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Abstract

Sensing coverage maintenance is concerned with providing coverage to a targeted region with prolonged
system lifetime by utilizing redundant deployment of sensor nodes. Most existing approaches to coverage
maintenance require knowledge of accurate location information. In this paper, we propose a novel
location-free coverage maintenance scheme in wireless sensor networks that exploits power control and
radio connectivity information in constructing sparse structures in wireless sensor networks. Our solution
is based on the solid theoretical basis of the coverage property of minimal dominating sets derived in this
paper. Extensive simulation studies show that the proposed location-free coverage maintenance protocol
can indeed provide comparable coverage with similar or even less working nodes as compared to location-
based solutions. Meanwhile, it is robust to non-uniform node density, inaccuracies in transmission range
control and heterogeneity in sensing ranges.
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Abstract

Sensing coverage maintenance is concerned with providing coverage to a targeted region with prolonged system
lifetime by utilizing redundant deployment of sensor nodes. Most existing approaches to coverage maintenance
require knowledge of accurate location information. In this paper, we propose a novel location-free coverage
maintenance scheme in wireless sensor networks that exploits power control and radio connectivity information
in constructing sparse structures in wireless sensor networks. Our solution is based on the solid theoretical basis of
the coverage property of minimal dominating sets derived in this paper. Extensive simulation studies show that the
proposed location-free coverage maintenance protocol can indeed provide comparable coverage with similar or even
less working nodes as compared to location-based solutions. Meanwhile, it is robust to non-uniform node density,
inaccuracies in transmission range control and heterogeneity in sensing ranges.
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I. INTRODUCTION

Recent technological advances have led to the emergence of small, low-power devices that integrate sensors and
actuators with limited on-board processing and wireless communication capabilities. Pervasive networks of such
sensors and actuators open new vistas for many potential applications, such as battlefield surveillance, environment
monitoring and biological detection. One critical measure of the quality of sensing (QoS) of a wireless sensor
network (WSN) is its coverage, i.e., “how well do the sensors observe the physical space”. As pointed out in [14],
the definition of coverage is application-dependent. In this paper, we are particularly interested in maintaining the
coverage of a target region, termed area coverage.

Due to the unreliability and limited battery power of wireless sensor nodes, it is often desirable to deploy
them in massive quantity to ensure good coverage. Furthermore, due to the limited accessibility of the target
region it is sometimes difficult or impossible to place sensors at ideal locations. This makes coverage maintenance,
i.e., judiciously selecting a subset of functioning nodes (also called working set) to monitor the environment (and
powering off the rest), a critical problem in prolonging the network lifetime of WSNs. Existing algorithms [3], [20],
[22], [23], [25], [26] in maintaining area coverage usually rely on the availability of accurate location information.
Such information is often difficult to obtain in low-end systems. For example, the accuracy of low-end solutions
such as commercial GPS systems is on the order of 3m while high-end solutions such as those using ultra-wide
band radio cost over $10,000 [21] even in small-scale deployment.

In this paper, we pose a seemingly improbable question, i.e., “Can we maintain sensing coverage without
knowledge of node location?” We show through rigorous analysis and experimental study that the answer is
positive. The novelty of our solution lies in the exploitation of power control and radio connectivity information
in constructing sparse structures in wireless sensor networks. Though wireless connectivity has been considered
in literature to construct logical or absolute coordination space based on hop count distances to anchor nodes
with known locations [2], [4], accuracy of the proposed localization methods is often low and insufficient for

The research is in part supported by new faculty research program at University of Houston.
The research is in part supported by new faculty research program at University of Houston.



2

coverage maintenance purposes: i) distance measurement using radio connectivity is in general coarse-grained and
ii) geometric embedding of relative distance graph is often not unique [16].

One extensively investigated sparse structure in multihop wireless networks is (connected) dominating set ((C)DS).
Much work has been done to devise distributed algorithms [1], [12] to construct minimal (connected) dominating set
with different objective functions. Our solution to location-free coverage maintenance is based on the observation
that minimal dominating sets provide coverage of points in an area (termed point coverage) when the sensing range
equals the transmission range. However, point coverage is in general not equivalent to area coverage. Through
rigorous analysis, we derive lower bound of the coverage of minimal dominating sets for arbitrary combination of
sensing and transmission ranges. Furthermore, for random geometric graphs, we establish sufficient and necessary
conditions that point coverage is equivalent to area coverage. Based on the theoretical results, we propose a coverage
maintenance protocol that incorporates existing minimum dominating set (MDS) selection algorithms to determine
the set of functioning nodes and demonstrate its effectiveness through extensive simulations. Our simulation study
shows that the proposed location-free coverage maintenance protocol can indeed provide comparable coverage with
similar or even less working nodes as compared to location-based solutions. Furthermore, the proposed protocols
are shown to be robust to non-uniform node density, inaccuracies in transmission range control, and heterogeneity
in sensing ranges.

Our contributions in this paper can be summarized as:

• We provide a rigorous analysis of the coverage property of minimal dominating set. To the best of our
knowledge, this is the first work that establishes the connection between point coverage and area coverage in
geometric graphs.

• We propose a location-free coverage maintenance protocol using the concept of dominating sets. When
incorporated with different DS selection algorithms, the proposed protocol can be potentially tailored to achieve
different optimization goals in coverage maintenance.

The rest of the paper is organized as follows. In Section II, we present a review of related work in coverage
maintenance. We establish the analytical results on coverage property of minimal dominating sets in Section III. A
location-free coverage maintenance protocol is proposed and evaluated in Section IV and Section V, respectively.
Finally, we conclude the paper with a list of future work.

II. RELATED WORK

Based on coverage requirements, existing coverage algorithms can be categorized as those which provide area
coverage, point coverage and barrier coverage [5]. As their names suggest, the objective of area coverage and point
coverage is to cover a region (area) and points in a region, respectively. Barrier coverage, on the other hand, targets
to minimize the probability of undetected penetration through the barrier [13]–[15]. For example, Meguerdichian
et al [14] have considered the problem of determining a maximal breach path and the maximal support path of the
agent. In what follows, we will focus on area coverage algorithms that are most pertaining to our work.

Location-dependent coverage maintenance approaches: Slijepcevic et al. [19] address the problem of finding
the maximal number of covers in a sensor network, where a cover is defined as a set of nodes that can completely
cover the monitored area. They prove the NP completeness of this problem, and provide a centralized heuristic
solution. They show that the proposed algorithm approaches the upper bound of the solution under most cases. It
is, however, not clear how to implement the solution algorithm in a distributed manner. Berman et al. [3] consider
the problems of power efficient monitoring in sensor networks. They devise an efficient data structure to represent
the monitored area with at most n2 points guaranteeing the full coverage which is superior to approaches based on
grid points. An efficient provably good centralized algorithms for sensor monitoring schedule is proposed which
maximizes the total lifetime including a (1 + ln(1 + q)−1)-approximation algorithm for the case when a q-portion
of the monitored area is required to cover.

Tian et al. [20] propose an algorithm that provides complete coverage using the concept of sponsored area. In this
algorithm, whenever a sensor node receives a packet from one of its working neighbors, it calculates its sponsored
area (defined as the maximal sector covered by the neighbor). If the union of all the sponsored areas of the sensor
node covers the whole disk covered by itself, the node turns itself off.

In the rest of this paper, we use coverage to denote area coverage unless otherwise noted.



3

Zhang et al. [26] study the relationship between sensing coverage and connectivity. They prove that if the
communication range is at least twice the sensing range, a complete coverage of a convex area implies connectivity
of the working nodes. Furthermore, the authors propose a distributed, localized algorithm called optimal geographical
density control (OGDC) to determine the set of nodes who should be active for sensing tasks. In OGDC, a node
can be in one of three states: UNDECIDED, ON and OFF. The algorithm runs in rounds, and at the beginning of
each round a set of one or more starting nodes are selected as working nodes. After a back-off time, a starting node
broadcasts a power-on message and changes its state to ON. When a node receives a power-on message, it checks
whether its neighbors cover its sensing area, and if so, it will change to OFF state. A node decides to change into
the ON state if it is the closest node to the optimal location of an ideal working node selected to cover the crossing
points of the coverage areas of two working neighbors.

All the above algorithms require location information. They mainly differ in the algorithm complexity and size
of the resulting working set.

Location-free coverage maintenance attempts: Ye et al. [25] present PEAS, a distributed, probing based
density control algorithm for robust sensing coverage. In this work, a subset of nodes operate in the active mode
to maintain coverage while others are put into sleep. A sleeping node wakes up occasionally to check if there exist
working nodes in its vicinity. If no working nodes are within its probing range, it starts to operate in the active
mode; otherwise, it sleeps again. At any time instance, the working nodes form a dominating set of a graph where
an edge exists between two nodes if their distance is less than the probing range. The probing range can be adjusted
to achieve different levels of coverage redundancy. The algorithm guarantees that the distance between any pair
of working nodes is at least the probing range, but does not ensure that the coverage area of a sleeping node is
completely covered by other nodes.

The problem of finding dominating sets in a graph has been extensively studied in literature [7], [12] and applied
in the context of ad hoc routing and connectivity management [1], [8], [18]. It has been suggested in [5] that CDS
can be used directly as an approximation for area coverage. However, it is unclear how good such an approximation
is and how to decide protocols that provide full coverage using CDS. We will show in Section V that using CDS
for coverage maintenance is not energy-efficient and does not have significant gain in coverage.

III. COVERAGE PROPERTY OF MINIMAL DOMINATING SET

In this section, we derive the coverage property of minimal dominating sets and compare it with the coverage of
the original set of nodes. It is worth noting that the analytical results obtained here are general to all MDS selection
algorithms.

A. Preliminaries

Consider n nodes on a 2-D plane R
2 represented by a undirected geometric graph G(V,E), where V is the

vertex set and E is the edge set. If a node u is within the maximum transmission range tmax (associated with the
maximum transmission power) of another node v, then an edge (u, v) is in E. The neighboring set of a node v
is denoted by N(v). We call a subgraph GP a realization of G(V,E) for a transmission power matrix P . P is
an n × n symmetric matrix. puv = pvu ≤ Pmax is the transmission power between nodes u and v. Symmetry is
required to ensure bidirectionality of the links. In the analysis, we consider the special case that puv = pvu = const,
∀u, v ∈ V . Thus, the GP is determined by a single value, i.e. the transmission range radius t, simplified as Gt.
Clearly, if t2 > t1, Gt1 ⊆ Gt2 .

A dominating set of an undirected graph G is a subset S of the vertex set V such that every vertex in V − S
is adjacent to a vertex in S [11]. A minimal dominating set of a graph G is a dominating set which ceases to
be a dominating set if any vertex is removed from it. We assume the sensing range of a sensor node is modeled
by a disk of radius s (called disk model). Under the disk model, a point p on the plane is covered if and only if
there exists at least one node in V within its s radius. The sensing range s of a sensor is in general determined
by the sensitivity of its sensing component, geometric and surface property of the environment, and nature of the
event sources. For the ease of analysis, we assume isotropic sensors, i.e., the sensing range is a constant among
all nodes. However, the location-free coverage maintenance protocol we propose in later section does not require
such a restrictive condition.
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Fig. 1. Tightness of the lower bound of MDS coverage. There are infinite number of nodes on and inside the ring centered at v and with
radius of t. Node v is chosen as the dominator.

B. A Lower Bound of Coverage on General Geometric Graphs

In this section, we first give a lower bound of coverage by minimal dominating sets in a general geometric graph.
Given sensing range s, let AV (s) be the geometric area covered by all nodes in V and AMDS(s) be the geometric
area covered by a minimal dominating set MDS. We use AV (s) and AMDS(s) to denote the corresponding size
of the geometric areas respectively (termed numeric areas).

The key result is as follows.
Theorem 1: Let the transmission range and sensing range be t and s respectively.

AMDS(s)

AV (s)
≥

s2

(s + t)2
. (1)

Before delving to the proof, we first show this lower bound is tight for sparse graphs. An example is given
in (Fig. 1) with node v and infinite number of nodes on and inside the circle centered at v of radius t. Node v
is chosen as the dominator. The ring between two co-centric circles of radius t and t + s is not covered by v.
Consequently, the equality in Eq. (1) holds.

Although the lower bound appears to be somewhat intuitive, the proof is a little involved. It is motivated by the
work by Cheng and Edelsbrunner [6] on the area and perimeter derivatives of a union of disks. We first introduce
a few notations and lemmas.

Let Bi be a disk centered at a point zi ∈ R
2 with radius ri, i = 1, . . . , n. The power distance of a point x ∈ R

2

from Bi is defined as πi(x) = ||x − zi||
2 − r2

i . Thus, the bounding circle Pi consists of all points with zero
power distance from Bi. The bisector of two disks is the line of points with equal power distance to both. Define
Bj

i = {x ∈ R
2|πj(x) ≤ πi(x) ≤ 0}, which is the portion of Bi on Bj’s side of the bisector. Let P j

i and P jk
i be

the lengths of the circle arcs in the boundaries of Bj
i and Bj

i

⋂

Bk
i (as illustrated in Figure 2).

Let r = [r1, r2, . . . , rn] and z = [z1, z2, . . . , zn] denote vectors of disk radii and positions of centers, respectively.
The numeric area of the union of n disks Ar is a function of the placement of the disks as well as their radii. The
area derivative of the union of disks characterizes the variation of the numeric area with respect to motion (changes
in z) and growth (changes in r). The following result is a simplified version of the area derivative theorem by
Cheng and Edelsbrunner [6] when only growth of the radii is considered.

Theorem 2 (Area Derivative Theorem): Assume disks are at general positions, i.e., none of four centers co-
circle. The derivative of the (numeric) area of a union of n disks with radius vector r is DAr = 2πσ, where
σi = 1 − (

∑

j P j
i −

∑

j,k P jk
i )/2πri, i = 1, 2, . . . , n.

In Theorem2, σi characterizes the contribution of disk Bi’s boundary to the perimeter of Ar. In particular, if a
disk does not share boundary with Ar (i.e., is fully contained inside Ar), then σi = 0.

Fact 1: For a differentiable map f : Rm → R, the derivative at a point x = {x1, x2, . . . , xm} ∈ Rm is a linear
map Dfm : Rm → R. Let g(x) = f(x) and xi = x, i = 1, 2, . . . ,m. Then, dg(x)

dx =
∑

i
∂f
∂xi

|xi=x.
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Fig. 2. Union of disks. P
j
i and P ik

j are the lengths of the circle arc in the boundaries of Bi of Bj ’s side of the bisection and the arc on
Bj segmented by the bounding circle of Bi and Bk .

Combining Theorem 2 and Fact 1, when ri = r, i = 1, . . . , n, we have the following lemma.
Lemma 1: Let Ar be the numeric area of the union of n disks with common radius r on a plane. Its derivative

with respect to r is given by A′
r =

∑

i 2πrσi, where σi = 1 − (
∑

j P j
i −

∑

j,k P jk
i )/2πr.

Lemma 2: For a differentiable function g : R+ → R+, if g′(x) ≤ 2g(x)
x , ∀x ∈ R+, then

g(x1)

g(x2)
≤

x2
1

x2
2

, 0 < x2 ≤ x1 ∈ R+. (2)

Proof: Since g′(x) ≤ 2g(x)
x and g(x) is positive for x > 0, we have

g′(x)

g(x)
= (ln(g(x)))′x ≤

2

x
.

Integrate both sides of above equation from x2 to x1, we have

ln(
g(x1)

g(x2)
) ≤ 2ln(

x1

x2
),

therefore, g(x1)
g(x2)

≤ x2
1

x2
2

, 0 < x2 ≤ x1 ∈ R+.

Lemma 3: Consider two disks Bi and Bj of radius ri and rj centered as zi and zj respectively. Let Si (Sj) be
the sector defined by the arc Pi − P j

i (Pj − P i
j ) and the line segments that join the two end points of the arc and

its center. Then
Area(Si ∩ Sj) = 0.

Proof: If Bi ∩Bj = ∅ (∅ is an empty set), P j
i = P i

j = ∅ and thus Si = Bi, Sj = Bj . Clearly the result holds.
If Bi ∩ Bj 6= ∅, the bisector separates Bi ∪ Bj into two parts, i.e., Bi − Bj

i and Bj − Bi
j which intersect at the

bisector. Since Si ⊆ Bi − Bj
i and Sj ⊆ Bj − Bi

j , Si and Sj only intersect at the bisector. The result holds.

Now we are in the position to prove Theorem 1.
Proof: (Theorem 1) Consider a dominator node u. The numeric area covered by u is πs2. Let Du be the set

of nodes that are dominated by u including u itself. A point p is covered by nodes in Du only if p is within s + t
from u (note that the reverse does not always hold). Therefore, the maximum possible geometric area covered by
Du is a disk centered at u of radius s + t. Therefore, the ratio between the numeric areas covered by u and Du is
at most s2

(s+t)2 .

By definition of the dominating set, we have
⋃

u∈MDS

Du = V .

There are two cases:
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Case 1: None of the coverage area of the nodes in MDS overlap. Summing up coverage area of all the dominators,
we have

AMDS = Area

(

⋃

u∈MDS

Bu(s)

)

= |MDS| · πs2. (3)

On the other hand,

AV ≤ Area

(

⋃

u∈MDS

Bu(s + t)

)

≤ |MDS| · π(s + t)2. (4)

Combining Eq. (3) and (4), we get
AMDS

AV
≥

s2

(s + t)2
.

Case 2: The coverage area of some nodes in MDS overlap. Let the cardinality of MDS, |MDS|
∆
= m. Let

vi and Bi, i = 1, . . . ,m be the nodes in MDS and disks centered at vi with radius s. Then, AMDS(s) =
Area(AMDS(s)) , As while AV ≤ Area(AMDS(s + t)) , As+t. Therefore, to prove AMDS

A ≥ s2

(s+t)2 , it is

sufficient to show As

As+t
≥ s2

(s+t)2 .

Instead of deriving the relationship between As and As+t directly, we study the growth of Ar , |
⋃i=m

i=1 Bi(r)|
with respect to r, i.e., the total area occupied by disks Bi of radius r, i = 1, . . . ,m. Our goal is to prove that ∀
r1 > r2, Ar1

Ar2

≤ r2
1

r2
2

. By Lemma 2, it is sufficient to show that the derivative A′
r is no bigger than 2Ar

r , ∀r > 0.
From Lemma 1, we have

A′
r = 2πr

∑

i



1 − (
∑

j

P j
i −

∑

j,k

P jk
i )/2πr



 . (5)

The term σi = 1 − (
∑

j P j
i −

∑

j,k P jk
i )/2πr gives the portion of the perimeter of Bi that is at the boundary of

Ar. Let Si,l, l = 1, . . . ,mi be the set of sectors defined by the arc segments of Pi at the boundary of Ar and the
line segments that join the end points of the arc segments and their centers. Therefore,

πr2σi =

mi
∑

l=1

Area(Si,l) = Area(

mi
⋃

l=1

Si,l).

From Lemma 3, ∀i, j, l, l′, Area(Si,l ∩ Sj,l′) = 0 or equivalently, Area(Si,l) + Area(Sj,l′) = Area(Si,l ∪ Sj,l′)
(since Si,l ⊆ Si). Therefore,

A′
r · r/2

=

m
∑

i=1

πr2σi

=

m
∑

i=1

mi
∑

l=1

Area(Si,l)

= Area(
n
⋃

i=1

mi
⋃

l=1

Si,l)

≤ Ar.

The last inequality is due to
n
⋃

i=1

mi
⋃

l=1

Si,l ⊆
n
⋃

i=1

Bi. Thus, A′
r ≤ 2Ar

r .

From Theorem 1, we can see as long as t is significantly small, MDS can provide comparable coverage as
that of V . This is intuitively true. In general, as t goes smaller, the adjacent matrix becomes sparser (recall that
if t1 < t2, Gt1 ⊆ Gt2 ). The size of the dominating set of Gt tends to increase and so does its coverage. As an
example, consider the case when t = ξ, where ξ is an arbitrarily small positive number. The off-diagonal entries
of the adjacent matrix of Gt are all zero, i.e., |E| = 0. Therefore, MDS(Gt) = V and AMDS = A entails.
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Fig. 3. Considerations to tighten the sufficient condition. If there is no node in the shaded area, p is covered.

C. Random Geometric Graph

Note that the above lower bound can be mainly attributed to the boundary effect in a sparse graph. In particular,
unless nodes at the boundary are selected in MDS, MDS can never provide the same coverage as the original
set. To remove the artifact at the boundary, we consider nodes are distributed in a square region R of edge length
l following the torus convention, i.e., each disk that protrudes one side of the region R enters R again from the
opposite side.

Sufficient Condition: First, we investigate a sufficient condition for MDS to achieve good sensing coverage.
Intuitively, the denser the nodes are, the better coverage the minimal dominating set can provide. This is because
MDS needs to dominate all the nodes. If the nodes are densely distributed, almost all points in the plane are within
the transmission range of at least one node in MDS.

Theorem 3: Suppose nodes v, {v ∈ V } follow Poisson point process of density (rate) ρ in R. For ∀ε > 0
and a point p ∈ AV , where AV is the area covered by all nodes in V with sensing range s. Then, there ∃r s.t.
P{∃u ∈ MDS and du,p ≤ r + t} ≥ 1 − ε.

Proof: Consider an arbitrary point p. A sufficient condition that p is within r + t distance from a dominator
is that there is a node u within r distance from p. Otherwise, u is not dominated. Since nodes follow a Poisson
point process with density ρ, the following equality holds,

P{∃u s.t. d(p, u) ≤ r|p ∈ A} =

{

1 if r ≥ s
1−e−πρr2

1−e−πρs2 if r < s

From the sufficient condition,

P{∃v ∈ MDS s.t. dv,p ≤ r + t|p ∈ A}

≥ P{∃u ∈ V s.t. du,p < r|p ∈ A}

=

{

1 if r ≥ s
1−e−πρr2

1−e−πρs2 if r < s
(6)

Therefore, ∀ε, let r = min(s,
√

−log(ε+e−πρs2
−εe−πρs2)

πρ ) and the above inequality holds as ρ → ∞, r → 0.
Immediately from Theorem 3, we have the following result.
Corollary 1: Suppose nodes v, {v ∈ V } follow Poisson point process of rate ρ in R. ∀ε, let

t = s − min(s,

√

−log(ε + e−πρs2 − εe−πρs2)

πρ
, (7)

any minimal dominating set of Gt (recall that G is a subgraph of G induced by transmission range t) provides the
same coverage as that of V with probability at least 1 − ε.

Corollary 1 can be directly applied to select dominating sets with probabilistic coverage guarantee. However, we
find through the experiments in Section V that the estimation of transmission ranges given by Eq. (7) is often too
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Fig. 4. Illustration of the necessary condition.

conservative. This is due to the sufficient condition we use is loose. There are two main factors that contribute to
the looseness of the results:

• The above proof only utilizes the general property of dominating sets and does not account for the specifics
of individual dominating set algorithms. Considerations of specific dominating set algorithms would sacrifice
the extensibility to other algorithms that are available or will become available over time.

• Transmission range in Eq. (7) can be further increased by taking into account of the geometry of node
distribution but the computation is far more cumbersome and does not have close-form solution. For example,
in Figure 3, there exists a node p′ outside the disk centered at p with radius s− t. Then, a sufficient condition
for p ∈ AMDS(s) is that the shaded area is void (and thus p′ itself is a dominator or dominated by some
nodes inside the disk with radius s). Deriving numerical approximation to tighten the sufficient condition will
be part of our future work.

Necessary Condition: Now, we derive a necessary condition that the transmission range needs to satisfy in
order for the resulting dominating set to provide the same coverage of original node set V . Essentially, we try to
answer the question, “can t be arbitrarily large?”

We first make the observation that if the node density is arbitrarily small, MDS of Gt may include all nodes
in V even for large t’s. Therefore, constraints on the node density are necessary in imposing an upper bound on
t. For randomly placed nodes following Poisson point process of rate ρ in a square region R of edge length l,
it is well-known [10] that there exists a threshold ρc such that if ρ > ρc, all points in R are covered with high
probability. In fact, ρc = log(l2) + 2loglog(l2) + c(l), where c(l) → ∞ as l → ∞.

Theorem 4: Given sensing range s, if all points in R are covered, then there exists a point p not covered by
MDS of Gt for t > 2s.

Proof: We use a proof by contradiction. Suppose every point in R is covered by the MDS of Gt for t > 2s.
Without loss of generality, let us consider one node v ∈ MDS. Let Sv be the set of nodes in MDS that are
centered on the boundary or inside of the disk Bv with radius t excluding v. We see Sv 6= ∅ for t > 2s. This is
because if Sv = ∅, the points with distance of t

2 from v are not covered by either v (since t
2 > s) or MDS\Sv

(since these points are at least t
2 away from nodes in MDS − {v}). Hence these points are not covered by the

MDS, which contradicts every point in R
2 is covered by the MDS.

Since Sv 6= ∅, v is dominated by Sv. There are two cases, Case 1: All nodes Dv dominated by v are in Sv ,
i.e., (V − Sv ∪ v) ∩ Dv = ∅. We can remove v from MDS and the resulting set is still a dominating set. This
contradicts with the definition of MDS.
Case 2: There exists a node u ∈ (V − Sv ∪ v) ∩ Dv . Define ξ

∆
= t−2s

2 > 0. Let p be a point at the intersection
of u’s perimeter Pu and the ring bounded by two concentric circles centered at v with radius s and s + ξ (see
Figure 4). First, p cannot be covered by v since its distance from v is larger than s. Second, p cannot be covered
by MDS − Sv either. This is because the distance from any point x in MDS − Sv, x 6= v to point p is larger
than t − (s + (t − 2s)/2) = t/2 > s. Therefore, p must be covered by at least one node w ∈ Sv or equivalently,
∃w s.t. d(p,w) ≤ s. Otherwise, p is not covered by MDS. Now, we have du,w ≤ du,p + dp,w ≤ 2s < t, or in
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another word, u is dominated by w. The first inequality is due to the triangle inequality. This implies any node u
dominated by v can be dominated by another node w, which is in Sv. Therefore, v can be removed from Sv ∪ v
while satisfying the dominating property. This is in contradiction with the definition of minimal dominating set.

By case 1 and case 2, theorem 4 holds.

The necessary condition only utilizes the “minimal” property of MDS and thus is general to all MDS selection
algorithms.

IV. CONSTRUCTION OF DOMINATING SET FOR COVERAGE MAINTAINABLE

In this section, we propose a coverage maintenance protocol that provides good sensing coverage using dominating
set.

We assume nodes can adjust their transmission range by changing the transmission power level. The relationship
between transmission range and power level is usually dependent on the radio characteristics and environment.
Measurement-based propagation models and fine-grained channel modeling techniques can be used to predict the
attenuation of signals over distance. For example, studies [17] indicate that average received signal power decreases
logarithmically with distance in both outdoor and indoor environment, i.e., PL(d) ∝ ( d

d0
)n, where d0 is the close-in

reference distance, d is the transmitter-receiver separation distance and n is the path loss exponents. The typical
value of n ranges from 2.7 to 3.5 for urban area cellular radio, from 1.6 to 1.8 for in building line-of-sight, 4 to 6
in presence of obstruction in building.

Our proposed coverage maintenance protocol is shown in Figure 5. It takes sensing range, maximum transmission
power and a DS selection algorithm as inputs, and outputs the working set. Based on the DS selection algorithm,
we can devise a suite of protocols with different objective functions (e.g., power balanced, maximal life time,
k-coverage etc.). To be general, we assume the DS selection algorithm requires K-hop neighborhood information,
K = 1, 2, . . ..

The algorithm consists of three steps. First, (from line 1-7 in Figure 5), each node determines a local node density
by counting the number of nodes in its ttl-hop neighborhood using the maximum transmission range. Suppose the
number of ttl-hop neighbors of node v is cntv . Then, the local node density can be approximated as ρv = cntv+1

πt2maxttl2

(recall that tmax is the maximum transmission range). ttl reflects the trade-off between robustness of the estimation
and adaptability to variations of node density. This process can be carried out periodically at large intervals. A
node v then sets its transmission range as follows:

tv = s − min(s,

√

−logε0

πρv
) (8)

Beacon messages are transmitted using this range (ε0 to be determined later). Beacon messages are used to construct
1 − hop neighbor list corresponding to tv .

In the second step (from line 8-13 in Figure 5), neighboring nodes exchange their 1-hop neighbor lists. Line 11
is needed to ensure bidirectionality. To this end, the adjacency matrix of the subgraph induced by tv , v ∈ V is
determined. Line 14-22 is needed only for DS selection algorithms that require K-hop neighborhood information
(K > 1). Lastly (line 23), we can apply a DS selection algorithm to the resulting subgraph to obtain the cover set.

It should be noted that tv, v ∈ V is only used to determining the working set. All subsequent message and data
exchange still use the maximum transmission range (power level).

V. PERFORMANCE EVALUATION

In this section, we investigate through extensive simulations the performance of the proposed location-free
coverage maintenance protocol. We will also study the robustness of the protocol to the variation of node density,
inaccuracies in transmission range control and the presence of heterogeneous sensing ranges.
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Input: ALGDS(K), sensing rang s,
maximum transmission range tmax

Output: Working set
1. for v ∈ V
2. cntv ← COUNT (v, tmax, ttl)
3. ρv ←

cntv+1
πt2maxttl2

4. tv ← s−min(s,
q

−log(ε0)
πρv

)

5. node v broadcast a beacon message with range tv .

/* Upon receiving a beacon message from node u */
6. N(v)← u ∪N(v)
7. end

8. for v ∈ V
9. broadcast its neighbor list N(v) using tmax

/* Upon receiving node u’s neighbor list*/
10. if v ∈ N(u) and u∈N(v)
11. N(v)← u ∪N(v)
12. endif
13. end

14. k← K
15. while k > 1
16. for v ∈ V
17. Transmit (K − k)-hop neighbor list Nk(v) with Pmax.

18. /* Upon receiving Nk(u) from node u
19. Merge Nk(u) with Nk−1(v).
20. end
21. k ← k − 1
22. end /* construct K-hop neighbor list */

23. Apply ALGDS(K)
24. return the working set.

Fig. 5. Location-free sensor coverage maintenance algorithm

A. Simulation Setup

In evaluating the proposed protocol, we implement several dominating set selection algorithms that are each
representative in its category (i.e., centralized, distributed, connected dominating set etc.)

• Greedy algorithm for selecting dominating set (short as DS-Centralized): In the centralized greedy algorithm,
at each step, a node that dominates the most number of un-dominated nodes is added until all nodes are
dominated.This centralized algorithm can achieved H∆ approximation, where ∆ is the maximum degree of a
node, and Hi is the ith harmonic number. It is proven that such approximation ratio is best possible unless
NP has nO(loglogn)-time deterministic algorithm [9].

• Kuhn and Wattenhofer’s constant time distributed dominating set approximation (short as DS-Dis): In [12],
Kuhn and Wattenhofer propose a fully distributed approximation algorithm based on LP relaxation techniques.
The idea is to first approximate the LP relaxation of (0,1) integer programming for minimum dominating
set problem and assign the resulting solution as weight to each node. A node with a larger weight has a
higher likelihood to become a dominator. The algorithm can compute a dominating set of expected size
O(k∆2/klog(∆|DSopt|) in O(k2) rounds where each node sends O(k2∆) messages of size O(log(∆)).

• Aloubi et al’s ID-based approach [1] (short as CDS): The algorithm consists of three steps: leader election,
maximal independent set (MIS) selection and dominating tree construction. Leader election elects the node
with smallest ID as the leader. The leader node broadcasts its identity to all nodes. Upon receiving the identity
of the leader, nodes start the MIS procedure using ID-based rank assignment. Finally, nodes in MIS build the
dominating tree using scoped broadcasts with time-to-live (TTL) set to 3.
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Fig. 6. Coverage as a function of ε0. Sensors are uniformly distributed in a 40m × 40m square region. tmax = 8m and s = 4m.
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Fig. 7. Size of working set as a function of ε0. Sensors are uniformly distributed in a 40m × 40m square region. tmax = 8 and s = 4.

Among all three algorithms, DS-Centralized tends to generate the smallest DS while the CDS generates the
largest. The reason we include a CDS algorithm is to study whether “connectivity” among the DS can improve the
coverage as suggested in [5].

In addition to the proposed location-free coverage maintenance protocol, we also evaluate as a baseline the
performance of OGDC and a hexagon-based GAF-like algorithm considered in [26]. The later algorithm is built
upon GAF [24] and operates as follows. The entire area is divided into hexagonal grids of side length s/2 and one
node is selected to provide coverage in each grid. Both OGDC and hexagon-GAF algorithms require knowledge
of node location.

B. Performance Metrics

The performance metrics of interest are (i) the normalized coverage, i.e., the ratio of covered area of the selected
dominating set to the total area covered by all nodes, (ii) the size of the resulting dominating set (or working
nodes), (iii) average coverage degree of all points in the interested area. A point is said to be k-covered if it is
covered by k nodes but not k + 1 in the working set. Average coverage degree is thus an average of the degree of
coverage across all nodes. It reflects the redundancy of the coverage algorithm.

C. Simulation Results

The simulation study is conducted in a 40m× 40m square area. Coverage is computed by dividing the area into
40× 40 square grids of 1m× 1m. A grid is considered covered if the center of the grid is covered. The ttl for the
density estimation is set to 1.

Choice of ε0: In this set of experiments, we vary ε0 in the proposed coverage maintenance protocol (Fig. 5) from
0.1 to 0.7 and investigate its impact on the coverage of the resulting working set. Three scenarios are considered with

When the transmission range t is small, the graph can be disconnected. In this case, a CDS algorithm finds one connected dominating
set for each connected component in the graph.
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Fig. 8. Average coverage degree as a function of ε0. Sensors are uniformly distributed in a 40m × 40m square region. tmax = 8 and
s = 4.
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Fig. 9. Coverage as a function of ε. Sensors are non-uniformly distributed in a 40m× 40m square region. tmax = 8m and s = 4m.

N = 200, 800, 1200 sensors uniformly distributed in the 40m×40m area, respectively. The maximum transmission
range and sensing range are set to be tmax = 8m and s = 4m such that full coverage implies connectivity [26].
The results are shown in Fig. 6-8.

From Fig. 6 and Fig. 7, we observe that as ε0 goes larger, the coverage and size of the resulting working set
reduces. This is because a larger transmission range is used in constructing the dominating set. The relationship
between coverage and ε0 (or subsequently, transmission range) is not strictly monotonic as the coverage is not
only affected by the size of the working set but also its distribution. Compared to DS-Dis and DS-Centralized,
CDS has large redundancy as demonstrated from the average coverage degree (Fig. 8). Even for dense graphs (i.e.,
N = 400, 800), close to half of the nodes are selected achieving an average coverage degree over 10 (i.e., each
point in the area is on average covered by more than 10 nodes in the working set). Clearly, CDS is not a very good
choice for energy conservation purpose and provides no significant gain in coverage.

For ε0 ∈ [0.1, 0.7], compared with OGDC, the coverage of the proposed protocol in conjunction with DS-Dis,
DS-Centralized, CDS are at most three percentile less for sparse graphs (N = 200) and one percentile less for
dense graphs (N = 400, 800). An interesting cross-over point occurs when ε0 is around 0.6 for N = 200, 800 and
0.2 for N = 1200, the size of working set of our proposed algorithm is smaller than that of OGDC. This is a
very encouraging result as our protocol do not assume knowledge of node’s location while location information is
required in both OGDC and GAF.

Non-uniform node distribution: To further confirm the above observations, we experiment with non-uniform
node distribution. The entire area is divided into 16 identical blocks. The node density in each block is randomly
chosen among [0.5λ, 1.5λ], where λ = N

1600 is the average density of the entire area. Again, ε0 varies from 0.1 to
0.7 and the number of nodes N changes from N=200 to 800. The results are shown in Fig. 9-11.

We can see the trend remains the same for non-uniform distribution. When comparing Fig. 6-8 with Fig. 9-11
back-to-back, we see that the coverage of our proposed scheme is slightly worse in the non-uniform case while the
number of resulting working set is slightly larger. This can be attributed to the density estimation procedure (Fig 5,
line 3), which is based on the number of nodes within the maximum transmission radius and thus is coarse-grained.
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Fig. 10. Size of working set as a function of ε. Sensors are non-uniformly distributed in a 40m × 40m square region. tmax = 8m and
s = 4m.
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Fig. 11. Average coverage degree as a function of ε. Sensors are non-uniformly distributed in a 40m × 40m square region. tmax = 8m

and s = 4m.

From these results, we conclude that our proposed algorithm can provide comparable coverage using similar
or even less working nodes as compared to OGDC in both uniform and non-uniform field of nodes with various
density. In the following experiments, we fix ε0 to be 0.6.

Sensitivity analysis of transmission range control: As described in Section IV, our location-free coverage
maintenance protocol requires the ability to control the transmission range by adjusting transmission power. The
two are highly correlated and in fact can be characterized using parametric models or channel modeling techniques.
However, due to the randomness in the environment, it is likely that the actual transmission range used may differ
from the targeted value.

In this set of experiments, we evaluate the tolerance of errors between the targeted and actual transmission range
values in our proposed protocol. Let tv be the targeted transmission range of node v determined by Eq. (8). The
actual transmission range tactual

v of a node is uniformly chosen from [(1 − β)tv, (1 + β)tv ] independent from its
neighbors. Following the procedure in Fig. 5, the neighbor list is determined using tactual

v , v ∈ V . Therefore, the
induced subgraph may differ from the one determined by tv , v ∈ V . Fig. 12 shows the results for β ∈ [0.1, 0.5],
N = 800 and ε = 0.6. Except for DS-Centralized, β has little impact on the coverage and size of the resulting
working set. With large β (or a large variation in the actual transmission range), DS-Centralized selects less nodes
to provide coverage. The reason is as follows. As shown in Line 10-12 in Fig. 5, an edge is added in the reverse
direction if an directed edge is detected. With tactual uniformly chosen from [(1 + β)t, (1 − β)t], edge addition
is likely to occur which in effect makes the induced graph denser. This is in part an artifact of the independence
assumption we make in computing tactual

v in this set of experiments. In reality, actual transmission range tends to
be location-dependent. The effect of locality in transmission range control will be considered in our future work.

Isotropic sensors: Due to hardware heterogeneity, sensors may have different sensing ranges. In this set of
experiments, each sensor’s sensing range s is known to itself but randomly chosen between [(1 − α)s, (1 + α)s],
where s = 4m and α varies from 0.1 from 0.8.

Note both OGDC and GAF are not designed to handle heterogeneous sensing ranges. In GAF, the target area is
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Fig. 12. Coverage and size of DS as functions of variation in transmission power control parameter β with N = 800 sensors are uniformly
distributed in a 40m× 40m square region. tmax = 8m, ε0 = 0.6 and s = 4m.
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Fig. 13. Isotropic sensors: coverage and size of DS as functions of α with N = 800 sensors uniformly distributed in a 40m× 40m square
region. ε0 = 0.6, tmax = 8m and s = 4m.

partition into identical hexagonal grids of side length s/2. In OGDC, the initial set of working nodes are chosen
to be those close to the intersection points of homogeneous hexagonal grids. Therefore, we choose not to include
these two schemes in our comparison.

As shown in Fig. 13, coverage maintenance using DS-Dis and CDS perform very well even with large variation
of sensing ranges. The coverage of DS-Centralized, however, degrades significantly as α grows larger. Again, this
can be attributed to the way asymmetric links are resolved in our protocol (Fig. 5, Line 10-12).

In summary, among the set of dominating set selection algorithms and parameter settings considered, we recom-
mend the use of Kuhn and Wattenhofer’s algorithm with ε0 set to 0.6.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied the coverage property of dominating set and established the connection between
area coverage and point coverage through rigorous analysis. The analytical results make possible the design of a
suite of location-free coverage maintenance protocols utilizing transmission range control and the knowledge of
wireless connectivity. Our experiment studies show that the proposed location-free coverage maintenance protocol
can indeed provide comparable coverage using similar or even less working nodes as compared to other location-
based solutions. The proposed protocols are shown to be robust to non-uniform node density, inaccuracies in
transmission range control and heterogeneity in sensing ranges.

As part of our ongoing work, we plan to tighten the necessary and sufficient conditions of MDS coverage, and
evaluate the performance of energy-balanced and k-cover MDS algorithms in conjunction with our location-free
coverage maintenance protocol.
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