
Expressive Speech Animation Synthesis with Phoneme-Level Controls ∗

Zhigang Deng † , and Ulrich Neumann‡

Department of Computer Science
University of Houston

Houston, TX, 77204, USA
http://www.cs.uh.edu

Technical Report Number UH-CS-08-05

April 20, 2008

Keywords: Speech Animation, Facial Animation, Data-Driven, Motion Capture, Phoneme-Isomap.

Abstract
This paper presents a novel data-driven expressive speech animation synthesis system with phoneme-

level controls. This system is based on a pre-recorded facial motion capture database, where an actress
was directed to recite a pre-designed corpus with four facial expressions (neutral, happiness, anger, and
sadness). Given new phoneme-aligned expressive speech and its emotion modifiers as inputs, a constrained
dynamic programming algorithm is used to search for best-matched captured motion clips from the
processed facial motion database by minimizing a cost function. Users optionally specify “hard constraints”
(motion-node constraints for expressing phoneme utterances) and “soft constraints” (emotion modifiers) to
guide this search process. We also introduce a phoneme-Isomap interface for visualizing and interacting
phoneme clusters that are typically composed of thousands of facial motion capture frames. On top of
this novel visualization interface, users can conveniently remove contaminated motion subsequences from
a large facial motion dataset. Facial animation synthesis experiments and objective comparisons between
synthesized facial motion and captured motion showed that this system is effective for producing realistic
expressive speech animations.

∗This work is to appear on Computer Graphics Forum, 27(6), September, 2008.
† Z. Deng is affiliated with the Department of Computer Science, University of Houston.
‡ U. Neumann is affiliated with University of Southern California.

http://www.cs.uh.edu

1

Expressive Speech Animation Synthesis with
Phoneme-Level Controls ∗

Zhigang Deng † , and Ulrich Neumann‡

Abstract

This paper presents a novel data-driven expressive speech animation synthesis system with phoneme-level
controls. This system is based on a pre-recorded facial motion capture database, where an actress was directed
to recite a pre-designed corpus with four facial expressions (neutral, happiness, anger, and sadness). Given new
phoneme-aligned expressive speech and its emotion modifiers as inputs, a constrained dynamic programming
algorithm is used to search for best-matched captured motion clips from the processed facial motion database
by minimizing a cost function. Users optionally specify “hard constraints” (motion-node constraints for expressing
phoneme utterances) and “soft constraints” (emotion modifiers) to guide this search process. We also introduce a
phoneme-Isomap interface for visualizing and interacting phoneme clusters that are typically composed of thousands
of facial motion capture frames. On top of this novel visualization interface, users can conveniently remove
contaminated motion subsequences from a large facial motion dataset. Facial animation synthesis experiments and
objective comparisons between synthesized facial motion and captured motion showed that this system is effective
for producing realistic expressive speech animations.

Index Terms

Speech Animation, Facial Animation, Data-Driven, Motion Capture, Phoneme-Isomap.

I. INTRODUCTION

Synthesizing realistic and human-like facial animations is still one of the most challenging topics in the computer
graphics and animation community. Manual approaches typically pose keyframes every several frames to create
compelling facial animations, which is a painstaking and tedious task, even for skilled animators. Facial motion
capture, widely used in entertainment industry, can acquire high-fidelity human facial motion data; however, it
remains difficult to modify and edit captured facial motion data to generate novel facial animations.

In this work, we present a novel data-driven expressive speech animation synthesis system by searching for
best-matched motion capture frames in a pre-recorded facial motion database while animators establish constraints
and goals. The inputs of this system include novel speech with phoneme-alignment information, and optional user-
specified constrained expressions for phonemes and emotions that are used only to impart them with a desired
expressiveness. On the user interaction and control side, this system offers flexible and intuitive phoneme-level
controls to users. Users can browse and select constrained expressions for phonemes using a 2D expressive phoneme-
Isomap visualization interface introduced in this work. Meanwhile, users can optionally specify emotion modifiers
over arbitrary phoneme time. These speech-related controls are performed on a phoneme level. Figure 1 illustrates
high-level components of this system.

This system provides an intuitive tool for browsing and eliminating contaminated motion subsequences from a
large facial motion dataset. There are two reasons why this tool is useful. First, intuitively visualizing and managing
a large facial motion dataset that is composed of hundreds of thousands motion frames is a necessary step towards
its various applications. Second, acquired facial motion capture data often is imperfect, and contaminated marker
motions can occur somewhere in a motion capture sequence. Eliminating these contaminated motion subsequences
is difficult but very useful. The phoneme-Isomap based browsing and checking tool offers an intuitive way to help
users to remove contaminated motion sequences efficiently. A preliminary version of this work has been published
as a conference paper [1].

The contributions of this work include:
∗This work is to appear on Computer Graphics Forum, 27(6), September, 2008.
† Z. Deng is affiliated with the Department of Computer Science, University of Houston.
‡ U. Neumann is affiliated with University of Southern California.

2

Fig. 1. Schematic illustration of the expressive speech animation generation system. At the left, given novel phoneme-aligned speech and
(optional) specified constraints, this system searches for best-matched motion nodes in the facial motion database and synthesizes expressive
speech animation. The right panel illustrates how users specify motion-node constraints and emotions with respect to the speech timeline.

• Its expressive speech motion synthesis algorithm is an improvement over previous data-driven synthesis al-
gorithms. Emotion controls (modifiers) introduced in this work can seamlessly synthesize expressive speech
animations with four facial expressions (neutral, happiness, anger, and sadness) captured in our dataset.

• Intuitive phoneme-level controls allow users to interact with its speech animation synthesis procedure con-
veniently via the 2D visualization of phoneme-Isomaps. The phoneme-Isomap based interface provides an
intuitive tool for browsing and eliminating contaminated motion subsequences from a large facial motion
dataset, which is difficult to achieve using traditional approaches.

The remainder of this paper is organized as follows: Section II reviews previous and related work on motion
capture and facial animation synthesis. Section III describes how expressive facial motion data are acquired and
processed. Section IV describes the construction of 2D expressive phoneme-Isomaps that allow users to interactively
specify phoneme expression constraints and manage the large facial motion database. Section V details how
to perform motion database management operations and how to specify constraints for expressing phonemes.
Section VI describes how to search for best-matched motion nodes from the processed motion-node database to
create complete expressive speech animations while satisfying user-specified constraints. Section VII describes how
to real-time deform 3D face models based on marker motion data and how to smooth searched motion frames.
Finally, Section VIII describes experiment results and evaluations.

II. PREVIOUS AND RELATED WORK

Various facial modeling and animation techniques have been developed in the past several decades [2], [3]. For
example, physically-based methods [4]–[6] drive facial and mouth movements by simulating the facial muscles.
Performance-driven facial animation techniques [7] deform 3D face models based on facial motion of real perform-
ers, tracked using computer vision techniques. The work of [8]–[10] uses blendshapes or traverse faces modeled
from photographs or video streams to generate facial animations. Blanz et al. [11] creates a morphable face model
from a set of scanned 3D face model dataset, then reconstructs 3D faces from input 2D images and video and
produce novel facial animations [12]. A number of techniques were also presented to transfer facial animations of
source face models to other face models automatically [13]–[17]. Refer to the comprehensive survey by Deng and
Noh [18] for recent advances in computer facial modeling and animation.

Phoneme-based methods use hand-crafted speech co-articulation models [19]–[22] or model speech co-articulation
from data [23]–[25]. The Cohen-Massaro co-articulation model [21] represents each viseme shape using a target
value and a dominance function, and determines final mouth shapes based on the weighted sum of dominance
values. Bevacqua and Pelachaud [22] presented an expressive qualifier, modeled from recorded real motion data,
to make expressive speech animations. Deng et al. [23], [25] learn parametric speech co-articulation models and
expression spaces from motion capture data for the facial animation synthesis purpose.

Data-driven facial animation approaches learn statistical models from data [25]–[30] for facial animation synthesis
and editing. Brand [26] learns HMM-based facial control models by an entropy minimization learning algorithm
from voice and video training data and then effectively synthesizes full facial motions from novel audio track. Ezzat

3

et al. [27] learn a multidimensional morphable model from a recorded video database that requires a limited set of
mouth image prototypes. Chuang et al. [28], [30] learn a facial expression mapping/transformation from training
footage using bilinear models, and then this learned mapping is used to transform novel video of neutral talking to
expressive talking. Cao et al. [29] present a motion editing technique that applies Independent Component Analysis
(ICA) to recorded facial motion capture data and further editing and mapping operations are done on these ICA
components, interpreted as expression and speech components separately. Zhang et al. [31] present a geometry-
driven technique for synthesizing expression details for 2D faces, where users can move a small number of control
points on 2D face images, and then movements of other 2D control points are automatically computed using a
motion propagation algorithm.

Another way of exploiting data for facial animation synthesis is to concatenate phoneme or syllable segments
from a pre-recorded facial motion database [27], [32]–[36]. Bregler et al. [32] present the “video rewrite” method
for synthesizing 2D talking faces given novel audio track, based on a collected database of “triphone video
segments”. The success of this approach largely depends on the accuracy of phoneme-alignment and the number of
triphones covered in the training video footage. Instead of constructing a phoneme segment database, Kshirsagar and
Thalmann [35] present a syllable based approach to synthesize novel speech animation. In their approach, captured
facial motions are chopped and categorized into syllable motions, and then new speech animations are generated
by concatenating corresponding syllable motions from the created syllable motion database. Rather than restricting
within triphones or syllables, longer (≥ 3) phoneme sequences can be combined in an optimal way using various
search methods including greedy search [34] or the Viterbi search algorithm [33], [36]. These above approaches
can achieve synthesis realism, but their versatility and control are limited. One of their common limitations is that
it is difficult to achieve facial expression (emotion) control over synthesis procedure without considerable efforts.

The expressive speech animation generation system presented in this work employs a constrained dynamic
programming algorithm to search for the best-matched motion capture subsequences in a created motion-node
database, similar to [33], [36]. But the main distinctions of our search algorithm include: (1) By introducing a
novel emotion control (modifier), our algorithm can seamlessly synthesize expressive facial animation, instead
needing to create separate facial motion database for each emotion category, as previous approaches have done. (2)
It introduces motion-node constraints for expressing phonemes into the animation synthesis process, which make
the control of data-driven facial animation synthesis feasible and intuitive.

Researchers in the graphics field also pursued ways of editing and reusing the captured body motion data while
maintaining its intrinsic realism. Recent approaches synthesize human body motion by motion warping [37], a
parameterized interpolation approach for generating different styles of human motion [38], learning statistical models
for motion styles [39], constructing and traversing motion graphs [40], [41], sampling from learned statistical
models [42], [43], searching in optimized low dimensional manifolds [44], [45], or constructing a continuous
parameterized space of motions [46].

In a broad sense, human body motion synthesis from body motion capture data has some connections with
this work, but these methods can not be directly applied to expressive speech animation synthesis due to control
differences. Body motions are more involved with interactions between bones, while human facial motions are
non-rigid deformations among facial muscles, bones, and skin. The non-rigid deformations impose great difficulty
on controlling facial motion synthesis. This is evident in that a simple skeleton model is acceptable for representing
synthesized body motion and key body poses, while simplified facial representations, such as markers or line draw-
ings, are not usable for specifying keyframe face configurations or demonstrating animations without considerable
efforts. As such, it makes intuitive controls for facial animation synthesis an important, while difficult, topic in the
field. In this work, we attempt to tackle this control issue by introducing a novel phoneme-Isomap interface that
provides users with convenient controls.

III. FACIAL MOTION DATA CAPTURE AND PROCESS

To acquire high-fidelity 3D facial motion data, we captured facial motions of an actress using a VICON motion
capture system (the left panel of Fig. 2). The actress with 102 markers on her face was directed to speak a
delicately designed corpus four times, and each repetition was spoken with a different facial expression. The corpus
was designed as follows: we first collected the set of North American diphones (phoneme pairs) from the Carnegie
Mellon University Pronouncing Dictionary [47] and then designed sentences to cover the majority of the collected
diphone set. In our work, the corpus consists of about 225 phoneme-balanced sentences. In this work, a total of

4

four different expressions are considered: neutral, happiness, anger and sadness. It should be noted that sentences
for each expression repetition are slightly different, because the actress had difficulty in reciting some sentences
with certain expressions.

The facial motion data was recorded with a 120 frames/second rate. When facial motions were being captured,
simultaneous acoustic speech was also recorded. We collected approximately 135 minutes of facial motion capture
data. Because of tracking errors caused by rapid large head movements and the removal of unnecessary facial
markers, we used only 90 of 102 markers for this work. The 90 markers were fully tracked. Figure 2 shows a facial
motion capture system, the 102 captured markers and the 90 kept markers.

The motion frames for each corpus repetition were labeled with the intended emotion, the only tag information
required by algorithms used in this work. Except for 36 sentences that were reserved for cross-validation and test
comparisons, the other captured facial motion data were used for constructing the training facial motion database.

Fig. 2. The left shows a facial motion capture system, the middle is a snapshot of the captured actress. In the right panel, blue and red
points represent the 102 captured markers, where the red points are the 90 markers used for this work.

After data capture, we normalized the facial motion data. All the markers were translated so that a specific
marker was at the local coordinate center of each frame. Then a statistical shape analysis method [48] was used
to calculate head motion. A neutral pose with closed mouth was chosen as a reference frame and was packed into
a 90 × 3 matrix, y. For each motion capture frame, a matrix xi was created using the same marker order as the
reference. After that, the Singular Value Decomposition (SVD), UDV T , of matrix yT xi was calculated. Finally,
the product of V UT gave the rotation matrix, R.

yT xi = UDV T (1)

R = V UT (2)

The Festival system [49] was used to perform automatic phoneme alignment on the captured audio in a forced-
alignment mode. Accurate phoneme-alignment is important to the success of this work and automatic phoneme-
alignment is imperfect, so two linguistic experts manually checked and together checked and corrected all the
phoneme-alignments by examining the corresponding spectrograms.

After head motion was removed from the facial motion capture data, the motions of all 90 markers in one frame
were packed into a 270 dimensional motion vector, and the Principal Component Analysis (PCA) algorithm was
applied to all the motion vectors to reduce their dimensionality. We experimentally set the reduced dimensionality
to 25, which covers 98.53% of the motion variation. In this way, we transformed a 270-dimensional motion vector
into a reduced 25-dimensional vector concatenating the retained PCA coefficients. In this work, we use Motion
Frames to refer to these retained PCA coefficient vectors or their corresponding 3D facial marker configurations.

To make terms used in this paper consistent, we introduce two new terms: Motion Nodes and Phoneme Clusters.
Based on the phoneme time boundaries, we chopped the motion capture sequences into subsequences that span
several to tens of motion frames, and each subsequence corresponds to the duration of a specific phoneme. Each
phoneme occurs many times in the spoken corpus, with varied co-articulations. We refer to these facial motion
subsequences as Motion Nodes. It should be noted that in most of published facial animation literature, a viseme
has been already used to represent the static visual representation of a phoneme. However, in this paper a motion

5

node is a visual motion subsequence enclosing timing information. To differentiate it from the widely-used viseme,
we use “motion nodes”.

For each motion node, its triphone context that includes its previous phoneme and next phoneme is also retained.
Putting all motion nodes of a specific phoneme together produces thousands of motion frames representing captured
facial configurations that occur for the phoneme. All the motion-frames corresponding to a specific phoneme are
referred to as a Phoneme Cluster. Each motion-frame in a phoneme cluster has an emotion label and a normalized
relative time property (relative to the duration of the motion node that it belongs to) that is in the range from 0 and
1. The specific phoneme that a motion node represents is called the phoneme of the motion node. Fig. 3 illustrates
the process of constructing phoneme clusters and motion nodes.

Fig. 3. To construct a specific /w/ phoneme cluster, all expressive motion capture frames corresponding to /w/ phonemes are collected, and
the Isomap embedding generates a 2D expressive Phoneme-Isomap. Colored blocks in the figure are motion nodes.

Besides the phoneme clusters, we also built a facial motion-node database. The processed motion node database
can conceptually be regarded as a three dimensional space (spanned by sentence, emotion, and motion node order).
Because sentence is the atomic captured unit, each motion node oi (except the first/last motion node of a sentence
recording) has a predecessor motion node pre(oi) and a successive motion node suc(oi) in its sentence (illustrated as
solid directional lines in Fig. 4). Possible transitions from one motion node to another motion node are illustrated
as dashed directional lines in Fig. 4. A noteworthy point is motion nodes for the silence phoneme /pau/ were
discarded, and if the /pau/ phoneme appears in the middle of a sentence’s phoneme transcript, it will break the
sentence into two sub-sentences when constructing this motion node database. Special postprocessing for the silence
phoneme /pau/ will be described in Section VII. Figure 4 illustrates the conceptual organization of the processed
facial motion node database.

6

Fig. 4. Conceptual illustration of the constructed motion node database. Here solid directional lines indicate predecessor/successor relations
between motion nodes, and dashed directional lines indicate possible transitions from one motion node to the other. The colors of motion
nodes represent different emotion categories of the motion nodes. The yellow line in the right panel represents a possible motion node path.

IV. EXPRESSIVE PHONEME ISOMAPS

Now we describe how to transform and visualize the phoneme clusters into 2D expressive phoneme-Isomaps.
The phoneme-Isomaps enable users to interactively browse and select motion frames and motion nodes. The idea of
creating intuitive visualization interfaces for phoneme clusters was largely inspired by Safonova et al.’s work [44]
where PCA is applied to a specific type of human body motion, e.g. jumping, to generate a low-dimensional
manifold. In this work, each phoneme cluster is processed with the Isomap framework [50] to embed the cluster
into a two-dimensional manifold. The neighbor number parameter is set to 12 in this work.

We compared 2D Phoneme-PCA maps (two largest eigen-vector expanded spaces) with 2D Phoneme-Isomaps. By
visualizing both in color schemes, we found that points for one specific color (emotion) were distributed throughout
the 2D PCA maps, while the 2D phoneme-Isomaps cluster the same color (emotion) points in a more natural way
and lead to a better projection. As such, as a mean for frame selection, the 2D PCA display is not as good as
the 2D phoneme-Isomaps. We also found that certain directions in the phoneme-Isomaps, such as a vertical axis,
often corresponded to intuitive perceptual variations of facial configurations, such as an increasingly open mouth.
Figure 5 compares 2D PCA projection and 2D Isomap projection on the same phoneme clusters.

The above point-rendering (Fig. 5) of 2D expressive phoneme-Isomaps are not directly suitable for interactively
browsing and selecting facial motions. A Gaussian kernel point-rendering technique further visualizes the phoneme-
Isomaps as follows: each pixel of the phoneme-Isomap accumulates the Gaussian distributions centered at each
embedded location, and pixel brightness is proportional to the probability of a corresponding motion-frame rep-
resenting the phoneme. Assume P is a pixel on a 2D phoneme-Isomap, the following Eq. 3 is used to compute
I(P), the pixel brightness of P .

I(P) =
n∑

i=1

N(Qi, σ; distance(Qi, P)) ∗ ρ ∗ I(Qi) (3)

Here ρ is a user-defined positive value assigned to each facial frame in the phoneme cluster, and 0 < ρ< 1,
Qi is the embedded 2D location of one frame in the phoneme cluster, N(.) is a user-defined Gaussian distribution
centered at Qi, I(Qi) (the pixel brightness of Qi) is pre-assigned based the chosen coloring scheme. If I(P) is
larger than one, then it is clamped to one. Fig. 6 shows an example of the visualized phoneme-Isomaps.

Then we apply the 2D Delaunay triangulation algorithm to the embedded 2D Isomap coordinates of each
phoneme-Isomap to construct its triangulation network, where each vertex (of these triangles) corresponds to an
embedded phoneme-Isomap point - a facial motion frame in the phoneme cluster. These triangles cover most of
the points in the phoneme-Isomap image without overlap, except some points around the image boundary may not
be covered by the triangulation network.

Therefore, when users pick a point x in a phoneme-Isomap, a unique covering triangle that covers x is determined
based on the precomputed triangulation network. Finally, the barycentric coordinates of x are used to interpolate
three vertices (motion-frames) of the covering triangle to generate a new motion-frame (corresponding to the picked
point). Figure 7 illustrates this process.

7

Fig. 5. Comparisons between 2D Phoneme-PCA maps and 2D Phoneme-Isomaps. The left panels are 2D Phoneme-PCA maps for /aa/
(top) and /y/ (bottom), and the right panels are 2D Phoneme-Isomaps for /aa/ (top) and /y/ (bottom). In all four panels, black is for neutral,
red for angry, green for sad, and blue for happy. Note that some points may overlap in these plots.

As such, a phoneme-Isomap image is a visualized representation of a continuous space of recorded facial
configurations for one specific phoneme. Fig. 6 shows an example of the phoneme-Isomap images (for the /ay/
phoneme). Note that these phoneme-Isomap images and their mapping/triangulation information were precomputed
and stored for later use. Based on the above interpolated motion frame (Fig. 7), a 3D face model is deformed
correspondingly (refer to Section VII-A for more details).

V. BROWSE AND MANAGE FACIAL MOTION NODES

As described in Section III, the captured facial motion database is generally composed of hundreds of thousands
of facial motion capture frames, and it is challenging to manage this huge dataset. The phoneme-Isomap images
allow users to browse and manage these motion nodes intuitively and conveniently.

Each motion node is a sequence of motion capture frames of one specific phoneme in their recorded order, which
is visualized as a directed trajectory in the phoneme-Isomap images. Since each point on the trajectory represents
a specific facial configuration (refer to Fig. 6), and the pixel color behind a motion-node trajectory represents the
emotion category of the motion node, users can intuitively and conveniently inspect any frame in the motion node
(a point on the trajectory) as follows: when users click any point on the trajectory, its corresponding 3D face
deformation is interactively displayed in a preview window. Besides offering single motion frame preview, this
system can be straightforwardly extended to handle previewing “expressive facial motion clips” as follows: if users
select a motion node (trajectory) in a phoneme-Isomap image, a clip preview window can show the animation of
the corresponding motion node.

During this interaction process, if contaminated motion nodes are found, users can easily remove these motion
nodes from the database. The motion synthesis algorithm (Section VI) could avoid the risk of being trapped into

8

Fig. 6. Illustration of a 2D expressive phoneme-Isomap for phoneme /ay/. Here each point in the map corresponds to a specific 3D facial
configuration.

Fig. 7. Illustration of how a picked point is transformed to a new facial motion frame.

9

these contaminated motion nodes. Furthermore, other facial motion database based applications will benefit from a
cleaned facial motion database.

Fig. 8. Illustration of how to specify a motion-node constraint via the phoneme-Isomap interface. When users want to specify a specific
motion node for expressing a particular phoneme utterance, its corresponding phoneme-Isomap is automatically loaded. Then, users can
interact with the system to specify a motion-node constraint for this constrained phoneme.

VI. EXPRESSIVE SPEECH MOTION SYNTHESIS

In this section, we describe how the motion synthesis algorithm in this work automatically synthesizes corre-
sponding expressive speech/facial animations, given a novel phoneme sequence (extracted from speech/texts input)
and its emotion specifications. This system is fully automatic after inputs are fed into the system. However, in many
animation applications, providing intuitive user controls is as important as full automation. This system provides
intuitive user controls in two ways: users can specify a motion-node constraint for any phoneme utterance (“hard
constraints”) via the above phoneme-Isomap interface, and specify the emotion modifiers as “soft constraints”.
Under these hard and soft constraints, the motion synthesis algorithm in this work searches for a best-matched
sequence (path) of motion nodes from the processed facial motion node database, by minimizing a cost function.

A. Specify Motion-Node Constraints
Users interactively browse phoneme-Isomap images to specify motion-node constraints and tie them to a specific

phoneme utterance’s expression. We refer to this time as a constrained time and its corresponding phoneme as a
constrained phoneme. Phoneme timing is enclosed in the preprocessed phrase (phoneme) transcript, so a phoneme-
Isomap image is automatically loaded once a constrained phoneme is selected (Fig. 8).

To guide users in identifying and selecting proper motion nodes, our system automatically highlights recom-
mended motion nodes and their picking points. Assuming a motion node path o1, o2, . . . , ok is obtained by the
automatic motion-path search algorithm (the follow-up Section VI-B will detail this algorithm), users want to specify
a motion-node constraint for a constrained time Tc (assume its corresponding constrained phoneme is PHOc and
its motion-frame at Tc is FRMc, called current selected frame). The constrained time Tc is first divided by the
duration of the constrained phoneme PHOc to calculate its relative time tc(0 ≤ tc ≤ 1). Then, for each motion
node in the phoneme cluster, this system interpolates and highlights one motion frame whose relative time attribute
is the current relative time tc. We refer to these motion frames as time-correct motion frames.

As mentioned in Section III, the specific triphone context of each motion node was also retained. By matching the
triphone context of PHOc with that of other existing motion nodes in the phoneme cluster (of PHOc), this system
identifies and highlights the motion nodes in the phoneme cluster that have the same triphone context as PHOc

10

(termed context-correct motion nodes). For example, in Fig. 8, the current constrained phoneme is PHOc=/w/, and
its triphone context is [/iy/, /w/, /ah/], so the system will identify the motion nodes of the /w/ phoneme cluster that
have the same triphone context [/iy/, /w/, /ah/] as the context-correct motion nodes. In this way, by picking their
representative time-correct motion frames, users can choose one of those motion nodes as a motion-node constraint
for PHOc. This motion node constraint is imposed per phoneme utterance, in other words, if one specific phoneme
appears multiple times in a phoneme input sequence, users can specify different motion-node constraints for them.
Figure 9 shows a snapshot of phoneme-Isomap highlights for specifying motion-node constraints. The background
phoneme-Isomap image is always the same for a specific phoneme, but these highlighting symbols (Fig. 9) are
related to current relative time tc and current triphone context. These markers are typically changed over time (even
for the same phoneme).

Fig. 9. A snapshot of phoneme-Isomap highlights for specifying motion-node constraints.

B. Optimal Motion Node Search
Now we describe how our algorithm searches for optimal combinations of motion nodes from the constructed

facial motion node database while satisfying various constraints. We can formalize this motion-node path search
problem as follows: given a novel phoneme sequence input Ψ =(P1, P2, · · · , PT) and its emotion modifiers
Θ = (Ei, E2, · · · , ET), Ei can only be one of four possible values: neutral, anger, sadness and happiness, and
optional motion-node constraints Φ = (Ct1 = oi1 , Ct2 = oi2 , · · · , Ctk = oik , ti %= tj), we want to search for a
best-matched motion-node path Γ∗ = (o∗ρ1

, o∗ρ2
, · · · , o∗ρT

) that minimizes a cost function COST (Ψ,Θ,Φ,Γ). Here
oi represents a motion node with index i.

The cost function COST (Ψ,Θ,Φ,Γ) is the accumulated summation of a Transition Cost TC(oρi , oρi+1), an
Observation Cost OC(Pi, oρi), an Emotion Mismatch Penalty EMP (Ei, oρi), and a Blocking Penalty B(i, oρi), as

11

Rule Conditions Transition Cost (TC)
Rule 1: 0

pre(oρi+1) = oρi

Rule 2: α2.DSC(oρi , pre(oρi+1))
viseme(oρi)=viseme(pre(oρi+1)) +PV C(oρi , oρi+1)

Rule 3: α2.DSC(oρi , pre(oρi+1))
viseme(oρi)%=viseme(pre(oρi+1)) +PV C(oρi , oρi+1) + PNT

Rule 4: α1.PNT
pre(oρi+1) = NIL

TABLE I
RULES OF COMPUTING THE TRANSITION COST TC(oρi , oρi+1). HERE THE PRIORITIES OF THESE RULES ARE: Rule 1 ¿ Rule 2 ¿ Rule 3

¿ Rule 4. IF ANY RULE WITH A HIGHER PRIORITY CAN BE APPLIED, THEN THE LOWER RULES WILL BE IGNORED.

Rule Conditions Observation Cost
Rule 1: Pi = pho(oρi) or Pi = /pau/ 0
Rule 2: viseme(Pi)= viseme(oρi) α4.α5.PNT
Rule 3: the remaining cases α5.PNT

TABLE II
RULES OF COMPUTING THE OBSERVATION COST OC(Pi, oρi). HERE THE PRIORITIES OF THESE RULES ARE: Rule 1 ¿ Rule 2 ¿ Rule 3.

IF ANY RULE WITH A HIGHER PRIORITY CAN BE APPLIED, THEN THE LOWER RULES WILL BE IGNORED.

described in Equation 4.

COST (Ψ,Θ,Φ,Γ) =
∑T−1

i=1 TC(oρi , oρi+1) +
∑T

i=1(OC(Pi, oρi)+
EMP (Ei, oρi) + B(i, oρi))

(4)

Here TC(oρi , oρi+1) represents the smoothness of the transition from a motion node oρi to the other motion
node oρi+1 . The rules for computing TC(oρi , oρi+1) are shown in Table I. OC(Pi, oρi) measures the goodness of a
motion node oρi for expressing a given phoneme Pi. The rules for computing OC(Pi, oρi) is shown in Table II.
EMP (Ei, oρi) is defined in Eq. 5. The blocking cost item B(i, oρi) will be described later. In this section, 〈αi〉6i=1
are pre-defined constants.

EMP (Ei, oρi) =
{

0 if Ei = emotion(oρi)
α6.PNT otherwise (5)

The explanation of the above Eq. 5 is that, if the emotion label of a motion node oρi is the same as the specified
emotion modifier Ei, we set the emotion mismatch penalty to zero, otherwise it is set to a penalty α6.PNT . PNT
is a pre-defined constant.

The explanation of the rules of computing the Transition Cost TC(oρi , oρi+1) (shown in Table I) is: if oρi is the
captured predecessor motion node of oρi+1 (i.e., pre(oρi+1) = oρi), their transition cost is set to zero (i.e., a perfect
transition). If the phoneme of pre(oρi+1) exists and belongs to the same viseme category of that of oρi , then the
cost value is the weighted sum of a Direct Smoothing Cost DSC(oρi , pre(oρi+1)) and a Position Velocity Cost
PV C(oρi , oρi+1). Equations 6 to 9 describe how to compute DSC(oρi , pre(oρi+1)) and PV C(oρi , oρi+1). If these
two motion nodes do not share the same viseme category, then a penalty value PNT is added. If pre(oρi+1) does
not exist, we set a modulated penalty value α1 ∗ PNT . For the definition of viseme categories used in this work,
please refer to the Appendix A.

The explanation of the rules of computing the Transition Cost OC(Pi, oρi) (shown in Table II) is : if the phoneme
of oρi is the expected Pi or Pi is the silence phoneme /pau/, this cost is set to zero. If they are in the same viseme
category, then it is set to a discounted penalty value α4.α5.PNT and 0 < α4 < 1, otherwise, the cost is a penalty

12

value α5.PNT .

DSC(oρi , pre(oρi+1)) =
∫

Blend(warp(oρi), pre(oρi+1))
′′dt (6)

PV C(oρi , oρi+1) = α3.PGap(oρi , oρi+1) + V Gap(oρi , oρi+1) (7)

PGap(oρi , oρi+1) =
MrkNum∑

k=1

√
‖FPk(oρi+1)− LPk(oρi)‖2 (8)

V Gap(oρi , oρi+1) =
MrkNum∑

k=1

√
‖FVk(oρi+1)− LVk(oρi)‖2 (9)

The above Equations 6 to 9 define the Direct Smoothing Cost DSC(oρi , pre(oρi+1)) and Position Velocity Cost
PV C(oρi , oρi+1). To compute the Direct Smoothing Cost DSC(oρi , pre(oρi+1)), first time-warp oρi to make it align
with pre(oρi+1) frame by frame, then do a linear blend on the time-warped motion warp(oρi) and pre(oρi+1), finally,
compute the integral of the second derivative of the blended motion as the Direct Smoothing Cost. PV C(oρi , oρi+1)
is the weighted sum of position gap PGap and velocity gap V Gap between the end of oρi and the start of oρi+1 .

In Equations 8 and 9, MrkNum is the number of the used markers, FPk(oi) represents the 3D position of the
kth marker of the first frame of oi motion node, and LPk(oi) represents the 3D position of the kth marker of the
last frame of oi motion node. FVk(.) and LVk(.) are defined in a similar way, but for 3D velocity.

Now we describe how the specified motion-node constraints Φ =(Ct1 = oi1 , Ct2 = oi2 , · · · , Ctk = oik , ti %= tj)
affect the cost function to guarantee that the searched motion-node path passes through the specified motion nodes at
specified times. The constraints block the chances of other motion nodes (except the specified ones) for representing
constrained phoneme utterances. An additional cost term B(t, oj) is introduced for this purpose (Equation 10).

B(t, oj) =
{

0 if ∃m, tm = t and j = im
HugePenalty otherwise (10)

Based on the above cost definitions, we use the dynamic programming algorithm to search for the best-matched
motion node sequence in the database. Assume there are total N motion nodes in the processed motion node database
and the length of a new phoneme transcript input is T . This expressive speech animation synthesis algorithm can
be briefly summarized in Alg. 1.

The time complexity of the above search algorithm is Θ(N2.T), here N is the number of motion nodes in the
database and T is the length of input phonemes. Note that in the above search algorithm (Alg. 1 and Eq. 4-10),
constant parameters 〈αi〉6i=1 are used to balance the weights of different costs. In this work, the cross-validation
technique [51] was used to experimentally determine these parameter values (refer to Section VI-D for more details).

Given the optimal motion-node path Γ∗, we concatenate its motion nodes by smoothing their neighboring
boundaries and transforming motion nodes from their retained PCA space to markers’ 3D space (Equation 11).
Finally, we transfer the synthesized marker motion sequence to specific 3D face models.

MrkMotion = MeanMotion + EigMx.PcaCoef (11)

Here MeanMotion represents the mean motion vector computed in the previous PCA reduction procedure (Sec-
tion III), EigMx represents the retained eigen-vector matrix composed of the largest 25 eigen-vectors, and PcaCoef
represents a 25-dimensional PCA coefficient vector.

13

Algorithm 1 ExpressiveSpeechMotionSynthesis
Input: OC[P1...PT , o1...oN], observation cost function.
Input: EMP[E1...ET , o1...oN], emotion mismatch penalty function.
Input: TC[o1...oN , o1...oN], transition cost function.
Input: B[1...T, o1...oN], blocking penalty.
Input: N, size of the facial motion node database; T, length of input phoneme sequence.
Output: Motion, synthesized expressive facial motion sequence.

1: for i = 1 to N do
2: ϕ1(i)= OC(P1, oi)+ EMP (E1, oi)
3: end for
4: for t = 2 to T do
5: for j = 1 to N do
6: ϕt(j) = mini{ϕt−1(i) + TC(oi, oj) + OC(Pt, oj) + EMP (Et, oj) + B(t, oj)}
7: χt(j) = arg mini{ϕt−1(i) + TC(oi, oj) + OC(Pt, oj) + EMP (Et, oj) + B(t, oj)}
8: end for
9: end for

10: COST ∗ = mini{ϕT (i)}
11: ρ∗T = arg mini{ϕT (i)}
12: for t = T − 1 to 1 do
13: ρ∗t = χt+1(ρ∗t+1)
14: end for
15: PcaSeq = ConcatenateAndSmooth(o∗ρ1

, o∗ρ2
, · · · , o∗ρT

)
16: Motion = PcaTransformBack(PcaSeq)

Texture Content
CostBuffMap [cost,index,-,-]
CostValueMap [cost]

RetraceIndexMap [index]
MotionNodeMap [seq, phoneme, viseme, emtion]

PrevCostBufferMap [preCost, preIndex, -, -]

TABLE III
DATA TEXTURE PACKING

C. GPU-Accelerated Motion Node Search
In the above ExpressiveSpeechMotionSynthesis algorithm (Alg. 1), its dynamic programming part consumes the

majority of the computing time of Alg. 1. As such, we accelerate the dynamic programming part by implementing
it on GPU as follows. We use fragment shaders written in NVIDIA’s Cg programming language to calculate cost
values in Alg. 1. All data fields (including viseme, phoneme, and emotion) are stored as RGBA textures in GPU.
In this implementation, we use five data textures, as listed in Table III.

The above data textures are updated as follow: first render data to a pixel buffer using a fragment program that
performs the needed dynamic programming-based search operations, and then copy the content of the pixel buffer
to the final destination of the data texture. Note that we fetch DistanceMap each time before we calculate the cost
value. Hence, actually we do not need to store all distance data in video memory at one time.

D. Cross-Validation for Cost Trade-Off
As mentioned in Section VI-B, parameters 〈αi〉6i=1 balance the weights of costs from different sources, which

is critical to the success of this expressive speech animation synthesis algorithm. Additional twenty-four sentences
(each emotion has six), not used in the training database, are used to determine these optimal parameters by cross-
validation [51]. A metric (Eqs. 12 and 13) is introduced to measure the error between ground-truth motion capture
data and synthesized marker motion. We used gradient-descent methods [52] to search for optimal parameter values.
In case the search process may become stuck at a local minimum, we ran the gradient-descent process hundreds of
times and each time it started at a random place. Finally, we picked a certain combination of parameters that leads

14

to the minimum value among all searched results as the optimal parameter setting. Figure 10 shows the searched
cross-validation error-per-frame (Eq. 13) for three chosen sentences.

TotalErr =
K∑

i=1

Erri (12)

Erri =
∑Ni

j=1

∑MrkNum
k=1 ‖ SY N j,k

i −ORIj,k
i ‖2

(Ni ∗MrkNum)
(13)

Here K is the number of cross-validation sentences, MrkNum is the number of the used markers, Ni is the total
number of frames of the ith sentence, SY N j,k

i is the 3D position of the kth synthetic marker of the jth frame of
the ith sentence, and ORIj,k

i is for the motion capture ground-truth.

Fig. 10. The searched cross-validation error-per-frame for three chosen sentences. Here a red solid curve for a neutral sentence,a blue dash
curve for an angry sentence, and a green dash-dot curve for a sad sentence.

VII. 3D FACE DEFORMATION AND MOTION SMOOTHING

In this section, we describe how to transfer the synthesized marker motion sequence to a static 3D face model,
and how to use smoothing and resampling techniques to concatenate searched motion nodes.

A. 3D Face Deformation
After facial marker motions are synthesized, we need to transfer these motions to a specific 3D face model.

Fig. 11 illustrates the used 3D face model.

15

Fig. 11. Illustration of the 3D face model used in this work. The left panel is a wireframe representation and the right panel is a textured
rendering (with eyeball and teeth).

Although Radial Basis Functions (RBF) have been demonstrated successful applications in facial animation
deformation [9], [13], [17], [53], we extended the feature point based mesh deformation approach proposed by
Kshirsagar et al. [54] for this deformation due to its efficiency.

First, for each facial marker (corresponding to a picked vertex on the face model), “mesh distances” from this
facial marker (source) to other vertices (targets) on the face model were computed. Here “mesh distance” is the
summation of distances of the shortest path along the mesh surface, not the direct Euclidean distance from the
source vertex (marker) to the target vertex. The smaller the mesh distance is, the more the target vertex is affected
by the source marker. The underlying reasons include: (1) there are some holes (e.g. mouth and eyes area) in the
face model, and direct Euclidean distance would lead to motion interferences. For example, the direct Euclidean
distance between a lower lip marker and some vertices on the upper lip may be small, but the fact is that the
lower lip marker has little effect on the motion of the upper lip. (2) “Mesh distances” between vertices can better
approximate face surface geometry than direct Euclidean distances, and hence it is more proper for measuring facial
motion propagation. It should be noted that the accuracy of “mesh distances” depends on the density and quality of
face meshes, and more accurate “mesh distances” can be calculated from denser face meshes. Figure 12 illustrates
mesh distance.

Fig. 12. The left panel compares mesh distance (solid red line) with the direct Euclidean distance (dotted red line) from the source
marker/vertex (red spot) to the target vertex (green spot). The black area represents a hole in the face geometry. The right panel shows how
the motion of one vertex is calculated based on the propagated motion from several neighboring markers.

Then, if the mesh distance from a facial marker to a target vertex is less than a threshold, we say this target vertex

16

Phonemes Weight Factor
/p/, /b/, /m/, /f/, /v/, /w/ high=2

/k/, /g/, /ch/, /ng/, /r/ low=0.5
others intermediate=1

TABLE IV
WEIGHT FACTORS OF DIFFERENT PHONEMES USED IN THE SMOOTHING TECHNIQUES.

is affected by the facial marker. The contributing weights of the facial markers to affected vertices are computed
based on a normal distribution centered at the facial marker place (their mesh distance as a parameter). The right
panel of Figure 12 shows how multiple markers may affect a certain vertex on the face model. In practice, for
each vertex of the face model, we precomputed and stored the contributing weight of each facial marker (feature
point). Then, after the precomputed contributing weights are loaded, our system can deform the face on-the-fly at
an interactive rate given any marker motion frame (Eq. 14-15).

wk,i = C. exp−MeshDist(k,i)2/(2.σ2) (14)

V txMotioni =
∑MrkNum

k=1 wk,i.MrkMotionk∑MrkNum
k wk,i

(15)

Here C is a constant value, V txMotioni is the motion of the ith vertex of the face model, and MrkMotionk is
the motion of the kth marker, and wk,i is the weight of the kth marker contributing to the motion of the ith vertex.

In the above Equation 14, we experimentally set the value of σ to 1.5. It should be noted that the major difference
between our approach and Kshirsagar et al.’s work [54] is that we employ a different algorithm to compute weights
(Eq. 14).

B. Smoothing and Resampling
Undesired changes may exist between concatenated motion nodes, so we need to use smoothing techniques to

smooth transitions. In this work we extend the trajectory-smoothing technique [27], [55] for smoothing operations.
The smoothing operation from a motion node oj to another motion node ok can be described as follows: assuming
smoothing window size is 2s, f1 to fs are the ending s frames of the motion node oj , fs+1 to f2s are the starting
s frames of next motion node ok, and fi = f(ti), 1 ≤ i ≤ 2s, we want to find a smooth curve g(t) to best fit f(ti)
by minimizing the following objective function:

s∑

i=1

Wj .(gi − fi)2 +
2s∑

i=s+1

Wk.(gi − fi)2 +
∫ t2s

t1

g′′(t)dt (16)

In the above Eq. 16, the first and second items are used to measure how close gt is to f(ti), and the third term is
used to measure the smoothness of g(t). In other words, the expected smooth curve g(t) should be close to f(ti)
while as smooth as possible. s is experimentally set to 3 in this work. Wj (or Wk) is a pre-assigned weight factor
for the phoneme of the motion node oj (or ok). Because this value depends on the specific phoneme (of one motion
node), in this work, we categorize all phonemes into three groups (similar to the phoneme categories proposed in
Pelachaud’s work [20]): high visible phonemes (e.g. /p/, /b/, /m/, etc.) for a high weight factor (=2), low visible
phonemes (e.g., /k/, /g/, /ch/, etc.) for a low weight factor (=0.5), and intermediate visible phonemes for a middle
weight factor (=1.0). It should be noted that these weight values are experimentally determined, and they might be
specific to this database. Table IV shows weight factors of phonemes used in the smoothing process. We only apply
this smoothing technique to two concatenated motion nodes without a captured predecessor/successor relation.

As mentioned in Section III, motion nodes for the silence time (the /pau/ phoneme) were discarded when
constructing the facial motion node database. When computing the observation cost for the /pau/ phoneme time
(Table. II), as long as Pi = /pau/, we simply set the observation cost to zero. In other words, any motion node is
perfect for expressing the silence time during the motion node search process (Section VI-B). After motion nodes
are concatenated and smoothed, we need to postprocess these synthesized frames corresponding to the silence time:

17

first identify these silence-time frames based on the input phoneme transcript and then regenerate these frames
by performing a linear interpolation on the boundary of non-silence frames. It should be noted that besides linear
interpolation, other interpolation techniques including cubic spline and cosine interpolation can be used for this
interpolation process too. Here we choose linear interpolation due to its efficiency. Figure 13 illustrates this step.

Fig. 13. Illustration of the postprocessing step for the silence time (the /pau/ phoneme time). Here red dot line represents regenerated
marker trajectory.

During the postprocessing stage, it is necessary to resample motion frames. When motion nodes are concatenated,
the number of frames of the motion node may not exactly match the duration of the input phoneme. We use the
time-warping technique to resample the searched motion nodes to obtain the desired number of motion frames. This
resampling is still done at 120Hz (the same as the original motion capture rate). Although synthesized marker motion
frames are 120 frames/second, the resulting animations are often at an ordinary animation rate of 30 frames/second.
Thus, before we transfer the synthesized marker motion to a 3D face model, we down-sample these motion frames
to the ordinary animation rate.

VIII. RESULTS AND EVALUATIONS

We developed this system on the MS Windows XP system. Fig. 14 shows a snapshot of the running system. The
left is a basic control panel, and the right panel encloses four working windows: a synthesized motion window (top-
left), a video playback window (top-right), a phoneme-Isomap interaction window (bottom-left), and a face preview
window (bottom-right). The synthesized motion window and the face preview windows can switch among several
display modes, including marker-drawing mode and deformed 3D face mode. In the basic control panel, users can
input a novel speech (WAV format) and its aligned phoneme transcript file (text format), and an emotion specification
(modifier) file (text format), then the system automatically synthesizes its corresponding expressive facial animation
(shown in the synthesized motion window). Once the facial motion is synthesized, users can interactively browse
every frame and play back the animation in the synthesized motion window (top-left in Fig. 14). Additionally, the
system can automatically compose an AVI video (audio-synchronized), which user can play back immediately in
the video playback window (top-right in Fig. 14) to check the final result.

On the user interaction side, users can edit the facial motion database and impose motion-node constraints via
the phoneme-Isomap interaction window (bottom-left in Fig. 14) and the face preview window (bottom-right in
Fig. 14). If a point in the phoneme-Isomap interaction window is picked, the face preview window will show the
deformed 3D face (or corresponding facial marker configuration) interactively.

We conducted a running time analysis on this system (both GPU-accelerated and non GPU accelerated). The
computer used is a PC (Windows XP, 1GHz Memory, Athlon 64X2 Dual-Core, NVIDIA GeForce 6150 LE graphics

18

Fig. 14. A snapshot of this running system. The left is a basic control panel, and the right panel encloses four working windows: a
synthesized motion window (top-left), a video playback window (top-right), a phoneme-Isomap interaction window (bottom-left), and a face
preview window (bottom-right).

card). The used motion node database encloses 5556 motion nodes. Table V encloses the running time of some
example inputs. As mentioned in Section VI-B, the motion node searching part (the most time-consuming part of
this system) has a time complexity of Θ(N2.T) that is linear to the length of input phonemes (assuming N is a fixed
value for a specific database). The experimental computing time enclosed in the Table V is approximately matched
with this theoretical analysis. In addition, comparing to the non-GPU implementation, our GPU-accelerated system
decreases the running time significantly.

We also compared the synthesized expressive facial motion with ground-truth captured motion. Twelve additional
sentences were exclusively used for test comparisons. One of these sentences was “Please go on, because Jeff’s
father has no idea of how the things became so horrible.”. We chose a lower lip marker (#79 marker) in a speech-
active area for the comparisons (the specific location of #79 marker can be found at Fig. 2). We plotted a part
of the synthesized sequence and ground truth motion for marker trajectory and velocity comparisons. Fig. 15 is
for trajectory comparisons and Fig. 16 is for marker velocity comparisons. We found that the trajectories of the
synthesized motions are quite close to the actual motions captured from the actress, but their velocities deviated
more. Notice that in this ground-truth comparison, the synthesized motions for these comparisons (Fig. 15-16)
were automatically generated without any manual intervention (i.e. without the use of motion-node constraints).

We also synthesized numerous expressive speech animations using novel recorded and archival speech. In most of
cases, without any manual intervention our system can generate facial animations with reasonable quality. However,
to improve their animation quality, we typically specify motion constraints 2-4 times per sentence, which takes
several minutes.

19

phrases Running time without Running time with Speedup
(number of phonemes) GPU-accelerated (second) GPU-accelerated (second) Ratio

“I know you meant it” (14) 221.391 50.828 4.356
“And so you just abandoned them?” (24) 333.171 90.891 3.666
“Please go on, because Jeff’s father has

no idea of how things became so horrible.” (53) 815.719 232.078 3.515
“It is a fact that long words are difficult
to articulate unless you concentrate” (63) 942.609 256.484 3.675

TABLE V
RUNNING TIME OF SYNTHESIS OF SOME EXAMPLE PHRASES. HERE THE COMPUTER USED IS A PC (WINDOWS XP, 1GHZ MEMORY,
ATHLON 64X2 DUAL-CORE, NVIDIA GEFORCE 6150 LE GRAPHICS CARD). THE USED MOTION NODE DATABASE ENCLOSES 5556

MOTION NODES.

IX. DISCUSSION AND CONCLUSIONS

We present a data-driven expressive speech animation synthesis system with intuitive phoneme-level controls.
Users can control facial motion synthesis process by specifying emotion modifiers and expressions for certain
phoneme utterances via 2D expressive phoneme-Isomaps introduced in this work. This system employs a constrained
dynamic programming algorithm that satisfies “hard constraints” (motion-node constraints) and “soft constraints”
(emotion modifiers). Objective comparisons between synthesized facial motion and ground truths (captured facial
motion), and novel synthesis experiments, demonstrate that this system is effective for generating realistic expressive
speech animations based on expressive speech input.

To build intuitive controls for expressive facial animation synthesis, this system introduces the Isomap frame-
work [50] for generating intuitive low-dimensional manifolds for each phoneme cluster. The advantage of the
Isomap (over PCA, for example) is that it leads to a better projection of motion frames with different emotions, and
it makes browsing and managing expressive facial motion sequences (and frames) more intuitive and convenient.
An interactive and intuitive way of browsing and selecting among the large number of phoneme variations is itself
a challenging problem for facial animation research.

As this is a new approach to facial animation synthesis and control, several issues remain further investigations.
The quality of novel facial motion synthesis depends on constructing a large facial motion database with accurate
motion and phoneme alignment. Building this database takes care and time; integrated tools could improve this
process immensely. A large amount of expressive facial motion data are needed to construct the database. The larger
the captured facial motion database is, the better the synthesis results we expect from this system. However, it is
difficult to anticipate in advance how much data are needed to generate realistic facial animations, which is one of
the unresolved issues in many data-driven systems. Further research on the trade-off between synthesis quality and
the size of captured facial motion database is certainly a priority. The current system cannot be used for real-time
applications. Optimizations could further improve its efficiency by reducing the size of the facial motion database
through clustering methods.

We are also aware that subjective evaluation would be helpful to quantify and improve this system. We conducted
a small-scale user evaluation on this system and its phoneme-Isomap interface, and most of participants are
undergraduate/graduate students working in the Lab. Initial feedback from them is quite positive. We plan to
design a rigorous in-depth study to look into this issue in the future. In addition, emotion intensity control that is
absent in the current system is another good direction to go for future research.

The motions of the silence phoneme (the /pau/ phoneme in the Festival system) are not modeled. This phoneme
and other non-speaking behaviors (e.g., yawning) need to be represented as motion nodes to allow more flexibility
and personified realism in the future work. Lastly, there are more open questions, such as whether combining the
speaking styles of different actors into one facial motion database would result in providing a greater range of
motions and expressions, or if such a combination would muddle the motion-frame sequencing and expressiveness,
or whether exploiting different weights for markers to guide the coherence of perceptual saliency could improve
results.

20

Fig. 15. Comparison of the trajectory of the lip marker (#79 marker). The dashed line is the ground truth trajectory and the solid line is
the synthesized trajectory.

ACKNOWLEDGMENTS

We would like to thank Xiaohan Ma for his GPU programming, Yizhou Yu for thoughtful suggestions, Pamela
Fox for face model preparation, Joy Nash, J.P. Lewis, Murtaza Bulut, and Carlos Busso for facial motion data
capture and processing, and Douglas Fidaleo and the USC Computer Vision Lab for building the coarse 3D face
model.

REFERENCES

[1] Z. Deng and U. Neumann, “eFASE: Expressive facial animation synthesis and editing with phoneme-level controls,” in Proc. of
Symposium on Computer Animation. Vienna, Austria: Eurographics Association, 2006, pp. 251–259.

[2] F. I. Parke and K. Waters, Computer Facial Animation. A K Peters, Wellesley, Massachusets, 1996.
[3] Z. Deng and U. Neumann, Data-Driven 3D Facial Animation. Springer-Verlag Press, October 2007.
[4] K. Waters and J. Frisble, “A coordinated muscle model for speech animation,” Proc. of Graphics Interface’95, pp. 163–170, 1995.
[5] Y. C. Lee, D. Terzopoulos, and K. Waters, “Realistic modeling for facial animation,” Proc. of ACM SIGGRAPH’95, pp. 55–62, 1995.
[6] K. Kähler, J. Haber, and H. P. Seidel, “Geometry-based muscle modeling for facial animation,” in Proc. of Graphics Interface’2001.

Toronto, Ont., Canada, Canada: Canadian Information Processing Society, 2001, pp. 37–46.
[7] L. Williams, “Performance-driven facial animation,” in Proc. of ACM SIGGRAPH ’90. ACM Press, 1990, pp. 235–242.
[8] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin, “Making faces,” Proc. of ACM SIGGRAPH’98, pp. 55–66, 1998.
[9] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. H. Salesin, “Synthesizing realistic facial expressions from photographs,” Proc.

of ACM SIGGRAPH’98, pp. 75–84, 1998.
[10] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz, “Spacetime faces: high resolution capture for modeling and animation,” ACM

Trans. Graph., vol. 23, no. 3, pp. 548–558, 2004. [Online]. Available: http://doi.acm.org/10.1145/1015706.1015759
[11] V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d faces,” Proc. of ACM SIGGRAPH’99, pp. 187–194, 1999.
[12] V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating faces in images and video,” Computer Graphics Forum, vol. 22, no. 3,

2003.
[13] J. Y. Noh and U. Neumann, “Expression cloning,” Proc. of ACM SIGGRAPH’01, pp. 277–288, 2001.

http://doi.acm.org/10.1145/1015706.1015759

21

Fig. 16. Comparison of the velocity of the lip marker (#79 marker). The dashed line is the ground truth trajectory and the solid line is the
synthesized trajectory.

[14] H. Pyun, Y. Kim, W. Chae, H. W. Kang, and S. Y. Shin, “An example-based approach for facial expression cloning,” in Proc. of
Symposium on Computer Animation, 2003, pp. 167–176.

[15] D. Vlasic, M. Brand, H. Pfister, and J. Popović, “Face transfer with multilinear models,” ACM Trans. Graph., vol. 24, no. 3, pp.
426–433, 2005.

[16] E. Sifakis, I. Neverov, and R. Fedkiw, “Automatic determination of facial muscle activations from sparse motion capture marker data,”
ACM Trans. Graph., vol. 24, no. 3, pp. 417–425, 2005.

[17] Z. Deng, P. Y. Chiang, P. Fox, and U. Neumann, “Animating blendshape faces by cross-mapping motion capture data,” in Proc. of
ACM SIGGGRAPH Symposium on Interactive 3D Graphics and Games, 2006, pp. 43–48.

[18] Z. Deng and J. Y. Noh, “Computer facial animation: A survey,” in Data-Driven 3D Facial Animation (Eds: Z. Deng and U. Neumann).
Springer Press, 2007, pp. 1–28.

[19] J. P. Lewis, “Automated lip-sync: Background and techniques,” Journal of Visualization and Computer Animation, pp. 118–122, 1991.
[20] C. Pelachaud, “Communication and coarticulation in facial animation,” Ph.D. Thesis, Univ. of Pennsylvania, 1991.
[21] M. M. Cohen and D. W. Massaro, “Modeling coarticulation in synthetic visual speech,” Models and Techniques in Computer Animation,

Springer Verlag, pp. 139–156, 1993.
[22] E. Bevacqua and C. Pelachaud, “Expressive audio-visual speech,” Journal of Visualization and Computer Animation, vol. 15, no. 3-4,

pp. 297–304, 2004.
[23] Z. Deng, J. P. Lewis, and U. Neumann, “Synthesizing speech animation by learning compact speech co-articulation models,” in Proc.

of Computer Graphics International, 2005, pp. 19–25.
[24] S. A. King and R. E. Parent, “Creating speech-synchronized animation,” IEEE Trans. Vis. Graph., vol. 11, no. 3, pp. 341–352, 2005.
[25] Z. Deng, U. Neumann, J. P. Lewis, T. Y. Kim, M. Bulut, and S. Narayanan, “Expressive facial animation synthesis by learning speech

co-articulations and expression spaces,” IEEE Trans. Vis. Graph., vol. 12, no. 6, 2006.
[26] M. Brand, “Voice pupperty,” Proc. of ACM SIGGRAPH’99, pp. 21–28, 1999.
[27] T. Ezzat, G. Geiger, and T. Poggio, “Trainable videorealistic speech animation,” ACM Trans. Graph., pp. 388–398, 2002.
[28] E. S. Chuang, H. Deshpande, and C. Bregler, “Facial expression space learning,” in Proc. of Pacific Graphics’2002, 2002, pp. 68–76.
[29] Y. Cao, P. Faloutsos, and F. Pighin, “Unsupervised learning for speech motion editing,” in Proc. of Symposium on Computer Animation,

2003.
[30] E. Chuang and C. Bregler, “Moodswings: Expressive speech animation,” ACM Trans. on Graph., vol. 24, no. 2, pp. 331–347, 2005.
[31] Q. Zhang, Z. Liu, B. Guo, and H. Shum, “Geometry-driven photorealistic facial expression synthesis,” in Proc. of Symposium on

Computer Animation, 2003, pp. 177–186.

22

[32] C. Bregler, M. Covell, and M. Slaney, “Video rewrite: Driving visual speech with audio,” Proc. of ACM SIGGRAPH’97, pp. 353–360,
1997.

[33] E. Cosatto and H. P. Graf, “Audio-visual unit selection for the synthesis of photo-realistic talking-heads,” in Proc. of ICME, 2000, pp.
619–622.

[34] Y. Cao, P. Faloutsos, E. Kohler, and F. Pighin, “Real-time speech motion synthesis from recorded motions,” in Proc. of Symposium on
Computer Animation, 2004, pp. 345–353.

[35] S. Kshirsagar and N. M. Thalmann, “Visyllable based speech animation,” Computer Graphics Forum, vol. 22, no. 3, 2003.
[36] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise, “Accurate visible speech synthesis based on concatenating variable length motion

capture data,” IEEE Transaction on Visualization and Computer Graphics, 2005.
[37] A. Witkin and Z. Popović, “Motion warping,” in Proc. of ACM SIGGRAPH ’95, 1995, pp. 105–108.
[38] C. Rose, M. F. Cohen, and B. Bodenheimer, “Verbs and adverbs: Multidimensional motion interpolation,” IEEE CG&A, vol. 18, no. 5,

pp. 32–40, 1998.
[39] M. Brand and A. Hertzmann, “Style machines,” in Proc. of ACM SIGGRAPH ’00. ACM Press/Addison-Wesley Publishing Co., 2000,

pp. 183–192.
[40] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” in ACM Trans. Graph. ACM Press, 2002, pp. 473–482.
[41] O. Arikan and D. A. Forsyth, “Interactive motion generation from examples,” in ACM Trans. Graph., vol. 21, no. 3. ACM Press,

2002, pp. 483–490.
[42] Y. Li, T. Wang, and H. Y. Shum, “Motion texture: a two-level statistical model for character motion synthesis,” in ACM Trans. Graph.

ACM Press, 2002, pp. 465–472.
[43] K. Pullen and C. Bregler, “Motion capture assisted animation: texturing and synthesis,” in ACM Trans. Graph. ACM Press, 2002, pp.

501–508.
[44] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing physically realistic human motion in low-dimensional, behavior-specific

spaces,” ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, 2004.
[45] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-based inverse kinematics,” ACM Trans. Graph., vol. 23, no. 3, pp.

522–531, 2004.
[46] L. Kovar and M. Gleicher, “Automated extraction and parameterization of motions in large data sets,” ACM Trans. Graph., vol. 23,

no. 3, pp. 559–568, 2004.
[47] “http://www.speech.cs.cmu.edu/cgi-bin/cmudict,” 2005.
[48] C. Busso, Z. Deng, U. Neumann, and S. Narayanan, “Natural head motion synthesis driven by acoustic prosody features,” Computer

Animation and Virtual Worlds, vol. 16, no. 3-4, pp. 283–290, July 2005.
[49] “http://www.cstr.ed.ac.uk/projects/festival/,” 2004.
[50] J. B. Tenenbaum, V. D. Silva, and J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction,” Science,

vol. 290, no. 5500, pp. 2319–2333, 2000.
[51] T. Hastie, R. Ribshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer-

Verlag, 2001.
[52] D. A. Pierre, Optimization Theory with Applications. Dover Publications, Inc., 1986.
[53] J. P. Lewis, M. Cordner, and N. Fong, “Pose space deformation: A unified approach to shape interpolation and skeleton-driven

deformation,” in Proc. of ACM SIGGRAPH’2000, 2000.
[54] S. Kshirsagar, S. Garchery, and N. M. Thalmann, “Feature point based mesh deformation applied to mpeg-4 facial animation,” in

DEFORM ’00/AVATARS ’00: Proceedings of AVATARS’2000 Workshop on Deformable Avatars. Deventer, The Netherlands, The
Netherlands: Kluwer, B.V., 2001, pp. 24–34.

[55] J. Ma, R. Cole, B. Pellom, W. Ward, and B. Wise, “Accurate automatic visible speech synthesis of arbitrary 3d model based on
concatenation of diviseme motion capture data,” Computer Animation and Virtual Worlds, vol. 15, pp. 1–17, 2004.

Appendix A: Viseme categories used in this work

In order to generate visual speech animations, researchers often create a phoneme-viseme mapping: if multiple
phonemes (the basic unit of speech in the acoustic domain) have simliar mouth shapes when they are pronounced,
these phonemes are typically mapped to a common visual representation (termed as a viseme). In this work, the
following phoneme-viseme scheme (Table VI) defines a total of 15 viseme categories.

/pau/ /r/ /k/, /g/, /ng/
/ae/, /ax/, /ah/, /aa/ /f/, /v/ /ch/, /sh/, /jh/

/ao/, /y/, /iy/, /ih/, /ay/, /aw/ /ow/, /oy/ /n/, /d/, /t/, /l/
/ey/, /eh/, /el/, /em/, /en/, /er/ /th/, /dh/ /s/, /z/, /zh/

/b/, /p/, /m/ /hh/ /w/, /uw/, /uh/

TABLE VI
SCHEME OF GROUPING PHONEMES INTO THE 15 VISEMES USED IN THIS WORK.

	Introduction
	Previous and Related Work
	Facial Motion Data Capture and Process
	Expressive Phoneme Isomaps
	Browse and Manage Facial Motion Nodes
	Expressive Speech Motion Synthesis
	Specify Motion-Node Constraints
	Optimal Motion Node Search
	GPU-Accelerated Motion Node Search
	Cross-Validation for Cost Trade-Off

	3D Face Deformation and Motion Smoothing
	3D Face Deformation
	Smoothing and Resampling

	Results and Evaluations
	Discussion and Conclusions
	References

