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Where are we?!

•  World’s data production is expanding beyond zettabytes!

•  Need to manage large numbers of disks!
•  Cloud, “Big Data”, Exascale computing!

•  The larger the system the more often components fail!
•  Approximately proportional to the number of components!

•  Component failures leading to disruption of service is 
unacceptable!

2	




Behind the scenes!
Currently…!
•  As data centers grow larger!

•  We buy self contained storage units!
• We stack them up!

•  Storage containers guarantee tolerance to k failures without data 
loss!

•  Recovery is usually slow, often requires partial down time!
•  Correlated failures are a big problem !

!
We can do better!
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Key Observations!
•  Large scale storage organizations should be dynamic!

•  Disks enter system in batches!
•  Disk capacity changes over lifetime of the system!
•  Disks leave the system though failure or decommissioning!

•  Static (even optimal) layouts for reliability do not adjust 
well to changes!

•  The system must adapt to this dynamic environment!
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Failures at large scale!

•  If you have many things, you will have many failures:!
•  Failure rate proportional to number of components (under 

stochastic assumptions)!
•  Correlated (batch) failures can be much worse!

•  Component failure can lead to data loss!

•  We mitigate failure by building redundancy into the 
systems!
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Redundancy Methods!
•  Mirroring / Replication!

•  Same data stored n times!
•  Good performance, good reliability, high storage overhead!

•  Parity / Erasure Coding!
•  Poor to good performance!

•  Requires engineering: caching, large writes, …!

•  Good reliability!
•  Low storage overhead!

•  Reed-Solomon (error correction) Codes!
•  Expensive to compute, expensive to update!
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Redundancy!
•  Protecting against a single failure!

•  Original data + 1 copy!
•  Erasure code with 1 level of protection (RAID5) !

What happens when you are recovering and you find out the 
data on the copy is corrupted? !

•  Latent sector failures are a problem!

•  Protecting against 2 failures!
•  If when recovering from a failure you encounter some latent failures 

you can still recover !

•  Protecting against more than 2 failures?!
•  A bit too much for most applications!
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RESAR!

• Robust!

• Efficient!

• Scalable!

• Autonomous!

• Reliable!
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RESAR!

•  Adaptive, dynamic, autonomous!

•  Based on XOR codes, fast to compute!

•  Broader in scope, can be applied to!
•  Reliability, energy efficiency, load balancing!

•  Key idea:!
•  The system is represented as an undirected graph!
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Disklets!

•  Disks are huge:!
•  We use disklets of fixed size as basic building blocks!
•  Disks have multiple disklets!

•  Allows use of disks of different sizes!

•  Each data disklet is in exactly two parity stripes!
•  Higher failure tolerance is usually not needed, but we could use 

hypergraphs!

•  Disklets are not parts of disks, but an abstraction!
•  Low latency disklets could be located on SSD!
•  High performance disklets could be stored in RAM !
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Two-dimensional arrays!

•  The current solution is a two dimensional RAID layout!
•  Each data disk is in two parity blocks!

•  Uses a square layout!

•  What’s the problem?!
•  Fixed size, rigid layout!
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Two-dimensional arrays!
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Key Observation!

•  A RAID array can be viewed as a graph!

•  The graph is slightly unusual in that:!
•  Data (disklets) are the edges!

•  Parity (disklets) are the vertices!

•  In fact, any RAID array can be viewed as a graph!
•  But not every graph corresponds to a RAID array!
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Two-dimensional array to Graph!
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I. INTRODUCTION

While flash and Storage Class Memory (SCM) technologies
stand to replace magnetic disk technology as the mainstay
for high end applications, the sheer amount of data to be
stored, the attractive cost-to-capacity ratios of disks, and the
high streaming throughput in comparison with not only tape
but also with high-end flash and SCM, give magnetic disk
technology a continuing and important role in the storage
hierarchy. This is true whether disks are relegated to tertiary
storage roles or remain as the secondary storage technology
behind flash/SCM-based caches. A practical disk-based stor-
age system at petabyte scale is both dynamic and heteroge-
neous, as the number of devices it would require means that
new disks with better performance, reliability, and capacity
will continuously enter the system as old disks leave due to
failure, age, or technical obsolescence.

Data stored in a peta-scale system needs to be protected, but
its size will make disk failure a daily occurence. Observed data
on the life expectancy of disks [1], [2] and the occurrence of
latent disk sector errors [3] suggest that tolerance of at least
two failures is necessary, possibly in conjunction with disk
scrubbing or intra-disk redundancy [4].

While replication offers operational advantages, the storage
overhead with its associated costs in hardware and energy is
too large. Many two-failure resilient systems have been pro-
posed in the past [5], [6], [7], [8]. We propose an old, simple
scheme in which every piece of client data is part of two
different reliability stripes encompassing data disks and one
additional parity each. Managing this simple layout over the
lifetime of an evolving system is difficult. Our contribution is
a graph-based representation that transforms layout decisions
into the construction of (almost) regular graphs and coloring
their edges and vertices with many colors. For this, we can
use simple, greedy and heuristic graph algorithms.

II. GRAPH REPRESENTATION

We store client data in disklets, virtual disks of fixed size
stored contiguously in the physical disks of the system. Using
disklets allows us to deal with the dynamism and heterogeneity
of the storage system, which at any time could contain disks
of varying generations and capacities. Disklets can be moved
transparently to the user between physical devices. The size of
the disklets offers a trade-off. Fewer, larger disklets are easier
to administer. More, smaller disklets fit better into the disks
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Fig. 1: A small two-failure resilient array and its design-
theoretical dual (right).

of varied sizes. Intuitively, we propose using disklets of about
100GB, which would mean that current disks would hold about
ten disklets each, with future generations introduced into the
storage system holding more. At this rate, no more than 100GB
(less than 10% of current high capacity disks) could potentially
go to waste. Space reasons prevent us from discussing how
even such apparently wasted storage space could yet be used.

A. Disklets, Reliability Strips, Configurations and a Dual
We distinguish between disklets that store client data and

disklets that store parity data (i.e., used only to recover from
disk failures). We place each data disklet into groups of n�1
disklets to which we add a single parity disklet. We call the
resulting ensemble of n disklets a reliability stripe. Data on a
single lost disklet in a reliability group can be recovered by
reading from all the other members of the reliability group.
To withstand simultaneous double failure, we place each data
disklet in two different reliability stripes. Of course, as disklets
on a single failed disk are likely to fail at the same time, we
will have to deal with common failure causes, but we will
come to that. A parity disklet belongs to only one reliability
stripe. A very simple example of such an arrangement is given
in Fig. 1, left. The ovals with numerical values represent
data disklets, while the hexagons with letters represent parity
disklets. The arrangement of disklets in rows and columns
represent assignment to reliability stripes. For example, data
disklets 13, 14, 15, and 16, together with parity disklet d, form
a reliability stripe.

To use mathematical Design Theory (from finite mathe-
matics), we call each data disklet an element and the set
of data disklets in a reliability group a block. Each parity
disklet corresponds to exactly one block, namely the parity
is calculated for the group of disklets in the block. A two-
(disklet)-failure tolerant layout consists of elements organized



Graph Representation!
•  This frees us from the rigid structure!
•  Any graph corresponds to a disklet layout!

•  Data disklets are edges !
•  Parity disklets are vertices!
•  A reliability stripe is a vertex and all edges adjacent to the vertex!
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What do failures look like?!

•  Failed parity are solid red vertices!

•  Failed data are bold red lines!

•  Recovery must be done based on 

topological sort of the failed subgraph!
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First fix data “1” 
We can use 

groups “r” or “s” 
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Parity “a” can be 
simply recalculated 
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To recover data 
“2” we can only 

use group “t” 
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Data “3” can be 
now recovered 
using group “u” 



c

b

u

r

s

a

t

3

4

2

1

Recovery!

21	


Data “4” is not 
recoverable 



Irreducible failure patterns!
•  These patterns represent data loss!
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Failure patterns!
•  Not all layouts (graphs) are equal!

•  We cannot avoid the barbell!

•  But we can avoid triangles!
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Simultaneous Recovery!
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Most of the 
previous 
recoveries can 
happen at the 
same time. 

Any group with a 
single failure can 
engage in 
recovery at the 
same time. 



Proposed layout!
•  Graph based on an n-dimensional grid!

•  Triangle free!
•  Vertex degree = 2n!
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Making it work!

•  Disklet to disk assignment!
•  On which disk do we put a given disklet?!

•  Incorporating new disks!
•  What happens when I buy a new rack of disks?!

•  Load distribution!
•  What’s the cost of recovery?!

•  What happens when “hot” data from different disklets ends up on 
the same disk?!
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Disklets to disk assignment!
•  Requirement: !

•  Simultaneous failure of two disks must not lead to data loss!

•  Solution: !
•  Graph coloring with added restrictions!

•  Restriction:!
•  Two elements (edge, or vertex) with the same color must be at 

least at a walking distance of two from each other!
•  This prevents single or double failure from generating irreducible 

failure patterns!
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Coloring Algorithm!
•  For each disklet on the graph!

•  1. Select randomly a disk from the non-full disks pool!
•  2. Check coloring constraints!
•  3a. If valid then!

•  3.1. Assign disk color to disklet!
•  3.2 If disk cannot have more disklets then remove from pool!

•  3b. Else go back to 1!

•  Random selection limited to 10 tries, after that the pool 
is permuted.!
•  This never happens.!

•  Each disk is a different color, and provides a homes for 
a certain number of disklets.!
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Hierarchical coloring!
•  Drive failures are not always independent, sometimes a 

whole server goes down taking with it 20 drives, or a 
tsunami takes out your entire data center.!

•  You can sustain double failures of disks, servers, racks, 
rows, rooms, floors or locations.!
•  Provided that you have enough elements of that type.!

•  You can apply this algorithm to disklets all the way up to 
data ceters.!
•  Use the servers, racks, etc. as colors and applying the coloring 

algorithm.!

29	




Adding new disks!
•  When you buy a new rack you need to assure the 

reliability of the data you are going to place there!

•  Simplistic way: make a new isolated graph!
•  Drawback: Correlated failures or “infant mortality” will cause you to 

lose data!

•  A more elaborate solution:!
•  Expand the perimeter of the graph then run coloring algorithm on 

the new structure to swaps colors between the new perimeter and 
the core.!

ü Prevents data losses due to correlated failures!!
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Load Balancing!

•  What happens if multiple “hot” disklets end up on the 
same disk?!

•  How can we adjust the layout to better balance the 
disks load based on disklets load?!

•  Heat maps on the graph can identify stressed groups!

•  Taking “cold” disklets and swapping them with some of 
the “hot” disklets on a disk can reduce the disk load!

!
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Energy Saving!

•  Color frozen disklets with same color and shut down the 
disk!

•  Tradeoffs between load balancing and energy saving 
can be adjusted for the specific deployment.!
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Layout: Execution Time!

•  Graph layout is linear on the 
number of disks!

•  Execution time is roughly 
1.329ms per disk!

•  Very fast layout!

Layout Design : Execution Time
y Graph layout is linear on the 

number of disks
y Execution time is roughly 

1.329ms per disk
y This is very fast
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disklet has 2 reliability groups
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Failure Tolerance!
Layout Design  : Failure Tolerance
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Failure Tolerance!

Initial Disklet Assignment 26 
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Correlated failures!
Complete Rack Failure
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How do the disklets per disk 
affect reliability?!# of Disklets per Disk : Failure Tolerance
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How do the disklets per disk 
affect reliability?!

•  Units lost increases with disklets per 
disk!

•  The % of actual data lost actually 
decreases!

# of Disklets per Disk > Failure Tolerance
y Although the # of units 

lost increases with the 
disklets per disk

y The % of actual data lost 
decreases with the # of 
disklets per disk
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System configuration: 8 data disklets per reliability group, each data disklet has 2 reliability 
groups
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Distributed RAID 6 and Replication!

Comparison on Probability of Data Loss!
!
•  With 20% storage overhead RESAR is 

15 times more resilient than RAID 6  
(RESAR vs. 8+2 codes)!

•  At the same storage capacity RESAR 
is almost 14 times more resilient than 
triplication.!
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Comparisons!

•  RAID 6!
•  At 8+2 offers same storage overhead (80% of storage capacity is 

usable for data) and same guarantees!

•  Triplication!
•  Offers same guarantees at the cost of an extra 200% of storage 

(only 33% of storage capacity is usable for data)!
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Random Failures!
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Triplication!
Coloring!
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Random Failures!
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8+2!
Triplicati
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Disklets per disk!
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Constant failure level!
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History!

•  In 2010 we proposed the idea on PDSW’10!

•  In 2011 we evaluated and compared it with triplication 
and erasure codes!

Can we build a system based on RESAR that scales 
to millions of drives, targeting both HPC and cloud 
systems?!

45	




Summer 2012  
First implementation!

•  Goal: 1 Million Drives!

•  Megatux (Sandia National Labs)!
•  Lightweight virtualization platform developed by Sandia!
•  Virtualized Infrastructure with 20,000 servers!
•  Each server emulated 50 hard drives!

•  Recovery Times < 4 minutes!

•  Years of operation emulated with zero data loss!
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Disklet Recovery Process!

•  Massively distributed recovery!

•  100% decentralized!

•  Recovery pipeline constructed based on utilization!
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Servicing requests during recovery!

•  RESAR has no downtime during failure recovery!

•  Data protected by two groups!

•  One group can recover while the other can service 
requests!
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Failed parity (red) and 
disklets involved in 

recalculation (white) 

Failed data 
(red) and it’s 
two groups 
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Choosing the right size!

•  Disklet size impacts: !
•  Recovery time – takes longer to read!
•  Recovery bandwidth requirements – more disklets = more traffic!
•  # of resources involved in recovery – more disklets = more disks!

•  5 GB disklets on 4 TB drives!
•  Recovery = 40 seconds!
•  Disks used = 6,552 !
•  On 1 million drives not an issue, for 10,000 a bit too much!
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Simulation Clock!

•  Running the system in real-time would take too long!

•  Global emulation clock sped up!
•  This adds some positive noise because of the 50 Virtual Machines 

running on each PC. !
•  With a clock multiplier of 600x a few extra hundred milliseconds 

add up to minutes.!
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Drives!

•  Hard drives had 1 TB and a bandwidth of 128 MB/s!

•  Annual failure rate of 4%!
•  Failure distribution follows a Poisson process!
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Experiments!

•  Reliability analysis as system scales!
•  250,000 drives, 500,000 drives and 1,000,000 drives!

•  Recovery Performance!
•  We run the experiment at multiple disklets sizes!

•  Reliability with high failure rates!

•  Simulation noise!
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IMPACT OF SCALE ON RECOVERY!
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* 4% AFR running at 1 second = 10 minutes	
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* 4% AFR running at 1 second = 10 minutes	
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* 4% AFR running at 1 second = 10 minutes	




IMPACT OF DISKLET SIZE ON RECOVERY!
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* 4% AFR running at 1 second = 30 seconds	




 

  

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7

R
ec

ov
er

y 
tim

e 
(m

in
) 

Simulation time (days) 

Disk Recovery Performance  
(500K drives with 100 GB disklets) 

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

R
ec

ov
er

y 
tim

e 
(m

in
) 

Simulation time (days) 

Disk Recovery Performance  
(500K drives with 50 GB disklets) 

500k drives with 50 GB disklets!

59	


* 4% AFR running at 1 second = 30 seconds	
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* 4% AFR running at 1 second = 30 seconds	




Recovery Profile!
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EFFECTS OF OTHER SYSTEM PARAMETERS!
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High failure rates!

63	


 

  

0

5

10

15

20

25

30

0 5 10 15 20 25 30

R
ec

ov
er

y 
tim

e 
(m

in
) 

Simulation time (days) 

Disk Recovery Performance (250K drives with 100 GB disklets at 25% AFR) 

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20

R
ec

ov
er

y 
tim

e 
(m

in
) 

Simulation time (days) 

Disk Recovery Performance  
(500K drives with 20 GB disklets) 

Running at 1 second = 1 minute	




Simulation Noise!

64	


Optimal	


 

 

  

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

In
st

an
ce

s 

Time between failures (in seconds) 

Frequency of time betwen failures  
(1 min interval) 

0

1

2

3

4

5

6

0 10 20 30 40 50 60

R
ec

ov
er

y 
Ti

m
e 

(in
 m

in
ut

es
) 

Time multiplier (in seconds) 

Effects of time accelaration on recovery 
(250K disks with 20 GB disklets) 

Emulation Theoretical



Conclusions!
•  Two failure tolerance based on XOR!
•  Fast algorithms!
•  Suboptimal but good enough!

•  Greater reliability than 8+2 erasure codes.!

•  Greater reliability than Triplication without the 
storage overhead.!

•  Scales to over 1 million drives!

•  Can sustain high failure rates!
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QUESTIONS?!
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* 4% AFR running at 1 second = 10 minutes	
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* 4% AFR running at 1 second = 30 seconds	



