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Abstract  

Recent computer architectures provide new kinds of on-chip parallelism, including support for 
multithreading. This trend toward hardware support for multithreading is expected to continue for PC, 
workstation and high-end architectures. Given the need to find sequences of independent instructions, and 
the difficulty of achieving this via compiler technology alone, OpenMP could become an excellent means 
for application developers to describe the parallelism inherent in applications for such architectures. In this 
paper, we report on several experiments designed to increase our understanding of the behavior of current 
OpenMP on such architectures. We have tested two different systems: a Sun Fire V490 with Chip 
Multiprocessor technology and a Dell Precision 450 workstation with Simultaneous MultiThreading 
technology. OpenMP performance is studied using the EPCC Microbenchmark suite, subsets of the 
benchmarks in SPEC OMPM2001 and the NAS parallel benchmark 3.0 suites. 
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I. INTRODUCTION 
OpenMP has been successfully deployed on small-to-medium shared memory systems and large-scale DSMs, and 

is evolving over time. The OpenMP specification version 2.5 public draft [18] was released by the Architecture 
Review Board (ARB) in November 2004. It merged C/C++ and FORTRAN and clarified some concepts, especially 
with regard to the memory model. OpenMP 3.0 is expected to follow, and to consider a variety of new features. 
Among the many open issues are some tough challenges including determining how best to extend OpenMP to SMP 
clusters, how best to support new architectures, making hierarchical parallelism more powerful, and making it easier 
to write scalable code. In this paper, we explore some aspects of current OpenMP performance on two recent 
platforms: a Sun Fire V490 [24] with Chip Multiprocessor capability and a Dell Precision 450 workstation with 
Simultaneous Multithreading technology. 

As computer components decrease in size, architects have begun to consider different strategies for exploiting the 
space on a chip. A recent trend is to implement Chip MultiThreading (CMT) in the hardware. This term refers to the 
simultaneous execution of two or more threads within one chip. It may be implemented through several physical 
processor cores in one chip (a Chip Multiprocessor, CMP) [17], a single core processor with replication of features to 
maintain the state of multiple threads simultaneously (Simultaneous multithreading, SMT) [26] or the combination of 
CMP and SMT [10]. OpenMP support for these new microarchitectures needs to be evaluated and possibly enhanced.   

In this paper, we report on the behavior of some OpenMP benchmarks on each of the two systems mentioned above: 
the Sun Fire V490 exploiting CMP technology and the Dell Precision 450 workstation with SMT technology. The 
remainder of the paper is organized as follows. In Section II, we discuss the architectures that are used in this 
experiment, and comment on their implications for OpenMP. In Section III, we then describe the methodology of 
how to run the benchmarks, followed by our results and a discussion of them in Section IV and V. Finally, the paper 
presents related work and reaches some conclusions in Section VI and VII. 

II. CHIP MULTITHREADING AND ITS IMPLICATIONS FOR OPENMP 
CMT is emerging as the dominant trend in general-purpose processor design [23]. In a CMT processor, some 

chip-level resources are shared and further software approaches need to be explored to maximize overall performance. 
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CMT may be implemented through Chip Multiprocessor (CMP) [14], Simultaneous Multithreading (SMT) [11] or 
the combination of CMP and SMT [10]. In this section, we give a brief overview of CMP and SMT first, and discuss 
their implications for OpenMP. 

Chip Multiprocessing enables multiple threads to be executed on several physical cores within one chip. Each 
processor core has its own resources as well as shared ones. The extent of sharing varies from one implementation to 
another. For example, the UltraSPARC IV [27]’s two cores are almost completely independent except for the shared 
off-chip data paths while the Power4 [14] processor has two cores with shared L2 cache to facilitate fast inter-chip 
communication between threads.   

Simultaneous MultiThreading combines hardware multithreading with superscalar processor technology to allow 
several independent threads to issue instructions to a superscalar’s multiple function units each cycle [26]. SMT 
permits all thread contexts to simultaneously compete for and share processor resources; it uses multiple threads to 
compensate for low single-thread instruction-level parallelism.  

CMP and SMT are two closely related technologies. They can be simply seen as two different extents of sharing of 
on-chip resources among threads. However, they are also significantly different because the various types of resource 
sharing have different implications for application performance, especially when the shared pipelines on SMT are 
compared with the private pipelines on CMP. Moreover, new multi-threaded chips such as Power5 [10], tend to 
integrate both CMP and SMT into one processor. This kind of integration brings even deeper memory hierarchy and 
more complex relationship between threads. 

The CMP and SMT technology introduces new opportunities and challenges for OpenMP. The current flat view of 
OpenMP threads is not able to reflect these new features and thus may need to be revisited to ensure continuing 
applicability in the future. Previous research on SMT [21], [26], [28], [29] has developed some strategies for efficient 
sharing of key resources, especially caches. In OpenMP, we may need to identify sibling1 threads to perform the work 
cooperatively with proper scheduling and load balancing mechanisms. We need to perform research to explore 
optimizations to avoid inter-thread competition for shared resources, and to select the best number of cores from a 
group of multiple cores. A CMP system with only one multicore processor is really a slim implementation of SMP on 
a chip. While chip level integration has the benefits of fast synchronization and lower latency communication among 
threads, the shared resources may lead to conflicts between threads and unsatisfactory performance. Secondly, for 
SMPs composed of several multicore processor systems, the relationship between processing units is no longer 
strictly symmetric. For example, cores within one processor chip may have faster data exchange speed than cores 
crossing processor boundaries. Multithreading based on those cores has to take this asymmetry into account in order 
to achieve optimal performance. Altogether, the integration, resource sharing and hierarchical layout in SMP systems 
with CMT bring additional complexity to the tasks of data set partition, thread scheduling, work load distribution, and 
cache/memory locality maintenance. 

III. METHODOLOGY 
We have chosen a Sun Fire V490 with UltraSPARC IV [27] processors and a Dell Precision 450 workstation with 

Xeon [11] processors as test beds to explore the impact of CMT technology. In this section, we describe these two 
machines, benchmarks that we ran and how to execute the benchmarks. We attempt to understand the scalability of 
OpenMP applications on the new platforms, and the performance difference between SMPs with CMT and traditional 
SMPs via the designed experiments. 

A. Sun Fire V490 with UltraSPARC IV and Dell Precision 450 with Xeon 
Sun UltraSPARC IV was derived from earlier uniprocessor designs (UltraSPARC III) and the two cores do not 

share any resources, except for the off-chip data paths. The UltraSPARC IV processor is able to execute dual threads 
based on two 14-stage, 4-way superscalar UltraSPARC III [8] pipelines of two individual cores. Each core has its 
own private L1 cache and exclusive access to half of an off-chip 16MB L2 cache. The L1 cache has 64KB for data 
and 32K for instructions. L2 cache tags and a memory controller are integrated into the chip for faster access.  

The Sun Fire V490 server for our experiments has four 1.05 GHz UltraSPARC IV processors and 32 GB main 
memory. The basic building block is a dual CPU/Memory module with two UltraSPARC IV cores, an external L2 
cache and a 16 GB interleaved main memory. The Sun FireplaneTM Interconnect is used to connect processors to 

 
1 We use the term “sibling” to refer to cores in the same CMP, and to logical processors in the same physical processor for SMT. 
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Memory and I/O devices. It is based on a 4-port crossbar switch with a 288-bit (256-bit data, 32-bit Error-Correcting 
Code) bus and clock rate of 150 MHz. The maximum transfer rate is thus 4.8 GB/sec. The Sun Fire V490 is loaded 
with the Solaris 10 operating system [22] and Sun Studio 10 [25] integrated development environment which support 
OpenMP 2.0 APIs for C/C++ and FORTRAN 95 programs. Solaris 10 allows superusers to enable or disable 
individual processor cores via its processor administration tool. An environment variable SUNW_OMP_PROBIND 
is available that lets users bind OpenMP threads to processors. More CMP-specific features are described in [15].  

   Xeon processors have Simultaneous MultiThreading (SMT) technology, which is called HyperThreading [11]. 
HyperThreading makes a single physical processor appear as two logical processors; most physical execution 
resources including all 3 levels of caches, execution units, branch predictors, control logic and buses are shared 
between the two logical processors, whereas state resources such as general-purpose registers are duplicated to permit 
concurrent execution of two threads of control. Since the vast majority of micro-architecture resources are shared, the 
additional hardware consumes less than 5% of the die area.  

The Dell Precision 450 workstation, on which we carry out the experiments, has dual Xeon 2.4 GHZ CPUs with 
512K L2 cache, 1.0GB memory and HyperThreading technology. The system runs Linux with kernel 2.6.3 SMP. The 
Omni compiler [19] is installed to support OpenMP applications and GCC 3.3.4 acts as a backend compiler. Linux 
Kernel 2.6.3 SMP [29] in our 2-way Dell Precision workstation has a scheduler which is aware of HyperThreading. 
This scheduler can recognize that two logical processors belong to the same physical processor, thus maintaining the 
load balance per physical CPU, not per logical CPU. We confirmed this via simple experiments that showed that two 
threads were mostly allocated to two different physical processors unless there was a third thread or process involved. 

B. Experiments 
Since it was not clear whether the Solaris 10 on our Sun Fire V490 with 4 dual-core processors is aware of the 

asymmetry among underlying logical processors, we used the Sun Performance Analyzer [25] to profile a simple 
OpenMP Jacobi code running with 2, 3, and 4 threads. We set the result timelines to display data per CPU instead of 
per thread in Analyzer, and found that Solaris 10 is indeed aware of the differences in processors of a multicore 
platform and tries to avoid scheduling threads to sibling cores. Therefore we can roughly assume the machine acts 
like a traditional SMP for OpenMP applications with only 4 or less active threads. For applications using 5 or more 
threads, there must be sibling cores working at the same time. As a result, any irregular performance change from 4 to 
5 threads might be related to the deployment of sibling cores.  

The EPCC Microbenchmark [4] Suite, SPEC OMPM2001 [2], and NAS parallel benchmark (NPB) 3.0 [9] were 
chosen to discover the impact of CMT technology on OpenMP applications. The EPCC microbenchmark is a popular 
program to test the overhead of OpenMP directives on a specific machine while the SPEC OMPM2001 and NAS 
OpenMP benchmarks are used as representative codes to help us understand the likely performance of real OpenMP 
applications on SMP systems with CMT. 

For experiments running on the Sun Fire V490 machine, we compiled all the selected benchmarks using the Sun 
Studio 10 compiler suite with the generic compilation option “-fast -xopenmp” and ran them from 1 to 8 threads in 
multi-user mode. This round of experiments gave us a first sense of the OpenMP behavior on the CMP platform and 
exposed problematic benchmarks. After that, we ran the problematic benchmarks using 2 threads when only 2 cores 
were enabled: the two cores were either from the same CMP or from different processors (an approximate traditional 
SMP). For both cases, Sun performance tools were used to collect basic performance metrics as well as related 
hardware counter information in order to find the reasons for the performance difference between a CMP SMP and a 
traditional SMP. The experiments on the Dell Precision workstation were designed in the same fashion whenever 
possible. For example, we measured the performance of the EPCC microbenchmarks using 2 logical processors of the 
same physical processor and on 2 physical processors with HyperThreading disabled. This way, we can understand 
the influence of HyperThreading better. 

IV. RESULTS AND ANALYSIS 
This section illustrates the results of the experiments on the two machines using the selected benchmarks, and our 

analysis. Some major performance problems are explained with the help of performance tools. We are especially 
interested in the effects of the sibling cores and sibling processors. In other words, particular attention is paid to 
performance gaps when the number of threads changes from 4 to 5 on the Sun Fire V490 and from 2 to 3 on the Dell 
Precision 450. 
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A. The EPCC Microbenchmark Suite 
(i). Sun Fire V490 
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Fig. 1.  Synchronization overhead on 
Sun Fire V490   

Fig. 2.  Mutual exclusion + 
ORDERED overhead on  Fire 490 

    
Fig. 1 and 22 shows the results of the EPCC microbenchmark on the Sun Fire V490. Most OpenMP directives have 

higher overhead than on the Sun HPC 3500 [4], a traditional SMP machine, since the default behavior of idle threads 
has changed from SPIN to SLEEP. PARALLEL, PARALLEL FOR and REDUCTION have similar overhead on the 
Sun Fire V490. For mutual exclusion synchronization results shown in Fig. 2, LOCK and CRITICAL show similar 
overhead and scale well. The ORDERED directive has a high cost when the full eight threads are used, although it 
scales as well as LOCK and CRITICAL when less than eight threads are involved. The exception of ORDERED may 
come from hardware, OpenMP compiler implementation, or scheduler in Solaris 10. The ATOMIC directive is 
noticeably cheaper than LOCK and CRITICAL when the number of threads is up to five, however, it is more 
expensive than the other two if we use more than five threads. We checked the corresponding assembly code of an 
ATOMIC construct (see Table 1), and found that the Sun Studio 10 compiler uses runtime library calls 
__mt_b_atomic_ and __mt_e_atomic_ to start and finish an ATOMIC operation, rather than a single hardware 
primitive. The Analyzer indicated that the execution time of those two calls is sensitive to the physical layout of 
processor cores: ATOMIC does not have good performance if both sibling cores are involved. 
 

TABLE I 
AN OPENMP SOURCE AND THE CORRESPONDING ASSEMBLY CODE SEGMENT FOR AN ATOMIC CONSTRUCT 

 
An OpenMP code segment The corresponding assembly code for the ATOMIC construct 

… 
float aaaa=0; 
#pragma omp parallel private(j) 
    { 
      for (j=0; j<innerreps/nthreads; j++){ 
#pragma omp atomic 
        aaaa += 1; 
      } 
    }  …. 

call    __mt_b_atomic_  ! params = !  
Result = 
nop 
ld      [%sp+92],%f2 
add     %l4,1,%l4    
ld      [%l5],%f0 
fadds   %f2,%f0,%f0 
call    __mt_e_atomic_  ! params =      !  
Result = 
… 

  
We show OpenMP loop scheduling results on the Sun Fire V490 in Fig. 3. Block cyclic scheduling (STATIC, n) 

and block scheduling (STATIC) have similar performance when the chunk size is not too small. The cost of GUIDED 
decreases noticeably when the chunk size is incremented up to 1024.  

Altogether, the synchronization overhead for OpenMP directives does not show sensitivity to the change from 4 to 
5 threads. We further designed some experiments to closely examine the effect of different combination of cores. We 
compare the benchmark performance on two sibling cores and non-sibling cores (in fact, the former reflects the 
effects of CMP and the latter the effects of the traditional SMP), and on four cores from two processors and from four 
                                                 

2 We display the overhead of ORDERED and mutual exclusive directives in Fig. 2 as they have the same order of magnitude overhead. 
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different processors, respectively. In order to ensure the desired core/processor layout, we take advantage of the 
prsadm utility from Sun Solaris 10 to turn off the cores that we will not use. Fig 4 shows the overhead ratio for 
OpenMP directives on cores belonging to the same processor(s) and different processor(s). OpenMP directives on 
CMP take slightly less time than on a traditional SMP except for three mutual exclusion directives: CRITICAL, 
LOCK and ATOMIC. The overall overhead difference tends to be smaller (close to ratio of 1) when more threads are 
used, except for the ATOMIC directive.  
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Fig. 3.  Scheduling overhead on Sun Fire 
V490   

Fig. 4.  Synchronization overhead 
ratio: CMP/traditional SMP   

 
 Therefore, we may conclude that sibling cores do not bring significantly faster synchronization or fewer overhead 

for OpenMP constructs on the Sun Fire V490 machine. This is because the sibling cores in the UltraSPARC IV do not 
share L1 and/or L2 cache to facilitate faster communications.  

 
(ii). Dell Precision 450 
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Fig. 5.  Synchronization overhead on Dell 
Precision 450 

Fig. 6.  Mutual exclusion + ORDERED 
overhead on Dell Precision 450 
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Fig. 7.  Scheduling overhead on Dell 
Precision 450 

Fig. 8.  Synchronization overhead ratio: 
SMT vs. traditional SMP  

 
We depict the results obtained by using the EPCC microbenchmarks to measure OpenMP synchronization 

overhead on the Dell Precision 450 in Fig. 5 and Fig. 6, and the results for OpenMP scheduling overhead in Fig. 7. 
Overall, the results are similar to those on a traditional SMP system. In Fig. 8, we display the overhead ratio between 
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the two sibling processors and two physical processors. Only the overhead of ATOMIC is smaller in the case of 
sibling processors. The OpenMP synchronization directives are mostly implemented using spin-wait, which leads to 
more competition for shared resources on Xeon systems. 
 
B. SPEC OMPM2001 and NAS NPB 3.0 
(i). Sun Fire V490 
We show the speedup of a subset from SPEC OMPM2001 and NPB 3.0 with class B dataset on the Fire V490 
machine in Fig. 9 and Fig. 10 separately. In Fig. 9, WUPWISE, EQUAKE, and APSI show good scalability on Sun 
Fire V490, with only slight changes after 4 threads. AMMP scales as poorly as described on traditional SMPs [20]. 
The APPLU demonstrates super-linear speedup for no less than 6 threads, which start to provide enough L2 caches to 
accommodate its critical dataset as mentioned in [20]. As can be seen in Fig. 10, most NAS OpenMP benchmarks 
show a more consistent behavior during the change from 4 to 5 threads than those from SPEC. Only EP achieves 
linear speedup because its dataset is much smaller than the size of L2 cache. 
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Fig. 9.  Speedup of SPEC OMPM2001 on 
Sun Fire V490 

Fig. 10.  Speed up of NAS NPB 3.0 on 
Sun Fire V490 

 
Several benchmarks do not scale very well on this platform, particularly SWIM from SPEC and FT from NPB 3.0. 
We profiled SWIM and FT using 2 threads on sibling and non-sibling cores, and the profiling results confirmed the 
negative impact of multicores, as sibling cores did cause longer L2 stalls in the major loops. Both SWIM and FT are 
memory-intensive so that they cannot benefit from the multicore architecture. For the medium dataset, the major 
loops of SWIM perform computations on fourteen arrays, each of which contains 3802 * 3802 double precision 
floating point numbers; hence the total memory requirement is 38022*8*14=1.51G bytes. Similarly, the FT 
benchmark with class B dataset also requires over 1 GB memory during its execution. Moreover, non-contiguous 
memory loads and stores of FT’s major function cause high cache miss rates and competition for the shared data path 
of the sibling cores. Therefore, performance degradation occurs when the number of involved threads is increased 
from 4 to 5.  
 
(ii). Dell Precision 450 
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Fig. 11.  Speedup of SPEC OMPM2001 
on Dell Precision 450 

Fig. 12.  Speed up of NAS NPB 3.0 on 
Dell Precision 450 
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We tested a subset of the SPEC OMPM2001 and NAS NPB 3.0 benchmarks on our dual-Xeon Linux workstation. 

Results are given in Fig. 11 and Fig. 12 respectively. EQUAKE from SPEC is a memory-intensive application in 
which more SMT threads lead to performance degradation due to the memory competition. The Xeon’s halved 
memory bandwidth does not fulfill the demands of more threads [6]. We also observed that MGRID did not have a 
speedup with 2 threads. The reason is that the OS schedules the two threads onto a single physical processor and 
resource conflicts occur. From our experiments, it seems the HyperThreading-aware scheduler in Linux kernel 2.6.3 
is not well implemented. We did not get good speedup for the NAS benchmarks except EP, which requires much less 
memory than others. 

V. DISCUSSION AND FUTURE WORK 
The Sun Fire V490 is a successful platform for OpenMP as one of the first generation CMP (multicore) machines. 

We find its overall scalability to be comparable to a traditional SMP machine since each core has the similar 
capability as a regular uniprocessor. Most OpenMP applications from SPEC OMPM2001 and NPB 3.0 scale very 
well. For memory-intensive applications using 5 and more threads, scalability may be compromised to an acceptable 
degree due to the competition for the shared data path between sibling cores. There should be a threshold for the 
applications’ memory demand to be intensive enough to cause performance degradation on a specific machine. 
Unfortunately, the EPCC microbenchmark’s results did not show profitable faster synchronization among sibling 
cores within one processor in this machine. We believe it is mostly due to the fact that the L2 cache is not really 
shared between sibling cores. Meanwhile, the Solaris operating system schedules OpenMP threads very well taking 
the asymmetry between cores into consideration. The Sun Studio Performance Analyzer is a very useful and handy 
tool to help us understand the underlying reasons for performance problems. However, the caller-callee tab leaves 
some room to be improved and we used our own tool [7] for better understanding the benchmarks. 

Compiler optimizations are also key factors in OpenMP performance on the Sun platforms. For example, we 
observed a performance degradation from 4 to 5 threads for Jacobi code compiled with “–fast –xopenmp” even for a 
small data set (3 500*500 arrays and 1000 iterations). The Analyzer showed that the Sun Studio 10 compiler 
performed loop unrolling on the major loops and inserted PREFETCH instructions into them. Data cache stall 
information collected from hardware counters hints that some PREFETCH operations initiated from two sibling cores 
stressed the shared data path connected to L2 cache and memory, thus incurred longer stall cycles than usual. But it is 
not always the case for all PREFETCH operations. Further work is needed to understand the exact conditions and 
effects of these traditional optimizations with regard to the OpenMP performance on machines with CMP 
capabilities.  

    We observed that a straightforward OpenMP implementation for traditional SMP architecture may not achieve 
good scalability on the Xeon system. The main reasons are memory bandwidth bottleneck [6] and competition for the 
shared computing resources, which degrade the overall SMT performance. More OpenMP scheduling policies [29] 
and precomputation and a prefetch approach via a helper thread [28] which utilize new SMT features are able to lead 
to a better performance. Our experiments also showed that a HyperThreading-aware OS is important for maintaining 
load balance and efficiently utilizing the resources of an SMT system. The EPCC microbenchmarks results also 
indicated that the overhead of OpenMP synchronization implementation in a SMT system is higher than that in an 
SMP system. The OpenMP implementation needs to take the SMT features into account. 

     Our experiments for CMP and SMT were carried out separately to understand the implications of CMT. We 
plan to analyze those OpenMP benchmarks and consider the interaction between CMP and SMT when we have 
access to a machine with both technologies. The ultimate objective is to obtain a quantitative model, which is capable 
of predicting and explaining the OpenMP performance on CMT machines, considering machine parameters, 
application features and compiler optimizations. 

VI. RELATED WORK 
CMP technology exists in IBM Power4, Sun UltraSPARC IV, AMD Opteron [1], and some embedded systems 

[13]. The research on Power4 [5] showed that the improved data locality of the L2 cache made the SP program from 
NAS NPB scale from 16 to 32; otherwise, the program runs on 32 processors are slower. [12] gives an overview of 
the Sun Fire E25K with UltraSPARC IV and its OpenMP support; in particular, the base and peak performance of 
SPEC OMPL benchmarks using almost maximum threads was demonstrated and compared with a traditional SMP. A 
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system-on-chip (SOC) design from Cradle Technologies, Inc. integrates processors into one chip and OpenMP was 
selected in [13] to deal with the heterogeneity of CMP: OpenMP is extended to support Cradle’s Digital Signal 
Engine (DSE) and optimized via data prefetching and privatization. [3] explores the performance impact of 
asymmetric multicore architectures using a wide range of applications on a hardware prototype. 

Simultaneous multithreading techniques can be dated back to 10 years ago as a means to improve the utilization of 
superscalar processors [26]. Work related to compiler support for SMT has focused on the problems of 
synchronization, memory allocation and program optimizations for shared caches. Researchers explored the 
performance of symbiosis [21], a group of two sequential programs, or a parallel program other than OpenMP 
running on SMT. In particular, hand-written program transformations, namely dynamic tiling, copying and blocking, 
were presented in [16] to partition the shared caches on SMT processors and the performance gain of a parallel 
program other than OpenMP or multiple programs is 16-29%. For OpenMP programs, speculative precomputation 
and thread-level parallelism are used together [28] to achieve more efficient execution on real SMT processors using 
a runtime approach, however, it is hard to control the parameters (runahead distance and the span of the 
precomputation chunk) of speculative precomputation, and to transform OpenMP programs to include speculative 
precomputation. [29] presented an adaptive OpenMP loop scheduler on top of the Omni OpenMP compiler. Its 
runtime system adds affinity and trapezoidal scheduling, and enables the dynamic selection of the number of threads 
on each processor for each parallel region. 

VII. CONCLUSIONS 
SMP technology is increasingly widely used. SMT and/or CMP technology are alternative strategies for increasing 

performance on a chip and exploiting space on the die to get better throughput. Applications need to be able to profit 
from the additional power by using multiple threads of execution and by adapting to best utilize the memory 
hierarchy. However, it will be hard for a compiler to automatically derive suitably large regions of code to obtain 
good performance. OpenMP is a relatively straightforward way to specify multithreading in a code and appears to be 
ideal for this purpose. But OpenMP was not designed with this kind of system and memory hierarchy specifically in 
mind, and there are to date few reports on the performance of OpenMP codes on such platforms. More experience, an 
analysis of the architectures and reconsideration of compilation strategies, are needed to determine the amount of 
speedup that can be expected, to derive suitable approaches to parallelization for these architectures, and to decide 
whether there are any modifications to OpenMP itself that would facilitate the execution of OpenMP applications on 
this kind of hardware. 
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