

Improving Energy Efficiency of GPU based

General-Purpose Scientific Computing through

Automated Selection of Near Optimal

Configurations

Xiaohan Ma, Marion Rincon, and Zhigang Deng

Computer Science Department

University of Houston

Houston, TX, 77204, USA

http://www.cs.uh.edu

UH-CS-11-08

October 20
th

, 2011

Keywords: List of at most five keywords and phrases goes here

Abstract

Modern GPUs have been rapidly and increasingly used as a powerful engine for a variety

of general-purpose computing applications due to their enormous parallelism and

throughput capabilities. However, GPU power consumption still remains high since more

and more transistors are integrated into its chip. Until now, how to increase and optimize

energy efficiency (e.g., performance-per-Watt ratio) of GPU-based computing

applications is still a largely unsolved challenge. In this paper, we propose a novel

framework to improve the energy efficiency of GPU-based General-Purpose Computing

(GPGPU) applications. Based on a statistical regression model capable of dynamically

estimating the runtime GPU power consumption, our framework can infer and select

near-optimal GPGPU programming configurations to improve the energy efficiency of

any given GPGPU program. Through preliminary empirical validation of a number of

GPGPU benchmarks, we demonstrated that our framework can be robustly used to

measurably improve the energy efficiency of various GPGPU programs.

Improving Energy Efficiency of GPU based
General-Purpose Scientific Computing through Automated

Selection of Near Optimal Configurations

Xiaohan Ma, Mario Rincon, and Zhigang Deng
Department of Computer Science, University of Houston

Emails: xiaohan@cs.uh.edu, mrinconnigro@uh.edu, zdeng@cs.uh.edu
Published in October 20th, 2011

ABSTRACT
Modern GPUs have been rapidly and increasingly used as a
powerful engine for a variety of general-purpose computing
applications due to their enormous parallelism and through-
put capabilities. However, GPU power consumption still
remains high since more and more transistors are integrated
into its chip. Until now, how to increase and optimize energy
efficiency (e.g., performance-per-Watt ratio) of GPU-based
computing applications is still a largely unsolved challenge.
In this paper, we propose a novel framework to improve the
energy efficiency of GPU-based General-Purpose Comput-
ing (GPGPU) applications. Based on a statistical regres-
sion model capable of dynamically estimating the runtime
GPU power consumption, our framework can infer and se-
lect near-optimal GPGPU programming configurations to
improve the energy efficiency of any given GPGPU program.
Through preliminary empirical validation of a number of
GPGPU benchmarks, we demonstrated that our framework
can be robustly used to measurably improve the energy ef-
ficiency of various GPGPU programs.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Hardware Architectures—
Graphics Processors

General Terms
Algorithm

1. INTRODUCTION
In recent years, the ever-increasing computing power of mod-
ern GPUs comes with the cost of an increasingly high power
consumption. As such, the performance-per-Watt ratio (e.g.,
GFLOPS per Watt) has caught growingly more attentions in
the community. Currently, researchers have proposed var-
ious idle energy-aware schemes where processor clock fre-
quency and voltage can be dynamically modulated based on

predicted workloads [9, 5, 13, 10]. Some of these methods
are even used in industry practice (e.g., ATI Powerplay and
NVidia PowerMizer). However, even with the above energy-
aware schemes, GPU power consumption still remains high.
Therefore, under this context, increasing and optimizing the
energy efficiency of GPU-based computing applications has
become a highly demanded, yet largely unsolved problem.

In this paper we propose a novel framework to improve the
energy efficiency of GPU-based General-Purpose Computing
(GPGPU) applications. Based on the recorded GPU power
consumption, and runtime workload signals of benchmark
programs, we first perform in-depth analysis to identify the
subset of the most statistically significant GPU workload sig-
nals with regard to power consumption, and further build a
statistical regression model capable of dynamically and accu-
rately estimating the power consumption of GPGPU appli-
cations. Based on the GPU power estimation model, we in-
troduce an automated selection approach to infer and choose
near-optimal energy efficient GPGPU programming config-
urations from a set of exhaustive combinations of program
features (called candidates in this work). It is noteworthy
that in this preliminary work, we picked and studied a rep-
resentative off-the-shelf GPU, namely, the NVidia GeForce
8800 GT graphics card. However, we believe the method-
ology and model described in this work can be straightfor-
wardly applied or generalized to other types of commercial
GPUs.

The remainder of this paper is organized as follows. Section
2 briefly reviews the recent work that is most related to this
work. Section 3 describes how we recorded and processed
the power and workload datasets of the target GPU. Section
4 describes how we build a statistical model for power con-
sumption estimation. Section 5 describe how to improve the
energy efficiency of various GPGPU computing applications
based on the constructed GPU power consumption predic-
tion model. Lastly, discussion and conclusion remarks are
presented in Section 6.

2. RELATED WORK
To date, limited work has focused on simulating and mod-
eling GPU power consumption. Sheaffer et al. [13, 14] pro-
posed the first GPU architectural simulation framework (called
Qsilver) by extending well-studied CPU power consumption
models. However, its primary use is limited to GPU ar-

chitectural design, particularly at ISA and microarchitec-
ture definition design stages. Following the same trend,
Ramani et al. [10] proposed a modular power estimation
framework “PowerRed” at the architectural level that is pri-
marily for GPU designers. The PowerRed framework is
similar to the Qsilver, except the following difference: the
Qsilver does not model power consumption of interconnects
(e.g., global and local buses on chip) on GPUs, while the
PowerRed framework takes it into consideration. As such,
the PowerRed framework is supposed to provide a more ac-
curate framework for GPU designers than Qsilver. How-
ever, these power models use graphics API interceptors (e.g.,
Chromium, http://chromium.sourceforge.net/) to trace OpenGL
streams and produce GPU workload annotations. Hence,
they cannot model power consumptions of most GPGPU
applications where no graphics APIs is called.

The relation between workload and power consumption at
different stages of the graphics pipeline was previously stud-
ied by Mochocki et al. [5]. In their approach, depending
on the workload configuration of specific applications, en-
ergy bottlenecks may be located at different stages of the
graphics pipeline and they can even shift dynamically. Also,
Mochocki et al. proposed the use of Dynamic Voltage and
Frequency Scaling (DVFS) schemes to decrease energy usage
under certain conditions. Recently, Ma et al. [4] proposed
a scheme to estimate the power consumption of a runtime
commodity GPU based on an empirically-selected subset of
GPU workload signals. However, certain critical limitations
exist in their approach. First, their approach is originally de-
signed for GPU-based graphics applications. Therefore, its
performance on GPGPU computing is less accurate and ro-
bust. Second, their used workload signals were empirically
chosen and not soundly justified. By contrast, this work
employs step-wise statistical analysis to accurately identify
the optimal set of used workload signals. Third, their ap-
proach does not provide any practical guidelines or proce-
dures to improve or optimize the energy efficiency of various
GPU-based computing applications, while this work aims to
demonstrate how to exploit an accurate GPU power con-
sumption model to improve the energy efficiency of various
GPGPU applications.

Takizawa et al. [15] presented the SPRAT programming
framework that dynamically selects an appropriate proces-
sor (CPU or GPU) in the runtime so as to improve the
overall energy efficiency. Their approach showed that the
runtime processor selection for the execution of each kernel
with a given data stream is promising for energy-efficient
computing on a hybrid (CPU+GPU) computing system.
However, in their approach, the power consumption of the
selected GPU is assumed to be constant regardless of its run-
time workload, which is typically invalid in many real-world
GPU computing [4]. Later, Rofouei et al. [12] conducted a
broad range of experiments to study the energy efficiency of
different computing platform selections (e.g., CPU-only or
GPU-only). Their study demonstrated that the GPU-only
solution led to a higher energy efficiency if the performance
gain is above a certain bound. However, it did not enclose
any quantitative method to determine this critical bound
parameter (i.e., using GPU or not). Similarly, Collange et
al. [1] studied how different GPU computing factors such as
memory access operations will impact the power consump-

tion of GPUs and further analyzed the energy cost of var-
ious GPGPU operations. Their findings provide valuable
implications for energy-efficient GPU computing. However,
their approach does not provide any generalized guidelines
or procedures to optimize the energy efficiency of various
GPU computing applications.

3. DATAACQUISITIONANDPROCESSING
3.1 GPU Power Data Acquisition
We recorded power consumption data of graphics cards (GPUs)
using a custom data acquisition setup (Figure 1). As shown
in this setup, the target computer runs GPU programs (e.g.,
benchmarks), the power recording device is a FLUKE Hydra
logger 2625A power acquisition system, and the host com-
puter runs its specialized data recording software. Due to
the variety of modern GPU architectures, in this work we
are not able to comprehensively cover, measure and model
the energy aspect of all types of GPUs. Without loss of
generality, we pick and study a representative mainstream
GPU, namely, the NVidia GeForce 8800 GT graphics card.
The methodology and model described in this paper can be
easily applied or generalized to other types of GPUs and
GPGPU applications.

In our experiment, besides the test graphics card, the tar-
get computer’s configuration includes AMD Athlon 64x2
3.0GHz Dual-Core Processor, 2GB memory, and Corsair
TX750W power supply. The used FLUKE Hydra logger
2625A power acquisition device with one fast-analog-input
module is able to perform 10 readings per second, which
is competent for this work. We ran benchmark programs
that stress test all the stages of modern GPGPU pipeline
on the target computer. 20 GPGPU benchmarks enclosed
in NVidia GPU Computing SDK were used in this work.

Figure 1: Data acquisition setup used in this work.
Note that the graphics card had two power sup-
plies (ATX and PCI-E 2.0). DAQ is a FLUKE
Hydra logger 2625A power acquisition system, and
the target computer is equipped with the chosen
NVidia GeForce 8800 GT graphics card (200 Watt
power specification), AMD Athlon 64x2 3.0GHz
Dual-Core Processor, 2GB memory, and Corsair
TX750W power supply.

3.2 GPUWorkload Signal Recording

In the above data acquisition step (Figure 1), we also si-
multaneously recorded GPU workload signals of the run-
ning benchmarks using NVidia CUDA Visual Profiler [6].
The CUDA Profiler that employs an abstracted CUDA pro-
gramming model is capable of dynamically extracting 21 ma-
jor GPGPU workload variables such as gld incoherent (the
number of non-coalesced global memory loads), gld coherent
(the number of coalesced global memory loads), and branch
(the number of branches taken by threads executing a ker-
nel), etc. For the complete description of the 21 extracted
GPGPU workload variables, please refer to [6].

The CUDA Profiler sampled the normalized GPGPU work-
load signals whenever a CUDA kernel function is finished.
The number of kernel functions called per second was also
dynamically acquired through the CUDA Profiler. Hence,
we were able to align the recorded GPGPU workload data
with the acquired GPU power consumption data using a
linear interpolation based resampling scheme. In this way,
the GPU workload signals were resampled (supersampled
or downsampled depending on the varying number of kernel
functions called per second) to 10 measurements per second
that is the same as the acquired power consumption data.
Figure 2 shows an example of the recorded and resampled
GPU workload signals on NVidia GeForce 8800 GT. We use
Xt to denote the extracted GPGPU workload set at time t.

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Number of kernels called

G
PG

PU
 w

or
klo

ad
 s

ig
na

ls

gld_incoherent
gld_coherent
branch

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Time (s)

G
PG

PU
 w

or
klo

ad
 s

ig
na

ls

gld_incoherent
gld_coherent
branch

Figure 2: The original recorded GPGPU workload
signals (only showing a 2 seconds portion due to the
signal density) and the resampled GPGPU work-
load signals (30 seconds) when one NVidia CUDA
SDK sample (N Body Simulation) ran on the GPUs.
For the sake of clear illustration, we only plot three
selected GPGPU workload variables: gld incoherent,
gld coherent, and branch.

4. GPGPUPOWERCONSUMPTIONANAL-
YSIS AND MODELING

Given the recorded GPU power consumption dataset P =
{Pt1 , Pt2 , ..., Ptn

} (where ti denotes a time index), and the
time-aligned GPGPU workload dataset Xj = {Xj

t1
, Xj

t2
, ...,

Xj
tn
}(1 < j < N), where Xj

ti
denotes the jth extracted

GPGPU workload signal value at time ti, our goal is to
construct a statistical multivariable function (model) P̂ =
F (X1

t , X2
t , ..., XN

t) that can accurately predict the GPU power
consumption P̂ , given any GPGPU workload signal variables
(X1

t , X2
t , ..., XN

t).

We use a two-step process to construct such a statistical mul-
tivariable function (model). First, we perform a statistical
analysis to find out which GPGPU workload variables (out
of the total 21 variables) - called workload signature - are sta-

tistically significant to GPU power consumption. Then, we
train a Gaussian process regression function to model the in-
herent association between the GPGPU workload signature
and its GPU power consumption. To the end, the trained
model is capable of predicting the GPU power consumption
based on any inputted GPGPU workload signature.

4.1 Energy-Significance Statistical Analysis
A total of 21 major GPGPU workload variables are acquired
(Section 3). However, some workload variables may be de-
pendent to other ones or do not have a strong correlation
with the GPU power consumption. In addition, due to the
curse of dimensionality, the amount of training data needed
to learn a robust statistical model is exponential to the num-
ber of input variables. Therefore, we first use a stepwise mul-
tiple regression analysis procedure [16] to compute the sta-
tistical significance of workload variables in terms of power
consumption prediction. In each step, we either add the
most statistically significant workload variable or remove the
least significant variable based on the computed P-values. In
this work, if the P-value of a workload variable is less than
0.05, it will enter into the stepwise selection; otherwise, it
will be removed from the selection. As the result of this
analysis process, there are 9 (out of 21) GPGPU workload
variables used for the following power modeling.

Table 1 shows the nine most statistically significant GPGPU
workload variables and their corresponding statistics infor-
mation. In the remaining writing, we use (X1, X2, ..., X9) to
represent the retained, statistically significant nine GPGPU
workload variables (called the GPGPU workload signature).
As shown in Table 1, the GPGPU workload instructions
signal has the most significant effect on GPU power con-
sumption estimation. This finding is easy to interpret since
computation (executing instructions) is the first thrust of
GPUs. The subsequent three GPGPU workload signals,
warp serial, gld incoherent, and gld coherent, that are re-
lated to GPU memory access operations also have significant
impact on GPU power consumption estimation. This find-
ing is, to some extent, consistent with previous GPU energy
analysis results [2], that is, moving data across the memory
subsystem of processor is one of the most energy-expensive
bottlenecks. Grid size and thread block size are also sig-
nificantly related to the resultant GPU power consumption
since these configurations determine the computational bur-
den on GPUs at runtime.

From our analysis we observed that memory store related
workload signals (i.e., gst incoherent and gst coherent) do
not have significant effects on GPU power consumption,
while memory load related workload signals (e.g., gld incoherent
and gld coherent) have the significant effects, as discussed
in the above paragraph. One possible explanation is that
memory store operations benefit from GPU cache more than
memory load operations. Store operations can always write
data to cache first to avoid frequent and heavy data-moving
across the GPU memory subsystem. Since on-chip data
movements do not go across the entire GPU memory hi-
erarchy, GPGPU workload signals related to local memory
and Translation Lookaside Buffer (TLB) operations do not
have significant effects on GPU power consumption as well.
We also notice that branch divergence does not have a signif-
icant effect on GPU power consumption, since the workload

GeForce 8800 GT
Variable P-value Std. Error

instructions 0 1.6463e-007

warp serial 6.5995e-018 1.5475e-005

gld incoherent 2.5360e-017 0.4305

gld coherent 1.1265e-017 9.7682e-006

gridSizeX 9.9186e-016 0.0117

gridSizeY 5.6322e-016 1.4475e-006

blockSizeX 2.2204e-016 0.1273

blockSizeY 2.4748e-004 1.4840e-007

blockSizeZ 0.0077 1.1951e-005

Table 1: Stepwise multiple regression results in
terms of GPU power consumption estimation for the
NVidia GeForce 8800 GT. It only shows the 9 re-
tained (most significant) GPU workload variables.
Refer to [6] for the details of the extracted GPU
workload signals.

of the instructions executed on cores per time step remains
the same regardless branches [7].

4.2 GPU Power Consumption Modeling
Inspired by the previous GPU statistical power modeling
scheme proposed by Ma et al. [4] that uses a support vec-
tor regression model to learn the association between GPU
workload signals and power consumption successfully, in this
work, we employ the Gaussian process regression (GPR)
model for such statistical power modeling task. As described
above, a total of 9 major GPGPU workload variables are se-
lected for our GPGPU power estimation model training. We
first split the processed dataset < X9

i=1,P > into a training
subset (80% of the data) and a cross-validation subset (the
remaining 20%). Then, we use the training subset to learn
the GPR model, Pt = F (X1

t , X2
t , ..., X9

t), that is capable of
predicting the GPU power consumption, Pt, given any given
GPGPU workload signature, (X1

t , X2
t , ..., X9

t).

we choose to rely on the Gaussian Process Regression (GPR)
model because it offers compelling advantages over other re-
gression models [18]. First, the GPR model is non-parametric,
so it does not require a considerable effort for tuning pa-
rameters to achieve good training results. Second, the GPR
model is context-dependent, and hence it is able to auto-
matically handle GPGPU workload signals with different
properties (e.g., computation-intensive or memory-intensive
workloads) in different ways.

Mathematically, a GPR model is characterized by its hyper-
parameter vector θ that includes a characteristic length-scale
parameter θ1 and a signal magnitude parameter θ2. Hence,
the crucial step of training a GPR model is to learn the
hyper-parameter vector θ properly. In this work, we learn θ
by optimizing the following marginal log-likelihood function
(Equation 1).

LGP = − log P (P |X, θ)

=
1
2

log |K + σ2 I | +
1
2
P T (K + σ2 I)−1P

+
N

2
log 2π (1)

Here LGP is the negative log-posterior of the model, σ2 is
the variance of noise (0.012 in this work), and K is a used
kernel function (we use the ARD covariance function [17] as
described in Equation 2).

Ki,j = k(Xi, Xj) = θ2 exp(−
1

2θ2
1

||Xi − Xj ||
2) (2)

Then, Rasmussen’s minimization algorithm [11] is chosen to
optimize LGP due to its efficiency. The maximum number
of iterations is experimentally set to 1024. After θ is op-
timally solved, the trained GPR model yields a likelihood
function for any predicted output. Concretely, for any new
GPGPU workload signals, x, we can obtain a distribution
of its predicted GPU power consumption, p. In addition, we
can evaluate the negative log probability of the predicted
output. This log-likelihood function is shown in Equation 3.

LS = − log P (p|x, θ)

=
1
2

log(2π(V (x) + σ2)) +
||y − U(x)||2

2(V (x) + σ2)
(3)

U(x) = κ(x)P (K + σ2I)−1P

V (x) = k(x, x) − κ(x)P (K + σ2I)−1κ(x)T

Here κ(x) is a vector in which the ith entry is k(x,Xi), func-
tion U returns the mean of the posterior distribution of the
learned model given new input x, and function V returns
the variance of the learned posterior distribution. In all, we
just need to minimize LS to obtain the predicted output p.

Cross-Validation: We also compared the cross-validation
performance of the chosen GPR model with other two widely-
used regression models: simple stepwise least square based
linear regression (SLR) and Support Vector Machine regres-
sion (SVR) [4]. Comparison results are shown in Figure 3. In
this work, the Percentage of Mean Prediction Error (PMPE)
is used as a quantitative measure for the cross-validation
comparisons. We computed the PMPE values of the entire
cross-validation subset (the retained 20% dataset, 1428 sec-
onds). The resultant PPE values of GPR, SLR, and SVR
are 9.2%, 26.1%, and 12.5% on NVidia GeForce 8800 GT,
respectively. As such, the GPR model chosen in this work
measurably outperformed the other two models (SLR and
SVR) on the retained cross-validation dataset.

5. IMPROVINGENERGYEFFICIENCYFOR
GPGPU COMPUTING

In this section, we describe how to improve the energy effi-
ciency of various GPGPU computing applications based on
the above GPGPU power consumption prediction model.
The pipeline of our proposed GPGPU energy efficiency op-
timization approach can be briefly summarized as follows:
(1) First, we select certain GPGPU programming configu-
rations (e.g., thread number per block, and loop unrolling
level) of the original GPGPU program to generate a number

1220 1225 1230 1235 1240 1245 1250 1255 1260
0

20

40

60

80

100

120

140

Time(s)

Po
we

r C
on

su
m

pt
io

n
(W

at
ts

)

SVR
SLR
GPR
Recorded

Figure 3: A part (80 seconds) of cross-validation
comparison results when a NVidia CUDA SDK sam-
ple “OceanFFT” ran on NVidia GeForce 8800 GT.

of different combinations by varying their values. (2) Then,
we estimate the GPU power consumption of each combina-
tion using the above constructed GPGPU power estimation
model. (3) Lastly, based on the estimated GPGPU power
consumptions, we can calculate the energy-efficiencies of all
the combinations and choose the most energy-efficient one
to improve and optimize the energy efficiency of the original
GPGPU program.

5.1 GPGPU Energy-Conscious Programming
Configurations

Before we select certain GPGPU programming configura-
tions to generate a number of different candidates, we need
to study the energy-consciousness of available GPGPU pro-
gramming factors/configurations [8]. We use a logistic re-
gression analysis technique [3] to compute the statistical
significances of energy efficiency of these GPGPU program-
ming factors. Concretely, by using the same benchmark set
as used in Section 3, we perform the analysis and record the
change of the deviances of Chi-Square test statistics if one
programming factor is not considered into logistic regression.
As shown in Table 2, based on the logistic regression results,
we are able to rank the significance of energy efficiency of
the top-six GPGPU programming factors as follows: “input
data size of kernel function”>“number of threads per tile”>
“unroll level”> “24-bit ALU instruction”> “shared memory
access”>“number of tiles per grid”. As such, we select these
programming factors (except the user-specified “input data
size”) as the energy-conscious programming configurations
of interest to generate candidates in this work.

5.2 Selected Benchmarks and Results
To validate our GPGPU energy efficiency optimization ap-
proach, we selected five GPGPU benchmarks from the NVidia
GPU Computing SDK (listed in Table 3) as the test pro-
grams. The five benchmarks were not used in the pre-
vious power consumption model training (Section 4) and
their graphical outputs were disabled in order to isolate the
GPGPU effect. Then, (1) we selected the energy-conscious

Variable Deviance χ2 d.f. 5% χ2

input data size 13.1 6 12.59

num of threads per tile 9.0 3 7.82

unroll level 8.6 3 7.82

24-bit ALU 4.5 1 3.84

shared memory access 3.8 1 3.84

num of tiles per grid 2.2 1 3.84

Table 2: Logistic regression results of differ-
ent CUDA-based GPGPU programming factors in
terms of their significances of energy efficiency
(GFLOPS per Watt)

GPGPU programming configurations (Section 5.1) for en-
ergy efficiency optimization. We varied the above program-
ming configurations to generate a number of GPGPU pro-
gramming configuration combinations/candidates for each
benchmark. After that, (2) we estimated the energy-efficiencies
of all the combinations (shown in Fig. 4). We used the above
constructed GPGPU power estimation model, as well as the
recorded program performance data, to predict the energy
efficiency of each of the generated GPGPU configuration
candidates. Finally, (3) we determined the optimal GPGPU
configuration combination in terms of energy efficiency. For
example, for the “fastWalshTransform” benchmark, as de-
picted in Figure 4, the configuration combination that is
predicted to achieve the maximal energy efficiency (0.1531
GFLOPS/Watt) is candidate #40 (i.e., thread per tile =
512, unroll level = 8, ALU instruction = 24-bit, memory
access = S (shared)). Analogously, Figure 4 shows the pre-
dicted information of the other four benchmarks. The opti-
mal GPGPU configuration combinations that are predicted
to achieve the maximal GPGPU energy efficiency are: “par-
ticles” candidate #24 (0.0266 GFLOPS/Watt, thread per
tile = 512, unroll level = 4, memory access = S (shared)),
“matrixMul” candidate #22 (0.1677 GFLOPS/Watt, thread
per tile = 512, unroll level = 1, memory access = S (shared)),
“scalarProd” candidate #9 (0.0610 GFLOPS/Watt, thread
per tile = 128, unroll level = 16), and “MersenneTwister”
candidate #14 (0.1705 GFLOPS/Watt, thread per tile =
128, unroll level = 2, memory access = non-shared mem-
ory).

5.3 Validation
In order to quantify the accuracy and effectiveness of our
GPGPU energy efficiency optimization approach, we also
recorded the power consumption data (as the ground truth)
for all the GPGPU configuration combinations considered
in this study. The ground truth GPGPU energy-efficiencies
(GFLOPS/Watt) of all the candidates are also depicted in
Fig. 4. Table 3 shows the energy efficiencies for the selected
(by our approach), average, and best (i.e. ground-truth)
candidates running on the chosen NVidia 8800 GT graphics
card.

From Fig. 4, we can draw the following two conclusions.
First, the optimized GPGPU configuration combination, cho-
sen by our approach, is able to substantially improve the
energy-efficiencies of the chosen GPGPU applications. For
example, for the“fastWalshTransform”benchmark, as shown
in Figure 4, the optimized configuration combination (can-
didate #40) chosen by our approach, generates a measur-

Figure 4: The estimated and ground-truth energy-efficiencies for all the generated candidates of the selected
benchmarks (from top-left to bottom-right): “particles”, “matrixMul”, “scalarProd”, “MersenneTwister”, and
“fastWalshTransform”. The blue bars indicate the candidates of maximal ground truth energy-efficiencies
while the red bars indicate the candidates of maximal estimated energy-efficiencies.

Benchmark Selected Average Best
particles 0.0260 0.02547 0.0260

matrixMul 0.151 0.0909 0.159

scalarProd 0.0551 0.0501 0.0554

MersenneTwister 0.1615 0.1420 0.1729

fastWalshTransform 0.1525 0.0919 0.1578

Table 3: Ground truth energy-efficiencies
(GFLOPS/Watt) for the selected, average, best
candidates of the benchmarks

ably higher energy efficiency (0.1525 GFLOPS/Watt) than
the average case (0.0919 GFLOPS/Watt). The percentage
of GPGPU energy efficiency improvement with respect to
the average efficiency is 65.607%. The energy efficiency
of the selected candidate by our approach is considerably
close to the best possible energy efficiency among all can-
didates - 0.1578 GFLOPS/Watt for candidate #14. Take
the “MersenneTwister” benchmark for another example (the
bottom-left panel of Fig. 4), the selected candidate #14 by
our approach produces a higher energy efficiency (0.1615
GFLOPS/Watt) than the average case (0.1420 GFLOPS/Watt).
The percentage of GPGPU energy efficiency improvement
is 13.735% with respect to the average energy efficiency.
The energy efficiency of the selected candidate is a 93.40%
of the best possible case among all candidates. The pre-
dicted energy efficiency for the selected candidate was 0.1705
GFLOPS/Watt, which is higher than the ground-truth en-
ergy efficiency. The deviation is due to the difficulty of our

GPU power estimation model since it does not take GPU
factors such as varying I/O activities and GPU fan speeds
into explicit consideration. Nonetheless, our model is capa-
ble of consistently predicting the overall energy usage ten-
dency and thus selecting the near-optimal candidate (i.e.
significantly above the average) in most cases.

Second, our approach can robustly predict the energy effi-
ciencies of different GPGPU configuration combinations, in
particular, their general trend; as such, it is effective to im-
prove and optimize the energy efficiency of various GPGPU
computing applications. Fig. 4 show the comparisons be-
tween all the predicted and recorded (ground-truth) energy-
efficiencies for the test benchmarks. We further computed
the average percentage of prediction errors: the average
error (percentage) of “particles” is 8.19%, it is 2.52% for
“matrixMul”, 1.43% for “scalarProd”, 4.78% for “Mersen-
neTwister”, and 4.60% for “fastWalshTransform”. As such,
we can observe that though our GPGPU power estimation
model is not able to perfectly predict the energy-efficiencies,
the errors are nonetheless within a manageable range. In
particular, the predicted GPGPU energy-efficiencies are ap-
proximately consistent with the ground-truth in terms of
their general trend, e.g., the energy efficiency variations.
Therefore, our approach is measurably effective to optimize
the energy efficiency of a variety of GPGPU computing ap-
plications.

6. DISCUSSION AND CONCLUSIONS

In this paper, we propose a novel framework to improve
the energy efficiency of GPGPU computing applications.
Its first element is to statistically analyze and model the
GPGPU power consumption by exploiting the inherent as-
sociation among GPU power consumption, runtime perfor-
mance, and dynamic GPGPU workload. Our trained statis-
tical model is capable of robustly and accurately predicting
power consumption for the chosen two commodity NVidia
GPUs. Based on this GPU power model, we present an
automated selection approach of choosing the near-optimal
energy efficient GPGPU programming configuration from a
set of exhaustive combinations of program features (which
we call candidates in this work) on the power signals pre-
dicted by our power model. Furthermore, through the en-
ergy efficiency improvement of a number of selected GPGPU
benchmarks, we demonstrated that our proposed framework
can be used to measurably improve the energy efficiency of
various GPGPU applications.

Certain limitations still remain in the current work. (1) Our
current framework cannot be directly applied to non-NVidia
GPUs, e.g., ATI Radeon series GPUs. The main reason is
that most of ATI GPU performance counters or workload
recorders do not expose sufficient workload signal informa-
tion to external developers. Hence, it is difficult to use their
limited performance counters to train a well-behaviored sta-
tistical model for GPU power estimation. (2) Our current
framework employs the CUDA profiler to extract GPGPU
workloads, which means all our training and test GPGPU
benchmarks need to be implemented with CUDA. In the
future, we will conduct more studies on other GPGPU pro-
gramming models such as ATI Stream and OpenCL and
generalize our framework to other GPGPU platforms.

7. REFERENCES
[1] S. Collange, D. Defour, and A. Tisserand. Power

consumption of gpus from a software perspective. In
ICCS ’09: Proc. of the 9th International Conference
on Computational Science, pages 914–923, 2009.

[2] B. Dally. Low-power architecture.
http://cva.stanford.edu/people/dally/ISSCC2005.pdf,
2005.

[3] J. M. Hilbe. Logistic Regression Models. Chapman &
Hall/CRC Press, 2009.

[4] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical
power consumption analysis and modeling for
gpu-based computing. In Proc. of SOSP Workshop on
Power-Aware Computing and Systems (HotPower)’09,
2009.

[5] B. Mochocki, K. Lahiri, and S. Cadambi. Power
analysis of mobile 3D graphics. In DATE’06: IEEE
Conf. on Design, Automation, and Test in Europe
(DATE), pages 502–507, 2006.

[6] NVIDIA . NVidia Visual CUDA Profiler.
http://developer.nvidia.com/object/cuda.html, 2010.

[7] NVIDIA. GeForce 8800 GPU architecture overview.
Technical report, NVIDIA, Nov 2006.

[8] NVIDIA. NVidia GPU Programming Guide, 2008.
[9] T. Pering, T. Burd, and R. Brodersen. The simulation

and evaluation of dynamic voltage scaling algorithms.
In ISLPED’98: Proc. of international symposium on
Low power electronics and design, pages 76–81, 1998.

[10] K. Ramani, A. Ibrahim, and D. Shimizu. PowerRed:
A flexible power modeling framework for power
efficiency exploration in GPUs. In Worskshop on
General Purpose Processing on Graphics Processing
Units (GPGPU), 2007.

[11] C. E. Rasmussen. Minimize function,
http://www.kyb.tuebingen.mpg.de/bs/people/carl/,
2006.

[12] M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser,
and M. Sarrafzadeh. Energy-aware high performance
computing with graphic processing units. In
HotPower’08: Proc. of ACM SOSP Workshop on
Power Aware Computing and Systems (HotPower)
2008, Dec 2008.

[13] J. W. Sheaffer, D. Luebke, and K. Skadron. A flexible
simulation framework for graphics architectures. In
HWWS ’04: Proc. of the ACM
SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 85–94, 2004.

[14] J. W. Sheaffer, K. Skadron, and D. Luebke. Studying
thermal management for graphics-processor
architectures. In Proc. of IEEE International
Symposium on Performance Analysis of Systems and
Software, pages 54–65, 2005.

[15] H. Takizawa, K. Sato, and H. Kobayashi. SPRAT:
Runtime processor selection for energy-aware
computing. In 2008 IEEE International Conference on
Cluster Computing, pages 386–393, Cct 2008.

[16] H. Valiaho and T. Pekkonen. A procedure for stepwise
regression analysis. Akademie-Verlag, 1976.

[17] C. K. I. Williams and C. E. Rasmussen. Gaussian
processes for regression. In Advances in Neural
Information Processing Systems 8, pages 514–520.
MIT Press, 1996.

[18] T. S. P. Withers and C. Bailer-Jones. Accelerated
learning using gaussian process models to predict
static recrystallization in an al-mg alloy. Modelling
and Simulation in Materials Science and Engineering,
8(5):1–14, 2000.

