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Abstract

For the pricing of options on equity shares, the Black-Scholes equation has become

an indispensable tool for agents on the financial market. Under the assumption that the

value of the underlying share evolves in time according to a stochastic differential equation

and some further assumptions on the financial market, the equation can be derived by an

application of Itô’s calculus. It represents a deterministic second order parabolic differential

equation backward in time with the price of the option as the unknown and the interest rate

and the volatility entering the equation as coefficient functions. Since analytical solutions

in explicit form are only available in special cases, in general the equation must be solved

by numerical methods based on appropriate discretizations in time and in space where the

spatial variable is the value of the share. This can be done by finite difference techniques or

finite element methods with respect to suitable partitions of the time interval and the spatial

domain. If the volatility depends on the independent variables, sudden changes of the

volatility may imply rapid local changes of the solution as well so that a solution-dependent

time-stepping and space-meshing is appropriate in order to keep the computational work

at a moderate level while maintaining the accuracy of the computed approximate solution.

During the past thirty years, such an adaptive choice of the discretizations in time and in

space based on reliable a posteriori estimators of the global discretization error has been

developed for finite element methods and achieved some state of maturity for standard

partial differential equations. This thesis is devoted to an application of adaptive finite

element methods to the numerical solution of the Black-Scholes equation.
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Chapter 1

Introduction

1.1 Preface

For the pricing of options on equity shares, the Black-Scholes equation has become an

indispensable tool for agents on the financial market. Under the assumption that the

value of the underlying share evolves in time according to a stochastic differential equation

and some further assumptions on the financial market, the equation can be derived by an

application of Itô’s calculus. It represents a deterministic second order parabolic differential

equation backward in time with the price of the option as the unknown and the interest rate

and the volatility entering the equation as coefficient functions. Since analytical solutions

in explicit form are only available in special cases, in general the equation must be solved

by numerical methods based on appropriate discretizations in time and in space where the

spatial variable is the value of the share. This can be done by finite difference techniques or

finite element methods with respect to suitable partitions of the time interval and the spatial

domain. If the volatility depends on the independent variables, sudden changes of the
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volatility may imply rapid local changes of the solution as well so that a solution-dependent

time-stepping and space-meshing is appropriate in order to keep the computational work

at a moderate level while maintaining the accuracy of the computed approximate solution.

During the past thirty years, such an adaptive choice of the discretizations in time and in

space based on reliable a posteriori estimators of the global discretization error has been

developed for finite element methods and achieved some state of maturity for standard

partial differential equations. This thesis is devoted to an application of adaptive finite

element methods to the numerical solution of the Black-Scholes equation.

The thesis is organized as follows: In the remaining part of this introductory first chap-

ter, we will briefly sketch the issue of option pricing for plain vanilla European options

and review the classical Black-Scholes model as well as the derivation of the Black-Scholes

equation. Moreover, we will introduce to the basic concepts of adaptive finite element

methods including a discussion of the crucial properties of reliability and efficiency of a

posteriori error estimators.

The second chapter is devoted to a more detailed exposition of the Black-Scholes model

followed by the variational formulation of the Black-Scholes equation in a suitable Sobolev

space setting which provides the basis for its numerical solution by finite element methods.

In the third chapter, we will be concerned with the discretization of the Black-Scholes equa-

tion using an implicit discretization in time and standard P1 conforming finite elements in

space with respect to a simplicial triangulation of the spatial domain.

The main part of this thesis is the fourth chapter where we present a residual-type a pos-

teriori error estimator consisting of a time error estimator and a space error estimator

which will take care of the combined space-time adaptivity. We will establish both the

reliability and the efficiency of the estimator as well as its local efficiency in the sense

that the local contributions of the space error estimator can be bounded from above by
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appropriate norms of the discretization error on local patches associated with the elements

of the spatial triangulation.

The fifth chapter deals with a description of the remaining basic ingredients of the adap-

tive cycle which are - besides the a posteriori error estimation - the solution of the fully

discretized problem, the marking of the time intervals as well as of the elements of the

triangulation for refinement, and the technical realization of the refinement strategy.

The following sixth chapter provides a detailed documentation of the numerical results for

selected text examples illustrating the performance of the suggested error estimator.

Some concluding remarks are given in the final seventh chapter.

1.2 Pricing of Options

1.2.1 Vanilla European Options - An Economic Model

A European vanilla call option (put option) is a contract giving its owner theright to buy

(sell) a fixed number of shares of a specific common stock at a fixed price K at a certain

date T .

The specific stock is called the underlying asset or the underlying security. The price of

the underlying asset will be referred to as the spot price and will be denoted by S or St.

Since an option gives the holder a right, it has a value which is called the option price.

Denoting by Ct = C(t)(Pt = P (t)) the value of the call-option (put-option) at time t, we

are interested in evaluating Ct(Pt) for 0 ≤ t ≤ T .

In order to do that we make the following assumptions:

(i) There is no-arbitrage, i.e. an immediate risk-free profit is not possible.
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(ii) The transactions have no cost and are instantaneous.

(iii) The market is liquid and trade is possible at any times.

For simplicity we assume further that:

(i) There is no dividend on the basic asset.

(ii)There is a fixed interest rate r > 0 for bonds/credits with proportional yield.

Pricing the option at maturity is easy. If ST is the spot price at maturity, and if

(i) ST > K, then the owner of the call option will make a benefit of ST−K by exercising

the option and immediately selling the asset,

(ii) ST ≤ K, then the owner of the call option will do nothing.

In summary, at maturity the value of the call is given by the payoff function

CT = (ST −K)+ := max(ST −K, 0).

Similarly, we obtain the value of a put at maturity. Here the payoff function is given by

PT = (K − ST )+ := max(K − ST , 0).

Theorem 1.1. (Put-Call Parity) Let K,St, P (St, t) and C(St, t) be the value of a bond

(with constant interest rate r > 0 and proportional yield), an asset, a put option and a call

option. Under the previous assumptions, for 0 ≤ t ≤ T there holds

St + P (St, t)− C(St, t) = Kexp(−r(T − t)).

Proof. A proof is given in [37].
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This formula tells us that as soon we know the price of the call option we know as well the

price of the put option, or vice versa.

Without any additional assumptions, e.g. on the behaviour of the underlying share price,

we have the following structural result.

Theorem 1.2. (Lower and Upper Bounds for Call/Put Options). Let K,St, P (St, t) and

C(St, t) be the value of a bond (with constant interest rate r > 0 and proportional yield),

an asset, a put option and a call option. Under the previous assumptions, for 0 ≤ t ≤ T

there holds

i) 0 ≤ (St −Kexp(−r(T − t)))+ ≤ C(St, t) ≤ St,

ii) 0 ≤ (Kexp(−r(T − t)− St))+ ≤ P (St, t) ≤ Kexp(−r(T − t)).

Proof. A proof is given in [37].

1.2.2 The (Classical) Black-Scholes Model

The Black-Scholes model is a continuous-time model involving one riskless asset and one

risky asset. We take the time dynamics of the price �t of the riskless asset to be given by

the ordinary differential equation

d�t = r�tdt, (1.1)

and the time dynamics of the price St of the risky asset to be given by the stochastic

differential equation

dSt = St(�dt+ �dBt), (1.2)

where r, � and � are some constants, � > 0 and Bt stands for a (standard) Brownian

motion. For an accurate mathematical meaning of (1.2) we refer to [30, 31, 36, 41].
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We can interpret the drift parameter � as an average rate of growth and � as the volatility

of the asset price. Setting �0 = 1 we find that

�t = ert,

and set S(0) = S0 we obtain

St = S0exp(�t−
�2

2
t+ �Bt).

We remark that St is a geometric Brownian motion, i.e. logSt is a (not necessarily standard)

Brownian motion.

1.2.3 Option Pricing

The basic idea in the computation of the option price is to consider a replicating portfolio

consisting of at units of the risky asset and bt units of the riskless asset. The value of our

portfolio is then given by

Vt = atSt + bt�t. (1.3)

Denoting by ℎ(ST ) the payoff function we have the terminal replication constraint VT =

ℎ(ST ). Because the option has no cash flow until the terminal time, the replicating portfolio

must be continuously rebalanced in such a way that there is no cash flowing into or out of

the portfolio until the terminal time T . In terms of stochastic differentials, this requirement

is given by the equation

self-financing condition: dVt = atdSt + btd�t. (1.4)

This equation imposes a strong constraint on the possible values for at and bt. When

coupled with the termination constraint VT = ℎ(ST ), the self-financing condition turns out

to be enough to determine at and bt uniquely.
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Assuming the portfolio valueVt can be written as Vt = u(St, t) where u is an appropriately

smooth function, applying Itôs formula respectively u and using the self-financing condition

we obtain by a coefficient matching argument the backward-in-time parabolic boundary

value problem with terminal Cauchy-Condition

∂u

∂t
+
�2S2

2

∂2u

∂S2
+ rS

∂u

∂S
− ru = 0, in ℝ+ × [0.T ) (1.5a)

u∣t=T = u0, in ℝ+ (1.5b)

where u0 = ℎ(ST ). We shall refer to (1.5a) as the Black-Scholes equation. The derivation

of the Black-Scholes equation reveals further that the portfolio weights are given by

at =
∂u

∂S
and bt =

1

r�t
(
∂u

∂t
+

1

2
�2S2

t

∂2u

∂S2
). (1.6)

The Black-Scholes equation yields a formula for pricing the option at t < T :

Theorem 1.3. The price of the European vanilla call (put) option is given by

C(S, t) = SN(d1)−Ke−r(T−t)N(d2), (1.7)

and

P (S, t) = −SN(−d1) +Ke−r(T−t)N(−d2) (1.8)

where

d1 =
log( S

K ) + (r + �2

2 )(T − t)

�
√
T − t

and d2 = d1 − �
√
T − t (1.9)

and

N(d) =
1√
2�

ˆ d

−∞
e−

x2

2 dx. (1.10)

Proof. A proof is given in [28].
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One of the main features of the Black-Scholes model is the fact that the pricing formulas

(1.7) and (1.8) as well as the hedging formulas (1.6) depend on only one non-observable

parameter - the volatility �.

As the heading already suggests there are more general stock and bond models. It is

possible to work with

dSt = �tStdt+ �tStdBt and d�t = rt�tdt (1.11)

where one assumes nothing about the coefficients in the SDEs except that the processes

(rt)t≥0 and (�t)t≥0 are both nonnegative and (St)t≥0 and (�t)t≥0 are both diffusion pro-

cesses.

This leads one to the pricing formula

Vt = �tEℚ(X/�T ∣ℱT ) (1.12)

which establishes a counterpart to the Black-Scholes equation. Here ℚ is the unique prob-

ability measure equivalent to ℙ such that the discounted asset price (St/�t)t≥0 is a ℚ

-martingal on [0, T ] and X is a random variable which can be interpreted as the value on

the underlying portfolio. The existence of ℚ is a consequence of Girsanovs Theorem. In

the special case of constant volatility �, constant drift parameter � and constant interest

rate r one can derive again the pricing and hedging formulas seen above.

1.3 The Black-Scholes Equation

In the early seventies of the last century, F. Black, M. Scholes, and R. Merton achieved

a major breakthrough in the history of modern financial economics: they published their

groundbreaking papers The pricing of options and corporate liabilities [3] and Theory of
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rational option pricing pricing [32], where they developed an option pricing formula which

later became known as the Black-Scholes formula. The foundation of their research relied

on works developed by scientists such as L. Bachelier, A. J. Boness, S.T. Kassouf, E.O.

Thorp, and P. Samuelson. The Black-Scholes formula had a huge influence on pricing

derivatives and hedging risks. It also gave rise to the growth of financial engineering in

the eighties and nineties. Merton and Scholes received the 1997 Nobel Prize in Economics

for this and related works. Though ineligible for the prize because of his death, Black was

mentioned as a contributor by the Swedish academy.

There are several assumptions underlying the Black-Scholes model of calculating options

pricing. The most significant one is that the volatility, a measure of how much a stock

can be expected to move in the near-term, and the risk-free interest rate are constant over

time and the underlying assets. The Black-Scholes model also assumes that stock prices

follow a log-normal random walk in continuous time, and that stocks pay no dividends

until expiration. The assumptions on the market conditions include no arbitrage and no

transaction costs or taxes in buying or selling the stock or the options. It is possible to

borrow and lend cash at a constant risk-free interest rate and to short sell underlying

stocks.

As time went on, the Black-Scholes model had been found as being too simple to fit the

market prices in practice. Much research has been conducted to modify the Black-Scholes

model based on geometric Brownian motion in order to incorporate two empirical features

of the stock prices:

∙ asymmetric leptokurtic features, i.e., the return distribution is skewed to the left and

has a higher peak and two heavier tails than those of the normal distribution.,

∙ volatility smile. The volatility of the stock price is assumed to be a constant in the
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Black-Scholes model, but it has been observed that the implied volatility curve which

is a function of strike and maturity resembles a ’smile’ with respect to strike price

[25].

Several more elaborate models have been proposed to fit the empirical features. Popular

ones include

∙ a Black-Scholes variant known as ARCH (Autoregressive Conditional Heteroskedasticity).

This variant replaces constant volatility with stochastic (random) volatility. A num-

ber of different models was developed after that like GARCH, E-GARCH, N-GARCH,

H-GARCH [9],

∙ a generalization of the Black-Scholes approach by assuming the spot price is a Levy

process (financial modeling with jump processes [23]),

∙ the use of local volatility, i.e., assuming that the volatility in the Black-Scholes model

is a function of time and of the prices of the underlying assets.

1.4 Adaptive Finite Element Methods

1.4.1 The Adaptive Cycle

Adaptive Finite Element Methods (AFEMs) for Partial Differential Equations (PDEs) on

the basis of a posteriori error estimates have been intensively studied during the past

decades and successfully applied to technologically relevant problems (cf., e.g., the mono-

graphs [2, 4, 5, 26, 34, 40] and the references therein). A convergence analysis of AFEMs in

case of standard Lagrangian type finite elements for linear second order elliptic boundary
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value problems has been initiated in [24] and further studied in [33], whereas the issue of

optimal complexity has been addressed in [7, 19, 38]. A convergence analysis of nonstan-

dard finite element methods such as nonconforming and mixed elements as well as edge

elements has been provided in [17, 18] and [29]. As far as parabolic initial-boundary value

problems are concerned, adaptivity in space has to be combined with an automatic time-

stepping. We refer to [6, 10, 11, 12] and [20] for details.

An adaptive edge finite element method (AEFEM) consists of successive loops of the cycle

SOLVE → ESTIMATE → MARK → REFINE .

Here, SOLVE means the numerical solution of the fully discretized problem. The following

step ESTIMATE involves the efficient and reliable a posteriori error estimation of the

global discretization error. This area has reached some state of maturity documented by a

bundle of monographs and numerous research articles published during the past decade (cf.

[2, 4, 5, 26, 40] and the references therein). The third step MARK deals with the selection

of the next time step and the selection of elements of the triangulation for coarsening

and refinement based on the information provided by the error estimators. The final step

REFINE is devoted to the technical realization of the coarsening and refinement of elements

selected in MARK.

1.4.2 Reliability and Efficiency of Error Estimators

Given some fully discrete approximation uℎ,Δt of the solution u of a time-dependent partial

differential equation, we want to gain information on the error eu(tn) := (u − uℎ,Δt)(tn)

at the time instant tn in some suitable norm ∥ ⋅ ∥ in order to improve the quality of the

approximation by an appropriate choice of the next time step and by eventually refining or

coarsening the finite element mesh. An a posteriori error estimator �ℎ,Δt is a computable
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quantity that may depend on the data of the problem (computational domain, coefficients

of the equation, right-hand side, boundary conditions), on the underlying triangulation,

and on the available approximate solution uℎ,Δt and that provides information on the error

in terms of upper and/or lower bounds.

In particular, an error estimator �ℎ,Δt is called reliable, if it provides an upper bound

for the error up to possible data oscillations oscrelℎ,Δt, i.e., if there exists a constant Crel > 0,

independent of the time-steps and mesh size of the underlying triangulation, such that

∥eu(tn)∥ ≤ Crel �ℎ,Δt + oscrelℎ,Δt. (1.13)

On the other hand, an estimator �ℎ,Δt is said to be efficient, if up to possible data oscilla-

tions osceffℎ,Δt it gives a lower bound for the error, i.e., if there exists a constant Ceff > 0,

independent of the time-steps and mesh size of the underlying triangulation, such that

�ℎ,Δt ≤ Ceff∥eu(tn)∥+ osceffℎ,Δt. (1.14)

Finally, an estimator �ℎ,Δt is called asymptotically exact, if it is both reliable and efficient

with Crel = C−1
eff .

The notion reliability is motivated by the use of the error estimator in error control.

Given a tolerance tol, an idealized termination criterion would be

∥eu(tn)∥ ≤ tol. (1.15)

Since the error ∥eu(tn)∥ is unknown, we replace it by the upper bound in (1.13), i.e.,

Crel�ℎ,Δt + oscrelℎ,Δt ≤ tol. (1.16)

We remark that the termination criterion (1.16) both requires the knowledge of Crel and

the incorporation of the data oscillation term oscrelℎ,Δt. In the special case Crel = 1 and
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oscrelℎ,Δt ≡ 0, it reduces to

�ℎ,Δt ≤ tol.

Due to (1.13), the termination criterion (1.16) guarantees the error control (1.15) which

justifies to call the error estimator reliable.

An alternative, but less used termination criterion is based on the lower bound (1.14), i.e.,

we require

1

Ceff

(

�ℎ,Δt − osceffℎ,Δt

)

≤ tol. (1.17)

Typically, the criterion (1.17) requires less computational time than (1.16) which motivates

to call the estimator efficient.
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Chapter 2

The Black-Scholes Model

2.1 Derivation of the Black-Scholes Model

Before deriving the generalized Black-Scholes model, we recall some notions of probability

theory:

Given a set Ω, let A be a �- algebra of subsets of Ω and ℙ a nonnegative measure on Ω

such that ℙ(Ω) = 1. Then, the triple (Ω,A,ℙ) is called a probability space.

A real-valued random variable X on (Ω,A,ℙ) is an A-measurable real-valued function on

Ω; i.e., for each Borel subset B of ℝ, X−1(B) ∈ A. A real-valued stochastic process (Xt)t≥0

on (Ω,A,ℙ) assigns to each time t a random variable Xt on (Ω,A,ℙ).

A filtration Ft = (At)t≥0 is an increasing family of �- algebras At, i.e., for t > � we have

A� ⊂ At ⊂ A. The �-algebras At usually represents a certain past history available at

time t.

A stochastic process (Xt)t≥0 is said to be Ft-adapted, if Xt is At-measurable for any t ≥ 0.

15



A stochastic process ! is called a Wiener process, if the following conditions hold true:

(i) !(0) = 0.

(ii) The process ! has independent increments, i.e. if r < s ⩽ t < u, then !(u) − !(t)

and !(s)− !(r) are independent stochastic variables.

(iii) For s < t, the stochastic variable !(t) − !(s) has the Gaussian distribution

N [0,
√
t− s].

(iv) ! has continuous trajectories.

Theorem 2.1. Let g be a process satisfying

ˆ b

a
E[g2(s)]ds <∞,

i.e., g is adapted to the ℱW
t -filtration. Then, there holds

E[

ˆ b

a
g(s)d!s] = 0.

Theorem 2.2. [Itô′sformula] Assume that the process X has a stochastic differential

given by

dX(t) = �(t)dt+ �(t)d!t, (2.1)

where � and � are adapted processes. For a C1,2-function f consider the process Z defined

by

Z(t) = f(t,X(t)).

Then Z has the stochastic differential

df(t,X(t)) = (
∂f

∂t
+
�2

2

∂2f

∂x2
+ �

∂f

∂x
)dt+ �

∂f

∂x
d!t. (2.2)
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We consider a security, henceforth called a stock, with price process

dS(t) = S(t)r(t)dt+ S(t)�(t, St)d!t

under risk-neutral probability ℙ. The price B is the price of a risk free asset, if it has the

dynamics

dB(t) = r(t)B(t)dt,

where r, � are any adapted continuous, bounded, and nonnegative functions.

Lemma 2.3. For a European put option with price

u(S, t) = E(e−
´ T

t
r(�)d�u0(S(T ))∣Ft) (2.3)

and payoff u0(S(T )) := (S(T )−K)− at maturity time T, where K stands for the strike, if

function P = P (S, t) satisfies the Cauchy problem

∂

∂t
P (S, t) +

�2(S, t)S2

2

∂2

∂S2
P (S, t) + r(t)S

∂

∂S
P (S, t)− r(t)P (S, t) = 0, (2.4a)

P (S, T ) = u0(S(T )), (2.4b)

an easy application of Itô’s formula shows

u(S, t) = P (S, t). (2.5)

Proof. For f(S(t), t) = e
´ T

t
r(�)d�P (S(t), t), Ito’s formula gives

df(S(t), t) = dPe
´ T

t
r(�)d� − P (S(t), t)e

´ T

t
r(�)d�)r(t)dt (2.6)

Since

dP (S(t), t) = (
∂

∂t
P (S, t) +

�2(S, t)S2

2

∂2

∂S2
P (S, t) + r(t)S

∂

∂S
P (S, t))dt +

�(S, t)
∂

∂S
P (S, t)d!t,
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we have

df(S(t), t) = e
´ T

t
r(�)d� (

∂

∂t
P (S, t) +

�2(S, t)S2

2

∂2

∂S2
P (S, t)

+r(t)S
∂

∂S
P (S, t)− P (S, t)r(t))dt+

�(S, t)
∂

∂S
P (S, t)e

´ T

t
r(�)d�d!t (2.7)

By assumption, P (S, t) actually satisfies (2.4) and hence, the drift part of (2.7) vanishes.

If �(S, t)
∂

∂S
P (S, t)e

´ T

t
r(�)d�d!t is sufficiently integrable, we obtain

P (S(T ), T ) = e
´ T

t
r(�)d�P (S, t) +

ˆ T

t
�(S, t)

∂

∂S
P (S, t)e

´ T

t
r(�)d�d!t. (2.8)

Taking the expectation of P (S(T ), T ), the stochastic integral will also vanish, whence

P (S, t) = E(e−
´ T

t
r(�)d�P (S(T ), T )). Comparing with (2.3) yields (2.5).

For convenience, we replace t by T − t which transforms the final time to an initial value

problem which reads as follows

∂

∂t
u(S, t)− �2(S, t)S2

2

∂2

∂S2
u(S, t)− r(t)S

∂

∂S
u(S, t) + r(t)u(S, t) = 0, (2.9a)

u(S, 0) = u0(S). (2.9b)

The problem (2.9a),(2.9b) has a unique strong solution u ∈ C0(ℝ+ × [0, T ]) which is C1

-regular with respect to t and C2 -regular with respect to S and satisfies 0 ⩽ u(S, t) ⩽

C(1 + S) for some constant C ∈ ℝ+, if the following assumptions are satisfied (cf., e.g.,

[35])

(A1) The function (S, t) 7→ S�(S, t) is Lipschitz continuous on ℝ+ × [0, T ], bounded

from above on ℝ+ × [0, T ] and bounded from below by a positive constant.

(A2) The function r is bounded and Lipschitz continuous.
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(A3) The Cauchy data u0 satisfies 0 ⩽ u0(S) ⩽ C(1 + S) for some C ∈ ℝ+.

For later discretization purposes, we truncate the domain in the variable S and consider

(2.9a),(2.9b) on Ω× (0, T ), where Ω := (0, S̄)

∂

∂t
u(S, t)− �2(S, t)S2

2

∂2

∂S2
u(S, t) − r(t)S

∂

∂S
u(S, t) + r(t)u(S, t) = 0, (2.10a)

u(S̄, t) = 0, (2.10b)

u(S, 0) = u0(S). (2.10c)

2.2 Variational Formulation of the Black-Scholes Equation

We use standard notation from Lebesgue and Sobolev space theory and denote by D(Ω)

the space of infinitely often differentiable functions with compact support in Ω ⊂ ℝ+ and

by L2(Ω),Ω ⊆ ℝ+, the Hilbert space of square integrable functions on Ω with inner product

(⋅, ⋅)0,Ω and associated norm ∥ ⋅ ∥0,Ω. We further refer to H1(Ω) as the Hilbert space of

square integrable functions with square integrable weak derivatives equipped with the norm

∥ ⋅ ∥1,Ω. The Hilbert spaces L2((0, T )) and H1((0, T )) are defined analogously.

In order to derive an appropriate variational formulation of (2.10a)-(2.10c), we introduce

the weighted Sobolev space

V = {v : v ∈ L2(Ω), S
∂v

∂S
∈ L2(Ω)}, (2.11)

endowed with the inner product

(v,w)V :=

ˆ

Ω
(v(S)w(S) + S2 ∂v

∂S
(S)

∂w

∂S
(S))dS, (2.12)

where
∂v

∂S
stands for the weak derivative, and we refer to ∥ ⋅ ∥V as the associated norm.

We define V0 as the closure of D(Ω) in V . Then, it is easy to see that V0 is a closed
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subspace of V with v(S̄) = 0 for v ∈ V0. Moreover, the following Poincaré-Friedrichs

inequality holds true:

Lemma 2.4. (Poincaré-Friedrichs inequality) For all v ∈ V0 there holds

∥v∥L2(Ω) ≤ 2∣v∣V . (2.13)

Proof. Since D(Ω) is dense in V0, it suffices to prove (2.13) for v ∈ D(Ω). Obviously, we

have

∥v∥2L2(Ω) =

ˆ

Ω
v2dS = −2

ˆ

Ω
Sv

∂v

∂S
(S)dS.

An application of the Cauchy-Schwarz inequality to the right-hand side gives

∣
ˆ

Ω
Sv

∂v

∂S
(S)dS∣ ≤ (

ˆ

Ω
(S
∂v

∂S
(S))2dS)1/2(

ˆ

Ω
v(S)2dS)1/2

from which we deduce the desired result.

Consequently, the semi-norm

∣v∣V = (

ˆ

Ω
S2(

∂v

∂S
)2dS)1/2,

is in fact a norm on V0 equivalent to ∥ ⋅ ∥V . We refer to V ∗
0 as the dual of V0 with norm

∥ ⋅ ∥V ∗
0
and to ⟨⋅, ⋅⟩V ∗

0
,V0

as the dual pairing between V0 and V ∗
0 .

We further denote by L2((0, T );L2(Ω)) the Hilbert space equipped with the norm

∥u∥2L2((0,T );L2(Ω)) :=

T̂

0

∥u(t)∥20,Ω dt

and define L2((0, T );V0) and ∥⋅∥L2((0,T );V0) analogously. Moreover, we introduceH1((0, T );V ∗
0 )

as the Hilbert space with the norm

∥u∥2H1((0,T );V ∗
0
) :=

T̂

0

(

∥u(t)∥2V ∗
0
+ ∥ut(t)∥2V ∗

0

)

dt.
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where ∥u∥V ∗
0
= supv∈V0

(u,v)
∣v∣V

.

Now, multiplying (2.10a) by v ∈ V0 and integrating over Ω, we obtain

0 =

ˆ

Ω

∂

∂t
u(S, t)v(S)dS −

ˆ

Ω

�2(S, t)S2

2

∂2

∂S2
u(S, t)v(S)dS

−r(t)
ˆ

Ω
S
∂

∂S
u(S, t)v(S)dS + r(t)

ˆ

Ω
u(S, t)v(S)dS. (2.14)

Integrating by parts and applying the fact that v(S̄) = 0 results in

0 =

ˆ

Ω

∂

∂t
u(S, t)v(S)dS +

ˆ

Ω

�2(S, t)S2

2

∂u

∂S
(S, t)

∂v

∂S
(S)dS

+

ˆ

Ω
(�2(S, t)S�(S, t) +

∂�

∂S
(S, t)− r(t))S

∂

∂S
u(S, t)v(S)dS

+r(t)

ˆ

Ω
u(S, t)v(S)dS. (2.15)

In view of (2.15), we introduce the bilinear form at(⋅, ⋅) : V0 × V0 → ℝ according to

at(u, v) = (
�2

2
S
∂u

∂S
, S
∂v

∂S
) + ((−r + �2 + S�

∂�

∂S
)S
∂u

∂S
, v) + r(u, v). (2.16)

Consequently, the boundary value problem (2.10a)-(2.10c) has the following variational

formulation: Find u ∈ H1((0, T );V ∗
0 ) ∩ L2((0, T );V0) such that for all v ∈ V0

⟨∂u
∂t
, v⟩V ∗

0
,V0

+ at(u, v) = 0, (2.17a)

(u(⋅, 0), v)0,Ω = (u0, v)0,Ω. (2.17b)

We note that H1((0, T );V ∗
0 )∩L2((0, T );V0) is continuously embedded in C0([0, T ];L2(Ω))

(cf., e.g., [35]).

In order to prove existence and uniqueness of a solution of (2.17a),(2.17b), we impose the

following assumptions on � and r

(A4) The function � is continuously differentiable, and there exist constants
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0 < �min ≤ �max and C� > 0, such that for all (S, t) ∈ Ω× [0, T ] there holds

�min ≤ �(S, t) ≤ �max, (2.18a)

∣S ∂�
∂S

(S, t)∣ ≤ C�. (2.18b)

(A5) The function r is continuous and nonnegative on [0, T ].

We first prove that under assumptions (A4) and (A5) the bilinear form at(⋅, ⋅) is bounded

and satisfies a G̊arding’s-type inequality.

Lemma 2.5. Under assumptions (A4) and (A5) there exists a constant � > 0 such that

for all v,w ∈ V0 there holds

∣at(v,w)∣ ≤ �∣v∣V ∣w∣V . (2.19)

Proof. In view of (A4) we obtain

∣(�
2

2
S
∂u

∂S
, S
∂v

∂S
)∣ ≤ �2max

2
∣v∣V ∣u∣V ,

Let R = maxt∈[0,T ]r(t). Then, by (A4), (A5) and the Poincaré-Friedrichs inequality

∣((−r + �2 + S�
�

S
)S
∂u

∂S
, v)∣ ≤ ∣R+ �2max + C��max∣∣u∣V ∥v∥L2(Ω)

≤ 2∣R + �2max + C��max∣∣u∣V ∣v∣V .

The Cauchy-Schwarz inequality and the Poincaré-Friedrichs inequality imply

∣r(u, v)∣ ≤ ∣R∣∥u∥0,Ω∥v∥0,Ω ≤ 4R∣u∣V ∣v∣V

Finally, (2.19) follows with � =
�2max

2
+ 2∣R + �2max + C��max∣+ 4R.
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Lemma 2.6. (G̊arding’s inequality)

Under assumptions (A4) and (A5) there exists a nonnegative constant � such that for

all v ∈ V0 there holds

at(v, v) ≥
1

4
�2min∣v∣2V − �∥v∥2. (2.20)

Proof. Using (A4), (A5) and R = maxt∈[0,T ]r(t), straightforward computations reveal the

following three inequalities

∣(�
2

2
S
∂v

∂S
, S

∂v

∂S
)∣ ≥ �2min

2
∣v∣2V ,

∣((−r + �2 + S�
∂�

∂S
)S
∂u

∂S
, v)∣ ≤ ∣R+ �2max + C��max∣∣u∣V ∥v∥L2(Ω)

≤ �2min

4
∣v∣2V + �̂∣V ∥v∥L2(Ω),

where �̂ = (R+ �2max + C��max)
2/�2min. Since

∣r(v, v)∣ ≤ 4R∣v∣2V ,

(2.20) follows with � = max(0, �̂ − 4R).

The previous results immediately give rise to the existence and uniqueness of the solution

of (2.17a), (2.17b).

Theorem 2.7. Suppose that the assumptions (A4), (A5) are satisfied and u0 ∈ L2(Ω).

Then, the variational formulation (2.17a),(2.17b) has a unique solution. Moreover, for all

0 < t < T there holds

e−2�t∥u(t)∥20,Ω +
1

2
�2min

t
ˆ

0

e−2�s∣u(s)∣2V ds ≤ ∥u0∥20,Ω. (2.21)

Proof. Existence can be shown by the Galerkin method, i.e., by constructing a sequence

un ∈ C1((0, T );Vn), n ∈ N , of solutions of (2.17a),(2.17b) in finite dimensional subspaces
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Vn ⊂ V0 that are limit-dense in V0 and then passing to the limit. For details of the existence

proof we refer to [35]. Uniqueness readily follows from (2.21). For the proof of (2.21), we

choose v = u(t)e−2�t in (2.17a) and integrate over (0, t) which gives

ˆ t

0
(
∂u

∂t
, u(�)e−2�� )d� +

ˆ t

0
a� (u(�), u(�)e

−2�� )d� = 0. (2.22)

Integrating by parts, we obtain

∥u0∥2 = ∥u(t)∥2e−2�t −
ˆ t

0
(u,

∂u

∂t
e−2�� − 2�ue−2�� )d� +

ˆ t

0
e−2��at(u(�), u(�))d�.

Now, setting

[[v]](t) := (e−2�t∥v(t)∥2 + 1

2
�2min

ˆ t

0
e−2�t∣v(�)∣2V d�)

1

2 ,

an application of G̊arding’s inequality yields

∥u0∥2

≥ ∥u(t)∥2e−2�t −
ˆ t

0
(u,

∂u

∂t
e−2�� − 2�ue−2�� )d� +

ˆ t

0
e−2�� (

1

4
�2min∣u∣2V − �∥u∥2)d�

= [[v]]2(t)− 1

4

ˆ t

0
e−2���2min∣u∣2V d� −

ˆ t

0
(u,

∂u

∂t
e−2�� − 2�ue−2�� )d�

≥ [[v]]2(t)−
ˆ t

0
e−2��a�d� −

ˆ t

0
(u(�)e−2�� ,

∂u

∂t
)d�

= [[v]]2(t),

from which we deduce (2.21).

The stability estimate (2.21) motivates to consider the norm

[[v]](t) = (e−2�t∥v(t)∥2 + 1

2
�2min

ˆ t

0
e−2�t∣v(�)∣2V d�)

1

2 , (2.23)

so that (2.21) reads

[[u]](t) ≤ ∥u0∥. (2.24)

Similar techniques as in the proof of (2.21) allow to establish the following estimate.
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Lemma 2.8. For any u ∈ H1([0, T ];V ∗
0 ) ∩ L2(0, T ;V0) ⊂ C0([0, T ];L2(Ω)) there holds

∥e−�t ∂u

∂t
∥L2((0,T );V ∗

0
) ≤

√
2

�

�min
∥u0∥. (2.25)

Proof. In view of Lemma 2.5 and (2.22) we get

∣
ˆ T

0
(
∂u

∂t
, u(�)e−2�� )d� ∣

≤
ˆ t

0
∣a� (u(�), u(�)e−2�� )∣d�

≤
√
2

�

�min
[[u]](T )∣v∣,

whence

∥e−�t ∂u

∂t
∥L2(0,T ;V ∗

0
) ≤

√
2

�

�min
∥u0∥.
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Chapter 3

Discretization of the Black-Scholes

Equation

For the discretization of the variational formulation (2.17a),(2.17b) of the Black-Scholes

equation we use Rothe’s method, i.e., we first consider a semidiscretization in time by the

implicit Euler scheme which amounts to the solution of an elliptic subproblem for each

time step. The elliptic subproblems are then approximated by continuous, piecewise linear

finite elements with respect to simplicial triangulations of the spatial domain Ω.

3.1 Semidiscretization in Time

We consider a partition of the interval [0, T ] into subintervals [tn−1, tn], 1 ≤ n ≤ N , such

that

0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T.
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Set Δtn := tn − tn−1,Δt := max{Δtn ∣ 1 ≤ n ≤ N} and

�Δt := max
2≤n≤N

Δtn
Δtn−1

. (3.1)

For continuous function f on [0, T ], we introduce the notation fn = f(tn). The semidiscrete

problem arising from the implicit Euler scheme is as follows: Find (un)0≤n≤N ∈ V0 such

that

(un − un−1, v)0,Ω +Δtnatn(u
n, v) = 0, v ∈ V0 , 1 ≤ n ≤ N, (3.2a)

u0 = u0. (3.2b)

The existence and uniqueness of the solution un ∈ V0 of (3.2a),(3.2b) can be shown for

sufficiently small time step Δtn.

Theorem 3.1. Under the assumptions (A4), (A5) and the time step restriction

Δtn <
1

2�
(3.3)

the semidiscrete problem (3.2a),(3.2b) admits a unique solution.

Proof. We note that (3.2a) can be equivalently written as

cn(u
n, v) = (un−1, v)0,Ω , v ∈ V0,

where the bilinear form cn(⋅, ⋅) : V0 × V0 → ℝ is given by

cn(v,w) = Δtnatn(v,w) + (v,w)0,Ω , v, w ∈ V0.

Due to (A4), (A5), the bilinear form cn(⋅, ⋅) : V0 × V0 → ℝ is bounded. Moreover, taking

additionally (3.3) into account, it is V0-elliptic as well, i.e., there exists a constant � > 0

such that

cn(v, v) ≥ �∥v∥2V , v ∈ V0.

Hence, the assertion follows from the Lax-Milgram Lemma (cf., e.g., [13]).
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For the sequence (um)1≤m≤n, n ≤ N, we introduce a discrete norm [[um]]n as the discrete

analogue of [[u]](t) (cf. (2.23)) according to

[[um]]n :=
(( n∏

i=1

(1− 2�Δti)
)

∥un∥20,Ω + (3.4)

1

2
�2min

n∑

m=1

Δtm

(m−1∏

i=1

(1− 2�Δti)
)

∣um∣2V
)1/2

. (3.5)

As a counterpart of (2.24) we obtain:

Lemma 3.2. Under the assumptions of Theorem 3.1 there holds

[[um]]n ≤ ∥u0∥0,Ω. (3.6)

Proof. By Young’s inequality we have

(1− 2�Δtn)∥un∥20,Ω +
1

2
Δtn�

2
min∣un∣2V ≤ ∥un−1∥20,Ω. (3.7)

Multiplication of (3.7) by
∏n−1

i=1 (1− 2�Δti) and summation over n gives the assertion.

Given the sequence (un)1≤n≤N of solutions of (3.2a),(3.2b), we introduce the function

uΔt on [0, T ] by

uΔt(t)∣[tn−1,tn] := un−1 + (Δtn)
−1(t− tn−1)(un − un−1), 1 ≤ n ≤ N, (3.8)

which obviously is affine on each interval [tn−1, tn], 1 ≤ n ≤ N .

The following result establishes the equivalence of [[um]]n and [[uΔt]](tn) which will be used

later in chapter 4.

Lemma 3.3. Suppose that (A4), (A5) hold true. Then, there exists a positive constant

� ≤ 1
2 such that for

Δt ≤ �

�
(3.9)
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and for any family (vn)0≤n≤N ∈ V N+1
0 there holds

1

8
[[(vm)]]2n ≤ [[vΔt]]

2(tn) ≤ max(2, 1 + �Δt)[[(v
m)]]2n +

1

2
�2minΔt1∣v0∣2V , (3.10)

where �Δt is given by (3.1).

Proof. (i) Proof of the left inequality: In view of (3.8) we have

e2�tm−1

Δtm

ˆ tm

tm−1

e−2�� ∣vΔt∣2V (�)d� = (3.11)

ˆ 1

0
e−2�Δtm� (∣vm∣2V �2 + ∣vm−1∣2V (1− �)2 + 2(vm−1, vm)∗V �(1− �))d�.

where

(vm−1, vm)∗V :=

ˆ

Ω
S
∂vm−1

∂S
S
∂vm

∂S
dS.

If Δtm = 0, for the right-hand side in (3.11) we obtain

1

3
(∣vm∣2V + ∣∣2V + (vm, vm−1)V ),

which can be estimated from below by 1
4 ∣vm∣2V due to the inequality ab ≥ −a2

4 − b2.

If Δtm ∕= 0, we use that e−2�Δtm� is continuous with respect to � . The mean value

theorem of integral calculus implies the existence of a positive constant �̂ ∈ (0, 1] such that

the right-hand side in (3.11) is equal to

e−2�Δtm�̂

ˆ 1

0
(∣um∣2V �2 + ∣um−1∣2V (1− �)2 + 2(um−1, um)∗V �(1− �))d�.

Consequently, there exists a constant � ≤ 1
2 such that for Δt ≤ �

� there holds

e2�tm−1

Δtm

ˆ tm

tm−1

e−2�� ∣uΔt∣2V (�)d� ≥ 1

8
∣∣2V ,

whence
ˆ tm

tm−1

e−2�� ∣uΔt∣2V (�)d� ≤ Δtm
8

e−2�tm−1 ∣vm∣2
V . (3.12)
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By Taylor Expansion, for 2�Δt < 1 we get

m−1∏

i=1

(1− 2�Δti) ≤ e−2�tm−1 ,

which together with (3.12) yields

1

2
�2min

n∑

m=1

Δtm(

m−1∏

i=1

(1− 2�Δti))∣vm∣2V ≤ 8(
1

2
�2min

ˆ tn

0
e−2�� ∣uΔt∣2V (�)d�). (3.13)

Since ∥vtnΔt∥ = ∥vn∥, it follows that

(

m−1∏

i=1

(1− 2�Δti))∥vn∥2 ≤ e−2�tn∥vnΔt∥. (3.14)

The inequalities (3.13) and (3.14) give rise to the upper bound for [[(vm)]]n.

(ii) Proof of the right inequality: In view of the identity (3.11), we obtain the estimate

e2�tm−1

Δtm

ˆ tm

tm−1

e−2�� ∣uΔt∣2V (�)d�

≤ ∣vm∣2V
ˆ 1

0
e−2�Δtm�d� + ∣vm−1∣2V

ˆ 1

0
e−2�Δtm(1− �)d�

≤ 1

2
(∣vm−1∣2V + ∣vm∣2V ),

from which it follows that

ˆ tn

0
e−2�� ∣uΔt∣2V (�)d� ≤ 1

2

n∑

m=1

Δtme
2�tm−1(∣vm−1∣2V + ∣vm∣2V )

We can find a constant �2 <
1
2 such that

Δt ≤ �2

�
.

Taylor expansion for e−2�Δti (i = 1, . . . ,m− 1) gives

e−2�tm−1 ≤ 2

m−1∏

i=1

(1 − 2�Δti), (3.15)
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from which we deduce

ˆ tn

0
e−2�� ∣vΔt∣2V (�)d� ≤

m−1∑

n

Δtm

m−1∏

i=1

(1− 2�Δti)(∣vm−1∣2V + ∣vm∣2V )

≤ (1 + �Δt)
n∑

m=1

Δtm

m−1∏

i=1

(1− 2�Δti)∣vm∣2V +Δt1∣v0∣2V .

For Δt ≤ �2

� we have

e−2�tm−1∥vn∥2 ≤ 2

m−1∏

i=1

(1 − 2�Δti)∥vn∥2.

We conclude by choosing � := min(�1, �2).

From (3.6) and (3.10), we get the following relation for all n, 1 ≤ n ≤ N ,

[[uΔt]](tn) ≤ C(u0), (3.16)

where

C(u0) = (max(2, 1 + �Δt)∥u0∥2 +
1

2
�2minΔt1∣u0∣2V )

1

2 . (3.17)

3.2 Fully Discretized Problem

Given a null sequence ℋ of positive real numbers, for the discretization of the semidiscrete

problems (3.2a),(3.2b) in space, we use continuous, piecewise linear finite elements with

respect to a family of simplicial triangulations Tnℎ, 1 ≤ n ≤ N, of Ω. For T ∈ Tnℎ, we

denote by Smin(T ), Smax(T ) the endpoints of T and refer to ℎT := Smax(T ) − Smin(T ) as

the length of T and to ℎn := max{ℎT ∣ T ∈ Tnℎ} as the maximal size of the intervals in

Tnℎ. Moreover, for D ⊆ Ω we refer to Nnℎ(D) as the set of nodes of Tnℎ in D and associate

with each T ∈ Tnℎ the patch !T according to

!T :=
∪

{T ′ ∈ Tnℎ ∣ Nnℎ(T
′) ∩Nnℎ(T ) ∕= ∅}. (3.18)
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We assume that the family of triangulations is locally quasi-uniform in the sense that there

exists a constant � > 0 such that for two adjacent elements T, T
′ ∈ Tnℎ there holds

ℎT ≤ �ℎT ′ , ℎ ∈ ℋ. (3.19)

For each ℎ ∈ ℋ, we define the finite element spaces by

Vnℎ := {vnℎ ∈ C0(Ω) ∣ vnℎ ∣T ∈ P 1(T ), T ∈ Tnℎ}, (3.20a)

V 0
nℎ := Vnℎ ∩ V0, (3.20b)

where P 1(T ) stands for the linear space of polynomials of degree 1 on T .

Assuming that u0 ∈ V1ℎ, the fully discrete problem reads as follows: Find (unℎ)1≤n≤N ,

unℎ ∈ V 0
nℎ, 1 ≤ n ≤ N, such that

(unℎ − un−1
ℎ , vℎ)0,Ω +Δtnatn(u

n
ℎ, vℎ) = 0 , vℎ ∈ V 0

nℎ, (3.21a)

u0ℎ = u0, (3.21b)

Theorem 3.4. Assume that (A4), (A5) and (3.3) hold true. Then, the fully discrete

problem admits a unique solution. Moreover, for the sequence (umℎ )1≤m≤n, 1 ≤ n ≤ N, we

have the stability estimate

[[(umℎ )]]n ≤ ∥u0∥0,Ω. (3.22)

Proof. Existence and uniqueness follow from the Lax-Milgram Lemma, since V 0
nℎ ⊂ V0, 1 ≤

n ≤ N . The estimate is an immediate consequence of Lemma 3.2.

As in section 3.1 (cf. (3.8)) we define uℎ,Δt as the piecewise affine function

uℎ,Δt(t)∣[tn−1,tn] := Pn
ℎ u

n−1
ℎ + (Δtn)

−1(t− tn−1)(u
n
ℎ − Pn

ℎ u
n−1
ℎ ), 1 ≤ n ≤ N, (3.23)

where Pn
ℎ u

n−1
ℎ is the L2-projection of un−1

ℎ onto V 0
nℎ.
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Chapter 4

A Posteriori Error Analysis

In this chapter, we will provide a residual-type a posteriori error estimation for the error

[[u− uℎ,Δt]](tn) , 1 ≤ n ≤ N,

where [[⋅]](t) is the norm given by (2.23). It consists of computable error estimators re-

flecting the contributions to the error due to the discretizations in time by the implicit

Euler scheme and in space by the finite element approximation described in the previous

sections 3.1 and 3.2. The error estimators will be presented in section 4.1 followed by an

a posteriori error analysis which establishes the reliability of the estimators in section 4.2

and their efficiency in section 4.3.

The a posteriori error analysis requires more assumptions on the data of the problem:

(A6) The functions � and S ∂�
∂S are Lipschitz continuous on [0, T ] uniformly in S ∈ Ω̄,

and the function r is Lipschitz continuous on [0, T ]. In particular, there exists positive
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constants Ci, 1 ≤ i ≤ 3, such that for all t, t′ ∈ [0, T ] there holds

∥�2(⋅, t)− �2(⋅, t′)∥L∞(0,S̄) ≤ C1∣t− t′∣, (4.1)

∥ − r(t) + r(t′) +
�2(⋅, t) − �2(⋅, t′)

2
+ S(�(⋅, t) ∂�

∂S
(⋅, t) − �(⋅, t′) ∂�

∂S
(⋅, t′))∥L∞(0,S̄)

≤ C2∣t− t′∣, (4.2)

∣r(t)− r(t′)∣ ≤ C3∣t− t′∣. (4.3)

Throughout this chapter, for quantities A,B ∈ ℝ+ we will use the notation A ≲ B, if there

exists a constant c > 0, independent of Δtn and ℎT , T ∈ Tnℎ, 1 ≤ n ≤ N,ℎ ∈ ℋ, such that

A ≤ cB.

4.1 The A Posteriori Error Estimator

For the fully discretized Black-Scholes equations (3.21a) and (3.21b), the global discretiza-

tion error u− uℎ,Δt can be assessed by a time error estimator and a price error estimator.

The time error estimator is local in time and global in price. It is given by

�n :=
√

Δtn e
−�tn−1

�min√
2

∣unℎ − un−1
ℎ ∣V , 1 ≤ n ≤ N, (4.4)

where �min > 0 and � ≥ 0 are the constants from the ellipticity assumption (2.18a) and

G̊arding’s inequality (2.20).

On the other hand, the price error estimator is local both in time and price. It is given by

�n,T :=
ℎT

Smax(T )
∥RT (u

n−1
ℎ , unℎ)∥0,T , T ∈ Tnℎ , 1 ≤ n ≤ N, (4.5)

where RT (u
n−1
ℎ , unℎ) stands for the residual with respect to the strong form (2.10a)-(2.10c)

of the Black-Scholes equation

RT (u
n−1
ℎ , unℎ) :=

unℎ − un−1
ℎ

Δtn
− rS

∂unℎ
∂S

+ runℎ. (4.6)
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Remark 4.1. Since unℎ ∈ V 0
nℎ is piecewise linear, we have ∂2unℎ/∂S

2∣T ≡ 0, T ∈ Tnℎ(Ω),

and hence, this term does not occur in (4.6). However, if higher-order finite elements are

used for the discretization in space, this term has to be included in the residual, i.e., the

residual then reads

RT (u
n−1
ℎ , unℎ) :=

unℎ − un−1
ℎ

Δtn
− �2S2

2

∂2unℎ
∂S2

− rS
∂unℎ
∂S

+ runℎ. (4.7)

Remark 4.2. Compared to residual-type a posteriori error estimators derived for parabolic

initial-boundary value problems on bounded domains of dimension ≥ 2 (cf., e.g., [20]),

the price error term �n,T does not contain jumps [∂unℎ/∂S]Si
of the derivatives ∂unℎ/∂S

in the nodal points Si ∈ Nnℎ(Ω), 1 ≤ i ≤ Nnℎ. The reason is as follows: For conforming

finite element discretizations, residual-type a posteriori error estimators are usually derived

by taking advantage of Galerkin orthogonality (cf. (4.25) below) and by using suitable

interpolation or quasi-interpolation operators Pn
ℎ : V0 → V 0

nℎ with specific stability and

local approximation properties such as the Scott-Zhang interpolation operator [16] or the

Clément quasi-interpolation operator [40]. The standard interpolation operator Inℎ : V0 →

V 0
nℎ from finite element analysis [16] can not be used, since V0 is not continuously embedded

in C0(Ω̄). The situation is different, however, in one space dimension, where due to the

Sobolev embedding theorem [16] the embedding V0 → C0(Ω̄) is continuous indeed. In

particular, it will be shown in section 4.2 below (cf. Lemma 4.5 and Proposition 4.6)

that an interpolation operator can be constructed such that the jump terms vanish in the

evaluation of the residuals (cf. (4.27)). However, if the Scott-Zhang interpolation operator

or the Clément quasi-interpolation operator is used instead, the jump terms do not vanish

and enter the price error term �n,T according to

�n,T :=
ℎT

Smax(T )
∥RT (u

n−1
ℎ , unℎ)∥0,T +

ℎ
1/2
T

4

∑

Si∈Nnℎ(T )∩Nnℎ(Ω)

�2(tn, , Si)S
2
i ∣[
∂unℎ
∂S

]Si
∣. (4.8)

We emphasize that for parabolic problems in spatial domains of dimension ≥ 2 such as
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the Black-Scholes equation for European basket options [37] the jumps [n ⋅ ∇unℎ]F of the

normal derivatives n ⋅ ∇unℎ across interior faces F of the simplicial triangulation of the

computational domain always enter the price error term.

4.2 Reliability of the Estimators

The main result of this section is the reliability of the error estimators.

Theorem 4.3. Under the assumptions (A4)− (A6) and u0 ∈ V 0
1ℎ let u ∈ H1((0, T );V ∗

0 )∩

L2((0, T );V0) be the solution of (2.17a),(2.17b) and let uℎ,Δt be given by (3.23) in terms

of the solution (unℎ)0≤n≤N of the fully discrete problem (3.21),(3.21a). Moreover, let �n

and �n,! be the time error and price error estimators given by (4.4) and (4.5), respectively.

Then, there exists a positive constant � ≤ 1
2 such that for �Δt ≤ � there holds

[[u− uℎ,Δt]](tn) ≲ (4.9)

( C

�2min

C(u0Δt) +
�

�2min

( n∑

m−1

�2m +
Δtm
�2min

�(�Δt)

m−1∏

i=1

(1− 2�Δti)
∑

T∈Tnℎ

�2m,T

)1/2)

,

where C := 4C1 + 2C2 + C3, C(u0) is given by (3.17) and

�(�Δt) := (1 + �Δt)
2∣∣u0∣∣2 +max(2, 1 + �Δt). (4.10)

The proof of Theorem 4.3 will be provided by splitting the error [[u − uℎ,Δt]](tn) ac-

cording to

[[u− uℎ,Δt]](tn) ≤ [[u− uΔt]](tn) + [[uΔt − uℎ,Δt]](tn) (4.11)

and to estimate the two terms on the right-hand side separately.

Proposition 4.4. Under the assumptions of Theorem 4.3 there exists a constant � ≤ 1
2
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such that for Δt ≤ �
� there holds

[[u− uΔt]](tn) ≲
( L

�2min

C(u0)Δt+ [[uΔt − uℎ,Δt]](tn) +
�

�2min

(

n∑

m=1

�2m

)1/2)

. (4.12)

Proof. For any t ∈ (tn−1, tn] and v ∈ V0 we have

(
∂

∂t
uΔt(t), v) + at(uΔt(t), v)

= (
un − un−1

Δtn
, v) + at(uΔt(t), v) − atn(uΔt(t), v)+

atn(uΔt(t)− un, v) + atn(u
n, v).

Subtracting the previous equation from (2.17a) it follows that

(
∂

∂t
(u− uΔt)(t), v) + at((u− uΔt)(t), v) = −(

un − un−1

Δtn
, v)−

at(uΔt(t), v) + atn(uΔt(t), v) − atn(uΔt(t)− un, v)− atn(u
n, v).

In view of (3.2a) we obtain

(
∂

∂t
(u− uΔt)(t), v) + at((u− uΔt)(t), v) (4.13)

= −at(uΔt(t), v) + atn(uΔt(t), v) − atn(uΔt(t)− un, v).

We choose v(t) = (u − uΔt)(t)e
−2�t and integrate the first term on the right-hand side of

(4.13) over (tm−1, tm) which results in

ˆ tm

tm−1

∂

∂t
(u− uΔt)(t)(u − uΔt)(t)e

−2�dt =

1

2

(

(u− uΔt)
2(t)e−2�t∣tmtm−1

+ 2�

ˆ tm

tm−1

(u− uΔt)
2(t)e−2�tdt

)

.

Summation over m from m = 1 to m = n and observing (u− uΔt)(t0) = 0 yields

n∑

m=1

ˆ tm

tm−1

(
∂

∂t
(u− uΔt)(t), (u − uΔt)(t)e

−2�)dt = (4.14)

1

2
∥u− uΔt∥2(tn)e−2�tn + �

n∑

m=1

ˆ tm

tm−1

∥u− uΔt∥2(t)e−2�tdt].
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Integrating both sides of (4.13) over (tm−1, tm) and summing up, we get

n∑

m=1

ˆ tm

tm−1

(
∂

∂t
(u− uΔt)(t), v)dt = (4.15)

n∑

m=1

(−
ˆ tm

tm−1

a� ((u− uΔt)(�), v)d�−
ˆ tm

tm−1

(a� (uΔt(�), v) − a� (uΔt(�), v))d� −
ˆ tm

tm−1

atm(uΔt(�)− um, v)d�.

Combining (4.14) and (4.15), it follows that

1

2
∥u− uΔt∥2(tn)e−2�tn + �

n∑

m=1

ˆ tm

tm−1

∥u− uΔt∥2(t)e−2�tdt] = (4.16)

n∑

m=1

(−
ˆ tm

tm−1

a� ((u− uΔt)(�), v)d� −
ˆ tm

tm−1

(a� (uΔt(�), v) − a� (uΔt(�), v))d�−
ˆ tm

tm−1

atm(uΔt(�)− um, v)d�.

Due to G̊arding’s inequality there holds

n∑

m=1

ˆ tm

tm−1

a� ((u− uΔt)(�), v)d� ≥ (4.17)

n∑

m=1

(
1

4

ˆ tm

tm−1

�2min∣u− uΔt∣2V e−2��d� − �

ˆ tm

tm−1

∥u− uΔt∥2e−2��d�).

Using (4.16) and (4.17), we get

[[u− uΔt]]
2(tn) ≤ (4.18)

− 2

n∑

m=1

ˆ tm

tm−1

(a� (uΔt(�), v) − atm(uΔt(�), v))d�

− 2
n∑

m=1

ˆ tm

tm−1

atm(uΔt(�)− um, v)d�.

Now, we will evaluate each term on the right-hand side of (4.18). Using the assumptions
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(A6), (A7) and (A8), it follows that

∣
ˆ tm

tm−1

(a� (uΔt(�), v) − atm(uΔt(�), v))d� ∣ (4.19)

≤ Δtm[
2C1

�2min

ˆ tm

tm−1

�2min

2
∣(S ∂uΔt

∂S
, S
∂v

∂S
)∣

+
2C2

�2min

ˆ tm

tm−1

�2min∣(S
∂uΔt

∂S
, v)∣ + 2L3

�2min

ˆ tm

tm−1

�2min∣(uΔt, v)∣]

≤ 2C1 + C2 + C3/2

�2min

ˆ tm

tm−1

�2min

2
∣uΔt∣V ∣u− uΔt∣V e−2��d�

≤ 2C1 + C2 + C3/2

�2min

(

ˆ tm

tm−1

�2min

2
∣uΔt∣2V e−2��d�)1/2

⋅ (
ˆ tm

tm−1

�2min

2
∣u− uΔt∣2V e−2��d�)1/2.

Setting C := 4C1 + 2C2 + C3 and taking

C(u0) ≥ [[uΔt]](tn) ≥ (
1

2
�2min

ˆ tn

0
e−2�� ∣uΔt(�)∣2V d�)1/2

into account, we obtain

2∣
n∑

m=1

ˆ tm

tm−1

(a� (uΔt(�), v) − atm(uΔt(�), v))d� ∣ (4.20)

≤ L

�2min

C(u0)Δt(

n∑

m=1

ˆ tm

tm−1

�2min

2
∣u− uΔt∣2V e−2��d�)1/2

≤ L

�2min

C(u0)Δt[[u− uΔt]]tn.

For the second term on the right-hand side of (4.19), Lemma 2.5 and the Cauchy-Schwarz

inequality give

∣
ˆ tm

tm−1

atm(uΔt(�)− um, v)d� ∣

≤ �(

ˆ tm

tm−1

∣uΔt(�)− um∣2V e−2��d�)1/2(

ˆ tm

tm−1

∣v∣2V e2��d�)1/2

≤
√
2�

�min
(

ˆ tm

tm−1

∣uΔt(�)− um∣2V e−2��d�)1/2(

ˆ tm

tm−1

�2min

2
∣u− uΔt∣2V e2��d�)1/2.
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Since

uΔt(�)− um =
tm − �

Δtm
(um−1 − um),

we have

(

ˆ tm

tm−1

∣uΔt(�)− um∣2V e−2��d�)
1

2

= ∣um−1 − um∣V (
ˆ tm

tm−1

(
tm − �

Δtm
)2e−2��d�)

1

2

≤ (
Δtm
3

)
1

2 e−�tm−1 ∣um−1 − um∣V ,

whence

( ˆ tm

tm−1

∣uΔt(�)− um∣2V e−2��d�
) 1

2

(4.21)

≤ Δtme
−2�tm−1

(

∣um−1
ℎ − umℎ ∣2V + ∣um−1 − um−1

ℎ ∣2V + ∣um − umℎ ∣V )2
)

.

Using (3.15) and (3.10), for the sum over m of the last two terms on the right-hand side

in (4.21) we find

2(1 + �Δt)

n∑

m=1

Δtm

m−1∏

i=1

(1− 2�Δti)∣um − umℎ ∣2V

≤ 32

�2min

(1 + �Δt)[[uΔt − uℎ,Δt]]
2(tn),

from which we derive the following upper bound for the last term of the right-hand side of

(4.18),

∣2
n∑

m=1

ˆ tm

tm−1

atm(uΔt(�)− um, v)d� ∣ (4.22)

≤ 4�

�2min

(16(1 + �Δt)[[uΔt − uℎ,Δt]]
2(tn)+

n∑

m=1

Δtme
−2�tm−1

�2min

2
∣umℎ − um−1

ℎ ∣2V )1/2[[u− uΔt]](tn).

Finally, the desired estimate follows from (4.20) and (4.22).
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Referring to the discussion in Remark 4.2 above, for the estimation of the discretization

error uΔt − uℎ,Δt from above, an interpolation operator Inℎ : V 0 → V 0
nℎ with appropriate

local approximation properties will be provided by the following lemma.

Lemma 4.5. Let Si, 0 ≤ i ≤ Nnℎ, be the grid points of the triangulation Tnℎ such that

0 = S0 < S1 < ⋅ ⋅ ⋅ < SNnℎ
= S̄ and define Inℎ : V 0 → V 0

nℎ according to

Inℎ v(Si) = v(Si) , 1 ≤ i ≤ Nnℎ ,

ˆ S1

S0

(v − Inℎ v)dS = 0.

Then, for T ∈ Tnℎ there holds

∥v − Inℎ v∥0,T ≲
ℎT

Smax(T )
∥S ∂v
∂S

∥0,T , (4.23a)

∥S(v − Inℎ v)∥∞,T ≲ℎ
1/2
T ∥S ∂v

∂S
∥0,T . (4.23b)

Proof. The local approximation properties follow from standard linear interpolation in

Sobolev spaces [16].

Proposition 4.6. Under the assumptions of Theorem 4.3 there holds

[[uΔt − uℎ,Δt]]
2(tn) ≲ (4.24)

�−2
min max(2, 1 + �Δt)

n∑

m=1

Δtm

m−1∏

i=1

(1− 2�Δti)
∑

!∈Tnℎ

�2m,!.

Proof. Taking advantage of the Galerkin orthogonality

(un − unℎ − (un−1 − un−1
ℎ ), vℎ)0,Ω +Δtnatn(u

n − unℎ, vℎ) = 0 , vℎ ∈ V 0
nℎ, (4.25)

for v ∈ V 0 and vℎ ∈ V 0
nℎ we deduce

(un − unℎ, v − vℎ)0,Ω +Δtnatn(u
n − unℎ, v − vℎ)

= (un−1 − un−1
ℎ , v − vn)0,Ω + (unℎ − un−1

ℎ , v − vℎ)0,Ω −Δtnatn(u
n
ℎ, v − vℎ).
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Integration by parts yields

(un − unℎ, v − vℎ)0,Ω +Δtnatn(u
n − unℎ, v − vℎ) (4.26)

= (un−1 − un−1
ℎ , v − vn)0,Ω + (unℎ − un−1

ℎ , v − vℎ)0,Ω+

Δtn
∑

T∈Tn,ℎ

(ˆ

T
(rS

∂unℎ
∂S

− runℎ)(v − vℎ)dS−

1

4

∑

Si∈Nnℎ(T )∩Nnℎ(Ω)

�2(Si, tn)S
2
i [
∂unℎ
∂S

]Si
(v − vℎ)(Si)

)

,

Choosing vℎ = Inℎ v with the interpolation operator Inℎ from Lemma 4.5, we have

−1

4

∑

Si∈Nnℎ(T )∩Nnℎ(Ω)

�2(Si, tn)S
2
i [
∂unℎ
∂S

]Si
(v − vℎ)(Si) = 0, (4.27)

whence

∣ −
ˆ

T

unℎ − un−1
ℎ

Δtn
(v − vℎ)dS +

ˆ

w
(rS

∂unℎ
∂S

− runℎ)(v − vℎ)dS

− 1

4

2∑

i=1

�2(�i, tn)�
2
i [
∂unℎ
∂S

](�i)(v − vℎ)(�i)∣

≲ (
ℎT

Smax(T )
∥u

n
ℎ − un−1

ℎ

Δtn
− rS

∂unℎ
∂S

+ runℎ∥0,T )∥S
∂v

∂S
∥0,T

≲ �n,T ∥S
∂v

∂S
∥0,T .

In particular, for v = (un − unℎ) we obtain

(1− �Δtn)∥un − unℎ∥2 +
1

4
Δn�

2
min∣un − unℎ∣2V

≲
1

2
∥un−1 − un−1

ℎ ∥2 + 1

2
∥un − unℎ∥2 +

1

8
Δtn�

2
min∣un − unℎ∣2V )

+ 2�−2
minΔtn

∑

T∈Tnℎ

�2n,T +
1

8
Δ2

min∣un − unℎ∣2V .

It follows that

(1− 2�Δtn)∥un − unℎ∥2 +
1

4
Δn�

2
min∣un − unℎ∣2V

≲ ∥un−1 − un−1
ℎ ∥2 + 4�−2

minΔtn
∑

T∈Tnℎ

�2n,T .
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Multiplication of the previous equation by
∏n−1

i=1 (1− 2�Δti) and summation over n yields

[[um − umℎ ]]2n ≲ �−2
min

n∑

m=1

Δtm

m−1∏

i=1

(1− 2�Δti)
∑

T∈Tmℎ

�2m,T .

Finally, utilizing (3.10) we arrive at

[[(uΔt − uℎ,Δt]]
2(tn) ≲ �−2

minmax(2, 1 + �Δt)

n∑

m=1

Δtm

m−1∏

i=1

(1− 2�Δti)
∑

T∈Tmℎ

�2m,T .

4.3 Efficiency of the Estimators

This section is devoted to the proofs of the efficiency of the estimator �n and the local

efficiency of the estimator �n,T . The efficiency of �n will be shown in subsection 4.3.1,

whereas subsection 4.3.2 is devoted to the proof of the local efficiency of �n,T .

4.3.1 Efficiency of the estimator �n.

For (vn)1≤n≤N , v
n ∈ V0 we introduce the norm

[[vn]]2 =
�2min

2
Δtn

n−1∏

i=1

(1− 2�Δti)∣vn∣2V . (4.28)

By means of this norm we now establish the efficiency of �n.

Theorem 4.7. Suppose that u0 ∈ V0 and �Δt ≤ � as in Lemma 3.1. Then, for 2 ≤ n ≤ N

there holds

�2n ≲ [[un − unℎ]]
2 + �Δt[[u

n−1 − un−1
ℎ ]]2 + (4.29)

e−2�tn−1

�2min

(

∣∣ ∂
∂t

(u− uΔt)∣∣2L2((tn−1 ,tn);V ∗
0
) + ∣∣u− uΔt∣∣2L2((tn−1,tn);V0)

) +

max(1, �Δt)

�4min

(Δtn)
2∣∣u0∣∣2

)

,
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whereas for n = 1 we have

�21 ≲ [[u1 − u1ℎ]]
2 +

1

�2min

(

∣∣ ∂
∂t

(u− uΔt)∣∣2L2((0,t1);V ∗
0
) + (4.30)

∣∣u− uΔt∣∣2L2((0,t1);V0)

)

+
(Δt1)

2

�6min

(

∥u0∥2 + �2min Δt1∣u0∣2V
)

.

Proof. We split �n according to

�n ≤
√

Δtne
−�tn−1

�min√
2

(

∣un − unℎ∣V + ∣un−1 − un−1
ℎ ∣V + ∣un − un−1∣V

)

, (4.31)

whence

�2n ≤ 3Δtn e
−2�tn−1

�2min

2

(

∣un − unℎ∣2V + ∣un−1 − un−1
ℎ ∣2V + ∣un − un−1∣2V

)

, (4.32)

Taking advantage of (3.15), for the first term on the right-hand side we obtain

3Δtne
−2�tn−1

�2min

2
∣un − unℎ∣2V ≤ 3Δtn

n∏

i=1

(1− 2�ti)�
2
min∣un − unℎ∣2V ≤ 6 [[un − unℎ]]

2.

(4.33)

Likewise, for the second term it follows that

3Δtne
−2�tn−1

�2min

2
∣un−1 − un−1

ℎ ∣2V ≤ 6�Δt[[u
n−1 − un−1

ℎ ]]2. (4.34)

Using G̊arding’s inequality, for the third term we find

3Δtne
−2�tn−1

�2min

2
∣un − un−1∣2V

≤ 6Δtne
−2�tn−1

(

atn(u
n − un−1, un − un−1) + �∥un − un−1∥2

)

In view of

uΔt(�) = un−1 tn − �

tn − tn−1
+ un

� − tn−1

tn − tn−1
, tn ≤ � ≤ tn−1,

we see that

ˆ tn

tn−1

atn(uΔt(�)− un, un − un−1)d� = −Δtn
2
atn(u

n − un−1, un − un−1).
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Moreover, there holds

(
∂

∂�
u(�), un − un−1) + a� (u(�), u

n − un−1) = 0,

(
∂

∂�
uΔt(�), u

n − un−1) + atn(u
n, un − un−1) = 0,

whence

6Δtne
−2�tn−1

�2min

2
∣un − un−1∣2V ≤ (4.35)

24e−2�tn−1

ˆ tn

tn−1

∂

∂t
(u− uΔt)(�)(u

n − un−1)d�

︸ ︷︷ ︸

= I

+

24e−2�tn−1

ˆ tn

tn−1

a� (u− uΔt, u
n − un−1)d�

︸ ︷︷ ︸

= II

+

24e−2�tn−1

ˆ tn

tn−1

a� (uΔt, u
n − un−1)− atn(uΔt, u

n − un−1)d�

︸ ︷︷ ︸

= III

+

12�Δtne
−2�tn−1∥un − un−1∥2

︸ ︷︷ ︸

= IV

.

We will estimate the four terms on the right-hand side of (4.35) separately. This will be

done in the following four Lemmas. Using the results these lemmas in (4.35) together with

(4.33) and (4.34) gives the assertions.

In the derivation of upper bounds for the terms I, II, III and IV from (4.35), we will

frequently make use of Young’s inequality

ab ≤ 1/(4")a2 + "b2. (4.36)

Lemma 4.8. Under the assumptions of Theorem 4.7, for the term I from (4.35) we obtain
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the upper bound

∣I∣ ≤ 1

10
�2n + 6[[un − unℎ]]

2 + 6�Δt[[u
n−1 − un−1

ℎ ]]2 + (4.37)

192

�2min

e−2�tn−1

(

1 + 60e−2�tn−1

)

∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
).

Proof. We have

∣I∣ ≤ 24
√
2Δtn

�min
e−2�tn−1 ∥ ∂

∂t
(u− uΔt)∥L2(tn−1,tn;V ∗

0
)
�min√

2
∣un − un−1∣V ≤ (4.38)

8
√
6

�min
e−�tn−1 ∥ ∂

∂t
(u− uΔt)∥L2((tn−1,tn);V ∗

0
)
√

3Δtn e
−�tn−1

�min√
2

∣un − unℎ∣V
︸ ︷︷ ︸

= I1

+

8
√
6

�min
e−�tn−1 ∥ ∂

∂t
(u− uΔt)∥L2((tn−1,tn);V ∗

0
)
√

3Δtn e
−�tn−1

�min√
2

∣un−1 − un−1
ℎ ∣V

︸ ︷︷ ︸

= I2

+

24
√
2

�min
e−2�tn−1 ∥ ∂

∂t
(u− uΔt)∥L2((tn−1,tn);V ∗

0
)
√

Δtn
�min√

2
∣unℎ − un−1

ℎ ∣V
︸ ︷︷ ︸

= I3

.

Applying Young’s inequality (4.36) with " = 1 as well as (4.33), we get

I1 ≤
96

�2min

e−2�tn−1 ∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
) + 3Δtn e

−2�tn−1
�2min

2
∣un − unℎ∣2V (4.39)

≤ 96

�2min

e−2�tn−1 ∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
) + 6 [[un − unℎ]]

2.

Likewise, but with (4.34) instead of (4.33) we obtain

I2 ≤
96

�2min

e−2�tn−1 ∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
) + 3Δtn e

−2�tn−1
�2min

2
∣un−1 − un−1

ℎ ∣2V

≤ 96

�2min

e−2�tn−1 ∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
) + 6 �Δt [[u

n−1 − un−1
ℎ ]]2. (4.40)

Observing (4.4) and applying Young’s inequality (4.36) with " = 1/10, we get

I3 ≤
1

8
�2n +

11520

�2min

e−4�tn−1 ∥ ∂
∂t

(u− uΔt)∥2L2(tn−1,tn;V ∗
0
). (4.41)

Summing up the upper bounds in (4.39),(4.40) and (4.41) allows to conclude.
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Lemma 4.9. Let the assumptions of Theorem 4.7 hold true. Then, for the term II from

(4.35) we have

∣II∣ ≤ 1

10
�2n + 6[[un − unℎ]]

2 + 6�Δt[[u
n−1 − un−1

ℎ ]]2 + (4.42)

16�

3�2min

e−2�tn−1

(

1 + 30e−2�tn−1

)

∥u− uΔt∥2L2(tn−1,tn;V0)
.

Proof. Straightforward estimation yields

∣II∣ ≤ 4
√
2�Δtn
�min

e−2�tn−1∥u− uΔt∥L2(tn−1,tn;V0)
�min√

2
∣un − un−1∣V (4.43)

≤
4
√

2
3�

�min
e−�tn−1∥u− uΔt∥L2(tn−1,tn;V0)

√

3Δtne
−�tn−1

�min√
2
∣un − unℎ∣V

︸ ︷︷ ︸

=: II1

+

4
√

2
3�

�min
e−�tn−1∥u− uΔt∥L2(tn−1,tn;V0)

√

3Δtne
−�tn−1

�min√
2
∣un−1 − un−1

ℎ ∣V
︸ ︷︷ ︸

=: II2

+

4
√
2�

�min
e−2�tn−1∥u− uΔt∥L2(tn−1,tn;V0)

√

Δtn
�min√

2
∣unℎ − un−1

ℎ ∣V
︸ ︷︷ ︸

=: II3

.

The same estimates as for I1, I2 and I3 result in

II1 ≤
8�

3�2min

e−2�tn−1∥u− uΔt∥2L2(tn−1,tn;V0)
+ 6[[un − unℎ]]

2, (4.44)

II2 ≤
8�

3�2min

e−2�tn−1∥u− uΔt∥2L2(tn−1,tn;V0)
+ 6�Δt[[u

n − unℎ]]
2, (4.45)

II3 ≤
1

10
�2n +

160�

�2min

e−4�tn−1∥u− uΔt∥2L2(tn−1,tn;V0)
. (4.46)

The upper bound (4.42)follows by summing up (4.44),(4.45) and (4.46).

Lemma 4.10. Suppose that the assumptions of Theorem 4.7 hold true. Then, for n > 1
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the term III from (4.35) can be bounded from above according to

∣III∣ ≤ 1

10
�2n + 6[[un − unℎ]]

2 + 6�Δt[[u
n−1 − un−1

ℎ ]]2 + (4.47)

48C2

�4min

max(1, �Δt)
(

1 + 60e−2�tn−1

)

(Δtn)
2∥u0∥2.

In case n = 1, we have

∣III∣ ≤ 1

10
�21 + 6[[u1 − u1ℎ]]

2 + (4.48)

23232C2

�6min

(Δt1)
2
(

∥u0∥2 + �2min

2
Δt1∣u0∣2V

)

.

Proof. Case n > 1: As in (4.20) it follows that

∣III∣ ≤ 6
√
2C

�min
Δtne

−2�tn−1∥uΔt∥L2(tn−1,tn;V0)∣un − un−1∣V (4.49)

≤ 4C
√
3Δtn

�2min

e−�tn−1∥uΔt∥L2(tn−1,tn;V0)

√

3Δtne
−�tn−1

�min√
2
∣un − unℎ∣V

︸ ︷︷ ︸

=: III1

+

4C
√
3Δtn

�2min

e−�tn−1∥uΔt∥L2(tn−1,tn;V0)

√

3Δtne
−�tn−1

�min√
2
∣un−1 − un−1

ℎ ∣V
︸ ︷︷ ︸

=: III2

+

12C
√
Δtn

�2min

e−2�tn−1∥uΔt∥L2(tn−1,tn;V0)

√

Δtn
�min√

2
∣unℎ − un−1

ℎ ∣V
︸ ︷︷ ︸

=: III3

.

Estimating III1, III2 and III3 as before, we obtain

III1 ≤
12C2Δtn
�4min

e−2�tn−1∥uΔt∥2L2(tn−1,tn;V0)
+ 6[[un − unℎ]]

2, (4.50)

III2 ≤
12C2Δtn
�4min

e−2�tn−1∥uΔt∥2L2(tn−1,tn;V0)
+ 6�Δtn [[u

n−1 − un−1
ℎ ]]2, (4.51)

III3 ≤
1440C2Δtn

�4min

e−4�tn−1∥uΔt∥2L2(tn−1,tn;V0)
+

1

10
�2n. (4.52)
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For the estimation of the first terms on the right-hand sides of (4.50),(4.51) and (4.52) we

use (3.15) and obtain

e−2�tn−1Δtn∥uΔt∥2L2(tn−1,tn;V0)
(4.53)

≤ 2
n−1∏

i=1

(1− 2�Δti) Δtn∥uΔt∥2L2(tn−1,tn;V0)
(4.54)

≤ max(1, �Δt) Δtn

(

Δtn

n−1∏

i=1

(1− 2�Δti) Δtn∣un∣2V )

+ Δtn−1

(

Δtn−1

n−2∏

i=1

(1− 2�Δti) Δtn−1∣un−1∣2V
)

≤ 2max(1, �Δt) (Δtn)
2[[(um)]]2n

≤ 2max(1, �Δt) (Δtn)
2∥u0∥2.

Using (4.53) in (4.50),(4.51),(4.52) and summing up, we deduce (4.47).

Case n = 1: As in the case n > 1, we obtain

∣III∣ ≤ 6
√
2C

�2min

Δt1∥uΔt∥L2(0,t1;V0)∣u1 − u0∣V (4.55)

≤ 4C
√
3Δt1

�2min

∥uΔt∥L2(0,t1;V0)

√

3Δtn
�min√

2
∣u1 − u1ℎ∣V

︸ ︷︷ ︸

=: III1

+

12C
√
Δt1

�2min

∥uΔt∥L2(0,t1;V0)

√

Δt1
�min√

2
∣u1ℎ − u0ℎ∣V

︸ ︷︷ ︸

=: III2

,

from which we deduce the upper bounds

III1 ≤
12C2Δt1
�4min

∥uΔt∥2L2(0,t1;V0)
+ 6[[u1 − u1ℎ]]

2, (4.56)

III2 ≤
1440C2Δt1

�4min

∥uΔt∥2L2(0,t1;V0)
+

1

10
�21 . (4.57)
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On the other hand, we have

∥uΔt∥2L2(0,t1;V0)
≤ 2(Δt1)

2
(

∣u1∣2V + ∣u0∣2V
)

(4.58)

≤ 16

�2min

Δt1

(

[[(um)]]21 +
�2min

2
Δt1∣u0∣2V

)

≤ 16

�2min

Δt1

(

∥u0∥2 + �2min

2
Δt1∣u0∣2V

)

.

Inserting (4.58) into (4.56),(4.57) and observing (4.55) gives (4.48).

Lemma 4.11. Under the assumptions of Theorem 4.7, the term IV from (4.35) can be

bounded from above by means of

∣IV ∣ ≤ 1

5
�2n + 12[[un − unℎ]]

2 + 12�Δt[[u
n − unℎ]]

2 + (4.59)

64�2

3�2min

e−2�tn−1

(

1 +
5

4
e−2�tn−1

)

(Δtn)
2 ∥ ∂

Δt
(u− uΔt)∥2L2(tn−1,tn;V ∗

0
) +

64�2�2

3�4min

e2�T
(

1 +
15

4
e−2�T

)

(Δtn)
2 ∥u0∥2.

Proof. We have

∣IV ∣ ≤ 2Δtn �e
−2�tn−1∥un − un−1∥2 (4.60)

≤ 2�e−2�tn−1 ∣
ˆ tn

tn−1

(un − un−1 −Δtn
∂u

∂t
)(un − un−1)d� ∣

︸ ︷︷ ︸

=: IV1

+

2�e−2�tn−1 Δtn∣
ˆ tn

tn−1

∂u

∂t
(un − un−1)d� ∣

︸ ︷︷ ︸

=: IV2

.
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Straightforward estimation of IV1 gives

IV1 = 2�e−2�tn−1Δtn ∣
ˆ tn

tn−1

∂

Δt
(uΔt − u)(un − un−1)d� ∣ (4.61)

≤ 2�e−2�tn−1(Δtn)
3/2 ∥ ∂

Δt
(u− uΔt)∥L2(tn−1,tn;V ∗

0
)∣un − un−1∣V

≤ 2
√
2�√

3�min

e−�tn−1 Δtn ∥ ∂
Δt

(u− uΔt)∥L2(tn−1,tn;V ∗
0
)

√

3Δtne
−�tn−1

�min√
2

∣un − unℎ∣V
︸ ︷︷ ︸

=: IV1,1

+

2
√
2�√

3�min

e−�tn−1 Δtn ∥ ∂
Δt

(u− uΔt)∥L2(tn−1,tn;V ∗
0
)

√

3Δtne
−�tn−1

�min√
2

∣un−1 − un−1
ℎ ∣V

︸ ︷︷ ︸

=: IV1,2

+
2
√
2�

�min
e−2�tn−1 Δtn ∥ ∂

Δt
(u− uΔt)∥L2(tn−1,tn;V ∗

0
)

√

Δtn
�min√

2
∣unℎ − un−1

ℎ ∣V
︸ ︷︷ ︸

=: IV1,3

.

As before, by applying (4.36), we obtain the following upper bounds for IV1,1, IV1,2 and

IV1,3

IV1,1 ≤
32�2

3�2min

e−2�tn−1 (Δtn)
2 ∥ ∂

Δt
(u− uΔt)∥2L2(tn−1,tn;V ∗

0
) + 6[[un − unℎ]]

2, (4.62)

IV1,2 ≤
32�2

3�2min

e−2�tn−1 (Δtn)
2 ∥ ∂

Δt
(u− uΔt)∥2L2(tn−1,tn;V ∗

0
) + 6�Δt[[u

n−1 − un−1
ℎ ]]2,

(4.63)

IV1,3 ≤
1

10
�2n +

80�2

3�2min

e−4�tn−1 (Δtn)
2 ∥ ∂

Δt
(u− uΔt)∥2L2(tn−1,tn;V ∗

0
). (4.64)

Using (4.62),(4.63),(4.64) in (4.61) results in

IV1 ≤
1

10
�2n + 6[[un − unℎ]]

2 + 6�Δt[[u
n−1 − un−1

ℎ ]]2 + (4.65)

64�2

3�2min

e−2�tn−1

(

1 +
5

4
e−2�tn−1

)

(Δtn)
2 ∥ ∂

Δt
(u− uΔt)∥2L2(tn−1,tn;V ∗

0
).
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As far as IV2 is concerned, in view of (2.25) we find

IV2 ≤ 2� (Δtn)
3/2 e�Δtn ∥e−�t ∂u

∂t
∥L2(tn−1,tn;V ∗

0
) ∣un − un−1∣V (4.66)

≤ 2
√
2��

�min
(Δtn)

3/2 e�∥u0∥ ∣un − un−1∣V

≤ 2
√
2��√

3�2min

e�tn−1 Δtn∥u0∥
√

3Δtn e
−�tn−1

�min√
2

∣un − unℎ∣V
︸ ︷︷ ︸

=: IV2,1

+

2
√
2��√

3�2min

e�tn−1 Δtn∥u0∥
√

3Δtn e
−�tn−1

�min√
2

∣un−1 − un−1
ℎ ∣V

︸ ︷︷ ︸

=: IV2,2

+

2
√
2��

�2min

Δtn∥u0∥
√

Δtn
�min√

2
∣unℎ − un−1

ℎ ∣V
︸ ︷︷ ︸

=: IV2,3

.

Applying Young’s inequality (4.36) gives

IV2,1 ≤
32�2�2

3�4min

e2�T (Δtn)
2 ∥u0∥2 + 6[[un − unℎ]]

2, (4.67)

IV2,2 ≤
32�2�2

3�4min

e2�T (Δtn)
2 ∥u0∥2 + 6�Δt[[u

n − unℎ]]
2, (4.68)

IV2,3 ≤
1

10
�2n +

80�2�2

�4min

(Δtn)
2 ∥u0∥2. (4.69)

Using (4.67),(4.68) and (4.69) in (4.66), we obtain

IV2 ≤
1

10
�2n + 6[[un − unℎ]]

2 + 6�Δt[[u
n − unℎ]]

2 + (4.70)

64�2�2

3�4min

e2�T
(

1 +
15

4
e−2�T

)

(Δtn)
2 ∥u0∥2.

The estimate (4.59) now follows from (4.65) and (4.70).
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4.3.2 Local efficiency of the estimator �n,T .

Local efficiency means that we can estimate the local contributions of the error estimator

from above by some local error norms. To this end, for T ∈ Tnℎ(Ω) we denote by

!T :=
∪

{T ′ ∈ Tnℎ(Ω) ∣ Nnℎ(T
′) ∩ Nnℎ(T ) ∕= ∅} (4.71)

the patch around T consisting of all neighboring elements that share at least one vertex

with T . We introduce the local space

V (!T ) := {v : !T → ℝ ∣ v ∈ L2(!T ) , Si
∂v

∂Si
∈ L2(!T ), 1 ≤ i ≤ 2}, (4.72)

equipped with the norm ∥ ⋅ ∥V (!T ) and semi-norm ∣ ⋅ ∣V (!T ). We further refer to V0(!T ) as

the closure of C∞
0 (!T ) in V (!T ) and to V ∗

0 (!T ) as the associated dual space.

Under these prerequisites, we can prove the following local efficiency of �n,T .

Theorem 4.12. Let �n,T , T ∈ Tnℎ(Ω), 1 ≤ n ≤ N, be the given by (4.5). Then, under the

assumptions of Theorem 4.7 there holds

�2n,T ≲
(

∥(Δtn)−1
(

un − unℎ − (un−1 − un−1
ℎ )

)

∥V ∗
0
(!T ) + � ∣un − unℎ∣V0(!T )

)

. (4.73)

Proof. The local efficiency can be shown by standard arguments from the a posteriori error

analysis of residual-type a posteriori error estimators [40]. In particular, for T ∈ Tnℎ(Ω)

we refer to �Ti , 1 ≤ i ≤ 3, as the barycentric coordinates and introduce

 T :=
3∏

i=1

�Ti

as the associated edge bubble function having its support in T . Then, we use (4.26) in the

proof of Proposition 4.6 with v = 0 and vℎ = znℎ 
1/2
T where znℎ ∈ P1(T ) is given by

znℎ := (Δtn)
−1(unℎ − un−1

ℎ )− S
∂unℎ
∂S

+ runℎ,

53



satisfying the inverse inequalities

∥znℎ∥0,T ≲ ∥znℎ 
1/2
T ∥0,T , ∥S∂z

n
ℎ

∂S
∥0,T ≲

Smax(T )

ℎT
∥znℎ∥0,T . (4.74)

With this choice, (4.26) results in

(Δtn)
−1((un−1 − un−1

ℎ )− (un − unℎ), v)0,T + atn(u
n
ℎ − un, v) = ∥v∥20,T = ∥znℎ 

1/2
T ∥20,T .

The inverse inequalities (4.74) imply

∥znℎ∥20,T ≲
Smax(T )

ℎT

(

∥(Δtn)−1
(

un − unℎ − (un−1 − un−1
ℎ )

)

∥V ∗
0
(!T ) + � ∣un − unℎ∣V0(!T )

)

∥znℎ∥0,T ,

which gives the assertion.
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Chapter 5

The Adaptive Cycle

As we have pointed out in chapter 2, adaptive finite element methods consist of successive

loops of a cycle involving the basic steps SOLV E, ESTIMATE, MARK, and REFINE.

While the concepts for an a posteriori error estimation based on residual-type estimators

have been dealt with in detail in the previous chapter, here we focus on the numerical

solution of the fully discretized Black-Scholes equation. As we shall see in section 5.1, the

structure of the resulting linear algebraic systems to be solved is such that we are faced

with tridiagonal N × N coefficient matrices. Hence, the solution by LU decomposition is

the method of choice, since it is of optimal arithmetic complexity O(N).

In Section 5.2, we will describe two different strategies for the realization of the adaptive

process. The first strategy has been suggested in [1]. For each adaptive step, either a

refinement in time or a refinement in space is done based on the information provided by

the time and space error estimators. This strategy is the one which has been implemented

in this thesis. Alternatively, we will describe a second strategy due to [20]. In contrast to

the first strategy, a progressive time-stepping is realized with an adaptive choice of the next
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time step combined with a simultaneous refinement and coarsening of the spatial mesh.

This strategy requires an additional estimator for coarsening which will be described in

subsection 5.2.2.

5.1 The steps SOLVE and ESTIMATE

We obtain the fully discretized problem by applying the Crank-Nicolson scheme in time:

Find (Pn
ℎ )0≤n≤N , Pn

ℎ ∈ V 0
nℎ satisfying

P 0
ℎ = P0, (5.1)

and for all n, 1 ≤ n ≤ N ,

∀vℎ ∈ V 0
nℎ, (Pn

ℎ − Pn−1
ℎ , vℎ) +

Δtn
2

(an(P
n
ℎ , vℎ) + an−1(P

n−1
ℎ , vℎ)) = 0. (5.2)

where an = atn , and at(v,w), v, w ∈ V 0
nℎ is given by

at(v,w) = −
N∑

i=1

S2
i �

2(Si, t)

2
[
∂v

∂S
](Si)w(Si)− r(t)

ˆ S̄

0
S
∂v

∂S
w + r(t)

ˆ S̄

0
vw. (5.3)

Here, [ ∂v∂S ](Si) denotes the jump of ∂v
∂S at Si.

Let (wi)i=0,⋅⋅⋅N be the nodal basis of Vℎ, i.e.,

wi =

⎧

⎨

⎩

0, S ≤ Si−1

S−Si−1

Si−Si−1 , Si−1 ≤ S ≤ Si

Si+1−S
Si+1−Si , Si ≤ S ≤ Si+1

0, S ≥ Si+1

(5.4)
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Moreover, let M and An in ℝ(N+1)×(N+1) be the mass and stiffness matrices defined by

Mi,j = (wi, wj) , An
i,j = atn(w

j , wi) , 0 ≤ i, j ≤ N.

Setting Pn = (unℎ(S0), ⋅ ⋅ ⋅ , unℎ(SN ))T and P 0 = (u0(S0), ⋅ ⋅ ⋅ , u0(SN ))T , (5.2) is equivalent

to

M(Pn − Pn−1) + ΔtnA
nPn = 0. (5.5)

The shape function wi defined in (5.4) has its support in [Si−1, Si+1]. This implies that

the matrices M and An are tridiagonal. Furthermore, we have

wi(S) =
S − Si−1

ℎi
,

∂wi

∂S
=

1

ℎi
, ∀S ∈ (Si−1, Si), (5.6)

wi(S) =
Si+1 − S

ℎi+1
,

∂wi

∂S
= − 1

ℎi+1
, ∀S ∈ (Si, Si+1), (5.7)

which results in

ˆ S̄

0
wi−1wi =

ℎi
6
,

´ S̄
0 Swi∂w

i−1

∂S
= −Si−1

6
− Si

3
,

ˆ S̄

0
(wi)2 =

ℎi + ℎi+1

3
,

´ S̄
0 Swi∂w

i

∂S
= −ℎi + ℎi+1

6
if i > 0,

ˆ S̄

0
(w0)2 =

ℎ1
3
,

´ S̄
0 Sw0 ∂w

0

∂S
= −ℎ1

6
,

ˆ S̄

0
wi+1wi =

ℎi+1

6
,

´ S̄
0 Swi∂w

i+1

∂S
=
Si+1

6
+
Si
3
. (5.8)
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From this, straightforward calculations show that the entries of An are given by

An
i,i−1 = −S

2
i �

2(tn, Si)

2ℎi
+
r(tn)Si

2
. 1 ≤ i ≤ N,

An
i,i =

S2
i �

2(tn, Si)

2
(
1

ℎi
+

1

ℎi+1
) +

r(tn)

2
(ℎi+1 + ℎi), 1 ≤ i ≤ N,

An
0,0 =

r(tn)

2
ℎ1,

An
i,i+1 = −S

2
i �

2(tn, Si)

2ℎi+1
− r(tn)Si

2
. 0 ≤ i ≤ N − 1, (5.9)

whereas the entries of Mm are as follows

Mi,i−1 =
ℎi
6
. 1 ≤ i ≤ N,

Mi,i =
ℎi+1 + ℎi

3
. 1 ≤ i ≤ N,

M0,0 =
ℎ1
3
.

Mi,i+1 =
ℎi+1

6
. 0 ≤ i ≤ N − 1, (5.10)

Hence, the fastest method to solve (5.5) is by LU decomposition.

As far as the ingredients of the step ESTIMATE are concerned, we refer to section 4.1.

5.2 The Steps MARK and REFINE

In this section, we briefly describe the marking and refinement strategy from [1] as well as

the strategy suggested in [20] for the adaptive finite element solution of initial-boundary

value problems for parabolic problems.

5.2.1 Refinement in space and time

We use the following refinement strategy:
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Step 1: We need to decide whether we want to refine in the S or in the t variable. We

will make this decision by a comparison of the quantities �2n and
∑

T∈Tnℎ(Ω) �
2
n,T :

If

�2n >
√
2(

Δtn
�2min

∑

T∈Tnℎ(Ω)

�2n,T ),

which means that the time error indicator dominates the global S-discretization error in-

dicator, we will refine the mesh in the t variable.

On the other hand, if

�2n <
1√
2
(
Δtn
�2min

∑

T∈Tnℎ(Ω)

�2n,T ),

which means that the global S-discretization error estimator dominates the time error

estimator, we will refine the mesh in the S variable. Otherwise, we refine the mesh in t, if

the current level is even, and refine the mesh in S, if the level is odd.

Step 2:We define the refinement with respect to t as follows: First, we compute

�̄ := maxn�n and � := minn�n.

If

�n >
�̄ + �

2
,

we divide the time interval [tn−1, tn] by 2. Otherwise, we do nothing.

The refinement in the S variable is done analogously.

5.2.2 Progressive time stepping and refinement/coarsening

When doing progressive adaptive time stepping combined with adaptive refinement/coarsening

in space for parabolic partial differential equations, there is a need to introduce an ad-

ditional coarsening strategy in the a posteriori error analysis after mesh and time step
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refinements have been done based on those error estimators as discussed in section 4.1.

We denote by Tnℎ(Ω) the actual simplicial triangulation of Ω and by TnH(Ω) a coarsened

mesh. The spaces V 0
nℎ and V 0

nH stand for the associated finite element spaces. We refer to

InH : C(Ω) → V 0
nH

as the standard finite element interpolant.

Then, the coarsening error estimator is given by

�coarsen := (Δtn)
−1∥unℎ − InHu

n
ℎ∥20,Ω + ∣unℎ − InHu

n
ℎ∣2V . (5.11)

We further introduce three tolerances TOLtime > 0, TOLspace > 0 and TOLcoarse > 0,

which are upper bounds for the time error estimator �n, the space error estimator �nspace,

and the coarsening error estimator �coarsen , respectively. The following algorithm describes

the adaptation of the adaptive strategy from [20] to progressive time stepping and adaptive

refinement/coarsening for the fully discretized Black-Scholes equation:

Step 1: Once the approximate solution at a fixed time �n is known, compute the time error

estimator. If it is larger than the tolerance TOLtime/(2T ), go back to the previous time

and perform a computation with a reduced time step (e.g., half the size of the previously

used one) until the time error estimator becomes smaller than the tolerance TOLtime/(2T ).

Step 2: Perform mesh adaptivity in the standard way by computing the space error

estimators and refining the mesh where they are larger than the tolerance TOLspace/T .

Compute the approximate solution with respect to the refined mesh and check the time

error estimator. Perform a time step reduction, if necessary.

Step 3: Coarsen the actual mesh Tnℎ(Ω) according to �coarsen < TOLcoarse/T , compute

the approximate solution with respect to the coarsened mesh TnH(Ω) and compute the
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associated time error estimator.

Step 4: If the time error estimator is smaller than the tolerance ΘtimeTOLtime/(2T ) for

some Θtime ∈ (0, 1), enlarge the time step (e.g., double it) and proceed to the next time

step. Otherwise, go back to Step 1.
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Chapter 6

Numerical Results

We present the results of numerical computations based on the adaptive refinement strategy

described in subsection 5.2.1 for two examples (constant and variable volatility) where the

data have been taken from [1].

Example 1: Constant Volatility. We choose the following data:

∙ K = 100 (strike)

∙ T = 1 (maturity 1 year)

∙ � = 0.2 (volatility)

∙ r = 0.04 (interest rate)

and compute the price of a vanilla European put in the rectangle [0, 200]× [0, 1]. The initial

mesh is a uniform mesh with 20 nodes in t and 80 nodes in S.

Progressive Mesh Refinement
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Using the strategy we described at the beginning of this chapter we get the following plots:

Figure 6.1 shows a visualization of the discrete solution after 5 refinement steps.

Figure 6.2 displays the error between the prices computed by the Black-Scholes formula

and by the finite element method realized in this thesis. The four plots obtained after 0, 5,

10, and 19 refinements, respectively, clearly show a decrease in the error with progressive

refinement. We also note that the errors are large around S = 100. Hence, we expect

strong mesh refinement in this region.

Figure 6.3 shows the refined meshes after 0, 5, 10 and 19 refinement steps of the adaptive

algorithm. We observe a pronounced refinement around S = 100 as the process goes on.

Figure 6.4 displays the time error indicator �n and the global S error indicator

(
Δtn
�2min

∑

T∈Tnℎ(Ω)

�2nT )
1

2

versus time after 0, 5, 10 and 19 refinement steps, respectively.

Figure 6.5 shows us the space error indicator �mT . Obviously, this local indicator is also

large around S = 100.

Figure 6.6 observes the changes in the error

�∥u− uℎ,Δt∥L2((0,T );V )

and in the estimated error

(
∑

m

(�2n +
Δtn
�2min

∑

T∈Tnℎ(Ω)

�2n,T ))
1

2

as the refinement level (left) and the total number of nodes (right) change.

Table 6.1 contains the convergence history of the adaptive refinement process.
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Figure 6.1: The discrete solution obtained after 5 steps.
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Figure 6.2: Errors obtained after 0, 5, 10 and 19 refinement steps. The bottom right figure

is a zoom.
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Figure 6.3: Refined mesh obtained after 0, 5, 10 and 19 refinement steps. The bottom right

figure is a zoom.
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obtained after 0, 5, 10 and 19 refinement steps
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Figure 6.5: Space error �n,T obtained after 0, 5, 10 and 19 refinement steps. The bottom

right figure is a zoom.
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level dof error estimated error refined variable

0 1680 4.60 11.51 S

1 2046 5.87 8.76 S

2 2848 5.88 6.82 t

3 2954 4.83 5.53 t

4 3166 3.86 4.69 t

5 3385 3.36 4.29 S

6 4303 3.36 3.46 t

7 4994 2.60 3.01 S

8 6437 2.60 2.62 t

9 8065 2.00 2.25 t

10 11102 1.49 1.88 t

11 15003 1.09 1.62 S

12 16773 1.09 1.51 t

13 23399 0.79 1.05 S

14 31533 0.79 1.05 t

15 42157 0.59 0.92 S

16 54819 0.59 0.78 t

17 75047 0.43 0.68 S

18 109915 0.43 0.53 t

19 153993 0.32 0.45 S

Table 6.1: Level, degrees of freedom (dof), error �∥u − uℎ,Δt∥L2((0,T );V ), estimated error

(
∑

n(�
2
n + Δtn

�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 , and type of the refined variable.
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Aggressive Mesh Refinement

We can also use more aggressive mesh refinement strategies, but sometimes we may get a

mesh which is too fine in some regions. The following figures display the results of splitting

the elements into up to eight subelements (depending on the error indicators). The plots

of the discrete solutions, the pointwise errors, the meshes and the time and space error

indicators are similar to those obtained from the progressive refinement strategy. Therefore,

we will only document the history of the refinement process.

Figure 6.7 shows the changes of the error �∥u − uℎ,Δt∥L2((0,T );V ) and the estimated error

(
∑

n(�
2
n +

Δtn
�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 as the refinement level (left) and the degrees of freedom

(dof) (right) change.

Table 6.2 lists the values of the degrees of freedom (dof), the errors, the estimated errors,

and indicates the type of the refined variable at each refinement step.

Figure 6.8 compares the errors �∥u − uℎ,Δ∥L2((0,T );V ) and the estimated errors (
∑

n(�
2
n +

Δtn
�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 obtained by the progressive and the aggressive refinement strategy.
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Figure 6.7: Aggressive mesh refinement: error �∥u − uℎ,Δ∥L2((0,T );V ) and estimated error

(
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n+
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2
n,T ))

1

2 as a function of the refinement level (left) and the degrees

of freedom (dof) on different levels (right) of the refinement process.
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level dof error estimated error refined variable

0 1680 4.60 12.16 S

1 4227 5.89 8.85 S

2 21229 5.88 5.14 S

3 134777 3.27 2.59 t

4 180237 2.62 1.73 t

5 482002 0.97 0.53 S

Table 6.2: Level, degrees of freedom (dof), error �∥u − uℎ,Δ∥L2((0,T );V ), estimated error

(
∑

n(�
2
n + Δtn

�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 , and type of the refined variable.
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Example 2. Local Volatility. We consider the data

∙ K = 100 (strike price)

∙ T = 1 (maturity 1 year)

∙ � = 0.05 + 0.251 ∣S−100∣2

400
+

∣t−0.5∣2

0.01
≤1

+ 0.251 ∣S−100∣2

400
+

∣t−0.9∣2

0.01
≤1

(volatility)

∙ r = 0.04 (interest rate)

and compute the price of a vanilla European put in the rectangle [0, 200]× [0, 1]. The initial

mesh is a uniform mesh with 40 nodes in t and 100 nodes in S.

Progressive Mesh Refinement

Using the strategy as described at the beginning of this chapter we get the following results:

Figure 6.9 shows a visualization of the discrete solution after 2 refinement steps.

Figure 6.10 contains the refined meshes after 0, 5, 10 and 19 refinement steps. We clearly

observe a pronounced refinement in local regions where the volatility exhibits jumps.

Figure 6.11 displays the time error indicator �n and the global S error indicator

( Δtn
�2
min

∑

T∈Tnℎ(Ω) �
2
n,T )

1

2 versus times after 0, 5, 10 and 19 refinement steps. We observe that

they are both large when the volatility jumps.

Figure 6.12 shows the space error indicator �n,T which is also large when the volatility

jumps.

Figure 6.13 displays the changes of the estimated error (
∑

n(�
2
n + Δtn

�2
min

∑

w∈Tnℎ
�2n,T ))

1

2 as

the refinement level (left) and the degrees of freedom (dof) (right) change.
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Table 6.3 contains the history of the refinement process in terms of the degrees of freedom

(dof), the estimated error, and the type of the refined variable at each level.
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Figure 6.9: The discrete solution after 2 refinement steps.
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Figure 6.10: Refined meshes obtained after 0, 5, 10 and 19 refinement steps. The bottom

right figure is a zoom.
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Figure 6.11: The time error indicator �n and the global S error indicator

( Δtn
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min

∑
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2 obtained after 0, 5, 10 and 19 refinement steps.
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Figure 6.12: Space error �n,T obtained after 0, 5, 10 and 19 refinement steps. The bottom

right figure is a zoom.
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level dof estimated error refined variable

0 4040 617.47 S

1 4288 317.90 S

2 4812 162.90 S

3 5860 85.13 S

4 8107 45.00 S

5 12688 24.61 S

6 21910 14.33 S

7 40374 9.17 S

8 77309 6.58 t

9 80486 6.58 S

10 80547 6.03 t

11 117803 6.20 S

12 118691 5.17 t

13 145762 5.21 S

14 146617 4.67 S

15 148631 4.45 S

16 179365 3.84 t

17 276324 3.69 S

18 276732 3.45 S

19 278093 3.36 S

Table 6.3: Level, degrees of freedom (dof), estimated error (
∑

n(�
2
n +

Δtn
�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 , and the type of the refined variable.
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Aggressive Mesh Refinement

We present the results when using the aggressive mesh refinement strategy which splits

the elements marked for refinement into up to eight subelements (depending on the error

indicators).

Figure 6.14 shows the estimated error (
∑

n(�
2
n + Δtn

�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 as a function of

the refinement level (aggressive strategy) (left) and of the degrees of freedom (dof) (right)

for aggressive and progressive refinement.

Table 6.4 lists the degrees of freedom (dof), the values of the estimated errors, and the

type of the refined variable at each level of the refinement process.
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2 as a function of the refinement level (left) and the degrees

of freedom (dof) at different levels (right).

76



level dof estimated error refined variable

0 4141 606.64 S

1 5921 80.50 S

2 20278 11.27 S

3 136463 3.95 t

4 333592 2.63 S

5 347960 2.22 S

Table 6.4: Level, degrees of freedom (dof), estimated error (
∑

n(�
2
n +

Δtn
�2
min

∑

T∈Tnℎ(Ω) �
2
n,T ))

1

2 , and the type of the refined variable.
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Chapter 7

Conclusions

The a posteriori error analysis presented in this thesis is restricted to the Black-Scholes

equation for European options on a single equity share. It can be extended to European

basket options, i.e., options on more than one stock. Likewise, the generalization to ex-

otic options such as single- or double-barrier European basket options should be feasible.

However, there is a natural limitation on the number of stocks in a basket, since with an

increasing number of stocks one is faced with the curse of dimensionality. The numerical

solution of such high-dimensional problems by appropriate reduction techniques is cur-

rently in the focus of active research.

As far as American options are concerned, the situation is more difficult, since they give

rise to parabolic variational inequalities of obstacle type. Although adaptive finite elements

have been studied recently for variational inequalities associated with elliptic boundary

value problems [14, 15], the parabolic case is still widely unknown territory.
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