1

0

∂η̄mj

∂t

∂

∂z
< w > dzdt

=

∫ T

0

∫

Ω

fw rdrdzdt−
∫ T

0

∫

Ω

g2w rdrdzdt.

Take the weak limit as i, j → ∞ to find that, in the limit, the following hold:

∫ T

0

∫ 1

0

∂η̄

∂t
Φ dzdt − R

∫ T

0

∫ 1

0

< wz >
∂Φ

∂z
dzdt = −

∫ T

0

∫ 1

0

g1Φ dzdt, (II-4.40)

and

∫ T

0

∫

Ω

∂wz

∂t
w rdrdzdt +

C1

R2

∫ T

0

∫

Ω

∂wz

∂r

∂w

∂r
rdrdzdt (II-4.41)

− C2

∫ T

0

∫ 1

0

η̄
∂

∂z
< w > dzdt − C3

∫ T

0

∫ 1

0

∂η̄

∂t

∂

∂z
< w > dzdt

=

∫ T

0

∫

Ω

fw rdrdzdt −
∫ T

0

∫

Ω

g2w rdrdzdt.

These equations hold for all the functions w ∈ L2(0, T : H1
0,0(Ω, r)) and Φ ∈ L2(0, T :

H1
0 (0, 1)). This implies that for all φ ∈ H1

0 (0, 1) and w ∈ H1
0,0(Ω, r) and 0 ≤ t ≤ T

the weak form of (II-4.22) and (II-4.23) is satisfied

∫ 1

0

∂η̄

∂t
φ dz − R

∫ 1

0

< wz >
∂φ

∂z
dz = −

∫ 1

0

g1φ dz, (II-4.42)

32



and

∫

Ω

∂wz

∂t
w rdrdz +

C1

R2

∫

Ω

∂wz

∂r

∂w

∂r
rdrdz − C2

∫ 1

0

η̄
∂

∂z
< w > dz (II-4.43)

− C3

∫ 1

0

∂η̄

∂t

∂

∂z
< w > dz =

∫

Ω

fw rdrdz −
∫

Ω

g2w rdrdz.

Moreover, since ∂η̄

∂t
∈ L2(0, T : L2(0, 1)), we have ∂

∂z
< wz > ∈ L2(0, T : L2(0, 1)).

To check that the limiting functions satisfy the initial data we proceed as follows.

Let Φ ∈ C1([0, T ] : H1
0 (0, L)) with Φ(T ) = 0. Integrate (II-4.40) by parts once with

respect to t to obtain

∫ T

0

∫ 1

0

η̄
∂Φ

∂t
dzdt − R

∫ T

0

∫ 1

0

< wz >
∂Φ

∂z
dzdt

−
∫ 1

0

η̄Φ dz|t=0 = −
∫ T

0

∫ 1

0

g1Φ dzdt.

Similarly from (II-4.38) we deduce

∫ T

0

∫ 1

0

∂η̄mj

∂t
Φ dzdt − R

∫ T

0

∫ 1

0

< wzni
>

∂Φ

∂z
dzdt

−
∫ 1

0

η̄mj
Φ dz|t=0 = −

∫ T

0

∫ 1

0

g1Φ dzdt.

Set m = mj in the above equation, and let mj → ∞. Since Φ(0) is arbitrary, and

because of the convergence (II-4.37) and the initial data (II-4.13) we conclude that

η̄m converges weakly to a function η̄ which satisfies

η̄(z, 0) = η̄0(z).

A similar approach verifies the initial data for the limiting function wz.

Therefore (η̄, wz) ∈ Γ × V is a weak solution of (II-4.11)-(II-4.13).

Uniqueness: Uniqueness of the weak solution is a direct consequence of the linearity

of the problem.

This completes the proof of Theorem II-4.4.
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Corollary II-4.8 The energy estimate stated in Theorem II-4.6 implies that, in fact,

η̄ ∈ L∞(0, T ; L2(0, 1)) ∩ H1(0, T ; L2(0, 1)), (II-4.44)

wz ∈ L2(0, T ; H1
0,0(Ω, r)) ∩ L∞(0, T ; L2(Ω, r)) with

∂wz

∂t
∈ L2(0, T ; H−1

0,0(Ω, r)).

(II-4.45)

This proof completes the first step in the proof of Theorem II-4.1 which states

that the Frechét derivative FX is a bijective mapping from X to Z. What is left to

show is that the weak solution has higher regularity and that it, in fact, belongs to

the space X.

4.2 Higher Regularity of the Weak Solution of the Linearized

Problem

To show that our weak solution (η̄, wz) is actually in X = X1 ×X2 we proceed in two

steps. First we show that the sequence {∂wzn

∂t
}∞n=1 is bounded in L2(0, T ; L2(Ω, r)),

and then, using this information, we show that (η̄, wz) ∈ X. To show this improved

regularity property of our weak solution we need to assume, as usual, some higher

regularity of the initial and boundary data. The precise assumptions are given below.

We begin by first showing that {∂wzn

∂t
}∞n=1 is bounded in L2(0, T ; L2(Ω, r)).

Theorem II-4.9 (Improved Regularity: Part I) Suppose that the boundary data η1, η0 ∈

H2(0, T ) and the initial data η̄0 ∈ L2(0, 1), w0
z ∈ H1

0,0(Ω, r). Then the weak solution

(η̄, wz) ∈ Γ × V belongs to

∂η̄

∂t
∈ L∞(0, T : L2(0, 1)),

∂wz

∂r
∈ L∞(0, T : L2(Ω, r)),

∂wz

∂t
∈ L2(0, T : L2(Ω, r)).

Moreover, the following estimate holds

sup
0≤t≤T

[

C3

R

∥
∥
∥
∥

∂η̄

∂t

∥
∥
∥
∥

2

L2(0,1)

+
2C1

R2

∥
∥
∥
∥

∂wz

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+ 2

∫ T

0

∥
∥
∥
∥

∂wz

∂t

∥
∥
∥
∥

2

L2(Ω,r)

ds (II-4.46)

≤ C
(

‖f‖2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖2

H2(0,T ) + ‖η0‖2
H2(0,T ) +

∥
∥η̄0
∥
∥2

L2(0,1)
+
∥
∥w0

z

∥
∥2

H1

0,0(Ω,r)

)

.
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where C depends on 1/R, C2, C3, T .

Proof. Again we need to deal with the lack of regularity in the z direction by can-

celling the terms which we cannot control at this point. As before, we need to

manipulate the conservation of mass equation and the conservation of momentum

equation in such as way that, when they are added up, the unwanted terms cancel

out and produce an equation whose terms on the right hand-side can be estimated

using the Cauchy’s and Young’s inequalities. The energy estimate will then follow by

an application of the Gronwall’s inequality.

Thus, we begin by multiplying (II-4.23) by l̇nk (t), and summing k = 1, · · · , n to

find
∫

Ω

∂wzn

∂t

∂wzn

∂t
rdrdz +

C1

2R2

d

dt

∫

Ω

∂wzn

∂r

∂wzn

∂r
rdrdz (II-4.47)

+ C2

∫

Ω

∂η̄m

∂z

∂wzn

∂t
rdrdz

︸ ︷︷ ︸

(a)

+ C3

∫

Ω

∂2η̄m

∂t∂z

∂wzn

∂t
rdrdz

︸ ︷︷ ︸

(b)

=

∫

Ω

f
∂wzn

∂t
rdrdz −

∫

Ω

g2
∂wzn

∂t
rdrdz.

Next, differentiate (II-4.22) with respect to t, multiply by ḋm
h (t), and sum h =

1, · · · , m to get

1

2

d

dt

∫ 1

0

∂η̄m

∂t

∂η̄m

∂t
dz − R

∫

Ω

∂wzn

∂t

∂2η̄m

∂t∂z
rdrdz

︸ ︷︷ ︸

(b)

= −
∫ 1

0

∂g1

∂t

∂η̄m

∂t
dz. (II-4.48)

Finally, differentiate (II-4.22) with respect to t, multiply by dm
h (t), and sum h =

1, · · · , m to find
∫ 1

0

∂2η̄m

∂t2
η̄m dz − R

∫

Ω,r

∂wzn

∂t

∂η̄m

∂z
rdrdz

︸ ︷︷ ︸

(a)

= −
∫ 1

0

∂g1

∂t
η̄m dz. (II-4.49)

Multiply (II-4.48) and (II-4.49) by C3

R
and C2

R
, respectively, and add them to

(II-4.47). We obtain

1

2

d

dt

[

C3

R

∥
∥
∥
∥

∂η̄m

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+

∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

L2(Ω,r)

(II-4.50)
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=

∫

Ω

f
∂wzn

∂t
rdrdz −

∫

Ω

g2
∂wzn

∂t
rdrdz − C2

R

∫ 1

0

∂g1

∂t
η̄m dz

− C3

R

∫ 1

0

∂g1

∂t

∂η̄m

∂t
dz +

C2

R

∫ 1

0

∂2η̄m

∂t2
η̄m dz.

Before we estimate the right-hand side of this equation, we will integrate the entire

equation with respect to t in order to deal with the term on the right-hand side which

contains the second derivative with respect to t of η̄m. We obtain

1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(t)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

+

∫ t

0

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds (II-4.51)

=

∫ t

0

∫

Ω

f
∂wzn

∂s
rdrdzds −

∫ t

0

∫

Ω

g2
∂wzn

∂s
rdrdzds − C2

R

∫ t

0

∫ 1

0

∂g1

∂s
η̄m dzds

− C3

R

∫ t

0

∫ 1

0

∂g1

∂s

∂η̄m

∂s
dzds +

C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds

+
1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(0)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

.

We estimate first four terms on the right-hand side as follows

∣
∣
∣
∣

∫ t

0

∫

Ω

f
∂wzn

∂s
rdrdzds

∣
∣
∣
∣
≤ ‖f‖2

L2(0,t:L2(Ω,r)) +
1

4

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(0,t:L2(Ω,r))

,

∣
∣
∣
∣

∫ t

0

∫

Ω

g2
∂wzn

∂s
rdrdzds

∣
∣
∣
∣
≤ ‖g2‖2

L2(0,t:L2(Ω,r)) +
1

4

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(0,t:L2(Ω,r))

,

∣
∣
∣
∣

C2

R

∫ t

0

∫ 1

0

∂g1

∂s
η̄m dzds

∣
∣
∣
∣
≤ C2

2R

(∥
∥
∥
∥

∂g1

∂s

∥
∥
∥
∥

2

L2(0,t:L2(0,1))

+ ‖η̄m‖2
L2(0,t:L2(0,1))

)

,

∣
∣
∣
∣

C3

R

∫ t

0

∫ 1

0

∂g1

∂s

∂η̄m

∂s
dzds

∣
∣
∣
∣
≤ C3

2R

(∥
∥
∥
∥

∂g1

∂s

∥
∥
∥
∥

2

L2(0,t:L2(0,1))

+

∥
∥
∥
∥

∂η̄m

∂s

∥
∥
∥
∥

2

L2(0,t:L2(0,1))

)

.

To estimate the fifth term, we integrate by parts with respect to t to obtain

− C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds =

C2

R

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂s

∣
∣
∣
∣

2

dzds

− C2

R

∫ 1

0

∂η̄m(z, t)

∂t
η̄m(z, t) dz +

C2

R

∫ 1

0

∂η̄m(z, 0)

∂t
η̄m(z, 0) dz
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=
C2

R

∫ t

0

∫ 1

0

∣
∣
∣
∣

∂η̄m

∂s

∣
∣
∣
∣

2

dzds − C2

R

∫ 1

0

∂η̄m(z, t)

∂t
η̄m(z, t) dz

− C2

R

∫ 1

0

g1(0)η̄m(z, 0) dz − C2R

∫ 1

0

∂

∂z
< wzn

> (z, 0)ηm(z, 0) dz.

This implies

∣
∣
∣
∣

C2

R

∫ t

0

∫ 1

0

∂2η̄m

∂s2
η̄m dzds

∣
∣
∣
∣
≤ K̃

(∥
∥
∥
∥

∂η̄m

∂s

∥
∥
∥
∥

2

L2(0,T :L2(0,1))

+ ‖η̄m(t)‖2
L2(0,1)

+
∥
∥η̄0
∥
∥

2

H1(0,1)
+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω,r)
+ ‖g1(0)‖2

L2(0,1)

)

+
C3

4R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

where K̃ > 0 depends on C2, C3, 1/C3, 1/R, R.

The last two terms in (II-4.51) can be estimated by first using the conservation of

mass equation (II-4.22) to obtain

∫ 1

0

∂η̄m(0)

∂t

∂η̄m(0)

∂t
dz = −

∫ 1

0

∂

∂z
< wzn

(0) >
∂η̄m(0)

∂t
dz −

∫ 1

0

g1(0)
∂η̄m(0)

∂t
dz.

and then by Cauchy’s inequality

∫ 1

0

∣
∣
∣
∣

∂η̄m(0)

∂t

∣
∣
∣
∣

2

dz ≤
∥
∥
∥
∥

∂

∂z
< w0

z >

∥
∥
∥
∥

2

L2(0,1)

+ ‖g1(0)‖2
L2(0,1)

to obtain

1

2

[

C3

R

∥
∥
∥
∥

∂η̄m(0)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

R2

∥
∥
∥
∥

∂wzn
(0)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

]

≤

C̃
(∥
∥w0

z

∥
∥

2

H1

0,0(Ω,r)
+ (η′

1(0) − η′
0(0))2 + (η′

0(0))2
)

where C̃ > 0 depends on C1, C3, 1/R.

By combining these estimates and by using the energy estimate stated in Theo-

rem II-4.6 we see that there exists a constant C > 0 depending on C1, C2, C3, 1/R, R

such that

C3

4R

∥
∥
∥
∥

∂η̄m(t)

∂t

∥
∥
∥
∥

2

L2(0,1)

+
C1

2R2

∥
∥
∥
∥

∂wzn
(t)

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
1

2

∫ t

0

∥
∥
∥
∥

∂wzn

∂s

∥
∥
∥
∥

2

L2(Ω,r)

ds

≤ C(‖f‖2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖2

H2(0,T ) + ‖η0‖2
H2(0,T ) +

∥
∥η̄0
∥
∥2

H1(0,1)
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+
∥
∥w0

z

∥
∥2

L2

0,0(Ω,r)
+ |η′

1(0) − η′
0(0)|2 + (η

′

0(0))2)

for a.e 0 ≤ t ≤ T . Passing to the limit as m → ∞ and n → ∞ we recover the

estimate (II-4.46). This completes the proof of Theorem II-4.9.

Next we show that the weak solution (η̄, wz) is, in fact a mild solution, namely,

that (η̄, wz) ∈ X under some additional assumptions on the smoothness of the initial

data. It is in this step that we can finally take control over certain derivatives with

respect to z of our solution.

Theorem II-4.10 (Improved regularity: Part II) Assume, in addition to the assump-

tions of Theorem II-4.9, that the initial data η̄0 ∈ H1(0, 1). Then the weak solution

η̄ satisfies η̄ ∈ H1(0, T ; H1(0, 1)). Furthermore, the following estimate holds:

sup
0≤t≤T

C2C3

12

∥
∥
∥
∥

∂η̄

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

12

∥
∥
∥
∥

∂2η̄

∂t∂z

∥
∥
∥
∥

2

L2(0,T :L2(0,1)

(II-4.52)

≤ C
(

‖f‖2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖2

H2(0,T ) + ‖η0‖2
H2(0,T ) +

∥
∥η̄0
∥
∥

2

H1(0,1)
+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω)

)

,

where C depends on 1/R, C2, C3, T . This implies that, in fact,

∂2 < wz >

∂z2
∈ L2(0, T : L2(0, 1)), ∆rwz ∈ L2(0, T : L2(Ω, r)). (II-4.53)

Proof. The proof is based on the following idea. We will use the weak form of the

momentum equation (II-4.23) to estimate ∂η̄/∂z and ∂2η̄/∂z∂t. In order to obtain

the desired estimate, we will substitute the test function wk in the weak form of the

momentum equation (II-4.23) by (1 − r)∂φk(z)
∂z

∈ C1
0,0(Ω). We will then use the fact

that

(1 − r)
∂2η̄m

∂z∂t
= (1 − r)

m∑

k=1

ḋm
k (t)

∂φk(z)

∂z
=

m∑

k=1

ḋm
k (t) (1 − r)

∂φk(z)

∂z
︸ ︷︷ ︸

wk(r,z)

,

where

wk(r, z) = (1 − r)
∂φk(z)

∂z
∈ C1

0,0(Ω, r). (II-4.54)
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Notice that, without loss of generality, we could have used the space C1
0,0 in the

definition of the Galerkin approximation for the velocity, instead of the space C∞
0,0.

Thus, everything obtained will hold assuming wk ∈ C1
0,0. This relaxed choice of the

space for wk is now important to obtain improved regularity.

We now proceed by substituting wk in (II-4.23) with (II-4.54) and by multiplying

equation (II-4.23) by ḋm
k (t) and summing over k = 1, ...m to obtain

∫

Ω

∂wzn

∂t

∂2η̄m

∂z∂t
(1 − r)rdrdz − C1

R2

∫

Ω

∂wzn

∂r

∂2η̄m

∂z∂t
rdrdz (II-4.55)

+ C2

∫

Ω

∂η̄m

∂z

∂2η̄m

∂z∂t
(1 − r)rdrdz + C3

∫

Ω

∣
∣
∣
∣

∂η̄m

∂z∂t

∣
∣
∣
∣

2

(1 − r)rdrdz

=

∫

Ω

f
∂2η̄m

∂z∂t
(1 − r)rdrdz −

∫

Ω

g2
∂2η̄m

∂z∂t
(1 − r)rdrdz.

Multiplying (II-4.55) by C3, we have

C2C3

12

d

dt

∥
∥
∥
∥

∂η̄m

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

6

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

(II-4.56)

= −C3

∫

Ω

∂wzn

∂t
(1 − r)

∂2η̄m

∂t∂z
rdrdz +

C1C3

R2

∫

Ω

∂wzn

∂r

∂2η̄m

∂t∂z
rdrdz

+ C3

∫

Ω

f(1 − r)
∂2η̄m

∂t∂z
rdrdz + C3

∫

Ω

g2
∂2η̄m

∂t∂z
(1 − r)rdrdz.

By Cauchy inequality

∣
∣
∣
∣
C3

∫

Ω

∂wzn

∂t
(1 − r)

∂2η̄m

∂t∂z
rdrdz

∣
∣
∣
∣
≤
∥
∥
∥
∥

∂wzn

∂t

∥
∥
∥
∥

2

L2(Ω,r)

+
C2

3

48

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

,

∣
∣
∣
∣

C1C3

R2

∫

Ω

∂wzn

∂r

∂2η̄m

∂t∂z
rdrdz

∣
∣
∣
∣
≤ 6C2

1

R4

∥
∥
∥
∥

∂wzn

∂r

∥
∥
∥
∥

2

L2(Ω,r)

+
C2

3

48

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

,

∣
∣
∣
∣
C3

∫

Ω

f(1 − r)
∂2η̄m

∂t∂z
rdrdz

∣
∣
∣
∣
≤ ‖f‖2

L2(Ω,r) +
C2

3

48

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

,

∣
∣
∣
∣
C3

∫

Ω

g2(1 − r)
∂2η̄m

∂t∂z
rdrdz

∣
∣
∣
∣
≤ 1

2
‖g2‖2

L2(0,1) +
C2

3

48

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

.
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By combining the above estimates, by using the differential form of Gronwall’s in-

equality, and by employing the improved regularity estimate (II-4.46) we obtain

C2C3

12
sup

0≤t≤T

∥
∥
∥
∥

∂η̄m

∂z

∥
∥
∥
∥

2

L2(0,1)

+
C2

3

12

∫ T

0

∥
∥
∥
∥

∂2η̄m

∂t∂z

∥
∥
∥
∥

2

L2(0,1)

dt

≤ C(‖f‖2
L2(0,T :L2(Ω,r)) + ‖η1 − η0‖2

H2(0,T ) + ‖η0‖2
H2(0,T ) +

∥
∥η̄0
∥
∥2

H1(0,1)

+
∥
∥w0

z

∥
∥

2

H1

0,0(Ω)
+ |η′

1(0) − η′
0(0)|2 + (η′

0(0))2).

Passing to limit we recover the desired estimate (II-4.52). Moreover since η̄ ∈

H1(0, T ; H1(0, 1)), from equations (II-4.11) and (II-4.12), we conclude (II-4.53). This

concludes the proof of Theorem II-4.10.

With this proof we have completed the second step in showing that problem

(II-4.7)-(II-4.9) has a unique mild solution. This result implies, in particular, that

the Frechét derivative is a bijection from X to Z and, thus, completes the proof of

Theorem II-4.1.

This result now completes the verification of all the properties of the mapping

F and its Frechét derivative FX so that the Implicit Function Theorem II-1.1 can

be used to deduce the existence of a unique, mild solution to the nonlinear, moving

boundary problem (I-2.13)-(I-2.17).

5 Main Result

In order to state the main result of this chapter in terms of the pressure inlet and

outlet boundary data as formulated in (I-2.17) we remark that the condition on the

boundary data η0, ηL ∈ H2(0, T ) translates into the following condition in terms of

the pressure P0, PL ∈ H3(0, T ). This is due to the pressure-displacement relationship

(I-2.15). Thus, we introduce the corresponding parameter space

Λ̃ := H1(0, L) × H1
0,0(Ω, r) × (H1(0, T ))2, (II-5.1)
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and recall the solution space

X = X1 × X2,

where

X1 :=
{
γ ∈ H1(0, T ; H1(0, 1)) | ∂tγ ∈ L∞(0, T ; L2(0, 1))

}
,

and X2 is the space of velocities

X2 :=
{
v ∈ L2(0, T ; H1

0,0(Ω, r)) ∩ L∞(0, T ; L2(Ω, r)) | ∂tv ∈ L2(0, T ; L2(Ω, r)),

∆rv ∈ L2(0, T ; L2(Ω, r)), ∂2
z,z < v >∈ L2(0, T ; L2(0, 1))

}
.

By using the results from Chapters I and II, the Implicit Function Theorem II-1.1

implies:

Theorem II-5.1 (Main Result) Assume that the initial data for the displacement

η from the reference cylinder of radius R, η0, is in H1(0, L), and that the initial

data for the axial component of the velocity, v0
z , is in H1

0,0(Ω, r). Furthermore, sup-

pose that the inlet and outlet pressure data P0(t) and PL(t) which correspond to the

fluctuations of the pressure around the reference pressure pref , stated in (I-2.17), are

such that P0, PL ∈ H1(0, T ). Then, there exists a neighborhood S(0, 0) ⊂ X around

the solution η = 0, vz = 0, and a neighborhood D(0, 0, pref, pref) ⊂ Λ̃ around the

initial and boundary data η0 = 0, v0
z = 0, P0 = pref , PL = pref such that there ex-

ists exactly one solution (η, vz) ∈ S(0, 0) ⊂ X for each choice of the initial data

(η0, v0
z , P0, PL) ∈ D(0, 0, pref , pref) ⊂ Λ̃.

This completes the work, presented in this Thesis in Chapters I and II, related to

the study of fluid-structure interaction between a viscous, incompressible fluid and a

viscoelastic structure, in the flow regimes associated with blood flow in medium-to-

large human arteries.

In the remaining two Chapters we will study some mathematical properties of

Bingham fluid flows in cylinders. Bingham fluid models have been used to study
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blood flow in arterioles and capillaries, and so we continue the presentation of this

Ph.D. work by focusing on the fluids with the rheology which can be associated to

that of blood flow in small blood vessels.
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Chapter III

Some Mathematical Properties of

the Solution of Bingham Fluid

Flows in Cylinders

1 Introduction

Bingham fluids are materials which behave as rigid bodies at low shear stress but flow

as viscous fluids at high shear stress. The name is due to Eugene C. Bingham who,

for the first time, proposed a mathematical description for this visco-plastic behavior

[10]. Common examples of Bingham fluids are tooth paste and paint. The Bingham

model has also been used to describe the blood flow in small vessels, such as arterioles

and capillaries, where the size of the vessel diameter is comparable to the size of blood

cells, see e.g. [38]. Since the pulsatile motion of the capillaries as well as arterioles

is negligible, in this section we focus on a study of Bingham fluid flow in a cylinder

with fixed walls.

The isothermal and unsteady flow of an incompressible Bingham visco-plastic

medium, during the time interval (0, T ), is modeled by the following system of equa-
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tions (clearly of the Navier-Stokes type):

̺[∂tu + (u · ∇)u] = ∇ · σ + f in Ω × (0, T ), (III-1.1)

∇ · u = 0 in Ω × (0, T ), (III-1.2)

σ = −pI +
√

2gD(u)/|D(u)| + 2µD(u), (III-1.3)

u(0) = u0 (with ∇ · u0 = 0). (III-1.4)

Here Ω is an open and connected subset of R
N (N = 2 or 3 in applications), and Γ is

the boundary of Ω.

For simplicity, we shall consider only Dirichlet boundary conditions, namely:

u = uB on Γ × (0, T ), with

∫

Γ

uB(t) · n dΓ = 0, a.e. on (0, T ). (III-1.5)

In system (III-1.1)-(III-1.5):

• ̺ (resp., µ and g) is the density (resp., are the viscosity and plasticity yield) of

the Bingham medium; we have ̺ > 0, µ > 0 and g > 0.

• f is a density of external forces.

• D(v) = 1
2
[∇v + (∇v)t](= Dij(v)1≤i,j≤N), ∀v ∈ (H1(Ω))N .

• |D(v)| is the Frobenius norm of tensor D(v), i.e.,

|D(v)| =

(
∑

1≤i,j≤N

|Dij(v)|2
) 1

2

.

• n is the outward unit normal vector at Γ.

• We have denoted (and will denote later on) by ϕ(t) the function x → ϕ(x, t).

We observe that if g = 0, system (III-1.1)-(III-1.5) reduces to the Navier-Stokes

equations modeling isothermal incompressible Newtonian viscous fluid flow.
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The isothermal and unsteady axial flow of an incompressible visco-plastic Bingham

fluid in an infinitely long cylinder of (bounded) cross section Ω is a particular case

of (III-1.1)-(III-1.5). The problem is (formally) modeled by the following nonlinear

parabolic equation (where Γ is the boundary of Ω):







̺∂tu − µ∇2u − g∇ · (∇u/|∇u|) = C in Ω × (0, T ),

u = 0 on Γ × (0, T ),

u(0) = u0.

(III-1.6)

In system (III-1.6):

• u is the axial flow velocity, i.e., u = {0, 0, u}, assuming that the fluid flows in

the Ox3-direction, Ω being parallel to the (Ox1, Ox2)-plane.

• C is the pressure drop per unit length (it is a function of t, only, and possibly

a constant).

System (III-1.6) can be seen as a generalization of the following system:







∂u

∂t
= div

(
Du

|Du|

)

in Q = (0,∞) × Ω

u(t, x) = 0 on S = (0,∞) × Γ

u(0, x) = u0(x) in x ∈ Ω.

(III-1.7)

System (III-1.7) represents the Dirichlet problem for the total variation flow. Prob-

lems related to total variation flows arise not only in continuum mechanics, but also

in material science [30] and image processing [35].

Existence and uniqueness of solutions to system (III-1.7) have been obtained in

[2, 3, 29]. Solutions to system (III-1.7) also enjoy some interesting properties, such as

finite extinction time (meaning that u(t) → 0 in a finite time) and no propagation of

the support of the initial datum (meaning that the support of the normalized solution

u(t, x)/‖u(t, x)‖L2(Ω) is equal to the support of the initial datum), see e.g. [2, 3, 29].
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In the present work, we are going to use numerical simulations to investigate

whether the properties of finite extinction time and no propagation of the support

of the initial datum apply also to system (III-1.6) and, if yes, to which extent. We

emphasize here that the model for total variation flow, see system (III-1.7), can

be obtained from the model for Bingham flow in cylinders, see system (III-1.6), by

setting fluid viscosity and pressure drop equal to zero, namely µ = 0 and C = 0, and

by setting the ratio between fluid density and plasticity yield equal to one, namely

̺/g = 1.

2 Total Variation Flow. Properties of Solutions.

In this section we will summarize some of the main theorems concerning the solutions

to total variation flow problems of the form (III-1.7). We start by introducing the

definition of some useful functional spaces, ad then we will present the main theorems.

2.1 Total Variation Flow. Functional Spaces.

Let Ω be a bounded set in R
N with Lipschitz continuous boundary Γ. A function u

defined in Ω is said to be a function of bounded variation if u ∈ L1(Ω) and its partial

derivatives (in the sense of distributions) are measures with finite total variation in

Ω. The class of such functions will be denoted by BV (Ω). Thus u ∈ BV (Ω) if and

only if there are Radon measures µ1, · · · , µN defined in Ω, with finite total mass in

Ω, and
∫

Ω

uDiϕdx = −
∫

Ω

ϕdµi

for all ϕ ∈ C∞
0 (Ω), i = 1, . . . , N. Thus the gradient of u is a vector-valued measure

with finite total variation

|Du|(Ω) = sup

{∫

Ω

u divϕdx : ϕ ∈ C∞
0 (Ω, Rn), |ϕ(x)| ≤ 1 for x ∈ Ω

}

.
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Let us now define the set

X(Ω) =
{
z ∈ L∞(Ω, RN) : div(z) ∈ L1(Ω)

}
.

If z ∈ X(Ω) and w ∈ BV (Ω)∩L∞(Ω) the functional (z, Dw) : C∞
0 (Ω) → R is defined

by the formula

< (z, Dw), ϕ >= −
∫

Ω

wϕdiv(z)dx −
∫

Ω

wz · ∇ϕdx.

Then (z, Dw) is a Radon measure in Ω,
∫

Ω

(z, Dw) =

∫

Ω

z · ∇wdx

for all w ∈ W 1,1(Ω) ∩ L∞(Ω) and
∣
∣
∣
∣

∫

B

(z, Dw)

∣
∣
∣
∣
≤
∫

B

|(z, Dw)| ≤ ‖z‖∞
∫

B

|Dw|

for any Borel set B ⊆ Ω. Moreover, (z, Dw) is absolutely continuous with respect

to |Dw| with Radon-Nikodym derivative θ(z, Dw, x) which is a |Dw| measurable

function from Ω to R such that
∫

B

(z, Dw) =

∫

B

θ(z, Dw, x)|Dw|(Ω)

for any Borel set B ⊆ Ω. Moreover

‖θ(z, Dw, ·)‖L∞(Ω,||Dw||) ≤ ||z||L∞(Ω,RN ).

In [5] a weak trace on Γ of the normal component of z ∈ X(Ω) is defined. Con-

cretely, it is proved that there exists a linear operator γ : X(Ω) → L∞(Γ) such that

||γ(z)||∞ ≤ ||z||∞,

γ(z)(x) = z(x) · n(x) for all x ∈ Γ if z ∈ C1(Ω̄, RN).

We shall denote γ(z)(x) by [z, n](x). Moreover the following Green’s formula, relating

the function [z, n] and the measure (z, Dw) for z ∈ X(Ω) and w ∈ BV (Ω) ∩ L∞(Ω),

is established:
∫

Ω

w div(z)dx +

∫

Ω

(z, Dw) =

∫

Γ

[z, n] w dHN−1 , (III-2.1)
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where HN−1 is the Hausdorff (N − 1)-dimensional measure in R
N . We denote by

L1
w(0, T ; BV (Ω)) the space of functions w : [0, T ] → BV (Ω) such that w ∈ L1((0, T )×

Ω), the maps t ∈ [0, T ] →< Dw(t), φ > are measurable for every φ ∈ C1
0 (Ω, RN) and

such that
∫ T

0
‖Dw(t)‖ dt < ∞. See details in [4].

For any compact subset K of Ω, let DK(Ω) be the set of all functions f ∈ C∞
0 (Ω)

such that supp(f) ⊆ K. We denote by D′(Ω) the set of all linear functional T defined

and continuous on D(Ω) where

D(Ω) = ∩K⊆ΩDK(Ω).

The linear functional T ls called a distribution in Ω. See details in [39].

2.2 Total Variation Flow. Overview of the Related Main

Results.

The theorem below concerns existence and uniqueness of solutions [3].

Theorem III-2.1 Let u0 ∈ L2(Ω). Then for every T > 0 there exists a unique weak

solution to problem (III-1.7) in (0, T )×Ω such that u(0) = u0. Moreover, the solution

to problem (III-1.7) is characterized as u ∈ C([0, T ], L2(Ω)) ∩ W 1,2
loc (0, T ; L2(Ω)), u ∈

L1
w(0, T ; BV (Ω)), and there exists z(t) ∈ X(Ω), such that ‖z(t)‖∞ ≤ 1, u′(t) =

div(z(t)) in D′(Ω) a.e. t ∈ (0, T ) and

∫

Ω

(z(t), Du(t)) = |Du(t)|(Ω) (III-2.2)

[z(t), n] ∈ sign(−u(t)) HN−1-a.e. on Γ. (III-2.3)

Finally, we have the following comparison principle: if u(t) and û(t) are solutions

corresponding to the initial data u0 and û0, respectively, then

‖(u(t) − û(t))+‖1 ≤ ‖(u0 − û0)
+‖1 and ‖u(t) − û(t)‖1 ≤ ‖u0 − û0‖1, (III-2.4)

for all t ∈ [0, T ].
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More general versions of Theorem III-2.1 can be found in [9] and [19].

The following theorem proves the existence of a finite extinction time for solutions

to problem (III-1.7). The theorem also provides upper bounds for the extinction time

and the L∞-norm of the solution [4].

Theorem III-2.2 Let u0 ∈ L∞(Ω) and let u(t, x) be the unique solution to problem

(III-1.7). Let d(Ω) be the smallest radius of a ball containing Ω. Then we have

‖u(t)‖∞ ≤ N

d(Ω)

(
d(Ω) ‖u0‖∞

N
− t

)+

. (III-2.5)

Moreover, if T ∗(u0) = inf {t > 0 : u(t) = 0}, then

T ∗(u0) ≤
d(Ω) ‖u0‖∞

N
. (III-2.6)

An explicit solution u(t, x) can be obtained if the support of u0 is contained in a

ball B(0, r) ⊂⊂ Ω, where χB(0,r) is the characteristic function of B(0, r).

The following Lemma was proved in [4].

Lemma III-2.3 Assume that B(0, r) ⊂⊂ Ω and let u0 = κχB(0,r). Then the unique

solution u(t, x) to problem (III-1.7) is given by

u(t, x) = sign(k)
N

r

( |k|r
N

− t

)+

χB(0,r)(x) . (III-2.7)

We remark that the support of the solution u(t, x) is the same as the support of the

initial datum u0, namely χB(0,r). In this sense, there is no propagation of the support

of the initial datum. Next, we are going to prove a lemma similar to Lemma III-2.3,

but for a slightly more general problem. The result of this lemma will be used for

comparison with numerical experiments.

Lemma III-2.4 Assume that B(0, r) ⊂⊂ Ω and let u0 = κχB(0,r), where χB(0,r) is
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the characteristic function of B(0, r). Then the unique solution u(t, x) to problem






∂u

∂t
= β div

(
Du

|Du|

)

in Q = (0,∞) × Ω

u(t, x) = 0 on S = (0,∞) × Γ

u(0, x) = u0(x) in x ∈ Ω,

(III-2.8)

with β > 0, is given by

u(t, x) = sign(k)
N

r

( |k|r
βN

− t

)+

χB(0,r)(x). (III-2.9)

Proof. The proof of this lemma follows the ideas presented in [4]. Suppose that

k > 0 (if k < 0 the solution can be constructued in a similar way). We look for a

solution to (III-2.8) of the form u(t, x) = α(t)χB(0,r)(x) on some time interval (0, T ).

Then, we shall look for some z(t) ∈ X(Ω) with ‖z‖∞ ≤ 1 such that

u′(t) = β div(z(t)) in D′(Ω), (III-2.10)
∫

Ω

(z(t), Du(t)) = |Du(t)|(Ω), (III-2.11)

[z(t), n] ∈ sign(−u(t)) HN−1 − a.e. (III-2.12)

If we take z(t)(x) = −x
r

for x ∈ ∂B(0, r), integrating the equation (III-2.10) we obtain

α′(t)|B(0, r)| = β

∫

B(0,r)

div(z(t))dx = β

∫

∂B(0,r)

z(t) · n = −βHN−1∂B(0, r).

(III-2.13)

Thus

α′(t) = −βN

r
.

Therefore,

α = k − βN

r
t, T =

kr

βN
.

To construct z (0, T )× (Ω \B(0, r)) we shall look for z of the form z = ρ(||x||)x/||x||

such that div(z(t)) = 0, ρ(r) = −1. Since

div(z(t)) = ▽ρ(||x||) · x

||x|| + ρ(||x||)div

(
x

||x||

)

= ρ′(||x||) + ρ(||x||)N − 1

||x||
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we must have

ρ′(s) + ρ(s)
N − 1

s
= 0 for s > r. (III-2.14)

The solution of (III-2.14) such that ρ(t) = −1 is ρ(s) = −rN−1s1−N . Thus in Ω \

B(0, r),

z(t) = −rN−1 x

||x||N .

Consequently, the candidate to z(t) is the vector field

z(t) :=







−x
r

if x ∈ B(0, r), 0 ≤ t ≤ T,

−rN−1 x
||x||N

if x ∈ Ω \ ¯B(0, r), 0 ≤ t ≤ T,

0 if x ∈ Ω, t > T.

and u(t, x) is the function

u(t, x) =

(

k − βN

r
t

)

χB(0,r)(x)χ[0,T ](t),

where T = kr/βN . Let us see that u(t, x) satisfies (III-2.10),(III-2.11) and (III-2.12).

Since u(t, x) = 0 if x ∈ Γ, it is easy to check that (III-2.12) holds. On the order hand,

if ϕ ∈ D(Ω) and 0 ≤ t ≤ T, we have

∫

Ω

∂zi(t)

∂xi

ϕ dx = −1

r

∫

B(0,r)

ϕ dx +

∫

∂B(0,r)

xi

r

xi

r
ϕ dHN−1

−
∫

Ω\B(0,r)

∂

∂xi

(
rN−1x

||x||N
)

ϕ dx −
∫

∂B(0,r)

rN−1

rN
xi

xi

r
ϕ dHN−1.

Hence
∫

Ω

div z(t)ϕ dx = −N

r

∫

B(0,r)

ϕ dx,

and consequently (III-2.10) holds. Finally, if 0 ≤ t ≤ T , by Green’s formula (III-2.1)

we have

∫

Ω

(z(t), Du(t))dx = −
∫

Ω

div z(t)u(t) dx +

∫

Γ

[z(t), n]u(t)dHN−1

= −
∫

B(0,r)

div z(t)

(

k − βN

r
t

)

dx =

∫

B(0,r)

(

k − βN

r
t

)
βN

r
dx
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=

(

k − βN

r
t

)
βN

r
|B(0, r)| =

(

k − βN

r
t

)

HN−1(∂B(0, r))

= |Du(t)|(Ω).

Therefore u(t, x) is the solution of (III-2.8).
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Chapter IV

Numerical Methods for the

Solution of Bingham Flows in

Cylinders

1 Background

It follows from references [22] and [23] that a mechanically and mathematically correct

formulation of problem (III-1.6) is provided by the following variational inequality

type model:







Find u(t) ∈ H1
0 (Ω) a.e. on (0, T ),

̺

∫

Ω

∂tu(v − u) dx + µ

∫

Ω

∇u · ∇(v − u) dx

+g(j(v)− j(u)) ≥ C

∫

Ω

(v − u) dx, ∀v ∈ H1
0 (Ω),

u(0) = u0,

(VI-1.1)

with

j(v) =

∫

Ω

|∇v| dx. (VI-1.2)
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The backward Euler scheme, described below, is the only scheme preserving the

asymptotic behavior of the solution of the continuous problem (namely, problem (VI-

1.1)), including the finite extinction time, see [20]. This scheme reads as follows (with

∆t(> 0) a time discretization step that we suppose constant, for simplicity):

u0 = u0 ; (VI-1.3)

then, for n ≥ 1, compute un from un−1 via the solution of







Find un ∈ H1
0 (Ω),

̺

∫

Ω

(un − un−1)(v − un) dx + µ∆t

∫

Ω

∇un · ∇(v − un) dx

+g∆t(j(v) − j(un)) ≥ ∆tCn

∫

Ω

(v − un) dx, ∀v ∈ H1
0 (Ω),

(VI-1.4)

with Cn = C(n∆t). It follows from, e.g., [[26], Chapter I] that (VI-1.4) is an elliptic

variational inequality (of the second kind) problem, which has a unique solution.

Problem (VI-1.4) can be rewritten as







Find u ∈ H1
0 (Ω),

α

∫

Ω

u(v − u) dx + µ

∫

Ω

∇u · ∇(v − u) dx

+g(j(v) − j(u)) ≥
∫

Ω

f(v − u) dx, ∀v ∈ H1
0 (Ω),

(VI-1.5)

with α ≥ 0 and f ∈ L2(Ω).

A classical method to solve problem (VI-1.5) is the one introduced in reference

[15]; it reduces the solution of the above problem to the solution of a sequence of

linear Dirichlet problems for the operator αI−µ∇2 and simple projection operations.

The method relies on the equivalence between (VI-1.5) and







αu − µ∇2u − g∇ · λ = f in Ω,

u = 0 on Γ,

λ · ∇u = |∇u|, λ ∈ Λ,

(VI-1.6)
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the last two relations implying that

λ = PΛ(λ + rg∇u), ∀r ≥ 0, (VI-1.7)

with the operator PΛ defined by

PΛ(q)(x) =
q(x)

max(1, |q(x)|) , a.e. on Ω, ∀q ∈ (L2(Ω))2 . (VI-1.8)

In order to solve (VI-1.5), via relation (VI-1.6) and (VI-1.7), we advocate (follow-

ing [15]) the fixed point algorithm below:

λ0 is given in Λ (VI-1.9)

then, for n ≥ 0, assuming that λn is known, we compute un and then λn+1 as follows:

solve

αun − µ∇2un = f + g∇ · λn in Ω, un = 0 on Γ, (VI-1.10)

and

λn+1 = PΛ

(
λn + rg∇un

)
. (VI-1.11)

Suppose that the system (VI-1.6) has a solution {u, λ} ∈ H1
0 (Ω) × Λ (which is

indeed the case); it can be shown (see, e.g., refs. [26] and [27]) that the above pair is

necessarily a saddle-point over H1
0(Ω) × Λ of the Lagrangian functional

L : H1(Ω) × (L2(Ω))2 → R

defined by

L(v, µ) =
1

2

[

α‖v‖2
L2(Ω) + µ‖∇v‖2

(L2(Ω))2

]

+ g

∫

Ω

µ · ∇v dx −
∫

Ω

fv dx (VI-1.12)

i.e., the pair {u, λ} verifies (from the definition of a saddle-point; see, e.g., [[25],

Chapter 4])







{u, λ} ∈ H1
0 (Ω) ×Λ,

L(u, µ) ≤ L(u, λ) ≤ L(v, λ), ∀{v, µ} ∈ H1
0 (Ω) × Λ.

(VI-1.13)
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Conversely, any solution of (VI-1.13) is solution of system (VI-1.6). It follows from the

above reference that algorithm (VI-1.9)-(VI-1.11) is nothing but an Uzawa algorithm

applied to the solution of the saddle-point problem (VI-1.13) with L( · , · ) defined by

(VI-1.12); for a systematic study of Uzawa algorithms, see, e.g., [[25], Chapter 4] and

the references therein.

2 Numerical Experiments

In this section we present some numerical results related to problem (III-1.6), with

the goal of investigating the qualitative properties (i.e. finite extinction time and

propagation of support of initial data) of solutions to the Bingham flow in a cylinder.

The results will then be compared with the properties of solutions of total variation

flow problems of the form (III-2.8), which can be (formally) viewed as a limit of

problem (III-1.6) as viscosity goes to zero.

In all our simulations, the spatial domain is chosen to be the unit square in R
2,

namely Ω = (0, 1) × (0, 1) [m×m]. The fluid density and plasticity yield are chosen

to be ρ = 1 [Kg m−3] and g = 2 [Pa]. For what concerns the fluid viscosity, we run

simulations with µ = 0.25 and µ = 0.0025 [Pa s], in order to investigate how the fluid

viscosity affects the dynamics of the flow. Moreover, we assume the pressure drop to

be equal to zero, namely C = 0 [Pa m−1], so that the flow is driven only by the initial

conditions. These choices are summarized in Table IV.1.

We are going to consider a set of five different initial conditions:

Case I - Characteristic function of a disk. The initial velocity u0 is given by:

u0 =







1 in B(x0, R1)

0 elsewhere
(VI-2.1)

with x0 = (0.5, 0.5) and R1 = 0.3.
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Fluid domain Ω =(0, 1) × (0, 1) [m×m]

Fluid density ρ=1 [Kg m−3]

Plasticity yield g=2 [Pa]

Fluid viscosity µ = 0.25, 0.0025 [Pa s]

Pressure drop C = 0 [Pa m−1]

Table IV.1: Values of the parameters used in the numerical simulations.

Case II - Superposition of two characteristic functions. The initial velocity u0

is given by:

u0 =







2 in B(x0, R2)

1 in B(x0, R1) \ B(x0, R2)

0 elsewhere

(VI-2.2)

with x0 = (0.5, 0.5), R1 = 0.3, and R2 = 0.2.

Case III - Characteristic function of two (distant) disjoint disks. The initial

velocity u0 is given by:

u0 =







1 in B(x1, R1) ∪ B(x2, R2)

0 elsewhere
(VI-2.3)

with x1 = (0.2750, 0.2750), x2 = (0.7250, 0.7250), and R1 = R2 = 0.1.

Case IV - Characteristic function of two (close) disjoint disks. The initial ve-

locity u0 is given by:

u0 =







1 in B(x1, R1) ∪ B(x2, R2)

0 elsewhere
(VI-2.4)

with x1 = (0.4242, 0.4242), x2 = (0.5758, 0.5758), and R1 = R2 = 0.1.

Case V - Characteristic function of a square. The initial velocity u0 is given
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by:

u0 =







1 in S = (a, b) × (a, b)

0 elsewhere
(VI-2.5)

with a = 0.25 and b = 0.75.

3 Numerical Results

Problem (III-1.6) was solved using the iterative method á la Uzawa (VI-1.9)-(VI-1.11).

We validated our results by repeating the simulations using different time steps, dif-

ferent mesh sizes and different tolerances for the convergence of the Uzawa algo-

rithm. More precisely, we used ∆t = 10−4, 5× 10−4, and 10−5 as time steps; we used

1/70, 1/100, 1/120, and 1/150 as mesh sizes; we used tol = 10−6, 5 × 10−6, and 10−7

as tolerances for the convergence of the Uzawa algorithm. Excellent agreement was

found between results obtained with different combinations of these parameters.

Finite extinction time. Our results show a finite extinction time of the solution,

as predicted by the theory. Figures IV.1, IV.6, IV.11, IV.16, IV.21 show the time

evolution of the L2-norm of the solution, namely ‖u‖L2(Ω)(t), for each of the five

different initial conditions. The pictures show that the extinction time increases as

the fluid viscosity decreases, see Table IV.2. This is due to the fact that a less viscous

system has a less efficient dissipative mechanism and therefore it takes longer for the

solution to decay to zero.

In particular, Case I admits the following exact solution

u(t, x) = sign(k)
N

r

( |k|r
gN

− t

)+

χB(0,r)(x), (VI-3.1)

as shown in Lemma III-2.4. It is easy to see that u(t, x) vanishes for t = |k|r
gN

, and

this represents the extinction time in the case of µ = 0. For the values in Table IV.1,

we find that |k|r
gN

= 0.075 [s]. The agreement with the extinction time obtained with

our simulations is very good: we get t = 0.0705 for µ = 0.0025 [Pa s], see Table
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Case I Case II Case III Case IV Case V

µ = 0.25 [Pa s] 0.0505 0.071 0.012 0.019 0.0465

µ = 0.0025 [Pa s] 0.0705 0.1025 0.0215 0.028 0.064

Table IV.2: Numerically computed values of extinction times corresponding to dif-

ferent initial conditions (Cases I to V) and to different fluid viscosities (µ = 0.25 and

µ = 0.0025 [Pa s].)

IV.2. We emphasize that the theoretical value of the extinction time is obtained

for the total variation flow problem, which corresponds to a Bingham fluid with no

viscosity. On the other hand, our simulations include a non-zero fluid viscosity and,

as a consequence, the solution extinction time is smaller than the theoretical value.

As expected though, as the fluid viscosity decreases, the extinction time increases.

Solution and normalized solution. We have visualized the time evolution

of the solution u(t, x) and of the normalized solution u(t, x)/‖u‖L2(Ω)(t). The so-

lution u(t, x) progressively decreases to zero, while the normalized solution reaches

a non-zero and non-smooth limit in a finite time. In order to better visualize the

comparison between the solution and the normalized solution, we show their time-

evolution restricted to the domain diagonal, see Figures IV.4 and IV.5 for Case I,

Figures IV.9 and IV.10 for Case II, Figures IV.14 and IV.15 for Case III, Figures

IV.19 and IV.20 for Case IV, Figures IV.24 and IV.25 for Case V. The fact that the

normalized solution reaches a non-zero and non-smooth limit at the extinction time

should not be a surprise. Solutions to total variation flow problems do not gain any

spatial differentiability, in contrast with what happens for the linear heat equation

and many other quasilinear parabolic problems, see [4].

No propagation of the support. The theory for total variation flow predicts

no propagation of support of the initial datum, if the support is regular enough. We

recall that the total variation flow corresponds to the case of fluid viscosity equal to
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zero, therefore it is reasonable to expect that the propagation of the support depends

on the value of the fluid viscosity, see Figures IV.3, IV.8, IV.13, IV.18, and IV.23.

Our simulations indeed reflect these mathematical properties. In Cases I, II, and III,

the support of the initial datum is very regular (either a ball or two disjoint balls).

The results obtained in these cases for the smaller viscosity value, namely µ = 0.0025,

show almost no propagation of support of the initial datum, as shown in Figures IV.2

and IV.5 for Case I; Figures IV.7 and IV.10 for Case II; Figures IV.12 and IV.15

for Case III. In Cases IV and V we see a change in topology of the support. More

precisely, the support of the initial datum in Case IV is made of two disjoint disks

whose boundaries are quite close to each other. The time evolution of the normalized

solution u(t, x)/‖u‖L2(Ω)(t) shows that the two disks progressively merge, see Figures

IV.17 and IV.20 and, finally, the support of the normalized solution at the extinction

time has the shape of an hour-glass. In Case V, the support of the initial datum is a

square while, at the extinction time, the support of the normalized solution is a disk,

see Figures IV.22 and IV.23.
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Figure IV.1: Case I - Time evolution of ‖u‖L2(Ω) (t) for µ = 0.25 and µ = 0.0025 [Pa

s].
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Figure IV.2: Case I - On the left: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t)

obtained with µ = 0.25 at t = 0, 0.005, 0.02, 0.035, 0.0505 seconds; On the right: Snap-

shots of the normalized solution u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.0025 at t =

0, 0.005, 0.03, 0.05, 0.0705 seconds.
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Figure IV.3: Case I - Comparison between the supports of the normalized solutions at

extinction time obtained with µ = 0.25 (outer circle) and with µ = 0.0025 (inner circle).
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Figure IV.4: Case I - On the top: Snapshots of the solution u(t, x) restricted to the domain

diagonal obtained with µ = 0.25 at t0 = 0, t1 = 0.005, t2 = 0.0135, t3 = 0.025, t4 =

0.0375, t5 = 0.045, t∗ = 0.0505 seconds; On the bottom: Snapshots of the solution u(t, x)

restricted to the domain diagonal obtained with µ = 0.0025 at t0 = 0, t1 = 0.005, t2 =

0.015, t3 = 0.025, t4 = 0.04, t5 = 0.06, t6 = 0.068, t∗ = 0.0705 seconds.
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Figure IV.5: Case I - On the top: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t)

restricted to the domain diagonal obtained with µ = 0.25 at t0 = 0, t1 = 0.005, t2 =

0.0135, t3 = 0.025, t4 = 0.0375, t5 = 0.045, t∗ = 0.0505 seconds; On the bottom: Snap-

shots of the normalized solution u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal ob-

tained with µ = 0.0025 at t0 = 0, t1 = 0.005, t2 = 0.015, t3 = 0.025, t4 = 0.04, t5 =

0.06, t6 = 0.068, t∗ = 0.0705 seconds.

65



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

← µ=0.25

second

 ← µ=0.0025

Figure IV.6: Case II - Time evolution of ‖u‖L2(Ω) (t) for µ = 0.25 and µ = 0.0025 [Pa

s].
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Figure IV.7: Case II - On the left: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t)

obtained with µ = 0.25 at t = 0, 0.005, 0.03, 0.05, 0.071 seconds; On the right: Snap-

shots of the normalized solution u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.0025 at t =

0, 0.005, 0.004, 0.075, 0.1025 seconds.
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Figure IV.8: Case II - Comparison between the supports of the normalized solutions at

extinction time obtained with µ = 0.25 (outer circle) and with µ = 0.0025 (inner circle).
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Figure IV.9: Case II - On the top: Snapshots of the solution u(t, x) restricted to the domain

diagonal obtained with µ = 0.25 at t0 = 0, t1 = 0.0055, t2 = 0.015, t3 = 0.003, t4 =

0.0425, t5 = 0.0575, t∗ = 0.071 seconds; On the bottom: Snapshots of the solution u(t, x)

restricted to the domain diagonal obtained with µ = 0.0025 at t0 = 0, t1 = 0.0045, t2 =

0.0245, t3 = 0.0445, t4 = 0.0595, t5 = 0.0745, t6 = 0.095, t∗ = 0.1025 seconds.
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Figure IV.10: Case II - On the top: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal obtained with µ = 0.25 at t0 = 0, t1 =

0.0055, t2 = 0.015, t3 = 0.003, t4 = 0.0425, t5 = 0.0575, t∗ = 0.071 seconds; On the bot-

tom: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) restricted to the domain

diagonal obtained with µ = 0.0025 at t0 = 0, t1 = 0.0045, t2 = 0.0245, t3 = 0.0445, t4 =

0.0595, t5 = 0.0745, t6 = 0.095, t∗ = 0.1025 seconds.
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Figure IV.11: Case III - Time evolution of ‖u‖L2(Ω) (t) for µ = 0.25 and µ = 0.0025

[Pa s].
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Figure IV.12: Case III - On the left: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.25 at t = 0, 0.0025, 0.0065, 0.01, 0.012 seconds; On

the right: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.0025

at t = 0, 0.0025, 0.01, 0.0175, 0.0215 seconds.
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Figure IV.13: Case III - Comparison between the supports of the normalized solutions at

extinction time obtained with µ = 0.25 (outer circles) and with µ = 0.0025 (inner circles).
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Figure IV.14: Case III - On the top: Snapshots of the solution u(t, x) restricted to the

domain diagonal obtained with µ = 0.25 att0 = 0, t1 = 0.002, t2 = 0.004, t3 = 0.0065, t4 =

0.009, t5 = 0.0115, t∗ = 0.012 seconds; On the bottom: Snapshots of the solution u(t, x)

restricted to the domain diagonal obtained with µ = 0.0025 at t0 = 0, t1 = 0.0025, t2 =

0.005, t3 = 0.01, t4 = 0.015, t5 = 0.0175, t6 = 0.02, t∗ = 0.0215 seconds.
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Figure IV.15: Case III - On the top: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal obtained with µ = 0.25 at t0 = 0, t1 =

0.002, t2 = 0.004, t3 = 0.0065, t4 = 0.009, t5 = 0.0115, t∗ = 0.012 seconds; On the bottom:

Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal

obtained with µ = 0.0025 at t0 = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.01, t4 = 0.015, t5 =

0.0175, t6 = 0.02, t∗ = 0.0215 seconds.
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Figure IV.16: Case IV - Time evolution of ‖u‖L2(Ω) (t) for µ = 0.25 and µ = 0.0025

[Pa s].

4 Conclusions

In this section we have presented some numerical results related to Bingham flow in

a cylinder. In the limiting case of fluid viscosity equal to zero, the problem reduces

to a total variation flow problem, in which solutions go to zero in a finite (extinction)

time and there is no propagation of the support of the initial datum (if the support

is regular enough).

Our simulations show that similar qualitative properties hold also in the case of

non-zero viscosity. We have considered two different viscosity values, µ = 0.25 [Pa s]

and µ = 0.0025 [Pa s], and five different initial conditions, see Section 2, and we have

solved the corresponding Bingham flow problem using a backward Euler scheme in

combination with an algorithm á la Uzawa.
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Figure IV.17: Case IV - On the left: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.25 at t = 0, 0.0025, 0.01, 0.015, 0.019 seconds; On

the right: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.0025

at t = 0, 0.0025, 0.015, 0.02, 0.028 seconds.
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Figure IV.18: Case IV - Comparison between the supports of the normalized solutions at

extinction time obtained with µ = 0.25 (outer shape) and with µ = 0.0025 (inner shape).
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Figure IV.19: Case IV - On the top: Snapshots of the solution u(t, x) restricted to the

domain diagonal obtained with µ = 0.25 at t0 = 0, t1 = 0.0025, t2 = 0.0055, t3 =

0.0085, t4 = 0.012, t5 = 0.017, t∗ = 0.019 seconds; On the bottom: Snapshots of the

solution u(t, x) restricted to the domain diagonal obtained with µ = 0.0025 at t0 = 0, t1 =

0.0025, t2 = 0.005, t3 = 0.0075, t4 = 0.0125, t5 = 0.0165, t6 = 0.025, t∗ = 0.028 seconds.
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Figure IV.20: Case IV - On the top: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal obtained with µ = 0.25 at t0 = 0, t1 =

0.0025, t2 = 0.0055, t3 = 0.0085, t4 = 0.012, t5 = 0.017, t∗ = 0.019 seconds; On the bottom:

Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal

obtained with µ = 0.0025 at t0 = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.0075, t4 = 0.0125, t5 =

0.0165, t6 = 0.025, t∗ = 0.028 seconds.
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Figure IV.21: Case V - Time evolution of ‖u‖L2(Ω) (t) for µ = 0.25 and µ = 0.0025

[Pa s].
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Figure IV.22: Case V - On the left: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.25 at t = 0, 0.01, 0.025, 0.035, 0.045 seconds; On the

right: Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) obtained with µ = 0.0025

at t = 0, 0.015, 0.03, 0.045, 0.064 seconds.
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Figure IV.23: Case V - Comparison between the supports of the normalized solutions at

extinction time obtained with µ = 0.25 (outer circle) and with µ = 0.0025 (inner circle).
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Figure IV.24: Case V - On the top: Snapshots of the solution u(t, x) restricted to the

domain diagonal obtained with µ = 0.25 at t0 = 0, t1 = 0.0075, t2 = 0.0175, t3 =

0.025, t4 = 0.035, t5 = 0.04, t∗ = 0.0465 seconds; On the bottom: Snapshots of the

solution u(t, x) restricted to the domain diagonal obtained with µ = 0.0025 at µ = 0.0025,

t0 = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.015, t4 = 0.03, t5 = 0.05, t6 = 0.06, t∗ = 0.064

seconds.
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Figure IV.25: Case V - On the top: Snapshots of the normalized solution

u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal obtained with µ = 0.25 at t0 = 0, t1 =

0.0075, t2 = 0.0175, t3 = 0.025, t4 = 0.035, t5 = 0.04, t∗ = 0.0465 seconds; On the bottom:

Snapshots of the normalized solution u(t, x)/||u||L2(Ω)(t) restricted to the domain diagonal

obtained with µ = 0.0025 at t0 = 0, t1 = 0.0025, t2 = 0.005, t3 = 0.015, t4 = 0.03, t5 =

0.05, t6 = 0.06, t∗ = 0.064 seconds.
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Our results showed existence of a finite extinction time, as predicted by the theory.

We also found that the extinction time increases as the fluid viscosity decreases,

as expected. This is due to the fact that a less viscous system has a less efficient

dissipative mechanism and therefore it takes longer for the solution to decay to zero.

The theory for total variation flow also predicts no propagation of support of

the initial datum, if the support is regular enough. In order to study this property,

we visualized the time evolution of the normalized velocity u(t, x)/‖u‖L2(Ω)(t), for the

different initial conditions and viscosity values. When the support of the initial datum

is very regular (either a ball or two distant disjoint balls), the results corresponding

to the smaller viscosity value, namely µ = 0.0025, show almost no propagation of

support of the initial datum, as predicted by the theory. When the support of the

initial datum is not very regular (two close disjoint balls or a square), our results

show a change in topology of the support.
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