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I. INTRODUCTION 

All organizations maintain ever-increasing amounts of data on-line because it is now the most cost-effective way 

to preserve these data. In part this is due to the lower costs of storage that enable new uses of storage, in part due to 

regulatory pressure (e.g. HIPAA, and Sarbanes-Oxley), and in part simply to the cumulative effect of digital data 

production at increasing rates. Given the present state of the technology, this means storing these data on disk 

drives, devices that are known to be subject to unexpected failures well before the end of their useful lifetime.   

As petabyte scale file systems become more common, disk failures will occur daily, if not more frequently 

[XM+03], while data loss at this rate can no longer be tolerated.  Backups have been the traditional way of 

protecting data against equipment failures.  Unfortunately, they suffer from several grave deficiencies.  First, they 

do not scale well; indeed the amount of time required to make a copy of a large data set can exceed the interval 

between back ups. Second, the process is not as trustworthy as it should be due to both human error and the frailty 

of most recording media.  Finally, backup technologies are subject to technical obsolescence, which means that 

saved data risk becoming unreadable after only a few years.  Other traditional techniques such as RAID Level 5 no 

longer achieve the failure tolerance required of these massive storage systems [XM+03].  A much better solution is 

to introduce redundancy into our on-line storage systems, through the use of replication including techniques such 

as m-out-of-n codes.  Assuming that we can achieve any level of data survivability by increasing the level of 

redundancy of our system, we must still decide what constitutes the appropriate level of redundancy for some 

specific data.  These aspects are particularly important for archival storage systems, because these systems must 

guarantee the survival of huge amounts of data over very long periods of time.  The owners of these systems must 

select a redundancy level that is sufficient to guarantee the long-term survival of their archived data while avoiding 

any unnecessary costs due to excessive redundancy.  To solve this problem, the owners of any storage system must 

estimate in advance the survivability levels of the various solutions they require. This estimation becomes more 

difficult with increasing scale of systems.  If systems are large enough, unlikely events become common and failure 

modes that can be neglected in smaller systems (such as disk infant mortality) suddenly have a measurable impact.     

Estimating the survivability of data requires estimating the reliability of the storage system on which they reside, 

that is the probability R(t) that the system will operate correctly over the time interval [0, t] given that it operated 

correctly at time t = 0.  Computing that probability requires solving a system of linear differential equations, a task 

that becomes quickly unmanageable as the complexity of the system grows.  As a result, discrete system simulation 
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usually constitutes the preferred tool for estimating the reliability of complex systems.  Unfortunately, simulation 

has its own limitations.  First, it only provides numerical values instead of closed form expressions.  Second, it 

requires inordinate amounts of time to evaluate the probabilities of very infrequent events.  This second observation 

is particularly true for archival storage systems: since we want these systems losing very few documents over long 

periods of time, we have to estimate the likelihood of very unlikely events. 

A simpler option is to focus on the mean time to failure (MTTF) of the system that we want to analyze.  There 

are methods that can obtain a symbolic solution for the MTTF directly from the transition rates, but to understand 

this solution we need to solve a linear differential equation (the Chapman-Kolmogorov equations).  The main 

disadvantage of this approach is that it requires a solid background in Calculus and differential equations to fully 

understand it.   

We propose a simpler, more elementary and more intuitive approach.  It consists of focusing on the steady-state 

behavior of each storage organization over long periods of time as it goes through repeated cycles of failures and 

repairs.  This allows us to describe the storage system directly by a system of linear equations without any recourse 

to the Chapman-Kolmogorov system of linear differential equations. While it provides the same closed-form 

expressions as existing techniques, our approach is much easier to learn, as it does not require any advanced 

mathematical training besides an introduction to Markov processes.  Rather, it reduces the MTTF calculation to the 

manipulation of a simply derived linear system of equations.  Even though all our examples come from the storage 

systems area, our new technique is not specific to that area and would apply equally well to all systems whose 

behavior can be described by first-order Markov models.   

The remainder of this article is organized as follows.  Section 2 surveys previous work on estimating the 

reliability of storage systems.  Section 3 introduces our method and Section 4 shows how it can be applied to take 

into account the high infant mortality of disk drives and the behavior of the so called S.M.A.R.T. drives, which can 

predict when they are the most likely to fail.  Finally, Section 5 has our conclusions. 

II. PREVIOUS WORK  

Disk arrays need to combine high reliability with high performance and good storage utilization [GW+94].  

Many authors have used Markov models to determine the reliability of disk arrays with redundancy (e.g. [BM93, 

BKJP01,GP93, Is93, LCZ05, Ng 94, RM05, SB95, WLK98, XSM05, ZJ+03, Z02]). Typically, the Markov models 

used are small and can be solved formally. Both formal and numerical methods for solving these models exist.   If 

p(t) is the vector formed by the probabilities pi(t) of the system being in state i at time t, and M is the transition 

matrix (see below) with coefficient reflecting the then the fundamental Chapman-Kolmogorov system of 

differential equation describes the evolution of p over time: 

pM
p

⋅=
dt

d
. 

and once a researcher has obtained a formal solution for p, they can integrate in order to obtain a formal expression 

for the MTTF.  For at least a generation, packages exist that do so automatically.  For instance, Acyclic Markov 

Chain Evaluator (ACE) (1986) [MRT86] solves the Kolmogorov system for acyclic homogenous Markov models 

(i.e. exactly those that MTTF of storage systems calculations want to solve) formally as state probabilities 
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where n is the number of states and the various coefficients are either directly transition rates (the γij) or are 
calculated from them.   

Most Markov models of interest in storage system reliability are stiff, that is, the transition rates vary by several 

orders of magnitude.  An example is device failure rates (measured in months or years) and repair rates (measured 

in minutes, hours or possibly days).  The resulting numerical instability forces a researcher to carefully select the 

numerical method [MMT94]. An additional problem that sometimes arises is the large state space of Markov 

models.  For example, Markov models derived from Petri Net models. Additionally, the iterative methods that give 

accurate numerical results might be slow to converge and special methods need to be employed [HMT96].  

Fortunately, there are packages such as SHARPE [ST87] that will select an appropriate numerical method and in 

some cases aggregate states to lower the complexity of the numerical task.  
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Fig. 1.  State-transition diagram for data replicated on two drives. 

In many circumstances, it is desirable and possible to derive MTTF directly and exactly without using these 

sophisticated tools.  Examples for a theoretically rigorous yet more elementary and hence more understandable 

approach are Akhtar’s calculation of k-out-of-n: G systems [Ak94] or Lu’s and Liew’s analysis of r-for-N 

protection systems [LL90].   

III. OUR APPROACH 

Our system model consists of an array of drives with independent failure modes.  When a drive fails, a repair 

process is immediately initiated for that drive.  Should several drives fail, the repair process will be performed in 

parallel on those drives.  We assume that drive failures are independent events and are exponentially distributed 

with mean λ_, and repairs are assumed to be exponentially distributed with mean µ.  We will first consider replicated 

organizations that replicate data on two, three or more drives then examine data organizations using m-out-of-n 

codes. 

A. Replicated Organizations 

The simplest redundant data organization consists of replicating data on two drives (disk mirroring or RAID-1).  

As Fig. 1 shows, that disk organization can be at any time in one out of three possible states, namely, 

a) A state where both drives are operational, that is, state <2>; 

b) A state where one disk drive has failed and waits to be repaired or replaced, that is, state <1>; 

c) A state where both disk have failed and the data are lost. 

Its three state transitions are 

a) A transition from state <2> to state <1> that corresponds to the failure of either of the two drives; its rate is 

twice the failure rate λ of a single drive; 
b) A transition from state <1> to state <2> that corresponds to the repair or replacement of the failed drive; 

c) A transition from state <1> to the failed state that corresponds to the failure of the last operational drive. 

Since the failed state is an absorbing state, the data eventually will be lost.  If pi(t) represents the probability that 

the system is in state <i> at time t, the behavior of the system can be represented by the Kolmogorov system of 

differential equations 
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Fig. 2.  State-transition diagram for data replicated on two drives assuming that the two drives are instantly repaired after a 

complete failure. 

Since the reliability R(t) of the disk organization is given by 
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the Laplace transform of R(t) is  
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and the MTTF of the system is given by 
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This approach requires computing the Laplace transforms of the Kolmogorov system of differential equations 

and then the resolution of a system of linear equations.  We now show a more elementary approach that obtains the 

same results by a purely algebraic method without ever using the properties of Laplace transforms. 

Consider what happens if our system went through continuous cycles during which it would first operate 

correctly then lose its data and get instantly repaired and reloaded with new data. Fig. 2 shows the state-transition 

diagram corresponding to this cyclical behavior.  It is identical to the state-transition diagram in Fig. 1 except for 

the transition from state <1> to the failed state, which we have replaced by a transition from state <1> to state <2>.  

We can evaluate the steady state by evaluating the flow between <1> and <2>, which gives us 2λp2 = (λ + µ)p1. 

Together with the condition that the sum of the state probabilities equals one, i.e. that p1 + p2 = 1, we get a simple 

system of equations that yields: 
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where pi represents the steady-state probability of the system being in state <i>.  The solution of this system is 
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where ρ = λ/µ is the failure rate to repair rate ratio of the two disk drives. 

The rate at which the system will fail is 

λµ
λ

λ
3

2 2

1 +
== pL  

and the MTTF of the system is 
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which also happens to be the mean time to data loss. 
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Fig. 3.  State-transition diagram for data replicated on three drives assuming that the three drives are instantly repaired after a 

complete failure. 

We can apply the same approach to data organizations that replicate data on three, four or more drives.  Fig. 3 

represents the state-transition diagram for data replicated on three drives assuming that the three drives are instantly 

repaired after a total failure.  The corresponding system of equations is 

3
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together with the condition that p1 + p2 + p3 = 1, where pi represents the steady-state probability of the system 

being in state <i>.  The solution of this system is 
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The rate at which the system will fail is 
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and the MTTF of the system is 
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The same technique can be applied to compute the MTTF of data organizations that replicate data on more than 

three drives.  For instance, the MTTF of a data organization that replicates data on four drives is  

4
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Let us now derive a lower bound of that MTTF for an arbitrary number of replicas.  Consider Fig. 4.  It 

represents the state transition diagram for a data organization that replicates data on n drives.  The corresponding 

steady-state equations are 
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Fig. 4.  State-transition diagram for data replicated on n drives assuming that all drives are instantly repaired after a complete 

failure. 

together with the condition p1 + p2 + … pn = 1, from which we can derive the following inequalities 
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and an upper bound for p1 

1

1

1

1

1

1

1
.1.2.).2).(1(

.).1.(.3.2
−

−

−

−

−

−

<=
−−

−
<

n

n

nn

n

nn

n n
p

n
p

nn

nn
p

µ
λ

µ
λ

µ
λ

L

L
 

since pn< 1.  We thus have an upper bound for the rate at which the system will fail 
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and a lower bound for the MTTF of the system 

n

n

nL
MTTF

λ
µ 1

1
−

>= . 

B. Data organizations using m-out-of-n codes  

These data organizations store data on n distinct drives along with enough redundant information to allow access 

to the data in the event n – m of these drives fail.  The best-known organizations using these codes are RAID 5, 

which uses an n – 1 out of n code, and RAID 6, which uses an n – 2 out of n code. 
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Fig. 5.  State-transition diagram for data using an n – 1 out of n code assuming that all drives are instantly repaired after a 

complete failure. 
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Fig. 6.  State-transition diagram for data using an n – 2 out of n code assuming that all drives are instantly repaired after a 

complete failure. 

Consider first the case of a data organization using an n – 1 out of n code.  As shown on Fig. 5, this data 

organization will tolerate the failure of one of its n disk drives.  Keeping the same notations as in the previous 

subsection, we can write the steady-state equations of the system as 
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where pi represents the steady-state probability of the system being in state <i>.  The solution of this system gives 

us  
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where ρ = λ/µ is the failure rate to repair rate ratio of the two disk drives. The MTTF of the system is 
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Let us now turn our attention to n – 2 out of n codes.  As shown on Fig. 5, this data organization will tolerate the 

failure of two of its n disk drives.  The steady-state equations of the system are 
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Fig. 7.  State-transition diagram for data stored on one pair of drives when considering the higher infant mortality of the two 

drives. 

With the result that  
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IV. APPLICATIONS 

The configurations that we have considered so far are all instances of k-out-of-n systems.  Let us now apply our 

technique to models that take into account some of the specific characteristics of disk drives, in particular their 

higher infant mortality and the failure prediction capability of the new S.M.A.R.T. drives. 

A.  Taking into account infant mortality of disk drives 

Disk drives are known to fail more frequently during the first year of deployment [XSM05].  Elerath and IDEMA 

[E00, I98] proposed a more detailed MTBF rating that incorporates four different values corresponding to drive 

ages of 0–3 months, 3–6 months, 6–12 months, and one year to End of Design Life (EODL).  We propose a simpler 

two-stage model that assumes that recently deployed drives will have a higher failure rate λ' than the failure rate λ 
of the older drives.  While we limit our discussion to the case of data replicated on two drives, nothing should 

prevent us to apply it to more complex data organizations. 

As Fig. 7 shows, the state of the system will be presented by a pair of numbers <j, k>, where the first number 

represents the number of drives that have recently deployed and the second number represents the number of drives 

that have been deployed for more than a year.  The system will start in state <2, 0> as it consists of two new drives.  

The aging of these drives will be represented by a transition of rate 2κ from state <2, 0> to state <1, 1>, and two 

transitions of rate κ with the first going from state <1,1> to state <0, 2> and the second going <from state <1, 0> to 

state <0, 1>.  We assume that the repair process will always replace the failed drive with a new drive.  Hence, our 

two repair transitions will be from state <1, 0> to state <2, 0> and from state <0, 1> to state <1, 1>.  There is a 

transition from state <1,1> to state <0,2>, which corresponds to the aging of the replacement drive. 
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Fig. 8.  State-transition diagram for two sets of data stored on two pairs of conventional drives. 

Unlike the other systems we have examined, this system has two critical states, namely state <1, 0> and state 

<0, 1>.  A failure from either of these two states will result in permanent data loss.  The two corresponding 

transitions return the system to its original state <2, 0>.  

The steady state equations of our system are 
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where pij is the probability of the system being in state <i, j>.  The solution of this system gives us the steady-state 

probabilities of the two critical states, namely, <1, 0> and <0, 1>.  These are 
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The MTTF of the system is 
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Given the complexity of this expression, it is much easier to reason using a concrete example. Assume that the 

two drives have a MTTF of 10
5
 hours each, that is, slightly more than eleven years, and a mean time to repair of 

164 hours or exactly a week.  Neglecting the higher infant mortality of disk drives, would give us an MTTF of 
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2.991×10
7
 hours or 3,414 years.  Assuming that the failure rate of the disk drives is three times their normal failure 

rate (λ' = 3λ) during the first year (κ = 1/8760), we find an MTTF of 2.227×10
7
 hours, that is, 25 percent lower than 

the estimate that neglected infant mortality. 

B. S.M.A.R.T. drives 

Most major drive manufacturers now support to some extent the Self-Monitoring, Analysis and Reporting 

Technology (S.M.A.R.T.), whose purpose is to warn users of impending disk failures [W06].  The technique can 

only predict approximately 60 percent of hard drive failures since many failures are sudden and unpredictable.  

First, consider a system consisting of two pairs of drives with each pair containing two replicas of the stored data.  

We will consider that the system has failed whenever it has permanently lost some data because both replicas of 

stored data have been lost.  As seen on Fig. 8, the system has four states, namely <2, 2>, <2, 1>, <1, 2> and <1, 1>, 

with each number indicating the number of operational drives in one of the two pairs.  It has failure transitions from 

states <2, 1>, <1, 2> and <1, 1>, all of which bring the system to the original state <2, 2>.  The steady-state 

equations of the system are  
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The solution of this system gives us the steady-state probabilities of the three critical states, namely, <2, 1>, 

<1, 2> and <1, 1>.  These are 
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The MTTF of the system is 
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Assume now that the four drives are S.M.A.R.T. drives and we get early warning of some disk failures.  There is 

little we could do if a failure is predicted when the system is state <1, 1> as we have no spare capacity.  This is not 

the case when the system is in either state <2, 1> or state <1, 2>.  Whenever we get an early warning of the failure 

of the last operational drive of a pair, we could decide to start transferring the data from that drive to one of the two 

operational drives in the other pair, thus leaving the system in state <11> with a single copy of all the stored data.  

Define α ≤ 1 as the probability that we get a warning of the impending failure of a drive and that this warning gives 

us enough time to transfer the data on the drive to another drive.  As seen on Fig. 9, the state-transition diagram of 

the system remain the same as before but for the probabilities of the failure transitions from states <2, 1> and 

<1, 2>: a fraction α of the failures that occasioned data loss are now redirected to state <1, 1>.  The steady-state 

equations of the system are  
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Fig. 9.  State-transition diagram for two sets of data stored on two pairs of S.M.A.R.T. drives 

and the steady-state probabilities of the three critical states are 
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The MTTF of the system is 
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Comparing this result with the MTTF of the same data organization using conventional drives, we find that the 

MTTF gained by using S.M.A.R.T. drives is  
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Since λ << µ and α ≤ 0.6, ∆MTTF is roughly equal to αµ/(4λ
2
(1 – α)). 

Fig. 10 displays the MTTF of data organizations storing two data sets on two sets of dives for selected values of 

α  and selected Mean Time To Repair (MTTR) of replacing a failed disk drive.  We assumed a drive MTTF of 10
5 

hours, which corresponds to about one failure every eleven years. As we can see, a system that can predict 50 

percent of failures sufficiently ahead of time to be able to save the data from the endangered drive would have an 

MTTF twice that of a system using conventional drives.  This result is quite impressive as it achieved without 

adding any additional hardware, without assuming that the S.M.A.R.T. drives are more reliable than conventional 

drives, or assuming that we use a S.M.A.R.T warning to speed up repair.  

V. CONCLUSIONS 

We have presented a new technique for computing the mean time to failure (MTTF) of repairable systems.  

Unlike extant approaches, our technique is based on the steady-state analysis of the system when it goes through 

repeated cycles of failures and repairs.  It is completely intuitive and MTTF calculation does not invoke the 

Chapman-Kolmogorov equations directly.   
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Fig. 10.  MTTF for two sets of data stored on two pairs of drives for selected MTTR and α. 

We have applied our technique to compute the MTTF’s of various standard k-out-of-n systems and derive a 

general lower bound for the MTTF of 1-out-of-n systems.  In addition, we have used our technique to analyze 

specific aspects of disk drive behaviors, namely, their higher infant mortality and the failure prediction capability of 

the new S.M.A.R.T. drives.  We found out that the higher infant mortality of disk drives had a noticeable impact on 

the MTTF of replicated disk organizations: assuming that disk drives fail at three times their normal failure rate 

during their first year of operation reduced by 25 percent our estimate the MTTF of data replicated on a pair of 

drives.  The effect on MTTF of the prediction capabilities of the new S.M.A.R.T. drives was even more impressive: 

using S.M.A.R.T. drives that can predict at least 50 percent of future failures could double the MTTF of two pairs 

of mirrored drives.  Even though these examples all come from the storage system area, our new technique is not 

specific to that area and would apply equally well to all systems whose behavior can be described by first-order 

Markov models. 
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